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Summary (English)

Traditional methods for studying human behavior such as surveys and manual
collection are expensive, time-consuming and therefore cannot be easily applied
at large scale. In recent years an explosive amount of digital traces of human
activity – for example social network interactions, emails and credit card trans-
actions – have provided us new sources for studying our behavior. In particular
smartphones have emerged as new tools for collecting data about human activity,
thanks to their sensing capabilities and their ubiquity. This thesis investigates
the question of what we can learn about human behavior from this rich and
pervasive mobile sensing data.

In the first part, we describe a large-scale data collection deployment collecting
high-resolution data for over 800 students at the Technical University of Den-
mark using smartphones, including location, social proximity, calls and SMS.
We provide an overview of the technical infrastructure, the experimental design,
and the privacy measures.

The second part investigates the usage of this mobile sensing data for under-
standing personal behavior. We describe two large-scale user studies on the
deployment of self-tracking apps, in order to understand the patterns of usage
and non-usage. Moreover we provide some design guidelines for facilitating re-
flection in self-tracking systems. Finally we propose a model for inferring sleep
patterns from smartphone interactions.

In the third part, we focus on a specific aspect of collective behavior: human
mobility. We perform an experiment to verify the feasibility of inferring places
from location traces using mobile sensing data. We develop a hierarchical model
for human mobility, which is able to measure mobility properties at multiple
scales. We perform a study on the factors influencing the accuracy of next-
place prediction models. Finally we present an open-source tool for creating
geographical visualizations.
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Summary (Danish)

Traditionelle metoder til at studere menneskelig adfærd, som f.eks. spørgeskema-
er og manuelle observationer, er bekostelige og tidskrævende og derfor vanskelige
at anvende i stor målestok. I de senere år har der imidlertid været en eksplo-
siv vækst i digitale spor som hidrører fra menneskelig aktivitet — eksempelvis
interaktion på sociale netværk, email, og kreditkort transaktioner — som giver
adgang til nye måder at studere adfærd på. I særdeleshed fremstår smartphones,
med deres mange sensorer og store udbredelse, som et nyt værktøj til indsam-
ling af data om menneskelig aktivitet. Denne afhandling undersøger hvad vi kan
lære om menneskelig adfærd ud fra disse omfattende og vidt udbredte mobile
datakilder.

I den første del beskriver vi indsamling af høj-opløselige data i stor skala fra
smartphones fra over 800 studerende ved Danmarks Tekniske Universitet, in-
klusive data om geografisk placering, sociale interaktioner, opkald og SMS. Vi
giver et overblik over den tekniske infrastruktur, det eksperimentelle design og
hvad der er gjort for at sikre privatlivet.

I den anden del undersøger vi hvordan disse indsamlede data kan bruges til at
forstå personlig adfærd. Vi beskriver to stor-skala studier af apps til at registre-
re egen adfærd (self-tracking), for at forstå mønstre i brug og ikke-brug heraf.
Yderligere angiver vi design-retningslinier som hjælper til selvreflektion i syste-
mer til registrering af egen adfærd. Vi foreslår også en model der kan bruges til
at udlede søvnmønstre ud fra brugen af smartphones.

I den tredje del fokuserer vi på et specifik aspekt af kollektiv adfærd: menneskelig
mobilitet. Vi udfører et eksperiment for at verificere muligheden for at udlede
information om steder ud fra geografiske spor i mobile data. Vi udvikler en
hierarkisk model for menneskelig mobilitet som kan måle mobile egenskaber i
varierende målestoksforhold. Vi studerer faktorer som påvirker nøjagtigheden
af at kunne forudsige den næste forventede placering. Endelig præsenterer vi
open-source værktøjer som kan bruges til at skabe geografiske visualiseringer.
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Preface

This thesis was prepared at DTU Compute, Cognitive Systems section under
the supervision of Associate Professor Jakob Eg Larsen and Associate Profes-
sor Sune Lehmann in fulfillment of the requirements for acquiring a Ph.D. in
Engineering. The thesis deals with data mining and visualization of large hu-
man behavior data sets, and includes four published papers and five upcoming
papers.

Lyngby, 31-July-2016
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Chapter 1

Introduction

Imagine there was a device that could know everything about you. It could
measure your physical activity, quantify the length and quality of your sleep,
and predict if you are sick or depressed. It would know where your home is,
the location of your work and the other places of your life, if you bike or take
the bus, and could even recommend new destinations. It would keep track of
the people you spend time with, you talk to, and store every single conversation
you have.

This device is right here in your pocket: your smartphone. Modern smart-
phones are packed with sensors for location, audio, movement, and can record
a plethora of information about their usage, including phone calls and SMS,
and screen interactions. They also provide enough computational power to run
sophisticated algorithms for extracting information from the sensor data.

This thesis investigates the question of what we can learn about human behavior
from this rich and pervasive mobile sensing data.

At the individual level, this data has a personal significance and can therefore
be used to understand and maybe even improve personal behavior, health and
wellbeing. How to extract meaningful behavior from raw mobile sensing data?
What can we learn about ourselves from this data? How can we design systems
and tools that help us understand our own behavior?



2 Introduction

At the collective level, this data can be used to study societies as a whole and
try to understand complex phenomena such as social interactions and human
mobility. Can we find laws that govern human behavior, such as patterns of
communication, dynamics of human movement, fundamental structures of social
interactions?

This thesis will address some of these questions.

1.1 Outline

The remainder of this thesis is structured as follows.

Chapter 2 introduces the idea measuring human behavior through data. The
chapter gives an overview of the many sources of data, with particular focus on
mobile sensing. An introduction to the field of Computational Social Science
is provided, including goals, major results and challenges. Finally our work on
large-scale measurement of human behavior is described.

Chapter 3 concerns the usage of personal data to understand individual behav-
ior. The ideas of self-tracking and Quantified-Self are discussed. An overview
of key Personal Informatics literature is then provided, including different theo-
retical frameworks, the issue of self-reflection, and the role of data visualization.
Several contributions are then presented: the study of a large scale deployment
of a Personal Informatics system, an analysis of the relation between personal-
ity traits and self-tracking, a set of design guidelines to facilitate reflection and
finally a model for inferring sleep patterns from smartphones interactions.

Chapter 4 describes the usage of human behavior data for modeling one specific
type of collective behavior: human mobility. The chapter starts by providing
an overview of positioning systems, with focus on smartphones. Our work on a
tool for visualizing geographical data is then presented. The rest of the chapter
is then divided into three research areas: place recognition, mobility properties
and next-place prediction. For each of the areas, the highlights of the relevant
literature are provided. Our work in each area is then presented: a verification
of the feasibility of inferring mobility properties from low-accuracy smartphones
data, a study of mobility properties at multiple scales and finally an analysis on
the factors influencing the accuracy of next-place prediction.

Chapter 5 summarizes the contributions of this thesis, discusses the challenges
encountered, and finally suggests open questions and areas for future work.
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1.2 Summary of Papers

This dissertation consists of 4 published papers, 4 papers in submission and one
manuscript in preparation. Here we provide a short summary for each of them.
The papers are provided in Appendix.

[A] Measuring Large-Scale Social Networks with High Resolution de-
scribes a large-scale data collection deployment that aims at measuring human
behavior with unprecedented depth and temporal resolution. Data is collected
using smartphones and includes location, Bluetooth proximity, calls and SMS,
personality traits and Facebook activity. The data is collected approx. 800 first-
year university students at the Technical University of Denmark and for more
than 2 years. We describe the research agenda and the technical, experimental
and privacy challenges and solutions. Finally we provide an overview of the
initial results and show the importance of multi-channel high-resolution data.

[B] The Long Tail Issue in Large Scale Deployment of Personal Infor-
matics reports on the large-scale deployment (N=136) of a Personal Informatics
tool providing visualizations of mobility and social interactions. We discuss the
limited uptake of the app and the limitation of user engagement, and how this
can be a significant issue for any large-scale study on Personal Informatics.

[C] Who Wants to Self-Track Anyway? Measuring the Relation be-
tween Self-Tracking Behavior and Personality Traits reports on a follow-
up large-scale deployment (N=796) of a Personal Informatics system providing
feedback on personal mobility. In particular we focus on the relation between the
app usage and personality traits. We find that only conscientiousness may have
a significant impact, while we find no significant difference due to narcissism, in
contrast to popular views.

[D] Four Data Visualization Heuristics to Facilitate Reflection in Per-
sonal Informatics discusses how data visualization can be used to facilitate
reflection on personal data. From a review of Personal Informatics and data vi-
sualization literature we propose four design heuristics: make data interpretable
at a glance, enable exploration of patterns in time series data, enable discovery
of trends in multiple data streams and turn key metrics into affordances for ac-
tion. Finally we consider as a case study two popular self-tracking tools: Basis
and Fitbit.

[E] SensibleSleep: A Bayesian Model for Learning Sleep Patterns
from Smartphone Events proposes a Bayesian model for inferring sleep pat-
terns from simple smartphone usage activity. Our model allows us to estimate
the probability of sleep and awake times, and can encode prior knowledge and
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dependencies among parameters. We fit the model to over 400 participants from
two different datasets, and we verify the results against ground truth collected
with sleep trackers. Finally we show that the model is able to extract reasonable
individual and collective sleep patterns.

[F] geoplotlib: a Python Toolbox for Visualizing Geographical Data
describes an open-source python toolbox for visualizing geographical data, de-
veloped as part of this thesis. geoplotlib implements many common tools such as
dot maps, heatmaps, Voronoi tesselation and shapefiles. We describe geoplotlib
design, use cases and features.

[G] Inferring Human Mobility from Sparse Low Accuracy Mobile
Sensing Data studies the feasibility of inferring human mobility from sparse,
low accuracy data collected opportunistically with smartphones. We compare
different techniques for extracting significant places from mobility traces, and
we validate the results using ground truth collected in form of travel diaries.
Our results suggest that it is possible to reasonably infer mobility patterns even
from this low-resolution data.

[H] Measuring Human Mobility at Multiple Scales describes a hierar-
chical model for human mobility that is able to measure mobility properties at
multiple scales. We quantify a number of properties including the heavy-tailed
staying time, the exploration patterns during vacations periods, the daily and
weekly periodic returns, and the navigation in the spatial hierarchy between
different scales.

[I] Understanding Predictability and Exploration in Human Mobil-
ity investigates which factors influence the accuracy of next-place prediction in
human mobility. We show that the problem formulation, and the spatial and
temporal resolution have a strong effect in the accuracy of prediction. Finally
we uncover the mechanism of exploration of new locations and we measure than
on average 20-25% of transitions are to new places, and over 70% of places are
visited only once. We suggest that exploration is another important limiting
factor for predicting human mobility.



Chapter 2

Measuring Human Behavior

“Measure what is measurable,
and make measurable what is not so”

GALILEO GALILEI

In this chapter we discuss the idea of measuring human behavior using data.
Section 2.1 provides motivation for collecting data about human behavior, and
the limitations of traditional Social Sciences. Section 2.2 shows how data gen-
eration and storage is now pervasive, and lists some examples of the many data
sources available. Section 2.3 discusses how smartphones have become one of the
most accurate measurement tools for human behavior. Section 2.4 introduces
the field of Computational Social Science, and Section 2.5 provides a review
of the largest data collection studies for human behavior. Finally Section 2.6
presents our contribution to the field, the largest data collection deployment in
terms of channels and number of participants to date.

2.1 Social Sciences

Social Sciences aim to understand human behavior, both at the individual and at
the collective level. For example the discipline of economics tries to understand
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how people exchange goods and services, human geography seeks to understand
how humans move and behave spatially, and sociology studies the ways people
interact and function as a society.

Traditionally, data on human behavior has been collected manually by re-
searchers either by observing people, or asking them directly using surveys,
questionnaires, phone or in-person interviews, or focus groups. These methods
present a number of limitations. They are time-consuming and costly, as they
need to be carried out manually by researchers. Consequently, the samples are
typically limited to small sizes. Due to these logistic problems, data collection
is limited to few points in time, sometimes even just a single measurement.
This gives only a static view of reality, and makes it impossible to study the
changes of behavior over time. Moreover questionnaires and surveys can in-
troduce a large number of biases [1]: people may misinterpret questions and
answers, omit private or embarrassing details, simply forget or distort the past
experiences, or be too fatigued to truthfully complete the responses.

2.2 Big Data Revolution

In recent years there has been a dramatic increase in our capability to produce,
store and process data in digital format. Most information is now digitalized,
from bank transactions to medical records, from phone bills to purchase history.
Some of this data is collected passively and automatically, without us even notic-
ing. Every time we make a phone call, we check-in on the bus or we perform
a search in our browser, we leave behind some information about ourselves. At
the same time, our ability to share digital content has also multiplied: we email
colleagues at work, keep in touch with our friends using multiple instant mes-
sengers, upload pictures of our food, tweet about our vacations, record our run
with GPS and share it on Facebook, and post videos on YouTube. And the
increasingly cheaper and faster storage options mean that all this data can be
stored and retrieved for unlimited amount of time. All these pieces of informa-
tion constitute “digital breadcrumbs” [2] that reveal some facets of our behavior,
or an approximation of it. The contacts on online social networks may represent
some of our real friendships. The geo-tags capture part of our real patterns of
mobility. Our status updates may reveal our political orientation.

While traditional Social Sciences studies can provide a very detailed picture of
human behavior but typically only at small-scale, these new big data sources
can provide a simpler view but of a size many orders of magnitude larger. We
will now describe a number of these digital sources for data on human behavior.
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Email is one of the oldest forms of digital communication, but it has stood
the test of time surprisingly well. Using the senders and receivers of emails it
is possible to build a graph of social contacts, while timestamps can be used
to infer rhythms of communications. Email datasets have been used to predict
the quality of collaborative work [3], characterize communication patterns [4, 5],
and study the structure of social networks [6, 7].

Online Social Networks (OSNs) are websites that allow users to interact
with each other in different ways such as messaging, sharing content, or playing
games. Probably the most famous OSN is Facebook, which in August 2015
reached over 1.5 billion monthly active users [8]. Twitter comes at a distant
second place with over 300 million monthly active users [9]. OSNs provide an
excellent data source for studying how users communicate with each other, how
they form social relationships, and how they share contents and ideas. OSNs
data has been used for a myriad of purposes including: location prediction [10,
11], modeling of human mobility [12], social network analysis [13, 14], detection
of catastrophic events [15], stock market forecast [16], election forecast [17], and
information spreading [18].

Call Detail Records (CDRs) are the metadata collected by telecom operators
about phone calls, including receivers and senders, time and rough geographical
location at cell tower level. These datasets are typically very comprehensive,
covering entire countries, with millions of users and for very long periods of time.
CDRs have been used to study human mobility patterns [19, 20, 21], urban
structures [22, 23, 24], social networks [25, 26] and privacy of metadata [27].

Open-source repositories such as sourgeforge.com and github.com allow pro-
grammers to share personal code, and to collaborate on open-source projects.
From the workflow on the code bases it is possible to infer collaborative patterns,
and their effect on software quality [28, 29, 30].

Scientific repositories such as arXiv, Scopus and Web of Science record the
co-authorship information for thousands of scientific papers. This information
has been used for measuring scientific impact [31, 32] and predicting scientific
collaborations [33].

RFID are small devices that contain a radio emitter and receiver, and therefore
are able to detect when they are in close proximity. These devices can be used
to detect face-to-face interaction or co-presence among people wearing them,
typically in form of badges. They have been for example used at scientific
conferences, in offices [3] or even in hospitals [34] as proxies for close interaction.
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2.3 Smartphones as Measuring Tools

The data sources discussed so far present several limitations: they capture a
single facet of behavior such as social interactions on a specific channel, and
they are sparse in time as they capture only specific events such as sending an
email or making a phone call. Human behavior is of course much more complex:
it is composed by a large number of facets expressed in multiple ways through
multiple channels, and unfolds both in a very short timescale (multiple events
in a short periods), and a very long timescale (behavioral changes over long
stretches of time). In order to have a better measure of human behavior we need
tools that are able to capture multiple channels, with high temporal resolution
and for long periods of time. Smartphones have in recent years emerged as this
new tool for capturing human behavior [35].

First of all, smartphones provide a multitude of sensors that can capture dif-
ferent aspects of behavior. The location sensor through a combination of GPS,
Wi-Fi and GSM can determine the user location with accuracy of meters. The
Bluetooth sensor (a short-range wireless communication device) can be used
to detect close proximity to other people, and therefore as a proxy for person-
to-person social interactions. Logs of calls and SMS record two channels of
communication between people. The accelerometer sensor is able to measure
the relative movement of the phone in terms of intensity, direction and orien-
tation, and this data can be used to infer physical activity, mode of transport
and even sleeping patterns. Smartphone apps usage can be used to infer con-
textual information, or even demographics data. Just knowing whether a user
is interacting with his phone or not may give indication of his activity.

Smartphones are personal and always on, therefore supporting a continuous,
pervasive data collection. Sensor data can be collected passively, without the
user even noticing thus helping to ensure ecological validity [35] – that is, make
sure that the experimental data is as close as possible to the real-life. Sensors
can perform measurements even hundreds of times per second, and the data can
be collected and stored indefinitely.

Finally, smartphones facilitate really large-scale studies because they are in-
expensive and ubiquitous: in 2012 the global number of smartphones in use
surpassed one billion [36], and 72% of people in USA own a smartphone in
2016 [37].

The usage of smartphone and other personal devices as tools for collecting data
has produced a shift in the sensing paradigm, from traditional fixed sensors to
people-centric sensing [38]. People themselves have become a fundamental part
of the sensing framework, either in opportunistically collecting data on their
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environment, or in a participatory fashion submitting the data themselves.

Data collected using smartphones does not however perfectly reflect human ac-
tivity. Smartphone sensors still represent a coarse view of real human behavior,
as sensors have limited accuracy and sensor data needs to be processed to ex-
tract any meaningful information. For example the Android location service
can typically provide a position estimation within a radius from 5 to 100 me-
ters, depending on the availability of GPS and Wi-Fi. The Bluetooth sensor is
limited to scan a finite number of devices within a short distance, and the signal
is affected by walls and other obstacles. The microphone sensor has limited ca-
pacity in terms of volume and frequency. At the same time, data can be missing
or corrupted due to software and hardware issues, including hardware failure,
sensors failures, software crashes both at the app and operating system level.

Finally human factors play a role. People may forget bringing the phone with
them, temporarily – for example when going to another room – or for long
periods of time – for example leaving the phone at home when going for holidays.
The phone may be turned off either intentionally or because the battery dies.
Users may want to disable some sensors for privacy reasons, to save battery
(e.g. GPS), or simply by mistake. And as for any observational study, the
mere knowledge of being observed may cause some changes in behavior for
participants.

In recent years there has been an increased interest in using smartphones as
sensing tools in the academic world, and a number of frameworks have been
developed to automate the process of collecting, preprocessing and storing mo-
bile sensing data. We cite as examples Funf [39], SocioXensor [40], Context-
Phone [41], MyExperience [42], CenceMe [43], and DarwinPhones [44]. Typical
features of such frameworks are automated and passive sensor collection, config-
urable scheduling of sensing behavior to save battery life, automatic upload of
data to server, possibility to run questionnaires directly on the phone, encryp-
tion and secure communication.

2.4 Computational Social Science

The large-scale availability of these digital traces of human behavior has led to
the formation of a new scientific field: Computational Social Science (CSS) [2].
The new discipline proposes to investigate many of the classical Social Sciences
questions (i.e. social relations, mobility, economics) using a data-driven and
computationally intensive approach. The vision is the capability of studying
much larger populations, with a much deeper level of details, for longer periods
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of time, and without self-reporting biases. But in order to achieve these results,
CSS has to face many challenges.

One of the main issues is to protect user privacy while still allowing researchers to
carry out scientific studies. The pervasive availability of personal data presents
an excellent opportunity for advancing our understanding of society and human
behavior, but at the same time poses a great threat to personal privacy – the
right of a person to have control over his personal information. Privacy is
recognized as a human right by the United Nations [45], and after the revelation
of a mass surveillance program carried out by the NSA in the United States,
privacy has become a hot topic in the public debate as well. A great deal of
the personal data that is routinely collected is highly sensitive, for example:
location, social interactions, political and religious ideology, economic status.
To preserve privacy, data may be anonymized by removing or scrambling some
fields [46], aggregated by substituting individual records to group averages [47],
or perturbed with noise [48]. Unfortunately data analysis and privacy are often
conflicting: data analysts may benefit from detailed individual data, while users
may prefer their data to be as anonymized as possible.

Another issue intimately related to privacy is the reproducibility of studies.
Limiting access to the data often means the impossibility to reproduce the data
analysis. For example, a recent study made by Facebook on their social network
has reported that the famous number of degrees of separation between people in
the world is approximately four [14]. The authors could not disclose the raw data
for privacy reasons, and this has sparked much controversy on the reproducibility
of such studies, where the information is owned by private companies.

Another challenge for CSS is interdisciplinarity. Due to its very nature, the
discipline needs both Computer Scientists who have expertise in sophisticated
data analysis and computational tools, and Social Scientists that have deep
knowledge of the main social and societal research questions. It is often the case
that the two schools remain separated, but it is evident that a collaboration
would greatly benefit both parties. Fortunately in recent years a number of
conferences and journals focusing on CSS have appeared, and this has helped
the collaboration among the multiple disciplines.

Finally these new data sources require completely new methods and tools for
analysis: from algorithms and software to analyze huge amount of data, to
statistical methods for testing large amounts of hypotheses, to new ways of
thinking about dynamical social networks.
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2.5 Large-Scale Data Collection Studies

In the previous section we have described some tools for collecting data about
human behavior. But having the tools is only one part of the puzzle. In order
to be able to draw reasonable conclusions, complex experimental studies are
needed.

In many cases, it is not sufficient to study some individuals separately. Often
researchers need to collect data for a large number of people, and for long periods
of time.

Moreover a typical requirement is that the individuals in the population some-
how interact with each other. For example, in order to study social behavior
the population under study should contain individuals that normally have so-
cial contacts such as families, friends or students at the same university; or for
studying metropolitan mobility patterns, it is required to have many users from
a single city.

Finally, it is desirable for researchers to measure as many information channels
as possible, for example using a combination of mobile sensing, questionnaires,
and Facebook activity.

Due to the very large effort and resources needed to organize such experiments,
only a few large-scale studies have been performed so far. We describe here the
most significant studies of human behavior, in terms of multiplicity of informa-
tion channels, number of participants and duration.

The Reality Mining project [49] pioneered large-scale studies using mobile
phones. The project collected smartphone data including Bluetooth proxim-
ity, cell-towers location, call log and app usage for 100 MIT students and staff
members over 9 months. The researchers report how different types of users
(staff, professors, students) have different values of location entropy. They also
propose a Hidden Markov Model for labeling locations as home/work/other.
Finally they describe how the Bluetooth proximity can be used to build so-
cial networks, classify people as friends or colleagues and measure how social
interaction and work rhythms change in response to particular events.

The Lausanne Data Collection Campaign (LDCC) [50] collected data us-
ing Nokia N95 smartphones for 170 participants in the Lausanne region (Switzer-
land) for approximately 1 year. The goal of the project was to collect a richer
set of sensors compared to Reality Mining, including location from GPS and
Wi-Fi, app usage, activity detection based on acceleration sensor, call and SMS
logs, and metadata about media usage. Moreover the project aimed at collect-
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ing data for a more heterogeneous population from a whole city, instead of a
sample from a university. Their system proposes a data collection client based
on a state machine, which determines the optimal trade-off between sensor and
battery usage. In subsequent work [51], the data is shared with other researchers
in order to compete in three different tasks. In the task of recognition of place
categories, places were tagged with a semantic label, and the goal was to develop
a classification model to assign the right label to unlabeled places, given a set
of features. In the next place prediction task, the goal was to predict the next
location given the past location history and the current contextual information.
In the estimation of demographic attributes task, the goal was to predict basic
demographic groups based on behavioral indicators of phone usage. Finally an
open track allowed researchers to propose their own data analysis task.

The SocialFMRI [52] project recruited 130 participants within a social commu-
nity in USA for over 15 months. The participants collected mobile sensing data
(location, Bluetooth, apps, etc.), and periodically filled out surveys. Researchers
had also access to Facebook activity and credit card transactions. The project
produced a number of findings. By looking at the interplay between social in-
teraction diversity and financial status, the researchers found that individuals
lose social interaction diversity when their economic status gets worse, and vice
versa gain diversity when their economic status gets better. The researchers
also studied how the spreading of ideas is influenced by face-to-face interac-
tions. They found in particular that people spending more time in proximity
have higher chances of having more common apps. Finally the researchers re-
port on an intervention experiment for increasing fitness activity. People were
divided into different reward schemes, and it was found that the social schema
had the strongest effect for influencing behavior.

In Sensing the “Health State” of a community [53], researchers collected
mobile sensing data for a community of 70 students at an undergraduate univer-
sity residence over an entire academic year. Participants were also asked to fill
out monthly self-report surveys on diet and exercise, political opinions during
the presidential election campaign, and daily symptoms reports on influenza.
The researchers show how the behavioral change of people infected by influenza
can be measured using mobile sensing (different call patterns, reduced mobility,
less contact entropy). They also showed a correlation between Body-Mass Index
of social contacts, and a mechanism for propagation of political opinions.

The NetSense Smartphone Study [54] describes the deployment of smart-
phones for mobile sensing at the University of Notre Dame. The study docu-
ments the difficulties in setting up and running such a large scale experiment,
in particular participants retention: the number of active users started from
around 200, and over the months fell to less than 80.
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In StudentLife [55] data was collected for 48 students at Dartmouth College
across 10 weeks using mobile sensing, questionnaires and periodic ecological
momentary assessments [56] to probe mental state (stress, mood). The mobile
sensing app performed physical activity detection, sleep detection, and social
conversation detection. Significant correlations were found between sleep du-
ration, conversation frequency and duration, Bluetooth co-location and depres-
sion, stress levels, loneliness, academic performance. The researchers showed
that it is possible to detect effect of the increasing academic workload: stress
raises, mobility decreases, people stop going to the gym, class attendance de-
creases.

2.6 Paper Summary: “Measuring Large-Scale So-
cial Networks with High Resolution”

The chapter so far has set the context for the work described in this section.
Previous studies have been limited either by the small number of participants,
by the short duration, or by the limited number of data channels recorded –
which give an incomplete view of collective behavior.

In this paper (Appendix A) we describe SensibleDTU, a large-scale data col-
lection project where we obtain data for more than 800 university students at
the Technical University of Denmark, for a period of over two years. Partic-
ipants were recruited on a voluntary basis, with the incentive of obtaining a
Nexus 4 smartphone that they could keep as long as they participated in the
experiment. Data was collected using smartphones running an app that pas-
sively captures sensors (Wi-Fi, GPS, Bluetooth, calls and SMS, screen on/off).
Moreover participants were requested to fill a number of surveys regarding per-
sonality, self-esteem, narcissism, and depression. Participants also shared their
Facebook activity and friendship networks.

To date the SensibleDTU project represents the richest study of its kind, thanks
to the combination of a population of around 800 participants, for a period
longer than two years, and a large multitude of data channels. Table 2.1 shows
the order of magnitude of the collected data.

The vision of the project is to understand human behavior, in particular social
interactions at a whole new level of details. For long time social scientists have
tried to understand social connections but their efforts have been limited by the
available data, typically self-reports from a few participants. Using smartphone
data we can directly measure social proximity using Bluetooth and location
using GPS, thus enabling us to infer when social gathering happen, who are
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Channel Samples collected

Location 258,000,000
Phone calls (sent/received) 1,000,000
SMS (sent/received) 4,500,000
Bluetooth proximity 48,000,000
Wi-Fi access points 285,000,000

Table 2.1: Number of samples collected for the SensibleDTU deployment

the participants, and where they take place. The automatic and pervasive data
collection enabled by smartphones allows us to monitor this behavior 24 hours
a day, 7 days a week, and for a timespan of years. The multitude of channels
(phone calls, SMS, face-to-face, Facebook) allows us to capture the multiple
facets of social interactions across different time periods (Fig. 2.1). We show
that our approach of collecting behavioral traces on multiple channels and at
multiple time scales manages to capture many more details of human behavior
than single-channel low-resolution data sources.

This data opens the way for many exciting research possibilities including: iden-
tifying new structures for understanding social networks [57], studying the mech-
anisms of epidemics on a real-world network [58, 59], quantifying the privacy
risks of different channels [60], and as we will see in Chapter 4 understanding
human mobility at a new level of detail.

The paper also introduces a new standard for participants’ privacy in such
studies. The infrastructure is built on top of the OpenPDS framework [61], and
guarantees anonymization, encryption, and secure communication. Participants
are granted full control over their collected data thanks to the implementation
of the Living Informed Consent principle [62]. Participants can at any time
see the raw data collected about them, see who and how often their data is
accessed, or even drop out of the study. Finally, presentations were periodically
organized to share with participants how their data was used and which findings
were produced.

The study is not only a passive data collection process but constitutes a living
lab: a real-world testbed for running experiments and dynamically interacting
with the population. For example, participants were asked questions about their
current location using an Experience Sampling Method [63] app. In another
instance, a virtual virus was spread among participants to study the mechanisms
of epidemics and vaccination.

Finally the study aimed at keeping participants engaged by providing them
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services based on their data. Participants had access to a number of web-based
and mobile apps, which were providing visualizations and statistics on personal
behavior such as mobility and social interactions [64].

The SensibleDTU project constitutes the foundation for the remainder of the
work in this thesis, as it provides the behavioral data and the experimental
framework.

Face-to-face

Calls

Texts

12 pm  - 6 am 6 -12 am 12 am - 6 pm 6 - 12 pm

Figure 2.1: Social contacts are measured on multiple channels (calls, SMS,
face-to-face) and across different time periods (Figure from Ap-
pendix A).
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Chapter 3

Understanding Individual
Behavior: Personal

Informatics

“Know thyself”
INSCRIPTION IN THE TEMPLE

OF APOLLO, DELPHI

In Chapter 2 we discussed how the explosive amount of data that we can collect
represents an excellent opportunity for understanding human behavior. This
data is first of all personal, and can therefore reveal insights about individual
behavior.

The idea of self-tracking – collecting and using personal data for learning about
personal behavior – is not completely new. Benjamin Franklin, one of the Found-
ing Fathers of the United States, describes in his autobiography the practice of
tracking his daily adherence to 13 “virtues” for self-improvement [65]. English
statistician Francis Galton carried a homemade “registrator” to count different
mundane aspects of life, including how many times people yawned during his
talks [66]. In modern days, graphics designer Nicholas Felton produces an an-
nual report of his own life, quantifying and visualizing its most detailed aspects
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such as drinks consumed, places visited, and people met [67].

Self-tracking is common for regular people too: counting calories and measuring
weight, tracking expenses and budgets, keeping diaries of mood and thoughts.
A recent survey has shown that 7 out of 10 Americans keep track of a health
indicator for themselves or a loved one [68]. While in the past pen, paper
and self-reports were the only tools available, nowadays technology provides
new powerful tools to capture, store, and analyze personal data. Using small
and relatively cheap electronic devices, we can now measure signals that in the
past required professional-grade equipment: sleep phases, body temperature,
caloric expenditure, heartbeat. The rise of self-tracking has led to the parallel
development of two movements: the Quantified-Self in popular culture, and the
Personal Informatics in the academics circles1.

This chapter is structured as follows. Section 3.1 describes the development of
the Quantified-Self movement. Section 3.2 provides an overview of the Personal
Informatics field, including a model for self-tracking, goals and challenges of
self-tracking, the problem of reflection, and a number of related works. Section
3.3 provides a brief introduction to data visualization, one of the main tools
for understanding data. Section 3.4 describes prior work done on a large-scale
deployment of a Personal Informatics system. Section 3.5 summarizes a paper
where we discuss the issues of uptake and usage on a large-scale deployment of
a Personal Informatics system. Section 3.6 describes a paper where we analyze
the relation between self-tracking and personality traits. Section 3.7 summa-
rizes a paper where we propose four data visualization heuristics for facilitating
reflection using data visualization. Finally Section 3.8 describes a paper where
we propose a model for inferring individual sleep patterns from smartphones
usage.

3.1 The Quantified-Self Movement

In 2007 Wired editor Gary Wolf coined the term Quantified Self (QS) to indi-
cate the practice of self-tracking with the goal of “knowledge through numbers”.
From its inception, the QS phenomenon has grown dramatically. As today, the
QS website quantifiedself.com lists over 500 between apps, websites and devices
dedicated to self-tracking. The list includes fitness trackers from companies
like Fitbit [69], Jawbone [70], mybasis [71] and Nike [72], which can measure a
combination of distance, steps, calories burned, physical activity, and in some

1Although sometimes these terms are used interchangeably, for the rest of this thesis I will
use Quantified-Self for the movement, and self-tracking otherwise.
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cases heartbeat and body temperature. The Zeo2 sleep tracking band provided
in-depth sleep phases analysis. Websites like TrackYourHappiness [73], Mood-
Scope [74] and Mappiness [75] allow users to track and share daily mood and
feelings. Apps like Daytum [76], Mycrocosm [77] andMercuryApp [78] can track,
capture and visualize any aspect of everyday life. On communities like CureTo-
gether [79] and PatientsLikeMe [80] users can share their self-tracked symptoms
and conditions, with the hope of finding solutions from other people’s experi-
ences.

There are now over a hundred QS groups in 34 countries, which periodically
meet to exchange ideas, tools and results of their self-tracking efforts using a
“show and tell” format. For the last few years, QS conferences have attracted
hundreds of people from all over the world, and it has been sponsored by major
IT companies such as Autodesk, Intel and Philips. The QS movement has
generated a new market niche, with dozen of start-ups having huge growth.
One example is the fitness tracking device Fitbit, which has sold nearly 11
million units in 2014 alone [81]. Big tech companies also joined the market:
Microsoft, Apple, Google now produce smartbands and smart watches capable
of self-tracking. It is estimated that health and fitness self-tracking devices,
smartphones and tablets will reach 515 million units in 2017 [82].

Despite the claims of improving life through self-knowledge, some people ques-
tion the effectiveness of the self-tracking process (see Section 3.2.3). However
many individuals report satisfaction with their self-tracking effort, as the mere
act of observing our own behavior may help us behave better. Moreover the
QS movement has in some cases also benefited science. The data collected by
the large QS companies represents some of the most extensive datasets on hu-
man behaviors ever recorded. For example Zeo, the manufacturers of a sleep
tracking device, have over the year built an unprecedentedly large database
of anonymized sleep patterns, and using this data researchers have found that
women get less REM sleep than men [83]. PatientsLikeMe, a community where
self-trackers can share and discuss their health status with others, has allowed
researchers to compare symptoms with a new medication at a much larger scale
than traditional clinical trials [83].

3.2 Personal Informatics

In the academic circles, self-tracking tools are referred to as Personal Infor-
matics, which in the definition of Li et al. [84] are “systems [...] that help
people collect personally relevant information for the purpose of self-reflection

2the company has shut down in 2013
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and gaining self-knowledge”. The creation of tools for collecting and interacting
with personal data is a multi-disciplinary effort: from the hardware used for
capturing the raw data, to the data mining algorithms for extracting knowledge
from the data, to the user interfaces and visualizations to present the results
to the user. In the rest of this chapter we will focus mostly on the Human-
Computer Interaction aspects of Personal Informatics, except for Section 3.8,
which instead describes an application of data mining to infer sleep patterns
from smartphone interactions.

3.2.1 The Five-Stages Model

A widely used model for Personal Informatics was proposed by Li et al. [84],
which developed a stage-based model with 5 stages:

1. Preparation: the user determines which information to collect, which
tools to use and the goals for self-tracking

2. Collection: data is collected either manually (e.g. pen and paper) or
using sensors (e.g. smartphones, fitness trackers)

3. Integration: data is processed to extract higher-level knowledge (pat-
terns, trends, anomalies)

4. Reflection: results from the knowledge discovery are presented to the
user in form of text summaries and data visualizations, in order to obtain
insights about personal behavior

5. Action: recommended actions are suggested to correct or improve the
current behavior

The stages are iterative, so it is typical to go through them multiple times to
refine the process. Each stage presents some barriers, which are problems that
may arise and slow or halt the self-tracking progress. These barriers cascade,
which means that a problem in an early stage tends to create more problems
in the subsequent stages. Example of barriers include: not knowing what to
track, not having a specific goal in mind, choosing inappropriate tools for data
collection, having to perform most of the collection or processing manually, lack
of expertise in data analysis.

In subsequent work, Li et al. [85] identify six types of questions that people ask
about their data: Status (what is the situation now?), History (what are the
long-term trends?), Goals (what is my target?), Discrepancies (what are the
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differences between my status and my goal?), Context (what is the context of
my behavior?), and Factors (what influences my behavior?).

3.2.2 Goals of Self-Tracking

What are the reasons for tracking personal data? Surveys in literature [84, 86,
87], as well as personal reports of practitioners reveal a variety of motivations
for the usage of self-tracking tools:

• weight management In order to lose, maintain of gain weight, self-
trackers need to measure food intake and caloric expenditure, using a
combination of food diary tools, fitness trackers, and old-fashioned scales.

• health conditions Another common use case is for people dealing with a
specific sickness, from small issues like migraine to debilitating conditions
like diabetes or autoimmune diseases. In this case the self-tracker looks
for patterns that trigger or worsen their condition, such as specific foods,
physical activity, blood pressure, body temperature, or sleep duration.

• fitness tracking Self-trackers can use a variety of tools for measuring
physical activity, caloric expenditure, and store and share personal fitness
records such as bicycle rides.

• productivity By collecting information about sleep, diet, or supplements
the self-tracker can study the effect on productivity at work, and try to op-
timize it. Alternatively, the self-tracker can identify or block unproductive
behavior (e.g. checking emails or Facebook too frequently).

• social sharing Some users may be interested in capturing and sharing
personal life events, or achievements such a particularly long run. For
a long time online social networks such as Facebook or Foursquare have
provided a tool for sharing messages and activity. Self-tracking tools give
even more options for sharing data.

• technology enthusiasm Some self-trackers simply enjoy playing with
technology and gadgets such as self-tracking software and devices.

• self-discovery In some cases self-trackers may collect personal data with-
out any specific purpose, but only a curiosity about self. It is interesting
for some self-trackers to simply see a quantification of their own life, from
the nightly hours of sleep, to the daily number of steps. The data may be
collected and stored just in case one day could be used, in a kind of data
hoarding.
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3.2.3 Challenges

There are many challenges that can limit the effectiveness of the self-tracking
effort.

Lack of scientific rigor Although it is now relatively easy to capture the raw
signals (for example of steps, calories, heartbeat, sleep), it is much more difficult
to make inferences about their relation to behavioral patterns. As an example,
in order to infer the role of a specific food on the quality of sleep, one would need
to collect the data on the food intake and the sleep patterns, and then analyze
the data to arrive to a conclusion. But this requires knowledge of experimental
design, data analysis, statistical testing and all issues related to the scientific
method. Most self-trackers lack such scientific finesse and their analyses are
limited to simple correlation between input and output [86]. And since in self-
tracking the scientist is also the subject, placebo effects are somewhat inevitable:
the simple belief that a treatment may work can already influence the behavior
enough to produce a change.

Lack of integration Another issue in self-tracking is the lack of integration
between different services [84]. Each tool is typically specialized in one area,
for example sleep, physical activity or mood. So in order to combine multiple
channels for more sophisticated computations, it is needed to export the data
from each tool, make it compatible between each other, and re-aggregate it for
the final analysis. This typically requires quite advanced programming and data
analysis skills, often out of reach for most self-trackers.

Lapsing Despite the automation provided by most self-tracking tools, the self-
tracking process can be time and effort consuming, so it is common for practi-
tioners to stop tracking at some point. Reasons for this lapsing include: forget-
ting to track, tracking too many things at once, skipping entries, not knowing
what to track, not tracking context [88].

3.2.4 Reflection

Reflection is one of the fundamental goals of Personal Informatics, and the fourth
stage in Li’s model [84]. However it is hard to arrive to a precise definition of
what reflection really is [89, 90]. A review by Baumer et al. [91] has found that
in a set of 76 papers using reflection in their title, only 30 tried to explain what
reflection really means.

One common definition used is from Boud et al. [90], which define reflection as
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“those intellectual and affective activities in which individuals engage to explore
their experiences in order to lead to new understandings and appreciations”.
Several frameworks are based on this model. For example Rivera et al. [92]
propose a tracking-triggering-recalling model built on top of Boud’s. Fleck
and Fitzpatrick [89] describe a five layers reflection framework (Description,
Reflective Description, Dialogic Reflection, Transformative Reflection, Critical
Reflection), where each layer represents a more in-depth understanding. Other
reviews [93, 94, 95] note the cognitive, psychological and sociological issues re-
lated to reflection.

Given the difficulties on agreeing on a theoretically-grounded definition of reflec-
tion, more pragmatic evaluations are typically done. For example discoveries on
personal behavior (“I am very sedentary”, “I sleep too little”), noting correlations
between events (“I sleep better after a workout”), or reminiscence of the past
(“I remember visiting that place”) are considered part of the reflection process.
Another common way to evaluate reflection is in terms of concrete outcomes of
the self-tracking process such as improved education, better design or improved
understanding [91, 94].

3.2.5 User Interfaces for Reflection

The Personal Informatics field has significant overlap with lifelogging, ubiquitous
and pervasive computing, so it is not surprising to find relevant work in these
fields as well.

The first tools attempting to manage personal information were dedicated to
organize files and documents, following Bush’s vision of the Memex, “a device
in which an individual stores all his books, records, and communications, and
which is mechanized so that it may be consulted with exceeding speed and
flexibility” [96]. We cite as main examples LifeStreams [97] and MyLifeBits [98],
which propose file managers to organize personal documents in a flexible way.

Lifelogging [99, 100] proposes the idea of systems able to capture and retrieve
life experiences, including what people see, hear and think. In this context, user
interfaces such as [101, 102, 103] focus on presenting personal data as life stories,
under different contexts (spatial, temporal, social) and around different events.

In order to promote persuasion and behavior change, a number of avatar-based
solution have been proposed. In Fish’n’steps [104], physical activity is repre-
sented by a virtual fish that becomes happier the more active the user is, while
in UbiFit [105] a blossoming garden is used instead. In UbiGreen [106], polar
bears and trees are used to encourage environmental-friendly choices. Evalua-
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tion of these systems has shown that users respond well to the virtual avatars,
and are motivated by them.

Finally, even abstract art [107, 108] has been proposed as a form of representa-
tion for personal data.

3.3 Data Visualization

Many of the user interfaces for Personal Informatics and commercial self-tracking
tools try to facilitate the reflection process by providing feedback in some form
of data visualization. In this section we provide a brief overview of the ideas
behind data visualization.

Data visualization is the process of using graphical elements such as lines,
shapes, colors and text to represent data [109]. Visualizations define an encoding
between the data and the graphical elements, enabling data to be understood
visually. For example a continuous variable can be encoded in a bar chart by the
length of the bars, or in a pie chart by the angle of the sections. Data visualiza-
tion exploits the human visual information system, which is extremely good at
spotting patterns, trends and regularities in large amount of visual information.

One great example of the power of visualization is due to Anscombe [110], which
describes four datasets having the same mean, variance and correlation, and then
asks: what should we conclude about these datasets? A simple scatter plot of
the data is then provided, which immediately shows how the four datasets are
radically different.

A vast array of visualization techniques is available [111], depending on the data
to visualize:

• distributions: barcharts, pie charts, histograms, box plots

• two variables: line charts, scatter plots

• multivariate: heatmaps, parallel coordinates, radial charts, correlogram

• geographical data: dot density maps, choroplet, cartograms, flow maps

One purpose of data visualization is Exploratory Data Analysis [112], where the
data is represented in multiple ways to help the analyst explore the dataset.
Often it is not clear in advance which questions to ask, or which hypothesis to
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test. By visually exploring the data it is possible to find interesting patterns,
spot outliers and generate questions. This process is very dynamic: there is
a constant iteration between data visualization and hypothesis generation. To
support this exploration, data visualizations are typically very dynamic and
support interactivity. Some of the main techniques for interaction are [113, 114]:
providing an overview, zoom and filtering, showing details on demand, sorting,
selecting elements, providing focus+context, linking multiple views.

Another role for data visualization is the explanatory usage. In this case, we
already have achieved some results and we want to represent them visually in
order to communicate this knowledge. Data visualization is once again one of
the most effective ways to do so. Creating explanatory visualization is a design
task, and multiple factors should be taken into account. What is the message of
the visualization? Which questions are being answered? Who is the audience of
the visualization? What is their technical expertise in the subject? What is their
competency in statistics and visualization? How much time and effort should
the readers put for using the visualization? A number of design principles have
been developed in the data visualization community, most notably the work of
Tufte [115], who recommends minimizing decorative elements and the distortion
of graphical representation.

The evaluation of a given data visualization is a very complex task, since as in
the case of reflection (Section 3.2.4) it is not clear what effectiveness of visual-
ization really means. Even choosing the “best” visualization for a given task or
dataset is not simple, since the interpretation varies from person to person. The
practical methods used for evaluating novel visualization techniques are measur-
ing the efficiency for specific tasks, counting the number of insights that users
obtain, and analyzing qualitative feedback [116]. The evaluation of visualization
techniques remains one of the top open problems in the field [117].

3.4 SensibleJournal

In previous work [64] we described the large-scale deployment of SensibleJournal,
a Personal Informatics mobile app that provides visualizations of mobility and
social interactions. The app was deployed for approx. 6 months to N=136
first year university students at the Technical University of Denmark. The app
provided a number of user interfaces and visualizations based on the mobile
sensing data:

• a feed-based user interface displaying a daily summary of the visited places,
modes of transport and distance traveled.
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• a map view displaying an animation of daily trajectories and visited places.

• a spiral visualization [118] of the time series of places visits, which high-
lights recurring patterns and anomalies in mobility (Fig. 3.1).

• a bubble chart of social contacts and social communities inferred from
Bluetooth proximity (Fig. 3.2).

Figure 3.1: A view from SensibleJournal: a spiral visualization of the places
visits (Figure from [64]).

Figure 3.2: Another view from SensibleJournal: a bubble chart of social con-
tacts and communities (Figure from [64]).
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The deployment of the app was done in phases, so that new visualizations were
added over time. The app collected usage logs by recording the timestamped
user interactions with the app. Finally, users were asked to answer a question-
naire, to which 45 participants responded (33%). The goal of this deployment
was to collect data on the usage patterns of such self-tracking tools. In the next
section we will describe the results of this analysis.

3.5 Paper Summary: “The Long Tail Issue in
Large Scale Deployment of Personal Infor-
matics”

Despite the commercial success and the widespread adoption of Personal In-
formatics and self-tracking tools, large-scale controlled studies are somewhat
lacking in literature. In particular most studies focus on small selected group of
participants that are requested to use the Personal Informatics tools during the
experiment, and are often already interested in self-tracking.

In this work (Appendix B) we study the voluntary uptake and usage patterns
of SensibleJournal, a Personal Informatics application deployed to a large pop-
ulation (N=136), as described in Section 3.4. We analyze the usage logs and
the questionnaire answers to investigate the patterns of usage and non-usage of
the SensibleJournal app, as an instance of a large-scale deployment for a Per-
sonal Informatics system. Our main finding is that despite the large scale of the
deployment, only a small percentage of users were engaged by the tool.

We quantify for each day the number of active users as users having at least
one interaction of 10 seconds or longer. We find that the number of active users
fluctuates over time, and sharp peaks can be measure in the periods following
the release of new visualizations (Fig. 3.3). We also measure the total time spent
on the app per user.

We find that the distribution of time user has a long tail, with most users
spending little time on the app, and only a few users being active (Fig. 3.4). We
discuss how this phenomenon of the long tail of user adoption is a critical issue in
Personal Informatics, since after considerable time and costs of the development
of such systems only a small percentage of users is engaged.
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Figure 3.3: The number of active users of the SensibleJournal app over time
(Figure from Appendix B).
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Figure 3.4: The distribution of total time of usage of the SensibleJournal app
(Figure from Appendix B).
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3.6 Paper Summary: “Who Wants to Self-Track
Anyway? Measuring the Relation between
Self-Tracking Behavior and Personality Traits”

The work presented in the previous section has opened a number of questions
around the disparity between the frequent users and the rest. Who are the
self-trackers? What are the reasons and the goals for people that used the
self-tracking app? Section 3.2.2 has shown how the literature in this area has
described a number of concrete use cases, but the fundamental reasons that
lead some people to self-track and some others to not self-track are yet to be
understood.

Personality is one possible candidate for interest or non-interest in self-tracking.
In particular narcissism – the (excessive) interest in oneself – seems a possible
candidate for the self-tracking behavior. Indeed the popular media has suggested
the link between self-tracking and narcissism [119, 120]. Also in the research
literature the self-tracking practices are often related to narcissism [93, 121, 122]
although some authors have criticized this view [123]. To date only a small-scale
study (N=36) has made an attempt to quantify these hypotheses [124].

In this paper (Appendix C) we perform a large-scale deployment (N=796) of
a Personal Informatics mobile app that provides feedback on personal mobil-
ity patterns. The app was made available to participants of the SensibleDTU
study (Section 2.6), together with a collector app that captures a number of
mobile sensing channels, including location data. Each participant was required
to install the app, but the subsequent usage was left optional. At the begin-
ning of the experiment participants were also requested to fill a questionnaire
including the Big Five inventory [125] and Narcissism NAR-Q [126], from which
the following six personality traits were obtained: extraversion, agreeableness,
conscientiousness, neuroticism, openness and narcissism. The app provided a
number of views of personal mobility, for example the number of places visited,
the distance travelled or the mode of transport, including maps and graphs.
Fig. 3.5 shows an example of the views provided by the app.

A usage log of the interaction with the app was collected and periodically up-
loaded to our server. The analysis of the usage patterns confirms the finding
reported in our prior work. The majority of users had little interaction with the
app, and only a small minority used the system on a regular basis, with less 5%
launching it more than 20 times. The number of active users slowly decayed
from the start of the experiment, with a peak in the beginning of September –
the start of the new university semester.
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Figure 3.5: A screenshot from SensibleJournal2014 (Figure from Appendix C).

In order to quantify the relation between personality and self-tracking we com-
pute four usage-related measures: number of days with at least one launch, total
time interacting with the app, total number of launches and mean session dura-
tion. For each of the usage measures we divide the population into the top 10%
and the rest 90%, and we compare the mean for each of the personality traits
using t-tests (4 usage measures x 6 personality traits = 24 tests). In order to cor-
rect for multiple comparisons, we adjust the p-values using the Holm-Bonferroni
procedure [127]. The result of the analysis is that only conscientiousness with
total time produces a statistically significant difference. Notably narcissism does
not produce any statistically significant difference, contrary to the previous hy-
potheses. Although more work is needed to confirm the effect of personality
traits on self-tracking behavior, this work provides some first indications on the
possible causes.
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3.7 Paper Summary: “Four Data Visualization
Heuristics to Facilitate Reflection in Personal
Informatics”

As discussed in the previous sections, Personal Informatics systems try to facil-
itate reflection using different forms of feedback. In this work (Appendix D) we
discuss how data visualization can be applied to the personal data domain to fa-
cilitate the reflection process. Exploratory data analysis using data visualization
can be a powerful tool for exploring personal data, and can support many of the
self-tracking goals: finding correlations, spotting outliers, understanding trends.
From a review of the data visualization and Personal Informatics literature, we
identify four design heuristics.

Make data interpretable at a glance. Users want to obtain insights on their
behaviors with minimal time and effort. Given the complexity of multi-channel
longitudinal self-tracking data, visualization should support interpretation at
a glance. Visualizations could for example provide simple overviews such as
dashboards or summaries, and show more details on demand.

Enable exploration of patterns in time series data. Time series data
are one of the fundamental formats for self-tracking information. Two time-
related behavior are of main interest: global trends (does my weight decrease
over time?) and periodic patterns (do I smoke more in the weekend?). Most
systems provide support for analyzing global trends, but often lack visualizations
of periodic ones. Visualization techniques such as calendars and spirals [118] can
facilitate the reflection process on periodic patterns.

Enable discovery of trends in multiple data streams. In most cases it is
desirable not only to inspect trends for individual self-tracking variables, but also
to understand the relation between them. For example it is indeed interesting
to see that my weight has gone down in the last few months, but it would be
even more interesting to see that the weight loss has happened since I started to
walk more than 10,000 steps per day. The analysis of relation between variables
can be facilitated by appropriate visualization techniques for multivariate data,
for example scatter plots, corrgrams [128] or small multiples [115].

Turn key metrics into affordances for action. As for exploratory data
analysis, reflection on personal data is an iterative process where a feedback
form produces more questions which in turn prompt the user to ask new ques-
tions. Visualization tools for Personal Informatics should be able to support
this iterative process implementing some common interaction techniques such
as filtering, details on demand, annotations, and history.
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Finally we consider as representative case studies two popular self-tracking tools
(Basis and Fitbit) and we discuss how they offer limited support for more ad-
vanced data exploration.

3.8 Paper Summary: “SensibleSleep: A Bayesian
Model for Learning Sleep Patterns from Smart-
phone Events”

In this section we focus on understanding another aspect of personal behavior:
sleep patterns. Sleep is a fundamental aspect of life, as sleep quality have signif-
icant impact of health and well-being. Large-scales sleep studies have relied on
questionnaires and self-reports, which are not completely reliable. More accurate
measurements require expensive and inconvenient equipments, and therefore do
not scale well to large populations. In this context, smartphones are once again
a precious tool for the measurement of human behavior. A number of smart-
phone apps such as Sleep Cycle [129], SleepBot [130], and Sleep as Android [131]
can track sleep patterns. Moreover several scientific studies have shown that it
is possible to infer reasonable sleep patterns using smartphone sensors such as
audio from the microphone [132], light [133], and accelerometer movement [134].

Our contribution to this area (Appendix E) is to develop a model for inferring
sleep patterns using an even weaker signal: just knowing when the smartphone
screen is turned on or off. The development of this idea started from considering
how much smartphones have become part of our life. We wake up and as first
thing in the morning we snooze our smartphone alarm clock. On our way to
work we read emails and check our calendar. During the day we keep checking
our phone for chats and text messages. Finally the last thing we do for the day
is to set the alarm clock for the next morning. Only when we sleep we leave our
phone alone, and even then we may check it when we wakeup once or twice in
the middle of the night. Our hypothesis is that smartphones interactions really
become a proxy for our sleep, or lack thereof.

We develop a Bayesian model based on the idea that the number of screen-on
events are generated by two separate distributions: a Poisson distribution with
rate λawake when being awake, and a Poisson distribution with rate λsleep while
being asleep. We divide each day into 15-minutes timebins, and assume that the
rate changes depending on the timebin of the day. The rate is λawake between
the time of wakeup tawake and the time of sleep tsleep, while the rate is λsleep
before tawake and after tsleep. Fig. 3.6 shows a conceptual representation of the
relation between the parameters.
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Figure 3.6: A conceptual representation of the sleep model (Figure from Ap-
pendix E).

We fit our model to two datasets, one courtesy of Sony and another one from
SensibleDTU (Section 2.6), for a total of more than 400 users. The fit is done
using Markov Chain Monte Carlo (MCMC), which searches for the most likely
values of the parameters guided by the log likelihood. Compared to other ap-
proaches using ad-hoc rules for inferring sleep patterns from smartphone interac-
tions [135], our model has several advantages. The Bayesian approach can relate
the parameters in multiple ways, allowing us to test different models for sleep
mechanisms. We can build a model supposing that for each day the time of sleep
are totally independent, or we can assume that they are related to a hierarchical
parameter representing the baseline times of sleep/awake for a person. Similarly
we can assume that the awake rate is completely independent for each day, or
we can assume that it comes from an underlying distribution characterized by
a base rate. Moreover the Bayesian approach can incorporate prior knowledge
for the rates and the typical times of sleep/awake into the model, and provides
an estimation of the uncertainty for the parameters. Using the model we can
produce detailed sleep periods estimates for all users. We compare the inferred
sleep schedules with the ground truth taken from armband sleep trackers worn
by the Sony subjects. We find that the model is able to determine sleep patterns
with a mean accuracy of 0.89, and a mean F1 score of 0.83.
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Fig. 3.7 illustrates the sleep schedule inferred by our model for 4 users, repre-
sentative of different sleep behaviors. Each row represents one day, and each
column represents one time bin. The blue shading represents the probability
that the user is asleep in that timebin: darker color indicates higher probability.
The radius of the red dots shows the number of screen-on events per bin. User
A has a quite regular schedule, waking up around 07:00 except on some days
(presumably weekends). User B has also a pretty regular schedule, waking up
around 06:00 most days, but he has a few smartphone interactions at night –
presumably when he temporarily wakes up. User C has a much more unstable
schedule, with no fixed pattern for waking up, many long nights, and a lot of
smartphone interactions during the day. Finally User D has very noisy data,
with few interactions interleaved during day and night – the model cannot really
conclude much about his sleep schedule.

From a large number of individual sleep schedules we can derive collective pat-
terns of sleep. Fig. 3.8 shows the aggregated sleep times during the week. It is
possible to notice the normal routine of sleep during weekdays, and the delayed
sleep and wakeup schedule for weekends.

This section has shown how the inference of behavior for many single individual
can be aggregated to understand trends in collective behavior. The next chapter
will focus precisely on how to infer collective behavior in a specific context:
human mobility.
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(a) User A

(b) User B

(c) User C

(d) User D

Figure 3.7: The inferred sleep schedules for 4 users. Each row represents one
day, and each column represents one time bin. The blue shading
represents the probability that the user is asleep in that timebin:
darker color indicates higher probability. The radius of the red
dots shows the number of screen-on events per bin.
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Figure 3.8: The aggregated sleep times for all users during the days of the
week (Figure from Appendix E).



Chapter 4

Understanding Collective
Behavior: Human Mobility

“Two roads diverged in a wood,
and I – I took the one less traveled by”

ROBERT FROST

In the previous chapter we focused on using personal data to understand individ-
ual behavior. In this chapter we try instead to look at the trends in aggregated
individual behaviors, and we focus on one specific aspect: human mobility. This
facet of behavior really has a special importance: everything happens in a spe-
cific geographical location. The spatial context often influences other aspects of
our behavior. We meet different people depending on our location: colleagues at
work, family at home, friends at a bar. Our activities are also place-dependent:
we only workout at the gym, sleep at home, play with our smartphone on the
bus. Movement patterns are also a very personal behavior, which can be used
to uniquely identify people [27].

Other than the significance at the personal level, understanding large-scale mo-
bility patterns has important applications in many fields. In traffic management
and urban planning, mobility models can be used to forecast and optimize the
traffic within cities, or better understand the urban structure [136, 137, 138].
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In anticipatory computing, a predictive model could guess your next location
and provide context-related information such as a commute timetable, opening
hours, traffic estimation, reminders or alternative routes [139]. Advertisers may
be interested in such systems for providing ads targeted to the next place [140].
In mobile computing environments, predicting the next user location is used
to optimize the allocation of infrastructural resources [141]. Co-location is a
fundamental requirement for spreading of epidemics, and consequently a bet-
ter understanding of mobility could lead to better prevention and containment
strategies [142, 143, 144, 145, 146]. Movement of populations is critical during
and immediately after natural disasters, therefore being able to model changes
in mobility can lead to better emergency response [147, 148].

Human mobility is a very vast field, and here we focus on three areas: place
recognition, mobility properties and next-place prediction. The rest of the chap-
ter is organized as follows. Section 4.1 gives an overview on how the data can
be acquired using different systems for measuring location. Section 4.2 focuses
on smartphones as positioning systems, and discusses the challenges of working
with location data. Section 4.3 describes an open-source toolbox to visualize ge-
ographical data, developed as part of this dissertation. Section 4.4 provides an
overview of the problem of identifying places from location traces, including the
most relevant techniques from literature. Section 4.5 describes a paper where we
study the feasibility of inferring human mobility from sparse low accuracy data
collected with smartphones. Section 4.6 provides an overview of the statistical
physics approaches for understanding human mobility properties. Section 4.7
describes a paper where we propose a hierarchical model for human mobility
and we analyze human mobility properties at multiple scales. Section 4.8 gives
an overview of the field of next-place prediction, and the most important mod-
els from literature. Finally Section 4.9 describes a paper where we investigate
which factors influence the accuracy of next-place prediction.

4.1 Positioning Systems

The geographic coordinate system is the reference system for describing any
point on Earth using latitude, longitude (and altitude). The latitude represents
the north/south angle from equator, while the longitude represents the west/east
angle from the Greenwich meridian. A positioning system estimates the location
on Earth using beacons, which are reference points with known location. This
measurement is typically done by calculating the time needed for the beacon
signal to travel, or the strength of the signal. There are three main technologies
for beacons: GPS satellites, cell towers, and Wi-Fi.
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GPS (Global Positioning System) is a technology that provides a position esti-
mation based on satellites communication. The system is composed of 24 satel-
lites orbiting Earth, and continuously transmitting their position and reference
time. Any GPS receiver needs to obtain the signal from at least 4 satellites,
and can then calculate its own position based on the time that took the signals
to propagate1. GPS estimations can be very precise, up to a few meters for
consumer devices. However GPS requires line of sight to satellites, which is
not available indoors and for some weather conditions. Moreover obtaining an
initial fix on the satellites requires some initial time.

Cell towers are the antennas used to transmit the phone network signal. Since
mobile phones need to be connected to cell towers all the time to make and
receive phone calls, cell towers have become a pervasive positioning system.
The issue with cell tower positioning is that is often very inaccurate, since a
single cell tower may cover an area of hundreds of meters, or even kilometers in
less populated regions. On the other hand, the cell towers usage for millions of
users routinely recorded by telecommunication providers in form of Call Details
Records (CDRs) presents an incredibly rich dataset for studying human mobility,
and in fact some of the most significant mobility studies have been done on
CDRs.

Wi-Fi is a technology for connecting to a wireless Local Area Network. Vir-
tually any modern electronic communication device (phone, tablet, watch, lap-
top, PC) has a Wi-Fi receiver, and most buildings (homes, offices, libraries,
restaurants, etc.) have Wi-Fi routers, each one broadcasting a unique identifier.
This means that in densely populated areas there are always some Wi-Fi access
points present. A proof of the pervasive coverage of Wi-Fi has been given by
Sapiezynski et al. [60], who show that only using 20 Wi-Fi access points it is
possible to reconstruct people’s location 90% of the time. Wi-Fi positioning has
the advantage over GPS to work indoors, and compared to cell-towers Wi-Fi
has typically a much shorter range (tens of meters), therefore providing a more
accurate estimation of position.

4.2 Positioning Using Smartphones

All modern smartphones provide tools for estimating the current user location.
In this section we will refer to the Android Location Service [149] that has been
used in the SensibleDTU study (Section 2.6), but similar principles apply to

1this calculation is quite complex, and it has to even take into consideration the Special
and General Relativity due to the fact that satellites are at a significant distance from Earth’s
gravity.



40 Understanding Collective Behavior: Human Mobility

other families of smartphones.

The Android API provides methods for requesting the last known location, and
to receive updates when the estimation improves or the location changes. The
location estimation is the guess that the phone can provide using either GPS
or a fused sensor based on Wi-Fi and cell towers positioning. Google does
not officially provide information on how the estimation for the fused sensor
is done. However it has been reported that Google (and other major mobile
phone companies) have been building for years an extensive map of the Wi-Fi
and cell towers positions by cross-referencing them with the GPS data from
mobile phones [150, 151], so this is the likely mechanism behind it.

One location sample from the Android API contains a latitude and longitude in
decimal degrees, a provider (GPS or fused) and an accuracy r in meters. The
accuracy is defined so that if we draw a circle of radius r around the current esti-
mation, there is 68% probability that the true location is inside the circle [152].
Therefore each location sample has an intrinsic uncertainty of positioning, which
can make it difficult to determine the exact location for example among differ-
ent buildings. We analyze here a representative subsample of over 20,000,000
locations in order to illustrate the characteristics of the collected data.

Due to battery consumption, the Android API prefers to use the fused sensor
instead of GPS whenever possible. In this subset of records, only 9% of the
samples are from GPS. Fig. 4.1 shows the distribution of reported accuracy,
divided by provider. Most of the GPS samples have accuracy better than 20-30
meters, and most of the fused samples have accuracy better than 40 meters.

As discussed before, GPS is available only outdoors while the Wi-Fi positioning
is available almost everywhere. The accuracy of estimations has a spatial mean-
ing, as location samples collected indoors tend to less accurate (higher radius
of uncertainty). Fig. 4.2 shows a map of the median accuracy of the Android
location samples over the campus at the Technical University of Denmark. The
white color represents good accuracy of < 10 meters for the street and outdoors.
The orange color represents accuracy of 20-30 meters in the outer parts of the
buildings. The red color represents accuracy of > 30 meters, in the inner parts
of buildings.

It is interesting to see the behavior of the location sensor over time. Fig. 4.3
shows the accuracy and the movement over one day for one user. The top subplot
shows how the accuracy over time fluctuates around 20-60 meters. The bottom
subplot shows the sample-by-sample displacements. Even during night hours
when the phone is presumably stationary, the location samples are randomly
distributed around due to noise. Around 9.00, 12.00 and 18.00 bigger travel
distances are measured, indicating that the user was probably commuting.
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Figure 4.1: Accuracy (in meters) of over 20,000,000 location samples.

Figure 4.2: Map of the median accuracy (in meters) over the campus at the
Technical University of Denmark.
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Figure 4.3: Accuracy and sample-by-sample displacement over one day for one
user.

4.3 Paper Summary: “geoplotlib: a Python Tool-
box for Visualizing Geographical Data”

Analyzing large-scale data is a complex task and in many cases the analysis can
be facilitated by creating exploratory visualizations [112, 153]. In the context
of geographical data, maps are the natural visual representations. During our
work with geographical data we found that surprisingly there is a lack of tools
for creating maps that integrate well with the python programming language,
the tool of choice for many data analysts (including us).

Looking to related work, the matplotlib [154] library provides many visualization
tools, but it does not support geographical maps by default. Some extensions
such as Basemap [155] and Cartopy [156] provide geographical projections but
do not support map tiles. Another alternatives is to generate custom code in
Javascript/HTML either manually or using some third-party libraries such as
Google Maps [157], Leaflet [158] and OpenLayers [159]. Finally, Geographic
Information Systems such as QGIS [160] and ARCGIS [161] could also be con-
sidered. These solutions however are sub-optimal, since they require the data
to be exported and do not have full integration with python.

To fill this need we implemented geoplotlib, an open-source python toolbox
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for visualizing geographical data. geoplotlib is designed according to three key
principles:

• simplicity: geoplotlib provides a set of built-in visualization techniques
such as dot maps, kernel density estimation, spatial graphs, Voronoi tesse-
lation and shapefiles. The API is inspired by the matplotlib [154] library
(the de-facto standard for data visualization in python) to make it easier
for python users to get started.

• integration: geoplotlib visualizations are scripts in pure python, so they
can use any other python code or package. This supports full integration
with the many available libraries for scientific computing, machine learning
and numerical analysis.

• performance: geoplotlib uses numpy for fast numerical computations
and OpenGL for hardware-accelerated graphical rendering, and is able to
visualize millions of points in real time.

The software has been released as open-source on github [162], and has received
a moderate attention with hundreds of downloads and over 360 favorites as of
July 2016. The paper in Appendix F describes in details the architecture, the
use cases and the features of geoplotlib.

4.4 Place Recognition

Location expressed as latitude and longitude can be a very precise measure-
ment, but this representation is difficult for humans to understand. Saying that
you are at position (48.858342, 2.294449) is not as eloquent as to say that you
are under the Eiffel tower. Humans tend to think spatially in terms of places,
that is a discrete set of spatial units with well-defined contextual meaning. The
transformation from raw mobility traces to discrete places is also a needed step
for other tasks in mobility analysis. In order to predict transitions between
places, it is needed to define how to extract places from mobility traces. An-
other example is that for studying the mobility properties such as frequency of
visits or staying times, it is firstly needed to identify what the places are. Fi-
nally, context-aware applications must have a way to recognize different places
and distinguish for example your home from your favorite coffee shop. Place
recognition algorithms can be divided into two main categories: geometry-based
and fingerprinting-based.



44 Understanding Collective Behavior: Human Mobility

4.4.1 Geometry-based

Geometry-based place recognition takes a history of absolute locations (typically
in latitude/longitude format) and defines places in terms of set of points or
geometric shapes such as rectangles or circles.

One very simple way to distinguish between places is to define an arbitrary
discretization of the surface of Earth, and consider each unit as a different
place. The most elementary way to do this is to define a rectangular grid on
geographical coordinates space, and consider each grid cell as a different place.
Fig. 4.4 shows an example of converting mobility traces into places using a grid.
This solution has a number of problems, since is not clear how large the grid
cells should be. If cells are too large, then one single cell may contain multiple
places; if cells are too small they may split a single place into two. No single
choice of size can really fit everything, as places can be very small (a single
house) or very large (a shopping mall, a stadium). Despite these problems, the
grid binning solution is in some case a good enough approximation, and in fact
it has been used in many works [163, 164, 165].

1,1

n,m

Figure 4.4: An example of converting mobility traces into places using a grid
(taken from Appendix I).

An improvement over the naive grid-binning has been suggested by Zheng et
al. [166]. The proposed algorithms starts by defining as before a grid over the
map and assigning points to the grid cells. Then the algorithm considers each of
the 8 neighboring cells, and it merges the non-empty ones. This method has the
advantage of being able to capture places of different sizes and shapes, although
it can only have rectangular boundaries.

A heuristic for identifying places is based on the GPS limitation of losing signal
within building. Therefore significant places can be identified as these spots
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where signal is lost for a significant amount of time. This technique has been
suggested by Marmasse et al. [167] and Ashbrook et al. [168].

The problem of assigning locations to places can be quite naturally framed as
a data clustering problem. What we want to achieve is to assign locations to
places so that locations belonging to one place are more similar to each other
than to locations belonging to a different place. In other words, given a set of
points in the latitude-longitude coordinate space, we want to assign each point
to a cluster so that points in the same cluster are more similar than to points in
other clusters. Not surprisingly, a lot of literature has been dedicated to apply
clustering techniques for identifying places from location traces.

A clustering method that would be suitable for this task should not need any
prior knowledge of the number of clusters, since the number of significant places
changes by person and over time. For this reason, the density-based clustering
algorithms have been one of tools of choice, in particular DBSCAN [169] and
OPTICS [170]. The principle behind density-base clustering is that each point
is at the beginning assigned to his own cluster, and then clusters “grow” and
merge together as long as the points are within a distance threshold ε. The main
parameter needed is the distance threshold that specify how far can points be
to still belong to the same cluster. Numerous studies have adopted this density-
based clustering method, and we cite as examples [171, 172, 173, 174, 175].
Related to this approach is the work of Kang et al. [176], who propose an online
algorithm for place recognition that sequentially groups locations over time, and
determines the membership of place according to a spatial distance d and a time
difference t.

Fig. 4.5 shows an example of identifying places as clusters of stops using density-
based clustering (taken from Appendix I). In the left panel each stop is repre-
sented as a red dot. In the right panel the result of the clustering is shown: each
cluster corresponding to place is represented by a different color.

4.4.2 Fingerprinting-based

Fingerprinting-based place recognition uses a completely different approach in
defining places. Instead of requiring the precise geographical positioning in
terms of latitude and longitude, this approach defines a place with a unique
fingerprint in form of beacons: cell towers, Wi-Fi, or Bluetooth.

For cell towers, the simplest assumption is that there is a one-to-one corre-
spondence between each place and a cell tower. This effectively divides the
geographical area into a Voronoi tessellation [177], so that each point on the
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Figure 4.5: An example of identifying places as clusters of stops using density-
based clustering (taken from Appendix I).

Figure 4.6: An example of assigning location samples (blue dots) to Voronoi
cells (red lines).

map belongs to the nearest cell tower. Fig. 4.6 shows an example of the as-
signment of locations to Voronoi cells. Laasonen et al. [178] have suggested an
improvement by grouping nearby towers together, to link towers that belong to
the same logical place.
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Fingerprinting techniques for Wi-Fi typically define each place by the set of
visible access points, or their signal strengths. For example Hightower et al. [179]
propose scanning the Wi-Fi access points in a fixed time window to identify
changes in the set of visible access points. A similar approach is proposed by
Kim et al. [180]. Wind et al. [181] show how a greedy search for selecting the
most frequently seen Wi-Fi access points is able to detect significant places.

Bluetooth is a short-distance radio transmission technology, commonly available
in electronic communication devices. Bluetooth devices have also been used as
beacons for positioning [182], especially indoors. However Bluetooth as posi-
tioning system is much less common, due to the Bluetooth devices being much
less pervasive than Wi-Fi and cell towers.

4.4.3 Evaluation

One major challenge for place recognition literature is the validation of the
results. The set of places and visits inferred by a place recognition system must
be validated against the actual behavior of people, and this typically requires to
collect the ground truth in form of travel diaries, or to interview participants and
ask feedback about the results. This presents all the usual limitations related to
manual data collection: it is costly, time-consuming, and error-prone. Therefore
experimental results in literature are limited to studies on tens to hundreds of
people at most, and for typical periods of few weeks.

4.5 Paper Summary: “Inferring Human Mobility
from Sparse Low Accuracy Mobile Sensing
Data”

As discussed before, the problem of place recognition is well studied in liter-
ature, and many different strategies have been proposed. However in many
experimental settings the sampling rate is typically as high as one sample every
few minutes [171, 172], or even every few seconds [168, 174, 167]. Moreover
much of the literature focuses on high-accuracy GPS estimations from mobile
phones or even dedicated devices.

Such measurement settings may not be realistic in a large-scale data collection
study. In the SensibleDTU study (Section 2.6), location samples were acquired
using Android smartphones. The location sensing was limited to one sample
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every 5-15 minutes, to avoid excessive battery drain and to reduce the size of
the collected data. Moreover the location collection system provided by the
Android smartphones has typically less accuracy than high-precision GPS (see
Section 4.2).

In this paper (Appendix G) we therefore investigate the feasibility of inferring
human mobility patterns from this more sparse, lower accuracy mobile sensing
data. In particular we investigate the performance of several techniques to detect
stop locations and identify places. We recruited six students at our campus, and
we gave them a Nexus 4 with a data collector app installed (the same setup as
the SensibleDTU experiment). Participants were instructed to write down a
travel diary of the places visited during the day, with the name, the time of
arrival and departure. One researcher also collected his own location data and
kept his own diary.

We test a number of algorithms for place recognition: distance grouping, speed
thresholding, Gaussian Mixtures Model and DBSCAN clustering. The per-
formance of the place recognition techniques is evaluated using the f1 score
between the inferred places and the ground truth places the diaries. Finally,
we qualitatively inspect the geographical distribution of the inferred places and
the patterns of visitations. Our results indicate that the place recognition task
produces reasonable results, despite the lower quality of the data.

4.6 Mobility Properties

Human behavior can be very complex, and finding general laws that perfectly
describe individual choices may be an almost impossible task. However if we
look at aggregated trends of behavior of a large population, some general prop-
erties emerge. This is the approach taken by statistical physics [183], which
was originally applied for describing physical phenomena (such as the inter-
action between particles) using statistical tools. Statistical physics applied to
human mobility looks at properties at the aggregated level, and tries to describe
mobility behaviors such as travel distance, stay duration, diffusion and return
patterns as stochastic processes. In this section we describe some of the key
results obtained by this approach.
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4.6.1 Travel Distance and Diffusion

In The Scaling Laws of Human Travel [184] Brockmann et al. analyze
over 1 million reports of geographical location of bank notes, and calculate their
spatial displacements. The distribution of displacements decays as a power law,
therefore the authors suggest that human movement is well approximated with
Lévy flights2. A Lévy flight [188] is a random walk where the step size ∆d
follows a power-law distribution:

P (∆d) ∼ ∆d−(1+β) (4.1)

with β < 2.

Brownian motion Lévy flights Real mobility trace

Figure 4.7: Comparison between simulated Brownian motion, simulated Lévy
flights and a real mobility trace from one individual. The Brown-
ian motion is composed by regular steps of approximate same size.
The Lévy flights exhibit both short and long jumps. The real mo-
bility trace also has both short and long displacements, but is also
characterized by multiple returns to the same places.

This model for human behavior also makes a lot of intuitive sense: we typically
travel very short distances (home-work) but sometimes we travel farther (to
another city) and occasionally very far (to another country).

Moreover the authors find that the dispersion of notes is much slower than
2Interestingly enough, Lévy flights also describe trajectories of monkeys [185], alba-

trosses [186] and marine predators [187].
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expected for a Lévy flight. Therefore they investigate different possible reasons,
and finally suggest that this is caused by the heavy-tailed waiting time between
movements, which slows down the diffusion process.

In On the Levy-walk Nature of Human Mobility [189] Rhee et al. confirm
the results from Brockmann, applying a similar analysis on GPS traces from
101 volunteers in five different environments: two university campuses, the New
York City metropolitan area, and one theme park and one state fair. The
mobility traces of people are found to fit well as Lévy flights. The distribution
of displacements and waiting times are both heavy tailed, and a number of
distributions fits are tested. Moreover it is shown that users have super-diffusion
up to 30-60 min and subdiffusion after that.

In Understanding Individual Human Mobility Patterns [19] González
et al. analyze the position of 100,000 users from Call Detail Records for six
months. They find that the displacements between consecutive locations follow a
truncated power-law. Moreover they define the radius of gyration rg as measure
of the characteristic travel distance for a user:

rg =

√√√√ 1

n

n∑

i=1

(ri − rcm)2 (4.2)

where ri is the i-th position, and rcm is the center of mass position. The radius of
gyration is also distributed as a truncated power-law, and over time it increases
more slowly than the random walk model would predict.

The authors suggest that the reason of this behavior is the regularity of human
mobility: people tend to return to a few familiar locations with high probability,
and with specific frequency of days or weeks. In particular the probability of
returning to a location ranked L in the frequency of visits follows Zipf’s law [190]:
P (L) ∼ 1/L. Finally the paper shows that after rescaling and correcting for
anisotropy, the individual spatial probability distributions collapse into a single
distribution.

4.6.2 Predictability and Exploration

In Modelling the Scaling Properties of Human Mobility [21], the au-
thors discuss how modeling human mobility as Lévy flights or Continuous-Time
Random Walk (CTRW) fails to reproduce some key properties: a slower than
expected diffusion, the Zipf’s law for frequency of visits, and the saturation of
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the number of newly explored locations over time. They propose a mechanism
to explain this behavior. At each step, a person decides whether to explore a
new location that has never been visited before with probability Pnew = ρS−γ ,
or return to an already visited location with the complementary probability
Pret = 1−ρS−γ . When returning to a known location, the probability of choos-
ing each location is proportional to the frequency of previous visits. This way
frequently locations tend to be visited more and more – a mechanism similar
to preferential attachment in networks [191]. The authors fit this model to a
Call Detail Records dataset of 50,000 users for three months. By combining this
mechanism with the heavy-tailed travel distances and waiting times, the model
is able to fit much better the mobility traces.

In Limits of Predictability in Human Mobility [20], Song et al. propose
a new method, based on Information Theory, for quantifying the regularity
and predictability of human mobility. The authors apply this framework to
a Call Detail Records dataset of 50,000 users for three months. Each user’s
mobility trace is composed by the sequence of hourly time bins, each of them
containing the cell tower ID that the user is connected to. Their idea is to
measure the Shannon entropy, that is a quantification of the (dis)order of the
series of locations visits. In particular they define three types of entropy: Srand,
Sunc, and S:

Srand = log2 n (4.3)

Sunc = −
N∑

i=1

pi log2 pi (4.4)

S =

(
1

n

∑

i

Λi

)−1

lnn (4.5)

Srand represents the entropy when choosing one of the n locations uniformly
at random, thus ignoring both the temporal sequence information and the fre-
quency of visits. Sunc represents the time-uncorrelated entropy, obtained by
ignoring just the temporal sequence information and applying the entropy for-
mula on the frequencies of locations visits. Finally S represents the real entropy
of the time series, which accounts both for the temporal sequence information
and the frequency of visits. S is estimated using a process similar to the Lempel-
Ziv data compression [192]: for each of the n steps we find Λi, the length of the
shortest substring starting at position i that does not previously appear from
position 1 to i− 1. By construction 0 ≤ S ≤ Sunc ≤ Srand <∞.

The entropy of mobility has an interesting interpretation. S = 0 indicates no
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uncertainty at all, meaning that the next location is completely predictable. In
this work the authors show that for most people Srand ≈ 6, indicating that on
average one user location update represents six bits of information – or in other
words a user can be found on average in one of 26 = 64 locations. In contrast
S ≈ 0.8, indicating that a user can be found in fewer than two (20.8 ≈ 1.74)
locations.

Finally, the authors show how to transform the entropy value into the upper
bound of the predictability performance of an ideal algorithm using Fano’s in-
equality. Surprisingly, the distribution for all users of this upper bound of
predictability is tightly centered at around 93%, indicating that most people’s
mobility patterns are very regular and predictable.

The idea of the limits of predictability for human mobility has been further
explored by Lu et al. [148] who study the predictability of the population of
Haiti after the earthquake in 2010, by Lin et al. [193] who investigate the effects
of spatial and temporal resolution, and by Smith et al. [194] who consider the
spatial constraints for next-place transitions.

In Returners and Explorers Dichotomy in Human Mobility [195], Pap-
palardo et al. discover the existence of two types of mobility profiles: returners
and explorers. The former limit their mobility to a few places, while the latter
do not. In order to quantify this difference the authors define k-gyration r(k)g as
the radius of gyration limited to the top k places. The ratio r(k)g /rg across the
population under study shows two peaks: around 1 for returners whose total
gyration corresponds to the gyration of their top k places, and around 0 for ex-
plorers whose gyration cannot be described in such as way. Finally a modified
exploration and preferential return model [21] is proposed to incorporate the
explorers/returners dichotomy, which better fits the data.

In Unravelling Daily Human Mobility Motifs [196], Schneider et al. apply
the concept of network motifs – subnetworks that occur more often than in ran-
domized versions of the entire network – to individual transitions between places.
The authors find that only 17 unique network configurations are sufficient to
explain 90% of the mobility patterns of the population, and each individual is
characterized by a number of motifs that remain stable over several months.
The most common motif is composed by two visited locations and transitions
between them; the second most common motif with only one location; the third
and fourth most common motifs are characterized by three locations and four
transitions, either starting and ending at the same location, or with one stop in
the middle.
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4.7 Paper Summary: “Measuring Human Mobil-
ity at Multiple Scales”

In Section 4.4 we discussed the problem of extracting places from mobility data,
and how this is typically solved by using clustering methods or by imposing
geometric boundaries. Much of the literature in this area has pragmatically
focused on finding places depending on the problem formulation or the available
data sources, without much discussion about the actual definition of a place.

But what is a place? If we start to think about it, the answer is not so simple.
Right now I am sitting in my office, but I am also inside my university campus,
in Copenhagen, and in Denmark. The definition of place is complex, and de-
pends on the context and ultimately on the scale we are considering. Places are
spatially nested and form a hierarchy. Scales can be found even on old-fashioned
paper maps: there are specific maps for country, for cities and so on.

The idea of the hierarchical organization of human places has been proposed
in other fields, such as Geography [197] and Environmental Psychology [198].
As described in Section 4.6, much work has been done to measure the many
properties of human mobility but little attention has been given to the effect of
geographical scale. In this paper (Appendix H) we build a model to capture the
hierarchical organization of human mobility and to measure mobility properties
at multiple scales.

We analyze the location data from SensibleDTU (Section 2.6). For each user
individually we find stops as sequence of locations where the user has been
approximately stationary, that is within a distance threshold approximately
corresponding to the GPS accuracy. We then group stops into places with a
recursive clustering based on DBSCAN [169]. We first cluster stops at a very
large distance (ε = 150 kilometers), which produces clusters corresponding to
country-level partitions. We then recursively apply clustering at a distance
ε = 5000 meters to find city-level partitions, and then again at distance ε = 500
meters for neighborhood-level and ε = 20 meters for building-level. The clusters
do not precisely correspond to the exact administrative boundaries, but they
capture well the geographical scales.

Fig. 4.8 shows an example for one user. Each cluster is depicted as a circle, and
each scale has a different color: blue for building, green for neighborhoods, or-
ange for cities and red for countries. The left panel shows the several buildings
(blue) within one neighborhood (green). The center panel shows the neigh-
borhood (green) within a city (orange). Finally the right panel shows the city
(orange) within a country (red).
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Figure 4.8: An example of the hierarchical structure identified by the model.
Each cluster is represented by a circle, and each color represents a
different scale: blue for building, green for neighborhood, orange
for city and red for country.

The model allows us to analyze mobility properties at multiple scales. We can
for example measure the fraction of time spent at different places (Fig. 4.9).
The fraction of time rapidly decreases as a function of place rank, and the
decay is stronger for larger scales. These results are in line with the well-known
properties of long-tailed staying time and preferential return [21], but in addition
show the effect of different scales.
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Figure 4.9: The fraction of time versus place rank for multiple scales (from
Appendix H).
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We also measure a number of other mobility properties. The cumulative fraction
of time show that, depending on the scale, a different number of places are
needed to cover the majority of the time. The probability of returning to places
displays two strong periodic patterns, one every 24 hours and one every 7 days.
We measure the exploration behavior over the year, and show how it is possible
to detect periods of higher exploration in correspondence to holidays. We can
quantify the navigation in the spatial hierarchy, for example distinguishing the
probability of transitions between buildings in the same neighborhood and across
neighborhoods. In all cases we show how the different scales have an effect on the
mobility properties, and sometimes the hierarchical model can capture details
that would be lost in a flat model.

4.8 Next-Place Prediction

Predictive models for human mobility try to answer the question “where will you
go next?”. The underlying assumption for any predictive model is that modeled
behavior is deterministic, that is the same conditions always produce the same
output. In the context of human mobility this means that your past location
history and your context perfectly determine your next movement. Even though
human behavior is extremely complex and it may not be considered completely
deterministic, human mobility is indeed driven by routine. People tend to follow
the same schedule week after week: go to the same workplace on weekdays, to
the same gym on specific days of the week, to the supermarket near home after
work, to their favorite bar on Fridays. Yet it is easy to image how there are
many “exceptions to the rule” in this routine. Unlike robots, we never follow
exactly the same plan. We may come to work later on day, and leave early
another, we may skip the gym a few times, or change after a while our favorite
restaurant. Despite this uncertainty, mobility models have managed to obtain
accuracy as high as 90% in some contexts.

Typically the prediction is done by choosing the next place among a finite set of
possible places. The discretization of mobility traces into places can be done in
various ways, as discussed in Section 4.4. Predicting the next place could mean
predicting the next grid cell, a geometric boundary, or a cell tower for exam-
ple. The problem is then formulated as a supervised learning task: the model
is trained on a subset of the data in form of sequence of locations and contex-
tual information (time, sensor data, etc.), and tries to learn which patterns are
predictive of the next location.

We now review some of the key ideas in predictive models for next-place pre-
diction.



56 Understanding Collective Behavior: Human Mobility

4.8.1 Markov Chain Models

One family of predictive models is based on the idea of Markov chains. A
Markov chain is a random process that transitions between discrete states, and
the probability of each transition depends only on the current state, and not on
any of the previous ones. This “absence of memory” is called Markov property.
In other words, for a sequence of random variablesX1,X2,X3, ... the probability
of Xn+1 depends only on Xn:

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn)
(4.6)

An extension to the simple Markov chain is to have an order m Markov model –
or Markov(m). A Markov(m) model has a memory of sizem, so that the current
state depends on the previous m states. The simple Markov chain model can
then be seen as a Markov(1) model.

In the context of human mobility, a Markov chain model assumes that the next
visited location depends only on the current location. This assumption may
seem an excessive simplification at first – our mobility patterns are for sure
much more complex! – but in practice it has worked well on many different
datasets.

Although the reasons for the success of the Markov models are not completely
clear, it is possible to speculate why it is so. One reason is probably that
the model can correctly predict the most frequent transitions home-work-home.
Going back home is also the most likely transition for the majority of the other
places. Moreover there are many occasions where people follow the Markov
property: we may visit a cinema only after going to a specific restaurant, or go
to our parents’ house only after stopping for a while at the station on the way.

The simplest way to build a Markov chain model from a sequence of transitions
between places is the following. Let each state x1, ..., xm represent a place. The
transition probability from xi to xj is the number of times that the user has
traveled from xi to xj over the total transitions from xi. Fig. 4.10 visualizes as
a graph the Markov chain model fitted on an individual’s mobility trace, limited
to transitions appearing more than once. Each place is represented by a node,
and the size of each node is proportional to the number of visits to that place.
Each link represents a non-zero probability of a transition between two places,
so the absence of a link indicates that no transitions are possible between two
places. The large blue node represents the home location, where most visits take
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place. The home node has most of the links both incoming and outgoing, since
most trips are from and to home, and the other nodes are mainly connected to
the home location.

Figure 4.10: A Markov chain model of transitions between places for a single
individual.

We now review some of the main prior work on next-place prediction using
Markov chains.

Evaluating Next-cell Predictors with ExtensiveWi-Fi Mobility Data [199]
by Song et al. was one of the first large-scale studies on next-place prediction.
The authors study the problem of predicting the next location for over 6000
users at the Dartmouth University campus. Locations are represented by the
Wi-Fi access points that users are connected to. The authors test Markov
chain models of different orders, and find that the Markov(2) model has the
best performance (72% median accuracy) – better than higher order models.
The Markov(2) model performs even better than more complex models based
on Lempel-Ziv, Prediction by Partial Matching and Sampled Pattern Matching
predictors. Finally the authors show that the accuracy increases for longer trace
lengths, and is negatively correlated with the entropy of the location history.
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InApproaching the Limit of Predictability in Human Mobility [200], Lu
et al. apply the Markov chain model to Call Detail Records data from 500,000
users in Ivory Coast, West Africa. Their problem formulation consists in pre-
dicting for each day the last visited prefecture. In this context the Markov(1)
model performs extremely well with accuracy as high as 87-95%, better than
higher-order models. The authors however note that a large part of this pre-
dictive power comes from the high stationarity of mobility, since most people
spent the vast majority of their time in the most visited location.

In Next Place Prediction using Mobility Markov Chains [201], Gambs
et al. develop a Markov chain model with 3 states: home, work and other.
The Markov(2) model performs best achieving an accuracy ranging from 70%
to 95%.

In A Variable Order Markov Model Approach for Mobility Predic-
tion [202], Bapierre et al. propose a Variable-Order Markov Model (VOMM)
that supports a flexible number of states for prediction. The model consider
as states combinations of location labels, day of the week and time of the day
(morning, afternoon, evening). The model is evaluated on the Geolife [203]
and Reality Mining [49] datasets and achieves a mean accuracy of 0.65 without
temporal context, and 0.78 with temporal context.

4.8.2 Conditional Probability Models

The Markov chain models we have discussed make a very strong simplification:
they assume that the next location depends only on the previous locations.
However our experience tells us that this is rarely the case. A large number of
other factors play a role in our decision of where to go next. The most obvious
one is time: depending on our schedule we may go to one place or another. But
other factors may also play a role: are we with friends or alone? Did we plan
something special for today? Are we sick? Of course not everything can be
promptly measured, but mobile sensing does provide some means for measuring
at least a subset of these factors, for example:

• Current location can be extracted as discussed before

• Semantic information about location (home, work, shop) can be inferred
from the data, or mined from Points of Interest databases

• Time can be determined by the smartphone clock

• Social proximity (are we alone or in a group?) can be determined by
Bluetooth, Wi-Fi or GPS proximity
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• Social activity in terms of communication can be recorded by calls and
SMS

It is reasonable to expect that a combination of these features can provide
better predictions than location alone. We can formalize the prediction using
this context information as follows. At each step, we want to infer the most
probable next location given the context variables discussed above. In other
words we want to compute P (L̂|c1, c2, c3, ..., cn), where L̂ is the next location,
and c1, c2, cn are the variables representing different contexts. One way to solve
this is by using Bayes’ rule:

P (L̂|c1, c2, ..., cn) =
P (L̂)P (c1, c2, ..., cn|L̂)

P (c1, c2, ..., cn)
∝ P (L̂)P (c1, c2, ..., cn|L̂) (4.7)

and then assuming conditional independence:

P (L̂)P (c1, c2, ..., cn|L̂) = P (L̂)P (c1|L̂)P (c2|L̂)...P (cn|L̂) (4.8)

which corresponds to using a naive Bayes classifier [204]. The conditional inde-
pendence assumption is almost always wrong, as predictors are often correlated.
In this context it is easy to imagine that for example social activity, place, time
are all somehow related. Yet naive Bayes models often perform surprisingly
well despite the limitation of this assumption [205]. We describe here a few
representative papers utilizing the naive Bayes model, or a similar conditional
probability framework.

InPredestination: Inferring Destinations from Partial Trajectories [165],
Krumm and Horvitz consider the problem of predicting car trips destinations for
a rectangular grid in the Seattle area. The data is collected for 169 subjects for
two weeks. They use a naive Bayes model that combines the prior probability
trips lengths, driving efficiency and grid cell destinations. The model is able to
predict the destination with a median error of two kilometers.

In Mobile Location Prediction in Spatio-Temporal Context [206], Gao
et al. propose a model that estimates the probability of visiting the next place
by combining the probability of coming from the current place, the probability
of visit by hour of the day and day of the week. To compensate for the sparsity
of the data when estimating the conditional probabilities, the model assumes
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that users visits follow a Gaussian distribution over time. The model is tested
on location data from 80 users for one year from the Nokia Mobile Data Chal-
lenge dataset [51]. The proposed model achieves an accuracy of approx. 50%,
outperforming the Markov chain models.

In Contextual Conditional Models for Smartphone-based Human Mo-
bility Prediction [207], Do et al. consider an ensemble method to calculate the
join probability distribution for the next location by assigning a weight to each
individual conditional probabilities. The model considers as context features
the current location, time of the day, day of the week, weekend, frequency and
durations of visits, number of nearby Bluetooth devices, and SMS/call informa-
tion. Their model is fit on data for 153 users during 17 months from the Nokia
Mobile Data Challenge dataset [51]. The best performing model has accuracy
of approx. 60% by using the location and hour features.

In A Probabilistic Kernel Method for Human Mobility Prediction
with Smartphone [208], Do et al. consider two novel prediction tasks: esti-
mating the most probable location at a specific time in the future, and within
a fixed time window. The proposed model combines the previous location in-
formation with temporal information such as time of the day, day of the week,
weekend, etc. In this case in order to overcome the sparsity of the data when es-
timating the conditional probabilities, a kernel density estimation is performed
with different types of kernels. The model is tested on locations from 133 users
from the Nokia Mobile Data Challenge dataset [51]. The proposed method
achieves accuracy of 84% for the next hour, and an accuracy of 77% for the
next three hours, in both cases outperforming the Markov models.

4.8.3 Social Co-location Models

Another category of models is based on the idea that mobility and social inter-
actions are tightly connected. Our location often determines whom we interact
with: we meet colleagues at work, relatives at home, friends at a bar. Therefore
our social contacts can become a proxy for our own mobility: using the location
of your friends, your partner or relatives could be used to infer something about
your location. This methodology is particularly attractive for studies made on
location-enabled social networks (such as Twitter, Foursquare, Facebook), where
users can report both their location and friendship status with other users. In
this context, a location is a venue where the user checks-in, that is updates its
status to say that he has been at that location. The task is then to predict
the next check-in location. We now provide a few examples of papers utilizing
social co-location for mobility prediction.
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In Friendship and Mobility: User Movement in Location-based Social
Networks [209], Cho et al. analyze data from Gowalla and Brightkite location-
based social networks. The authors first note that only 4.1% of all check-ins in
Brightkite and 9.6% of all check-ins in Gowalla were first visited by a friend and
then by the user, suggesting the limitations of social-based mobility prediction
alone. The paper then proposes to model user locations with two elements:
one individual part based on routine and a social part based on the location of
friends. The individual part is modeled as a mixture of two Gaussians centered
at home and work locations. The social component is modeled to choose a
friend’s location depending on the time elapsed from the last check-in and the
distance of the venue. The proposed model is able to predict the correct check-in
location approximately 40% of the time.

In Finding Your Friends and Following Them to Where You Are [10],
Sadilek et al. analyze location and friendship data from Twitter for one month
of in New York City and Los Angeles, USA. The location prediction is performed
using a Dynamic Bayesian Network, where the hidden state is the current user
location, and the observable states represent the locations of n friends, the time
of the day and day of the week. The accuracy for the prediction is around 50%
using location from only one friend, and approx. 80% using location from two
or more friends.

In Location Prediction: Communities Speak Louder than Friends [210],
Pang et al. analyze 18 months of Gowalla data in New York City, Los Angeles
and San Francisco, USA. The novelty of their work is to detect communities in
the social friendship graph, and then use the communities to define predictive
features, including: geographical distance between centroids of communities,
number of users in the community, number of frequent movement areas, total
number of check-ins, ratio between the number of edges in the community and
the maximal number of possible edges. The authors apply a logistic regression
model using the described features and obtain an accuracy of 67-81%. Finally
they conclude how communities have a stronger impact on users’ mobility than
individual friends, and different communities have influence in different spatial
and temporal contexts.

4.8.4 Other Models

Finally we cite here some other notable approaches for next-place prediction
that do not directly implement an intuitive mobility mechanism, but use more
sophisticated models.

In Eigenbehaviors: Identifying Structure in Routine [211], Eagle and
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Pentland study the locations of 100 users from the Reality Mining dataset.
Locations are encoded into a number of days times 24 hours matrix, where each
element encodes one of the following labels: Home, Elsewhere, Work, No Signal,
Off. The authors apply Principal Component Analysis (PCA) to the individual
location matrices. The PCA components are referred as eigenbehaviors, the
fundamental building blocks of human activity. Just six of these components
are sufficient to approximate with 90% accuracy the original data. The six main
components are used for prediction, by fitting the PCA on the first 12 hours
of each day and then predicting the labels for the next 12 hours. This method
achieves average accuracy of 79%.

In Far Out: Predicting Long-Term Human Mobility [212], Sadilek et
al. consider the problem of predicting mobility patterns in the far future. For
each user, the possible visited locations are the 10 most visited cells (400 meter
size) plus one extra cell for the rest of the visits. Each day is represented by
a vector encoding for each hour the probability of being in cell i, for a total of
24 · 11 cells. Seven binary indicators for the weekday and one binary indicator
for holidays are finally added for each day. Principal Component Analysis is
applied on the days vectors to find eigendays, fundamental days representative
of all mobility. Ten components are sufficient for reconstructing the original
data with 90% accuracy. The model is then used to perform a prediction by
learning weights of the components on the train data, and predicting for the test
set. The model is tested on 307 people and 396 vehicles, and shows accuracy of
approx. 80%.

In NextPlace: A Spatio-Temporal Prediction Framework for Perva-
sive Systems [213], Scellato et al. propose a method based on non-linear time
series analysis. The model has the particular feature of not predicting the next
location, but instead the time to the next visit and the duration of the visit.
The model is tested on a variety of datasets including mobile GPS locations,
cabs positions San Francisco, and Wi-Fi access points. The accuracy varies de-
pending on the time horizon, from approx. 60-90% for 5 minutes in the future,
to 40-70% in one hour, to 30-50% in 4 hours. In all cases the non-linear model
outperforms the linear version and the Markov chain baselines.

4.9 Paper Summary: “Understanding Predictabil-
ity and Exploration in Human Mobility”

As we have seen, the performance of predictive models in literature varies quite
broadly, from as high as 93% to as low as under 40%. Even though we started
this section by defining the next-place prediction problem as simply described by
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the question “where will you go next?”, the literature review actually shows the
many complexities of this problem. There are in fact many aspects to take into
account. One issue is once again the definition of place: are we predicting the
next grid cell, the next check-in, the next county, the next Wi-Fi access point?
And moreover are we considering only the most commonly visited places, and
if so, how many? Another aspect is temporal: are we predicting your position
in the next few minutes? Or in hours? Or days? Or the next transition? And
also: are we considering periods long enough to capture the long-term trends
of mobility? Finally, what kind of data is being used: cell tower positions,
Wi-Fi connections, social network check-ins, GPS? Due to these many differ-
ent experimental settings, it is often not possible to directly compare different
model performances, and it is not clear how the actual prediction performance
is affected by different factors.

In this paper (Appendix I) we therefore propose to measure the effects of differ-
ent factors on the prediction performance. We consider the data from the Sen-
sibleDTU study, in particular we select 454 users that have between 3 months
and one year of contiguous location data.

We start by distinguishing between two fundamentally different problem formu-
lations: next-cell and next-place. In next-cell we consider grid cells as different
places, and the task is to predict the grid cell in the next 15-minute timebin. In
the next-place formulation, we extract the sequence of visits at places and the
task is to predict the transition to the next place.

For the next-cell formulation, we implement three models: a “toploc” model
that always predicts the most common grid cell seen so far, a Markov(1) model,
and a stationary model that predicts to stay in the current cell. The models
obtain average accuracy of 0.4, 0.7 and 0.7 respectively. In particular the sta-
tionary model performance is very strongly correlated with the Markov model
performance, suggesting that much of the predictive power in this setting is due
to self-transitions. We study the impact of spatial resolution on the predic-
tive performance by considering different cell sizes, and we find that prediction
performance is better for larger cell sizes, suggesting that the choice of the
spatial units has a role in the prediction performance. We also study the ef-
fect of the temporal resolution by considering larger timebins, and we find that
the predictive performance is better for smaller timebins due to the increase in
self-transitions.

We then consider the next-place formulation, where for each user we extract the
sequence of visits at places using a density-based clustering. In this case we are
therefore not interested in the next timebin location, but in the next transition
to another place. When fitting this model to the data, we obtain an accuracy of
approx. 0.4 for the Markov(1), considerably lower than the performance on the



64 Understanding Collective Behavior: Human Mobility

next-cell formulation. This underlines how strong the impact of the problem
statement is, and that the task of predicting the next transition is quite more
difficult than predicting the next timebin. We also measure the predictive power
of different mobile sensing features using a logistic regression model, which in
the best case still achieves a low accuracy (less than 0.45).

We want then to investigate what are the reasons of this difficulty in prediction.
We find that exploration plays a significant role in the mobility of the population
under study. We can measure that on average users discover a new location in
20-25% of the transitions (Fig. 4.11). This represents a twofold problem. First,
transitions to newly explored places cannot be predicted by any model that
selects the candidate next place from the already visited ones, which is the case
for most of the models described in literature. Second, the consequence of the
frequent exploration is that the pool of possible places grows over time reaching
almost 200 places for one year. We also measure that, as a consequence of
preferential return to the most visited locations, approx. 70% of the locations
are visited only once (Fig. 4.12). The combination of these factors makes the
problem of selecting of the next place very difficult even for non-explorations.
Finally, given the importance of exploration in human mobility, we consider the
novel task of predicting when an exploration will happen, and we show that a
logistic regression model is able to predict exploration with f1 score of 0.4.
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Figure 4.11: The probability of exploration of a new place is approx. 20-25%,
that is one out of 4-5 transitions is an exploration (Figure from
Appendix I).
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Figure 4.12: About 70% of places are visited only once, due to the preferential
return to the most visited locations (Figure from Appendix I).
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Chapter 5

Conclusions

This chapter contains a summary of the contributions, the lesson learned and
finally some suggestions for future work.

5.1 Contributions

In this thesis I have presented a number of tools and approaches for understand-
ing human behavior through data. Here is a short summary of the contributions:

• I have described the SensibleDTU project, a large-scale deployment for col-
lecting high-resolution data on human behavior using smartphones. This
experiment has pushed forward the state of the art in terms of number of
participants, quality of the data, and longitudinality. We have described
the methods, the challenges and the solutions adopted, and we have made
available the whole software stack as open-source. We hope that this work
may serve as inspiration for future studies, and facilitate the deployments
of even larger projects.
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• I have described two user studies of large-scale deployment of self-tracking
apps, in order to understand the patterns of usage and non-usage. Our
work is one of the first to look at large-scale deployment of self-tracking
tools, and contributes to better understand the real world challenges of
developing and deploying Personal Informatics systems in the wild.

• I have described a model to capture human mobility at multiple scales,
and a study of the factors influencing predictability in human mobility.
These studies provide some novel views of human mobility, namely the
importance of considering the scales when studying mobility properties,
and a description of the many factors determining mobility behavior.

• As part of this work I have also developed a tool for visualizing geograph-
ical data using python, released as open-source software.

5.2 Lesson Learned

The path leading to the results presented in this dissertation was not a straight-
forward one, but it was instead full of challenges. In part these issues are
personal and specific to my own experience, but I think many of these problems
are common for those who work on the topics covered in this dissertation, in
particular Data Science and Computational Social Science. Here I provide a
brief summary of such challenges and lesson learned.

I believe the first lesson is that human behavior is highly complex. Most mathe-
matical models are based on the idea that the system under study is determinis-
tic and obeys specific laws, or stochastic and can be described by certain statis-
tical properties. Elementary particles, chemical reactions, physical phenomena,
and biological processes can be precisely described by mathematical formulas
and laws. But human behavior cannot be modeled in this way (at least with
our current understanding), since there is a large number of factors that comes
into play to determine our behavior. This makes the creation of quantitative
models for human behavior a much more complex task. Another reason for the
difficulty of modeling human behavior is that our sources of information are of-
ten limited. For example studying communication patterns using only email or
phone calls gives us a really limited view on the actual social behavior. Another
example is social network check-ins or antenna positioning, as these represent
only a coarse approximation of mobility behavior. Given these limitations, it is
actually surprising that we indeed find a lot of regularity in human behavior,
and we can (to an extent) describe or even predict its patterns.
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A second lesson learned is that interdisciplinarity is fundamental. The topic of
this dissertation is the use of computational tools for modeling human behavior.
The work therefore falls into two fields: from one hand the development of
tools and methods for analyzing data, and on the other the development and
verification of theories for human behavior. Coming from a Computer Science
background, my expertise was much more in the computational methods than in
the Social Sciences theories. On the other hand I know several students from the
Social Sciences that were bringing to the table a lot of expertise in terms of social
theories and ideas, but had some problems working with data and developing
software. This challenge is very much a central issue in Computational Social
Science. It is important therefore for scholars from both fields to collaborate as
much as possible to push forward the field.

5.3 Future Work

As always in science, obtaining answers to a problem opens the door to new and
more complex questions. From the work presented in this thesis, I see two main
issues for future work.

Our work on Personal Informatics systems has discussed the challenges and is-
sues related to the usage and non-usage of self-tracking tools. In particular
we have described how the systems failed to engage a large part of the popu-
lation, and those who were engaged quickly lost their interest. Nowadays we
have access to incredibly rich behavioral data, from movement to social con-
tacts, physical activity, heartbeat, sleep patterns and much more. Therefore we
have the potential of quantifying with unprecedented precision many aspects
of life. Unfortunately as it has emerged from our surveys, human behavior is
intrinsically repetitive and therefore in a way boring. For example people tend
to travel home-work-home on most days, and meet the same people over and
over. The main question that remains is: how to design self-tracking systems
that are both interesting and useful, despite this repetitiveness? I believe this
question is of fundamental importance for the success of any self-tracking tool,
from the small-scale research prototypes to billion-dollar Quantified-Self apps.

For the field of human mobility, I think the most interesting question that
emerged is the problem of scales. In this dissertation we have shown that
mobility properties do change at different scales, and in some cases mobility
behavior can be captured only thinking in terms of these scales. We have seen
that the issue of scales (spatial resolution) is also present when defining the pre-
dictive power of next-place prediction models. For this work we have however
set the size and number of scales manually, according to our human intuition of
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the right scales. A fascinating question that remains is how to find the scales
of human mobility in the data. Are there characteristic behaviors for each
scale? Other than the administrative boundaries, what mobility patterns define
a neighborhood or a city? Answering these questions can lead to understand-
ing the underlying mechanisms generating the scale-free properties of human
mobility, and provide fundamentally new views about our mobility patterns.
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Introduction

Driven by the ubiquitous availability of data and inexpensive

data storage capabilities, the concept of big data has permeated

the public discourse and led to surprising insights across the

sciences and humanities [1,2]. While collecting data may be

relatively easy, it is a challenge to combine datasets from multiple

sources. This is in part due to mundane practical issues, such as

matching up noisy and incomplete data, and in part due to

complex legal and moral issues connected to data ownership and

privacy, since many datasets contain sensitive data regarding

individuals [3]. As a consequence, most large datasets are

currently locked in ‘silos’, owned by governments or private

companies, and in this sense the big data we use today are

‘shallow’—only a single or very few channels are typically

examined.

Such shallow data limit the results we can hope to generate from

analyzing these large datasets. We argue below (in Motivations

Section) that in terms of understanding of human social networks,

such shallow big data sets are not sufficient to push the boundaries

in certain areas. The reason is that human social interactions take

place across various communication channels; we seamlessly and

routinely connect to the same individuals using face-to-face

communication, phone calls, text messages, social networks (such

as Facebook and Twitter), emails, and many other platforms. Our

hypothesis is that, in order to understand social networks, we must

study communication across these many channels that are

currently siloed. Existing big data approaches have typically

concentrated on large populations (O(105){O(108)), but with a

relatively low number of bits per participant, for example in call

detail records (CDR) studies [4] or Twitter analysis [5]. Here, we

are interested in capturing deeper data, looking at multiple

channels from sizable populations. Using big data collection and

analysis techniques that can scale in number of participants, we

show how to start deep, i.e. with detailed information about every

single study participant, and then scale up to very large

populations.

We are not only interested in collecting deep data from a large,

highly connected population, but we also aim to create a dataset

that is collected interactively, allowing us to change the collection

process. This enables us to rapidly adapt and change our collection

methods if current data, for example, have insufficient temporal

resolution with regard to a specific question we would like to

answer. We have designed our data collection setup in such a way

that we are able to deploy experiments. We have done this because

we know that causal inference is notoriously complicated in

network settings [6]. Moreover, our design allows us to perform

continuous quality control of the data collected. The mindset of

real-time data access can be extended beyond pure research,

monitoring data quality and performing interventions. Using the

methods described here, we can potentially use big data in real

time to observe and react to the processes taking place across

entire societies. In order to achieve this goal, researchers must

approach the data in the same way large Internet services do—as a
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resource that can be manipulated and made available in real time

as this kind of data inevitably loses value over time.

In order to realize the interactive data collection, we need to

build long-lasting testbeds to rapidly deploy experiments, while still

retaining access to all the data collected hitherto. Human beings

are not static; our behavior, our networks, our thinking change

over time [7,8]. To be able to analyze and understand changes

over long time scales, we need longitudinal data, available not just

to a single group of researchers, but to changing teams of

researchers who work with an evolving set of ideas, hypotheses,

and perspectives. Ultimately, we aim to be able to access the data

containing the entire life-experience of people and look at their

lives as dynamic processes. Eventually, we aim to even go beyond

the lifespan of individuals and analyze the data of the entire

generations. We are not there yet, but we are moving in this

direction. For example, today, all tweets are archived in the

Library of Congress (https://blog.twitter.com/2010/tweet-

preservation), a person born today in a developed country has a

good chance of keeping every single picture they ever take, the

next generation will have a good chance of keeping highly detailed

life-log, including, for example, every single electronic message

they have ever exchanged with their friends. The status quo is that

we need to actively opt out if we want to prevent our experiences

from being auto-shared: major cloud storage providers offer auto-

upload feature for pictures taken with a smartphone, every song

we listen to on Spotify is remembered and used to build our

profile—unless we actively turn on private mode.

In this paper, we describe a large-scale study that observes the

lives of students through multiple channels—the Copenhagen

Network Study. With its iterative approach to deployments, this

study provides an example of an interdisciplinary approach. We

collect data from multiple sources, including questionnaires, online

social networks, and smartphones handed out to the students.

Data from all of these channels are used to create a multi-layered

view of the individuals, their networks, and their environments.

These views can then be examined separately, and jointly, by

researchers from different fields. We are building the Copenhagen

Networks Study as a framework for long-lived extensible studies.

The 2012 and 2013 deployments described here are called

SensibleDTU and are based at the Technical University of

Denmark. They have been designed as part of the Social Fabric

project (see Acknowledgements for details) in close collaboration

with researchers from the social sciences, natural sciences,

medicine (public health), and the humanities. We are currently

in the second iteration where we have deployed phones to about 1

000 participants, enabling us to compile a dataset of unprece-

dented size and resolution. In addition to the core task of collecting

deep behavioral data, we also experiment with creating rich

services for our participants and improving privacy practices.

Human lives, especially when seen over a period of months and

years, take place in multiple dimensions. Capturing only a single

channel, even for the entire life of an individual, limits the

knowledge that can be applied to understand a human being. True

interdisciplinary studies require deep data. Anthropologists,

economists, philosophers, physicists, psychologists, public health

researchers, sociologists, and computational social science re-

searchers are all interested in distinct questions, and traditionally

use very different methods. We believe that it is when these groups

start working together, qualitatively better findings can be made.

Here we give a brief overview of the related work, in the

domains of data collection and analysis, extend the description of

the motivation driving the project, and outline the experimental

plan and data collection methodology. We report on privacy and

informed consent practices that are used in the study, emphasizing

how we went beyond the usual practice in such studies and created

some cutting edge solutions in the domain. We also report a few

initial results from the project, primarily in the form of an overview

of collected data, and outline future directions. We hope the work

presented here will serve as a guideline for deploying similar

massive sensor-driven human-data collection studies. With the

overview of the collected data, we extend an invitation to

researches of all fields to contact the authors for the purpose of

defining novel projects around the Copenhagen Networks Study

testbed.

Related Work

Lazer et al. introduced computational social science (CSS) as a

new field of research that studies individuals and groups in order to

understand populations, organizations, and societies using big

data, i.e. phone call records, GPS traces, credit card transactions,

webpage visits, emails, and data from social networks [9]. CSS

focuses on questions that can now be studied using data-driven

computational analyses of datasets such as the ones mentioned

above, and which could only previously be addressed as self-

reported data or direct observations, for example dynamics in

work groups, face-to-face interactions, human mobility, or

information spreading. The hope is that such a data-driven

approach will bring new types of insight that are not available

using traditional methods. The challenges that emerge in this set of

new approaches include wrangling big data, applying network

analysis to dynamic networks, ensuring privacy of personal

information, and enabling interdisciplinary work between com-

puter science and social science, to name just a few.

In this section we describe related work in terms of the central

methods of data collection. Furthermore, we provide a brief

overview of results obtained from the analysis of CSS data, and

finally, mention some principles regarding privacy and data

treatment.

Data collection
Many of the CSS studies carried out to date have been

performed on call detail records (CDRs), which are records of

phone calls and messages collected by mobile phone operators.

Although CDRs can be a proxy for mobility and social interaction

[10], much of the social interaction happens face-to-face, and may

therefore be difficult to capture with CDRs or other channels such

as social networks (Twitter, Facebook, etc.) [11]. To gain a fuller

view of participants’ behavior, some CSS studies have developed

an approach of employing Radio Frequency Identification (RFID)

devices [12], sociometetric badges [13,14], as well as smartphones

for the data collection [15–18]. Smartphones are unobtrusive,

relatively cheap, feature a plethora of embedded sensors, and tend

to travel nearly everywhere with their users. They allow for

automatic collection of sensor data including GPS, WiFi, Blue-

tooth, calls, SMS, battery, and application usage [19]. However,

collecting data with smartphones presents several limitations as

sensing is mainly limited to pre-installed sensors, which may not be

of highest quality. Furthermore, off-the-shelf software and

hardware may not be sufficiently robust for longitudinal studies.

A large number of solutions for sensor-driven human data

collection have been developed, ranging from dedicated software

to complete platforms, notably ContextPhone [20], SocioXensor

[21], MyExperience [22], Anonysense [23], CenceMe [24],

Cityware [25], Darwin phones [26], Vita [27], and ContextTool-

box [28].

Running longitudinal rich behavioral data collection from large

populations presents multiple logistical challenges and only few

Measuring Large-Scale Social Networks with High Resolution
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studies have attempted to do this so far. In the Reality Mining

study, data from 100 mobile phones were collected over a nine-

month period [29]. In the Social fMRI study, 130 participants

carried smartphones running the Funf mobile software [30] for 15

months [31]. Data was also collected from Facebook, credit card

transactions, and surveys were pushed to the participants’ phones.

The Lausanne Data Collection Campaign [32,33] featured 170

volunteers in the Lausanne area of Switzerland, between October

2009 and March 2011. In the SensibleOrganization study [34],

researchers used RFID tags for a period of one month to collect

face-to-face interactions of 22 employees working in a real

organization. Preliminary results from the OtaSizzle study

covering 20 participants from a large university campus have

been reported [35]. Finally, in the Locaccino study [36], location

within a metropolitan region was recorded for 489 participants for

varying periods, ranging from seven days to several months.

Data analysis
In the following, we provide selected examples of results

obtained from analysis of CSS datasets in various domains.

Human Mobility. Gonzales et al. analyzed six months of

CDRs of 100 000 users. Their results revealed that human

mobility is quite predictable, with high spatial and temporal

regularity, and few highly frequented locations [37]. Their findings

were further explored by Song et al., who analyzed three months

of CDRs from 50 000 individuals and found a 93% upper bound

of predictability of human mobility. This figure applies to most

users regardless of different travel patterns and demographics [38].

Sevtsuk et al. focused instead on the aggregate usage of 398 cell

towers, describing the hourly, daily, and weekly patterns and their

relation to demographics and city structure [39]. Bagrow et al.

analyzed 34 weeks of CDRs for 90 000 users, identifying habitats

(groups of related places) and found that the majority of

individuals in their dataset had between 5 and 20 habitats [40].

De Domenico et al. showed in [41] how location prediction can be

performed using multivariate non-linear time series prediction,

and how accuracy can be improved considering the geo-spatial

movement of other users with correlated mobility patterns.

Social Interactions. Face-to-face interactions can be used to

model social ties over time and organizational rhythms in response

to events [29,42,43]. Comparing these interactions with Facebook

networks, Cranshaw et al. found that meetings in locations of high

entropy (featuring a diverse set of visitors) are less indicative than

meetings in locations visited by a small set of users [36]. Clauset et

al. found that a natural time scale of face-to-face social networks is

4 hours [44].

Onnela et al. analyzed CDRs from 3.9 million users [45] and

found evidence supporting the weak ties hypothesis [46].

Lambiotte et al. analyzed CDRs from 2 million users and found

that the probability of the existence of the links decreases as d{2,

where d is the distance between users [47]. In another study with

CDRs from 3.4 million users, the probability was found to

decrease as d{1:5 [48]. Analyzing CDRs for 2 million users,

Hidalgo et al. found that persistent links tend to be reciprocal and

associated with low degree nodes [49].

Miritello et al. analyzed CDRs for 20 million people and

observed that individuals have a finite limit of number of active

ties, and two different strategies for social communication [50,51].

Sun et al. analyzed 20 million bus trips made by about 55% of the

Singapore population and found distinct temporal patterns of

regular encounters between strangers, resulting in a co-presence

network across the entire metropolitan area [52].

Health and Public Safety. Using CDRs from the period of

the 2008 earthquake in Rwanda, Kapoor et al. created a model for

detection of the earthquake, the estimation of the epicenter, and

determination of regions requiring relief efforts [53]. Aharony et

al. performed and evaluated a fitness activity intervention with

different reward schemes, based on face-to-face interactions [31],

while Madan et al. studied how different illnesses (common cold,

depression, anxiety) manifest themselves in common mobile-

sensed features (WiFi, location, Bluetooth) and the effect of social

exposure on obesity [54]. Salathé et al. showed that disease models

simulated on top of proximity data obtained from a high school

are in good agreement with the level of absenteeism during an

influenza season [55], and emphasize that contact data is required

to design effective immunization strategies.

Influence and Information Spread. Chronis et al. [16] and

Madan et al. [56] investigated how face-to-face interactions affect

political opinions. Wang et al. reported on the spread of viruses in

mobile networks; Bluetooth viruses can have a very slow growth

but can spread over time to a large portion of the network, while

MMS viruses can have an explosive growth but their spread is

limited to sub-networks [57]. Aharony et al. analyzed the usage of

mobile apps in relation to face-to-face interactions and found that

more face-to-face interaction increases the number of common

applications [31]. Using RFID for sensing face-to-face interac-

tions, Isella et al. estimated the most probable vehicles for infection

propagation [58]. Using a similar technique, however applied to

232 children and 10 teachers in a primary school, Stehle et al.

described a strong age homophily in the interactions between

children [59].

Bagrow et al. showed how CDR communications, in relation to

entertainment events (e.g. concerts, sporting events) and emer-

gencies (e.g. fires, storms, earthquakes), have two well-distinguish-

able patterns in human movement [60]. Karsai et al. analyzed

CDR from six millions users and found that strong ties tend to

constrain the information spread within localized groups of

individuals [61].

Studies of Christakis and Fowler on the spread of obesity and

smoking in networks [62,63] prompted a lively debate on how

homophily and influence are confounded. Lyons was critical

toward the statistical methods used [64]. Stelich et al. discussed

how friendship formation in a dynamic network based on

homophily can be mistaken for influence [65], and Shalizi and

Thomas showed examples of how homophily and influence can be

confounded [6]. Finally, Aral et al. provided a generalized

statistical framework for distinguishing peer-to-peer influence

from homophily in dynamic networks [66].

Socioeconomics and Organizational Behavior. For em-

ployees in a real work environment, face-to-face contact and email

communication can be used to predict job satisfaction and group

work quality [34]. Having more diverse social connections is

correlated with economic opportunities, as found in the study

containing CDRs of over 65 million users [67]. A similar result

was reported in a study of economic status and physical proximity,

where a direct correlation between more social interaction

diversity and better financial status was found [31]. Or, as shown

in a study of Belgian users, language regions in a country can be

identified based solely on CDRs [68].

Privacy
Data collected about human participants is sensitive and

ensuring privacy of the participants is a fundamental require-

ment—even when participants may have limited understanding of

the implications of data sharing [69,70]. A significant amount of

literature exists regarding the possible attacks that can be

performed on personal data, such as unauthorized analysis [71]

with a view to decoding daily routines [72] or friendships [42] of
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the participants. In side channel information attacks, data from public

datasets (e.g. online social networks) are used to re-identify users

[73–75]. Even connecting the different records of one user within

the same system can compromise privacy [73]. Specific attacks are

also possible in network data, as nodes can be identified based on

the network structure and attributes of the neighbors [76,77].

Various de-identification techniques can be applied to the data.

Personally Identifiable Information (PII) is any information that can be

used to identify an individual, such as name, address, social

security number, date and place of birth, employment, education,

or financial status. In order to avoid re-identification and

consequent malicious usage of data, PII can be completely

removed, hidden by aggregation, or transformed to be less

identifiable, resulting in a trade-off between privacy and utility

[78]. Substituting PII with the correspondent one-way hash allows

removal of plaintext information and breaks the link to other

datasets. This method, however, does not guarantee protection

from re-identification [79–82]. K{anonymity is a technique of

ensuring that it is not possible to distinguish any user from at least

k{1 other in the dataset [83]; studies have shown that this

method often may be too weak [72]. L{diversity [84] and

t{closeness [85] have been proposed as extensions of

k{anonymity with stronger guarantees.

Another approach to introducing privacy is based on perturbing

the data by introducing noise, with the goal of producing privacy-

preserving statistics [86–90]. Homomorphic encryption, on the other

hand, can be used to perform computation directly on the

encrypted data, thus eliminating the need of exposing any sensitive

information [91–94]; this technique has been applied, for example,

to vehicle positioning data [95] and medical records [96].

The flows of data—creation, copying, sharing—can be restrict-

ed. Information Flow Control solutions such as [97–99] attempt to

regulate the flow of information in digital systems. Auditing

implementations such as [100–102] track the data flow by

generating usage logs. Data Expiration makes data inaccessible after

a specific time, for example by self-destruction or by invalidating

encryption keys [103–106]. Watermarking identifies records using

hidden fingerprints, to allow traceability and identification of leaks

[107–109].

Motivation

Here we describe our primary motivation for deploying the

Copenhagen Networks Study, featuring deep and high-resolution

data and a longitudinal approach.

Multiplexity
The majority of big data studies use datasets containing data

from a single source, such as call detail records (CDRs) [4], RFID

sensors [110], Bluetooth scanners [111], or online social networks

activity [2]. Although, as we presented in the Related Work

section, analyzing these datasets has led to some exciting findings,

we may however not understand how much bias is introduced in

such single-channel approaches, particularly in the case of highly

interconnected data such as social networks.

We recognize two primary concerns related to the single-source

approach: incomplete data and limitation with respect to an

interdisciplinary approach. For social networks, we intuitively

understand that people communicate on multiple channels: they

call each other on the phone, meet face-to-face, or correspond

through email. Observing only one channel may introduce bias

that is difficult to estimate [11]. Ranjan et al. investigated in [112]

how CDR datasets, containing samples dependent upon user

activity and requiring user participation, may bias our under-

standing of human mobility. The authors used data activities as

the ground truth; due to applications running in the background,

sending and requesting data, smartphones exchange data with the

network much more often than typical users make calls and

without the need for their participation. Comparing the number of

locations and significant locations [113], they found that the CDRs

reveal only a small fraction of users’ mobility, when compared with

data activity. The identified home and work locations, which are

considered the most important locations, did not, however, differ

significantly when estimated using either of the three channels

(voice, SMS, and data).

Domains of science operate primarily on different types of data.

Across the sciences, researchers are interested in distinct questions

and use very different methods. Similarly, as datasets are obtained

from different populations and in different situations, it is difficult

to cross-validate or combine findings. Moreover, the single-

channel origin of the data can be a preventive factor in applying

expertise from multiple domains. If we collect data from multiple

channels in the same studies, on the same population, we can work

together across field boundaries and draw on the different

expertise and results generated by the studies and thereby achieve

more robust insights.

Social networks are ‘multiplex’ in the sense that many different

types of links may connect any pair of nodes. While recent work

[114,115] has begun to explore the topic, a coherent theory

describing multiplex, weighted, and directed networks remains

beyond the frontier of our current understanding.

Sampling
In many big data studies, data sampling is uneven. CDRs, for

example, only provide data when users actively engage, by making

or receiving a phone call or SMS. Users can also have different

patterns of engagement with social networks, some checking and

interacting several times a day, while others only do so once a

week [116]. Further, CDRs are typically provided by a single

provider who has a finite market share. If the market share is 20%
of the population and you consider only links internal to your

dataset, this translates to only 4% of the total number of links,

assuming random network and random sampling [4]. Thus, while

CDRs might be sufficient when analysing of mobility, it is not clear

that CDRs are a useful basis for social network analysis. Such

uneven, sparse sampling decreases the resolution of data available

for analysis. Ensuring the highest possible quality of the data, and

even sampling, is possible with primarily passive data gathering,

focusing on digital traces left by participants as they go through

their lives, for example by using phones to automatically measure

Bluetooth proximity, record location, and visible WiFi networks

[9,29,31]. In cases where we cannot observe participants passively

or when something simply goes wrong with the data collection, we

aim to use the redundancy in the channels: if the participant turns

off Bluetooth for a period, we can still estimate the proximity of

participants using WiFi scans (as described in the Results section).

Uneven sampling not only reduces the quality of available data,

but also—maybe more importantly—may lead to selection bias

when choosing participants to include in the analysis. As

investigated in [112], when only high-frequency voice-callers are

chosen from a CDR dataset for the purpose of analysis, this can

incur biases in Shannon entropy values (measure of uncertainty) of

mobility, causing overestimation of the randomness of partici-

pants’ behavior. Similarly, as shown in [116], choosing users with

a large network and many interactions on Facebook may lead to

overestimation of diversity in the ego-networks. Every time we

have to discard a significant number of participants, we risk

introducing bias in the data. Highly uneven sampling that cannot
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be corrected with redundant data, compels the researcher to make

mostly arbitrary choices as part of the analysis, complicating

subsequent analysis, especially when no well-established ground

truth is available to understand the bias. Our goal here is to collect

evenly sampled high-quality data for all the participants, so we do

not have to discard anyone; an impossible goal, but one worth

pursuing.

Since we only record data from a finite number of participants,

our study population is also a subset, and every network we

analyze will be sampled in some way, see [117] for a review on

sampling. While the 2013 deployment produces a dataset that is

nearly complete in terms of communication between the

participants, it is clear that it is subject to other sampling-related

issues. For example, a relatively small network embedded in a

larger society has a large ‘surface’ of links pointing to the outside

world, creating a boundary specification problem [118].

Dynamics
The networks and behaviors we observe are not static; rather

they display dynamics on multiple time-scales. Long-term

dynamics may be lost in big data studies when the participants

are not followed for a sufficiently long period, and only a relatively

narrow slice of data is acquired. Short-term dynamics may be

missed when the sampling frequency is too low.

It is a well-established fact that social networks evolve over time

[8,119]. The time scale of the changes varies and depends on

many factors, for example the semester cycle in students’ life,

changing schools or work, or simply getting older. Without

following such dynamics, and if we focus on a single temporal slice,

we risk missing an important aspect of human nature. To capture

it, we need long-term studies, that follow participants for months

or even years.

Our behavior is not static, even when measured for very short

intervals. We have daily routines, meeting with different people in

the morning and hanging out with other people in the evening, see

Figure 1. Our workdays may see us going to places and interacting

with people differently than on weekends. It is easy to miss

dynamics like these when the quality of the data is insufficient,

either because it has not been sampled frequently enough or

because of poor resolution, requiring large time bins.

Because each node has a limited bandwidth, only a small

fraction of the network is actually ‘on’ at any given time, even if

the underlying social network is very dense. Thus, to get from

node A to node B, a piece of information may only travel on links

that are active at subsequent times. Some progress has been made

on the understanding of dynamic networks, for a recent review see

[120]. However, in order to understand the dynamics of our highly

dense, multiplex network, we need to expand and adapt the

current methodologies, for example by adapting the link-based

viewpoint to dynamical systems.

Feedback
In many studies, the data collection phase is separated from the

analysis. The data might have been collected during usual

operation, before the idea of the study had even been conceived

(e.g. CDRs, WiFi logs), or access to the data might have not been

granted before a single frozen and de-identified dataset was

produced.

One real strength of the research proposed here is that, in

addition to the richness of the collected data, we are able to run

controlled experiments, including surveys distributed via the

smartphone software. We can, for example, divide participants

into sub-populations and expose them to distinct stimuli,

addressing the topic of causality as well as confounding factors

both of which have proven problematic [64,121] for the current

state-of-the-art [122,123].

Moreover, we monitor the data quality not only on the most

basic level of a participant (number of data points) but also by

looking at the entire live dataset to understand if the quality of the

collected data is sufficient to answer our research questions. This

allows us to see and fix bugs in the data collection software, or

learn that certain behaviors of the participants may introduce bias

in the data: for example after discovering missing data, some

interviewed students reported turning their phones off for the night

to preserve battery. This allowed us to understand that, even if in

terms of the raw numbers, we may be missing some hours of data

per day for these specific participants, there was very little

information in that particular data anyway.

Building systems with real-time data processing and access

allows us to provide the participants with applications and services.

It is an important part of the study not only to collect and analyze

the data but also to learn how to create a feedback loop, directly

feeding back extracted knowledge on behavior and interactions to

the participants. We are interested in studying how personal data

can be used to provide feedback about individual behavior and

promote self-awareness and positive behavior change, which is an

active area of research in Personal Informatics [124]. Applications

for participants create value, which may be sufficient to allow us to

deploy studies without buying a large number of smartphones to

provide to participants. Our initial approach has included the

development and deployment of a mobile app that provides

feedback about personal mobility and social interactions based on

personal participant data [125]. Preliminary results from the

deployment of the app, participant surveys, and usage logs suggest

an interest in such applications, with a subset of participants

repeatedly using the mobile app for personal feedback [126]. It is

Figure 1. Dynamics of face-to-face interactions in the 2012 deployment. The participants meet in the morning, attend classes within four
different study lines, and interact across majors in the evening. Edges are colored according to the frequency of observation, ranging from low (blue)
to high (red). With 24 possible observations per hour, the color thresholds are respectively: blue (0v observations ƒ6), purple (6v observations
ƒ12), and red (v12 observations). Node size is linearly scaled according to degree.
doi:10.1371/journal.pone.0095978.g001
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clear that feedback can potentially influence the study results:

awareness of a certain behavior may cause participants to want to

change that behavior. We believe, however, that such feedback is

unavoidable in any study, and studying the effects of such feedback

(in order to account for it) is an active part of our research.

New Science
The ability to record the highly dynamic networks opens up a

new, microscopic level of observation for the study of diffusion on

the network. We are now able to study diffusion of behavior, such

as expressions of happiness, academic performance, alcohol and

other substance abuse, information, as well as real world infectious

disease (e.g. influenza). Some of these vectors may spread on some

types of links, but not others. For example, influenza depends on

physical proximity for its spread, while information may diffuse on

all types of links; with the deep data approach we can study

differences and similarities between various types of spreading and

the interplay between the various communication channels

[127,128].

A crucial step when studying the structure and dynamics of

networks is to identify communities (densely connected groups of

nodes) [129,130]. In social networks, communities roughly

correspond to social spheres. Recently, we pointed out that

communities in many real world networks display pervasive overlap,

where each and every node belongs to more than one group [131].

It is important to underscore that the question of whether or not

communities in networks exhibit pervasive overlap has great

practical importance. For example, the patterns of epidemic

spreading change, and the optimal corresponding societal

countermeasures are very different, depending on the details of

the network structure.

Although algorithms that detect disjoint communities have

operated successfully since the notion of graph partitioning was

introduced in the 1970s [132], we point out that most networks

investigated so far are highly incomplete in multiple senses.

Moreover, we can use a simple model to show that sampling could

cause pervasively overlapping communities to appear to be disjoint

[133]. The results reveal a fundamental problem related to

working with incomplete data: Without an accurate model of the

structural ordering of the full network, we cannot estimate the implications of

working with incomplete data. Needless to say, this fact is of particular

importance to studies carried out on (thin) slices of data, describing

only a single communication channel, or a fraction of nodes using

that channel. By creating a high-quality, high-resolution data set,

we are able to form accurate descriptions of the full data set

needed to inform a proper theory for incomplete data. A deeper

understanding of sampling is instrumental for unleashing the full

potential of data from the billions of mobile phones in use today.

Methods: Data Collection

The Copenhagen Networks Study aims to address the problem

of single-modality data by collecting information from a number of

sources that can be used to build networks, study social

phenomena, and provide context necessary to interpret the

findings. A series of questionnaires provides information on the

socioeconomic background, psychological traces, and well-being of

the participants; Facebook data enables us to learn about the

presence and activity of subjects in the biggest online social

networking platform [134]; finally, the smartphones carried by all

participants record their location, telecommunication patterns,

and face-to-face interactions. Sensor data is collected with fixed

intervals, regardless of the users’ activity, and thus the uneven

sampling issue, daunting especially CDR-based studies, is mainly

overcome. Finally, the study is performed on the largest and the

most dense population to date in this type of studies. The physical

density of the participants helps to address the problem of missing

data, but raises new questions regarding privacy, since missing

data about a person can, in many cases, be inferred from existing

data of other participants. For example, if we know that person A,

B, and C met at a certain location based on the data from person

A, we do not need social and location data from B and C to know

where and with whom they were spending time.

Below we describe the technical challenges and solutions in

multi-channel data collection in 2012 and 2013 deployments. Data

collection, anonymization, and storage were approved by the

Danish Data Protection Agency, and comply with both local and

EU regulations.

Data Sources
The data collected in the two studies were obtained from

questionnaires, Facebook, mobile sensing, an anthropological field

study, and the WiFi system on campus.

Questionnaires. In 2012 we deployed a survey containing

95 questions, covering socioeconomic factors, participants’ work-

ing habits, and the Big Five Inventory (BFI) measuring personality

traits [135]. The questions were presented as a Google Form and

participation in the survey was optional.

In 2013 we posed 310 questions to each participant. These

questions were prepared by a group of collaborating public health

researchers, psychologists, anthropologists, and economists from

the Social Fabric project (see Acknowledgements). The questions

in the 2013 deployment included BFI, Rosenberg Self Esteem

Scale [136], Narcissism NAR-Q [137], Satisfaction With Life

Scale [138], Rotters Locus of Control Scale [139], UCLA

Loneliness scale [140], Self-efficacy [141], Cohens perceived stress

scale [142], Major Depression Inventory [143], The Copenhagen

Social Relation Questionnaire [144], and Panas [145], as well as

number of general health- and behavior-related questions. The

questions were presented using a custom-built web application,

which allowed for full customization and complete control over

privacy and handling of the respondents’ data. The questionnaire

application is capable of presenting different types of questions,

with branching depending on the answers given by the participant,

and saving each participant’s progress. The application is available

as an open source project at github.com/MIT-Model-Open-Data-

and-Identity-System/SensibleDTUData-Apps-Questionaires. Par-

ticipation in the survey was required for taking part in the

experiment. In order to track and analyze temporal development,

the survey (in a slightly modified form) was repeated every

semester on all participating students.

Facebook Data. For all participants in both the 2012 and

2013 deployment, it was optional to authorize data collection from

Facebook, and a large majority opted in. In the 2012 deployment,

only the friendship graph was collected every 24 hours, until the

original tokens expired. In the 2013 deployment, data from

Facebook was collected as a snapshot, every 24 hours. The

accessed scopes were birthday, education, feed, friend lists, friend

requests, friends, groups, hometown, interests, likes, location,

political views, religion, statuses, and work. We used long-lived

Facebook access tokens, valid for 60 days, and when the tokens

expired, participants received notification on their phones,

prompting them to renew the authorizations. For the academic

study purposes, the Facebook data provided rich demographics

describing the participants, their structural (friendship graph) and

functional (interactions) networks, as well as location updates.

Sensor Data. For the data collection from mobile phones, we

used a modified version of the Funf framework [31] in both
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deployments. The data collection app was built using the

framework runs on Android smartphones, which were handed

out to participants (Samsung Galaxy Nexus in 2012 and LG Nexus

4 in 2013). All the bugfixes and the improvement of the framework

are public and available under the OpenSensing github organi-

zation at github.com/organizations/OpenSensing.

In the 2012 deployment, we manually kept track of which

phone was used by each student, and identified data using device

IMEI numbers, but this created problems when the phones were

returned and then handed out to other participants. Thus, in the

2013 deployment, the phones were registered in the system by the

students in an OAuth2 authorization flow initiated from the

phone; the data were identified by a token stored on the phone

and embedded in the data files. The sensed data were saved as

locally encrypted sqlite3 databases and then uploaded to the server

every 2 hours, provided the phone was connected to WiFi. Each

file contained 1 hour of participant data from all probes, saved as

a single table. When uploaded, the data was decrypted, extracted,

and included in the main study database.

Qualitative Data. An anthropological field study was

included in the 2013 deployment. An anthropologist from the

Social Fabric project was embedded within a randomly selected

group of approximately 60 students (August 2013–august 2014). A

field study consists of participant observation within the selected

group, collecting qualitative data while simultaneously engaging in

the group activities. The goal is to collect data on various

rationales underlying different group formations, while at the same

time experiencing bodily and emotionally what it was like to be

part of these formations [146]. The participant observation

included all the student activities and courses, including extracur-

ricular activities such as group work, parties, trips, and other social

leisure activities. All participants were informed and periodically

reminded about the role of the anthropologist.

In addition to its central purpose, the anthropological data adds

to the multitude of different data channels, deepening the total

pool of data. This proved useful for running and optimizing the

project in a number of ways.

Firstly, data from qualitative social analysis are useful—in a very

practical sense—in terms of acquiring feedback from the

participants. One of the goals of the project is to provide value

to the participants; in addition to providing quantified-self style

access to data, we have also created a number of public services: a

homepage, a Facebook page, and a blog, where news and

information about the project can be posted and commented on.

These services are intended to keep the students interested, as well

as to make participants aware of the types and amounts of data

collected (see Privacy section). Because of the anthropologist’s real-

world engagement with the students, the qualitative feedback

contains complex information about participants’ interests and

opinions, including what annoyed, humored, or bored them. This

input has been used to improve existing services, such as

visualizations (content and visual expression), and to develop ideas

for the future services. In summary, qualitative insights helped us

understand the participants better and, in turn, to maintain and

increase participation.

Secondly, the inclusion of qualitative data increases the

potential for interdisciplinary work between the fields of computer

science and social science. Our central goal is to capture the full

richness of social interactions by increasing the number of

recorded communication channels. Adding a qualitative social

network approach makes it possible to relate the qualitative

observations to the quantitative data obtained from the mobile

sensing, creating an interdisciplinary space for methods and

theory. We are particularly interested in the relationship between

the observations made by the embedded anthropologist and the

data recorded using questionnaires and mobile sensing, to answer

questions about the elements difficult to capture using our high-

resolution approach. Similarly, from the perspective of social

sciences, we are able to consider what may be captured by

incorporating quantitative data from mobile sensing into a

qualitative data pool—and what can we learn about social

networks using modern sensing technology.

Finally, these qualitative data can be used to ground the

mathematical modeling process. Certain things are difficult or

impossible to infer from quantitative measurements and mathe-

matical models of social networks, particularly in regard to

understanding why things happen in the network, as computational

models tend to focus on how. Questions about relationship-links

severing, tight networks dissolving, and who or what caused the

break, can be very difficult to answer, but they are important with

regard to understanding the dynamics of the social network. By

including data concerned with answering why in social networks,

we add a new level of understanding to the quantitative data.

WiFi Data. For the 2012 deployment, between August 2012

and May 2013, we were granted access to the campus WiFi system

logs. Every 10 minutes the system provided metadata about all

devices connected to the wireless access points on campus (access

point MAC address and building location), together with the

student ID used for authentication. We collected the data in a de-

identified form, removing the student IDs and matching the

participants with students in our study. Campus WiFi data was not

collected for the 2013 deployment.

Backend System
The backend system, used for data collection, storage, and

access, was developed separately for the 2012 and 2013

deployments. The system developed in 2012 was not designed

for extensibility, as it focused mostly on testing various solutions

and approaches to massive sensor-driven data collection. Building

on this experience, the system for the 2013 deployment was

designed and implemented as an extensible framework for data

collection, sharing, and analysis.

The 2012 Deployment. The system for the 2012 deployment

was built as a Django web application. The data from the

participants from the multiple sources, were stored in a CouchDB

database. The informed consent was obtained by presenting a

document to the participants after they authenticated with

university credentials. The mobile sensing data was stored in

multiple databases inside a single CouchDB instance and made

available via an API. Participants could access their own data,

using their university credentials. Although sufficient for the data

collection and research access, the system performance was not

adequate for exposing the data for real-time application access,

mainly due to the inefficient de-identification scheme and

insufficient database structure optimization.

The 2013 Deployment. The 2013 system was built as an

open Personal Data System (openPDS) [147] in an extensible

fashion. The architecture of the system is depicted in Figure 2 and

consisted of three layers: platform, services, and applications. In

the platform layer, the components common for multiple services

were grouped, involving identity provider and participant-facing

portal for granting authorizations. The identity provider was based

on OpenID 2.0 standard and enabled single sign-on (SSO) for

multiple applications. The authorizations were realized using

OAuth2 and could be used with both web and mobile

applications. Participants enroll into studies by giving informed

consent and subsequently authorizing application to submit and

access data from the study. The data storage was implemented
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using MongoDB. Participants can see the status and change their

authorizations on the portal site, the system included an

implementation of the Living Informed Consent [3].

Deployment Methods
Organizing studies of this size is a major undertaking. All parts

from planning to execution have to be synchronized, and below

we share some considerations and our approaches. While their

main purpose was identical, the two deployments differed greatly

in size and therefore also in the methods applied for enrolling and

engaging the participants.

SensibleDTU 2012. In 2012 approximately 1,400 new

students were admitted to the university, divided between two

main branches of undergraduate programs. We focused our efforts

on the larger branch containing 900 students, subdivided into 15

study lines (majors). For this deployment we had *200 phones

available to distribute between the students. To achieve maximal

coverage and density of the social connections, we decided to only

hand out phones in a few selected majors that had a sufficient

number of students interested in participating in the experiment.

Directly asking students about their interest in the study was not a

good approach, as it could lead to biased estimates and would not

scale well for a large number of individuals. Instead, we appealed

to the competitive element of human nature by staging a

competition, running for two weeks from the start of the semester.

All students had access to a web forum, which was kept separate

for each major, where they could post ideas that could be realized

by the data we would collect, and subsequently vote for their own

ideas or three seed ideas that we provided. The goal of the

competition was twofold; first we wanted students to register with

their Facebook account, thereby enabling us to study their online

social network, and second we wanted to see which major could

Figure 2. Sensible Data openPDS architecture. This system is used in the 2013 deployment and consists of three layers: platform, services, and
applications. The platform contains element common for multiple services (in this context: studies). The studies are the deployments of particular
data collection efforts. The applications are OAuth2 clients to studies and can submit and access data, based on user authorizations.
doi:10.1371/journal.pone.0095978.g002
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gain most support (percentage of active students) behind a single

idea. Students were informed about the project and competition

by the Dean in person and at one of 15 talks given—one at each

major. Students were told that our choice of participants would be

based on the support each major could muster behind their

strongest idea before a given deadline. This resulted in 24 new

research ideas and 1 026 unique votes. Four majors gained w93%

support for at least one idea and were chosen to participate in the

experiment.

The physical handing out of the phones was split into four

major sessions, in which students from the chosen majors were

invited; additional small sessions were arranged for students that

were unable to attend the main ones. At each session, participants

were introduced to our data collection methods, de-identification

schemes, and were presented with the informed consent form. In

addition, the participants were instructed to fill out the question-

naire. A small symbolic deposit in cash was requested from each

student; this served partially as compensation for broken phones,

but was mainly intended to encourage participants take better care

of the phones, than if they had received them for free [148]. Upon

receiving a phone, participants were instructed to install the data

collector application. The configuration on each phone was

manually checked when participants were leaving—this was

particularly important to ensure high quality of data.

This approach had certain drawbacks; coding and setting up the

web fora, manually visiting all majors and introducing them to the

project and competition, and organizing the handout sessions

required considerable effort and time. However, certain aspects

were facilitated with strong support from the central administra-

tion of the university. A strong disadvantage of the outlined

handout process is that phones were handed out 3–4 weeks into

the semester, thus missing the very first interactions between

students.

SensibleDTU 2013. The 2013 deployment was one order of

magnitude larger, with 1 000 phones to distribute. Furthermore,

our focus shifted to engaging the students as early as possible.

Pamphlets informing prospective undergraduate students about

the project were sent out along with the official acceptance letters

from the university. Early-birds who registered online via Face-

book using the links given in the pamphlet were promised phones

before the start of their studies. Students from both branches of

undergraduate programs were invited to participate (approxi-

mately 1 500 individuals in total), as we expected an adoption

percentage between 30% and 60%. Around 300 phones were

handed out to early-birds, and an additional 200 were handed out

during the first weeks of semester. As the adoption rate plateaued,

we invited undergraduate students from older years to participate

in the project.

The structure of the physical handout was also modified, the

participants were requested to enroll online before receiving the

phone. Moreover, the informed consent and the questionnaire

were part of the registration. Again, we required a symbolic cash

deposit for each phone. We pre-installed custom software on each

phone to streamline the handout process; students still had to

finalize set up of the phones (make them Bluetooth-discoverable,

activate WiFi connection, etc.).

For researchers considering similar projects with large scale

handouts, we recommend that the pool of subjects are engaged in

the projects as early as possible and be sure to keep their interest.

Make it easy for participants to contact you, preferably through

media platforms aimed at their specific age group. Establish clear

procedures in case of malfunctions. On a side note, if collecting

even a small deposit, when multiplied by a factor of 1 000, the total

can add up to significant amount, which must be handled

properly.

Methods: Privacy

When collecting data of very high resolution, over an extended

period, from a large population, it is crucial to address the privacy

of the participants appropriately. We measure the privacy as a

difference between what a participant understands and consents to

regarding her data, and what in fact happens to these data.

We believe that ensuring sufficient privacy for the participants,

in large part, is the task of providing them with tools to align the

data usage with their understanding. Such privacy tools must be of

two kinds: to inform, ensuring participants understand the

situation, and to control, aligning the situation with the

participant’s preferences. There is a tight loop where these tools

interact: as the participant grows more informed, she may decide

to change the settings, and then verify if the change had the

expected result. By exercising the right to information and control,

the participant expresses Living Informed Consent as described in

[3].

Not all students are interested in privacy, in fact we experienced

quite the opposite attitude. During our current deployments the

questions regarding privacy were rarely asked by the participants,

as they tended to accept any terms presented to them without

thorough analysis. It is our—the researchers’—responsibility to

make the participants more aware and empowered to make the

right decisions regarding their privacy: by providing the tools,

promoting their usage, and engaging in a dialog about privacy-

related issues.

In the 2012 deployment, we used a basic informed consent

procedure with an online form accepted by the participants, after

they authenticated with the university account system. The

accepted form was then stored in a database, together with the

username, timestamp, and the full text displayed to the par-

ticipant. The form itself was a text in Danish, describing the study

purpose, parties responsible, and participants’ rights and obliga-

tions. The full text is available at [149] with English translation

available at [150].

In the 2013 deployment, we used our backend solution

(described in Backend System Section) to address the informed

consent procedure and privacy in general. The account system,

realized as an OpenID 2.0 server, allowed us to enroll participants,

while also supporting research and developer accounts (with

different levels of data access). The sensitive Personally Identifiable

Information attributes (PIIs) of the participants were kept

completely separate from the participant data, all the applications

identified participants based only on the pseudonym identifiers.

The applications could also access a controlled set of identity

attributes for the purpose of personalization (e.g. greeting the

participant by name), subject to user OAuth2 authorization. In

the enrollment into the study, after the participant had accepted

the informed consent document—essentially identical to that from

2012 deployment—a token for a scope enroll was created and

shared between the platform and service (see Figure 2). The

acceptance of the document was recorded in the database by

storing the username, timestamp, hash of the text presented to the

participant, as well as the git commit identifying the version of the

form.

All the communication in the system was realized over HTTPS,

and endpoints were protected with short-lived OAuth2 bearer

tokens. The text of the documents, including informed consent,

was stored in a git repository, allowing us to modify everything,

while still maintaining the history and being able to reference
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which version each participant has seen and accepted. A single

page overview of the status of the authorizations, presented in

Figure 3, is an important step in moving beyond lengthy,

incomprehensible legal documents accepted by the users blindly

and giving more control over permissions to the participant.

In the 2013 deployment, the participants could access all their

data using the same API as the one provided for the researchers

and application developers. To simplify the navigation, we

developed a data viewer application as depicted in Figure 4,

which supports building queries with all the basic parameters in a

more user-friendly way than constructing API URLs. Simply

having access to all the raw data is, however, not sufficient, as it is

really high-level inferences drawn from the data that are important

to understand, for example Is someone accessing my data to see how fast I

drive or to study population mobility? For this purpose, we promoted the

development of a question & answer framework, where the high-

level features are extracted from the data before leaving the server,

promoting better participant understanding of data flows. This is

aligned with the vision of the open Personal Data Store [147].

Finally, for the purposes of engaging the participants in the

discussion about privacy, we published blogposts (e.g. https://

www.sensible.dtu.dk/?p = 1622), presented relevant material to

students, and answered their questions via the Facebook

page(https://www.facebook.com/SensibleDtu).

Results and Discussion

As described in the previous sections, our study has collected

comprehensive data about a number of aspects regarding human

behavior. Below, we discuss primary data channels and report

some early results and findings. The results are mainly based on

the 2012 deployment due to the availability of longitudinal data.

Figure 3. Authorizations page. Participants have an overview of the studies in which they are enrolled and which applications are able to submit
to and access their data. This is an important step towards users’ understanding what happens with their data and to exercising control over it. This
figure shows a translated version of the original page that participants saw in Danish.
doi:10.1371/journal.pone.0095978.g003
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Bluetooth and Social Ties
Bluetooth is a wireless technology ubiquitous in modern-day

mobile devices. It is used for short-range communication between

devices, including smartphones, hands-free headsets, tablets, and

other wearables. As the transmitters used in mobile devices are

primarily of very short range—between 5 and 10 m (16{33
feet)—detection of the devices of other participants (set in ‘visible’

mode) can be used as a proxy for face-to-face interactions [29]. We

take the individual Bluetooth scans in the form i,j,t,sð Þ, denoting

that device i has observed device j at time t with signal strength s.

Figure 4. Data viewer application. All the collected data can be explored and accessed via an API. The API is the same for research, application,
and end-user access, the endpoints are protected by OAuth2 bearer token. Map image from USGS National Map Viewer, replacing original image
used in the deployed application (Google Maps).
doi:10.1371/journal.pone.0095978.g004
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Figure 6. Face-to-face network properties at different resolution levels. Distributions are calculated by aggregating sub-distributions across
temporal window. Differences in rescaled distributions suggest that social dynamics unfold on multiple timescales.
doi:10.1371/journal.pone.0095978.g006

Figure 5. Weekly temporal dynamics of interactions. Face-to-face interaction patterns of participants in 5-minute time-bins over two weeks.
Only active participants are included, i.e. those that have either observed another person or themselves been observed in a given time-bin. On
average we observed 29 edges and 12 nodes in 5-minute time-bins and registered 10 634 unique links between participants.
doi:10.1371/journal.pone.0095978.g005
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Bluetooth scans do not constitute a perfect proxy for face-to-face

interactions [151], since a) it is possible for people within 10 m

radius not to interact socially, and b) it is possible to interact

socially over a distance greater than 10 m, nevertheless, they have

been successfully used for sensing social networks [31] or crowd

tracking [152].

Between October 1st, 2012 and September 1st, 2013, we

collected 12 623 599 Bluetooth observations in which we observed

153 208 unique devices. The scans on the participants’ phones

were triggered every five minutes, measured from the last time the

phone was powered on. Thus, the phones scanned for Bluetooth in

a desynchronized fashion, and not according to a global schedule.

To account for this, when extracting interactions from the raw

Bluetooth scans, we bin them into fixed-length time windows,

aggregating the scans within them. The resulting adjacency

matrix, W t does not have to be strictly symmetric, meaning that

participant i can observe participant j in time-bin t, but not the

other way around. Here we assume that Bluetooth scans do not

produce false positives (devices are not discovered unless they are

really there), and in the subsequent network analysis, we force the

matrix to be symmetric, assuming that if participant i observed

participant j, the opposite is also true.

The interactions between the participants exhibit both daily and

weekly rhythms. Figure 1 shows that the topology of the network

of face-to-face meetings changes significantly within single day,

revealing academic and social patterns formed by the students.

Similarly, the intensity of the interactions varies during the week,

see Figure 5.

Aggregating over large time-windows blurs the social interac-

tions (network is close to fully connected) while a narrow window

reveals detailed temporal structures in the network. Figure 6A

shows the aggregated degree distributions for varying temporal

resolutions, with P(k) being shifted towards higher degrees for

larger window sizes; this is an expected behavior pattern since

each node has more time to amass connections. Figure 6B presents

the opposite effect, where the edge weight distributions P(w) shift

towards lower weights for larger windows; this is a consequence on

definition of a link for longer time-scales or, conversely, of links

Figure 7. WiFi similarity measures. Positive predictive value (precision, ratio of number of true positives to number of positive calls, marked with
dashed lines) and recall (sensitivity, fraction of retrieved positives, marked with solid lines) as functions of parameters in different similarity measures.
A) In 98% of face-to-face meetings derived from Bluetooth, the two devices also sensed at least one common access point. D) Identical strongest
access point for two separate mobile devices is a strong indication of a face-to-face meeting.
doi:10.1371/journal.pone.0095978.g007
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appearing in each window on shorter timescales. To compare the

distribution between timescales, we rescale the properties accord-

ing to Krings et al. [153] as Q(x)~SxTP(x=SxT) with

SxT~
P

xP xð Þ (Figure 6C and 6D). The divergence of the

rescaled distributions suggest a difference in underlying social

dynamics between long and short timescales, an observation

supported by recent work on temporal networks [44,153,154].

WiFi as an Additional Channel for Social Ties
Over the last two decades, wireless technology has transformed

our society to the degree where every city in the developed world is

now fully covered by mobile [155] and wireless networks [156].

The data collector application for mobile phones was configured

to scan for wireless networks in constant intervals, but also to

record the results of scans triggered by any other application

running on the phone (‘opportunistic’ sensing). Out of the box,

Android OS scans for WiFi every 15 seconds, and since we

collected these data, our database contains 42 692 072 WiFi

observations, with 142 871 unique networks (SSIDs) between

October 1st, 2012 and September 1st, 2013 (i.e. the 2012

deployment). Below we present the preliminary result on WiFi

as an additional data-stream for social ties, to provide an example

of how our multiple layers of information can complement and

enrich each other.

For computational social science, using Bluetooth-based detec-

tion of participants’ devices as a proxy for face-to-face interactions

is a well-established method [19,29,31]. The usage of WiFi as a

social proxy has been investigated [157], but, to our knowledge,

has not yet been used in a large-scale longitudinal study. For the

method we describe here, the participants’ devices do not sense

Figure 8. Location and Mobility. We show the accuracy of the collected samples, radius of gyration of the participants, and identify patterns of
collective mobility.
doi:10.1371/journal.pone.0095978.g008
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each other, instead they record the visible beacons (in this instance

WiFi access points) in their environment. Then, physical proximity

between two devices—or lack thereof—can be inferred by

comparing results of the WiFi scans that occurred within a

sufficiently small time window. Proximity is assumed if the lists of

access points (APs) visible to both devices are similar according to a

similarity measure. We establish the appropriate definition of the

similarity measure in a data-driven manner, based on best fit to

Bluetooth data. The strategy is to compare the lists of results in 10-

minute-long time bins, which corresponds to the forced sampling

period of the WiFi probe as well as to our analysis of Bluetooth

data. If there are multiple scans within the 10-minute bin, the

results are compared pair-wise, and proximity is assumed if at least

one of these comparisons is positive. The possibility of extracting

face-to-face interactions from such signals is interesting, due to the

ubiquitous nature of WiFi and high temporal resolution of the

signal.

We consider four measures and present their performance in

Figure 7. Figure 7A shows the positive predictive value and recall

as a function of minimum number of overlapping access points

(jX\Y j) required to assume physical proximity. In approximately

98% of all Bluetooth encounters, at least one access point was seen

by both devices. However, the recall drops quickly with the

increase of their required number. This measure favors interac-

tions in places with a high number of access points, where it is

more likely that devices will have a large scan overlap. The result

confirms that lack of a common AP has a very high positive

predictive power as a proxy for lack of physical proximity, as

postulated in [158]. Note, that for the remaining measures, we

assume at last one overlapping AP in the compared lists of scan

results.

The overlap coefficient defined as overlap(X ,Y )~
jX\Y j

min (jX j,jY j)
penalizes encounters taking place in WiFi-dense areas, due to higher

probability of one device picking up a signal from a remote access

point that is not available to the other device, see Figure 7B.

Next, we compare the received signal strengths between

overlapping routers using the mean ‘1-norm (mean Manhattan

distance,
jjX\Y jj1
jX\Y j ). Received signal strength (RSSI) is measured

in dBm and the Manhattan distance between two routers is the

difference in the RSSI between them, measured in dB. Thus, the

mean Manhattan distance is the mean difference in received signal

strength of the overlapping routers in the two compared scans.

Finally, we investigate the similarity based on the router with

the highest received signal strength—the proximity is assumed

whenever it is the same access point for both devices,

max(X )~max(Y ). This measure provides both high recall and

positive predictive value and, after further investigation for the

causes for errors, is a candidate proxy for face-to-face interactions.

The performance of face-to-face event detection based on WiFi

can be further improved by applying machine-learning approach-

es [158,159]. It is yet to be established, by using longitudinal data,

whether the errors in using single features are caused by inherent

noise in measuring the environment, or if there is a bias that could

be quantified and mitigated. Most importantly, the present

analysis is a proof-of-concept and further investigation is required

to verify if networks inferred from WiFi and Bluetooth signals are

satisfyingly similar, before WiFi can be used as an autonomous

channel for face-to-face event detection in the context of current

and future studies. Being able to quantify the performance of

multi-channel approximation of face-to-face interaction and to

apply it in the data analysis is crucial to address the problem of

missing data, as well as to estimate the feasibility and understand

the limitations of single-channel studies.

Location and Mobility
A number of applications ranging from urban planning, to

traffic management, to containment of biological diseases rely on

the ability to accurately predict human mobility. Mining location

data allows extraction of semantic information such as points of

interest, trajectories, and modes of transportation [160]. In this

section we report the preliminary results of an exploratory data

analysis of location and mobility patterns.

Location data was obtained by periodically collecting the best

position estimate from the location sensor on each phone, as well

as recording location updates triggered by other applications

running on the phone (opportunistic behavior). In total we

collected 7 593 134 data points in 2012 deployment in the form

(userid, timestamp, latitude, longitude, accuracy). The best-effort

nature of the data presents new challenges when compared with

the majority of location mining literature, which focuses on high-

frequency, high-precision GPS data. Location samples on the

smartphones can be generated by different providers, depending

on the availability of the Android sensors, as explained in

developer.android.com/guide/topics/location/strategies.html. For

this reason, accuracy of the collected position can vary between a

few meters for GPS locations, to hundreds of meters for cell tower

location. Figure 8A shows the estimated cumulative distribution

function for the accuracy of samples; almost 90% of the samples

have a reported accuracy better than 40 meters.

We calculate the radius of gyration rg as defined in [38] and

approximate the probability distribution function using a gaussian

kernel density estimation, see Figure 8B. We select the appropriate

kernel bandwidth through leave-one-out cross-validation scheme

from Statsmodels KDEMultivariate class [161]. The kernel density

peaks around 102 km and then rapidly goes down, displaying a

fat-tailed distribution. Manual inspection of the few participants

with rg around 103 km revealed that travels abroad can amount to

Figure 9. Diversity of communication logs. Diversity is estimated
as the set of unique numbers that a person has contacted or been
contacted by in the given time period on a given channel. We note a
strong correlation in diversity (Pearson correlation of 0:75, p%0:05),
whereas the similarity of the sets of nodes is fairly low (on average
SsT~0:37).
doi:10.1371/journal.pone.0095978.g009

Measuring Large-Scale Social Networks with High Resolution

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e95978



such high mobility. Although we acknowledge that this density

estimation suffers due to the low number of samples, our

measurements suggest that real participant mobility is underesti-

mated in studies based solely on CDRs, such as in [38], as they fail

to capture travels outside of the covered area.

Figure 8C shows a two-dimensional histogram of the locations,

with hexagonal binning and logarithmic color scale (from blue to

red). The red hotspots identify the most active places, such as the

university campus and dormitories. The white spots are the

frequently visited areas, such as major streets and roads, stations,

train lines, and the city center.

From the raw location data we can extract stop locations as

groups of locations clustered within distance D and time T [162–

165]. By drawing edges between stop locations for each

participant, so that the most frequent transitions stand out, we

can reveal patterns of collective mobility (Figure 8D).

Call and Text Communication Patterns
With the advent of mobile phones in the late 20th century, the

way we communicate has changed dramatically. We are no longer

restricted to landlines and are able to move around in physical

space while communicating over long distances.

The ability to efficiently map communication networks and

mobility patterns (using cell towers) for large populations has made

it possible to quantify human mobility patterns, including

investigations of social structure evolution [166], economic

development [67], human mobility [37,38], spreading patterns

[57], and collective behavior with respect to emergencies [60]. In

Figure 10. Weekly temporal dynamics of interactions. All calls and SMS, both incoming and outgoing, were calculated over the entire dataset
and averaged per participant and per week, showing the mean number of interactions participants had in a given weekly bin. Light gray denotes
5pm, the time when lectures end at the university, dark gray covers night between 12 midnight and 8am. SMS is used more for communication
outside regular business hours.
doi:10.1371/journal.pone.0095978.g010

Figure 11. Daily activations in three networks. One day (Friday) in a network showing how different views are produced by observing different
channels.
doi:10.1371/journal.pone.0095978.g011
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Figure 12. Face-to-face and online activity. The figure shows data from the 2013 deployment for one representative week. Online: Interactions
(messages, wall posts, photos, etc.) between participants on Facebook. Face-to-Face: Only the most active edges, which account for 80% of all
traffic, are shown for clarity. Extra Info. F2F: Extra information contained in the Bluetooth data shown as the difference in the set of edges. Extra
Info. Online: Additional information contained in the Facebook data.
doi:10.1371/journal.pone.0095978.g012

Figure 13. Network similarity. Defined as the fraction of ties from one communication channel that can be recovered by considering the top k
fraction of edges from a different channel. Orange dashed line indicates the maximum fraction of ties the network accounts for. The strongest 10% of
face-to-face interactions account for w50% of online ties and *90% of call ties, while 23:58% of Facebook ties and 3:85% of call ties are not
contained in the Bluetooth data. Between call and Facebook, the 10% strongest call ties account for v3% while in total w80% of Facebook ties are
unaccounted. All values are calculated for interactions that took place in January 2014.
doi:10.1371/journal.pone.0095978.g013
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this study, we have collected call logs from each phone as (caller,

callee, duration, timestamp, call type), where the call type could be

incoming, outgoing, or missed. Text logs contained (sender,

recipient, timestamp, incoming/outgoing, one-way hash of con-

tent).

In the 2012 deployment we collected 56 902 incoming and

outgoing calls, of which 42 157 had a duration longer than zero

seconds. The average duration of the calls was SdT~142:04s,

with a median duration of 48:0s. The average ratio between

incoming and outgoing calls for a participant was rin=out~0:98. In

the same period, we collected 161 591 text messages with the

average ratio for a participant rin=out~1:96.

We find a Pearson correlation of 0:75 (p%0:05) between the

number of unique contacts participants contacted via SMS and

voice calls, as depicted in Figure 9. However, the similarity

s~jNcall\Ntextj=jNcall|Ntextj between the persons a participant

contacts via calls (Ncall ) and SMS (Ntext) is on average SsT~0:37,

suggesting that even though participants utilize both forms of

communication in similar capacity, those two are, in fact, used for

distinct purposes.

Figure 10 shows the communication for SMS and voice calls

(both incoming and outgoing, between participants and with the

external world) as a time series, calculated through the entire year

and scaled to denote the mean count of interactions participants

had in given hourly time-bins in the course of a week. Also here,

we notice differences between the two channels. While both clearly

show a decrease in activity during lunch time, call activity peaks

around the end of the business day and drops until next morning.

In contrast, after a similar decrease that we can associate with

commute, SMS displays another evening peak. Also at night, SMS

seems to be a more acceptable form of communication, with

message exchanges continuing late and starting early, especially on

Friday night, when the party never seems to stop.

We point out that the call and SMS dynamics display patterns

that are quite distinct from face-to-face interactions between

participants as seen in Figure 5. Although calls and SMS

communication are different on the weekends, the difference is

not as dramatic as in the face-to-face interactions between the

participants. This indicates that the face-to-face interactions we

observe during the week are driven primarily by university-related

activities, and only few of these ties manifest themselves during the

weekends, despite the fact that the participants are clearly socially

active, sending and receiving calls and messages.

In Figure 11, we focus on a single day (Friday) and show

activation of links between participants in three channels: voice

calls, text messages, and face-to-face meetings. The three networks

show very different views of the participants’ social interactions.

Online friendships
The past years have witnessed a shift in our interaction patterns,

as we have adapted new forms of online communication.

Facebook is to date the largest online social community with

more than 1 billion users worldwide [167]. Collecting information

about friendship ties and communication flows allows us to

construct a comprehensive picture of the online persona.

Combined with other recorded communication channels we have

an unparalleled opportunity to piece together an almost complete

picture of all major human communication channels. In the

following section we consider Facebook data obtained from the

2013 deployment. In contrast to the first deployment, we also

collected interaction data in this deployment. For a representative

week (Oct. 14–Oct. 21, 2013), we collected 155 interactions (edges)

between 157 nodes, yielding an average degree SdT~1:98,

average clustering ScT~0:069, and average shortest path in the

giant component (86 nodes) SlT~6:52. The network is shown in

the left-most panel of Figure 12. By comparing with other channels

we can begin to understand how well online social networks

correspond to real life meetings. The corresponding face-to-face

network (orange) is shown in Figure 12, where weak links, i.e.

edges with fewer than 147 observations (20%) are discarded.

Corresponding statistics are for the 307 nodes and 3 217 active

edges: SdT~20:96, ScT~0:71, and SlT~3:2. Irrespective of the

large difference in edges, the online network still contains valuable

information about social interactions that the face-to-face network

misses—red edges in Figure 12.

A simple method for quantifying the similarity between two

networks is to consider the fraction of links we can recover from

them. Sorting face-to-face edges according to activity (highest first)

we consider the fraction of online ties the top k Bluetooth links

correspond to. Figure 13A shows that 10% of the strongest

Bluetooth ties account for more than 50% of the Facebook

interactions. However, as noted before, the Bluetooth channel

does not recover all online interactions—23:58% of Facebook ties

are unaccounted for. Applying this measure between Bluetooth

Figure 14. Personality traits. Violin plot of personality traits. Summary statistics are: openness mO~3:58, sO~0:52; extraversion mE~3:15,
sE~0:53; neuroticism mN~2:59 sN~0:65; agreeablenes mA~3:64 sA~0:51; conscientiousness mC~3:44 sC~0:51. Mean values from our
deployment (red circles) compared with mean values reported for Western Europe (mixed student and general population) [170] (orange diamonds).
doi:10.1371/journal.pone.0095978.g014
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and voice calls (Figure 13B) shows a similar behavior, while there is

low similarity between voice calls and Facebook ties (Figure 13C).

Personality traits
While the data from mobile sensing and online social networks

provide insights primarily into the structure of social ties, we are

also interested in the demographics, psychological and health

traits, and interests of the participants. Knowing these character-

istics, we can start answering questions about the reasons for the

observed network formation; why are ties created and what drives

their dynamics? For example, homophily plays a vital role in how

we establish, maintain, and destroy social ties [168].

Within the study, participants answered questions covering the

aforementioned domains. These questions included the widely

used Big Five Inventory [135] measuring five broad domains of

human personality traits: openness, extraversion, neuroticism,

agreeableness, and conscientiousness. The traits are scored on a 5-

point Likert-type scale (low to high), and the average score of

Figure 15. Correlation between personality traits and communication. Data from the 2013 deployment for N = 488 participants, showing
communication only with other study participants. Extraversion, the only significant feature across all networks is plotted. The red line indicates mean
value within personality trait. Random spikes are due to small number of participants with extreme values. E) Pearson correlation between Big Five
Inventory personality traits and number of Facebook friends Nfs, volume of interactions with these friends Nff , number of friends contacted via voice
calls Nc and via SMS Ns. *: pv0:05, **: pv0:01, ***: pv0:001.
doi:10.1371/journal.pone.0095978.g015
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questions related to each personality domain are calculated. As Big

Five has been collected for various populations, including a

representative sample from Germany [169] and a representative

sample covering students mixed with the general population from

Western Europe [170], we report the results from the 2012

deployment in Figure 14, suggesting that our population is

unbiased with respect to these important traits.

Following the idea that personality is correlated with the

structure of the social networks, we examine how the Big Five

Inventory traits relate to the communication ego networks of the

participants: number of Facebook friends, amount of communi-

cation with these friends, number of people ever contacted over

voice calls or SMS. We only consider communication within the

study, in the 2013 deployment for N = 488 participants for whom

complete and longitudinal data was available. It is worth noting

that participants answered the questions very early in the

semester, and that we anecdotally know that a vast majority of

the friendships observed between participants are ‘new’ in that

they are between people who met when they started studying.

Thus, we mainly observe the effect of personality on the network

structure, not the other way around. The results are consistent

with the literature, where Extraversion was shown to be

correlated with number of Facebook friends [171]. Extending

this result, Figure 15 depicts the correlation between Extraversion

and number of Facebook friends (structural network) Nfs (Figure

15A), volume of interactions with these friends (functional

network) Nff (Figure 15B), number of friends contacted via voice

calls Nc (Figure 15C), and number of friends contacted via SMS

Ns (Figure 15D). In Table 15E, we show the (Pearson) correlation

between all five traits and the aforementioned communication

channels, reporting only significant results. The values of

correlation for Extroversion are consistent across the networks,

and are close to those reported in [171,172] (*0:2). Following

the result from Call & Text Communication Patterns Section,

where we showed that the communication in SMS and call

networks are similar in volume, however have limited overlap in

terms of who participants contact, both those channels show

similar correlation with Extraversion. Here, we only scratched the

surface with regard to the relation between personality and

behavioral data. The relation between different behavioral

features, network structure, and personality has been studied in

[173–176]. By showing the impact of Extraversion on the

network formed with participants inside the study is consistent

with values reported for general populations, we indicate that

within the Copenhagen Networks Study, we capture a true social

system, with different personalities positioned differently in the

network.

Perspectives

We expect that the amount of data collected about human

beings will continue to increase. New and better services will be

offered to users, more effective advertising will be implemented,

and researchers will learn more about human nature. As the

complexity and scale of studies on social systems studies grows,

collection of high-resolution data for studying human behavior will

become increasingly challenging on multiple levels, even when

offset by the technical advancements. Technical preparations,

administrative tasks, and tracking data quality are a substantial

effort for an entire team, before even considering the scientific

work of data analysis. It is thus an important challenge for the

scientific community to create and embrace re-usable solutions,

including best practices in privacy policies and deployment

procedures, supporting technologies for data collection, handling,

and analysis methods.

The results presented in this paper—while still preliminary

considering the intended multi-year span of the project—clearly

reveal that a single stream of data rarely supplies a comprehensive

picture of human interactions, behavior, or mobility. At the same

time, creating larger studies, in terms of number of participants,

duration, channels observed, or resolution, is becoming expensive

using the current approach. The interest of the participants

depends on the value they get in return and the inconvenience the

study imposes on their lives. The inconvenience may be measured

by decreased battery life of their phones, annoyance of answering

questionnaires, and giving up some privacy. The value, on the

other hand, is classically created by offering material incentives,

such as paying participants or, as in our case, providing

smartphones and creating services for the participants. Providing

material incentives for thousands or millions of people, as well as

the related administrative effort of study management, may simply

not be feasible.

In the not-so-distant future, many studies of human behavior

will move towards accessing already existing personal data. Even

today we can access mobility of large populations, by mining data

from Twitter, Facebook, or Flickr. Or, with participants’

authorizations, we can track their activity levels, using APIs of

self-tracking services such as Fitbit or RunKeeper. Linking across

multiple streams is still difficult today (the problem of data silos),

but as users take more control over their personal data, scientific

studies can become consumers rather than producers of the

existing personal data.

This process will pose new challenges and amplify the existing

ones, such as the replicability and reproducibility of the results or

selection bias in the context of full end-user data control. Still, we

expect that future studies will increasingly rely on the existing data,

and it is important to understand how the incomplete view we get

from such data influences our results. For this reason, we need

research testbeds—such as the Copenhagen Networks Study—

where we study ‘deep data’ in the sense of multi layered data streams,

sampled with high temporal resolution. These deep data will allow us

to unlock and understand the future streams of big data.
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120. Holme P, Saramäki J (2012) Temporal networks. Physics reports 519: 97–125.

121. Shalizi C, Thomas A (2011) Homophily and contagion are generically

confounded in observational social network studies. Sociological Methods &

Research 40: 211–239.

122. Fowler J, Christakis N (2008) Dynamic spread of happiness in a large social

network: longitudinal analysis over 20 years in the Framingham heart study.

British Medical Journal 337: a2338.

123. Christakis N, Fowler J (2009) Connected: the surprising power of our social

networks and how they shape our lives. Little, Brown and Company.

124. Li I, Dey A, Forlizzi J (2010) A stage-based model of personal informatics

systems. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. ACM, pp. 557–566.

125. Larsen JE, Cuttone A, Jørgensen SL (2013) QS Spiral: Visualizing periodic

quantified self data. In: CHI 2013 Workshop on Personal Informatics in the

Wild: Hacking Habits for Health & Happiness.

126. Cuttone A, Lehmann S, Larsen JE (2013) A mobile personal informatics system

with interactive visualizations of mobility and social interactions. In:

Proceedings of the 1st ACM international workshop on Personal data meets

distributed multimedia. ACM, pp. 27–30.

127. Rocha L, Liljeros F, Holme P (2011) Simulated epidemics in an empirical

spatiotemporal network of 50,185 sexual contacts. PLoS Computational

Biolology 7: e1001109.

128. Lee S, Rocha LE, Liljeros F, Holme P (2012) Exploiting temporal network

structures of human interaction to effectively immunize populations. PloS One

7: e36439.

129. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–

174.

130. Gulbahce N, Lehmann S (2008) The art of community detection. BioEssays 30:

934–938.

131. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale

complexity in networks. Nature 466: 761–764.

132. Fiedler M (1975) A property of eigenvectors of nonnegative symmetric matrices

and its application to graph theory. Czechoslovak Mathematical Journal 25:

619.

133. Bagrow JP, Lehmann S, Ahn YY (2011). Robustness and modular structure in

networks. arxiv/1102.5085.

134. (2013). Facebook reports first quarter 2013 results. URL http://investor.fb.

com/releasedetail.cfm?ReleaseID = 761090. [Online; accessed 19-March-

2014].

135. John OP, Srivastava S (1999) The big five trait taxonomy: History,

measurement, and theoretical perspectives. Handbook of personality: Theory

and research 2: 102–138.

136. Rosenberg M (1989) Society and the adolescent self-image (rev). Wesleyan

University Press.

137. Back MD, Kufner AC, Dufner M, Gerlach TM, Rauthmann JF, et al. (2013)

Narcissistic admiration and rivalry: Disentangling the bright and dark sides of

narcissism. Journal of Personality and Social Psychology 105: 1013.

138. Diener E, Emmons RA, Larsen RJ, Griffn S (1985) The satisfaction with life

scale. Journal of personality assessment 49: 71–75.

139. Rotter JB (1966) Generalized expectancies for internal versus external control

of reinforcement. Psychological monographs: General and applied 80: 1.

140. Russell DW (1996) UCLA loneliness scale (version 3): Reliability, validity, and

factor structure. Journal of personality assessment 66: 20–40.

141. Sherer M, Maddux JE, Mercandante B, Prentice-Dunn S, Jacobs B, et al.

(1982) The self-efficacy scale: Construction and validation. Psychological

reports 51: 663–671.

142. Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived

stress. Journal of health and social behavior: 385–396.

143. Bech P, Rasmussen NA, Olsen LR, Noerholm V, Abildgaard W (2001) The

sensitivity and specificity of the major depression inventory, using the present

state examination as the index of diagnostic validity. Journal of affective

disorders 66: 159–164.

144. Lund R, Nielsen LS, Henriksen PW, Schmidt L, Avlund K, et al. (2014)

Content validity and reliability of the Copenhagen Social Relations

Questionnaire. Journal of aging and health 26: 128–150.

145. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief

measures of positive and negative affect: the PANAS scales. Journal of

personality and social psychology 54: 1063.

146. Ellen RF, Firth R (1984) Ethnographic research: A guide to general conduct.

Academic Press London.

147. de Montjoye YA, Wang SS, Pentland A, Anh DTT, Datta A, et al. (2012) On

the trusted use of large-scale personal data. IEEE Data Eng Bull 35: 5–8.

148. Shampanier K, Mazar N, Ariely D (2007) Zero as a special price: The true

value of free products. Marketing Science 26: 742–757.

149. (2013). SensibleDTU informed consent form (da). URL https://github.com/

MIT-Model-Open-Data-and-Identity-System/SensibleData-Service/blob/

production_sensibledtu1k/sensible_data_service/documents/service_

informed_consent_da.txt.

150. (2013). SensibleDTU informed consent form (en). URL https://github.com/

MIT-Model-Open-Data-and-Identity-System/SensibleData-Service/blob/

production_sensibledtu1k/sensible_data_service/documents/service_

informed_consent_en.txt.

151. Sekara V, Lehmann S (2014) Application of network properties and signal

strength to identify face-to-face links in an electronic dataset. arXiv preprint

arXiv:14015836.

152. Stopczynski A, Larsen JE, Lehmann S, Dynowski L, Fuentes M (2013)

Participatory Bluetooth sensing: A method for acquiring spatio-temporal data

about participant mobility and interactions at large scale events. In: Pervasive

Computing and Communications Workshops (PERCOM Workshops), 2013

IEEE International Conference on. IEEE, pp. 242–247.

153. Krings G, Karsai M, Bernhardsson S, Blondel VD, Saramäki J (2012) Effects of
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Abstract
We describe the challenges and the open questions arising
during the design and deployment of SensibleJournal, a
mobile personal informatics system with interactive
visualizations of mobility and social interactions based on
data acquired from embedded smartphone sensors. The
SensibleJournal system was evaluated in a large scale
(N=136) mobile sensing field study. We report issues in
deployment, limitations in user engagement and uptake,
and the challenges in measuring the effect of the system.

Author Keywords
Large-scale mobile sensing, self-tracking, deployment,
mobility, social interaction, feedback interfaces, behavior
change, personal informatics, quantified self

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

Introduction
SensibleJournal [3] is a Personal Informatics system for
Android smartphones with visualizations of personal
mobility and social interactions. The mobile app was
deployed to N=136 first year university students at our
university campus on an opt-in basis for approximately 6
months from October 2012, as part of the larger

691

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA



Copenhagen Networks Study project [6], in which we
measure mobility and social interactions with high
resolution. The SensibleJournal mobile app provides four
different feedback interfaces [3]:

• Stats: a daily summary of mode of transportation,
top places and distance travelled

• Movement: a map with animated playback of daily
movements and places visited

• TimeSpiral: a spiral visualization [4] of time series
of places visited to highlight periodic patterns and
reoccuring events

• Bubbles: a bubble chart of your social contacts and
communities inferred from Bluetooth proximity

Here we evaluate the usage of SensibleJournal as a
personal informatics system, thus participants used a
smartphone with the SensibleJournal app as their primary
phone, while detailed usage of the mobile app feedback
interfaces were logged.

Personal Informatics for Self-Reflection
One of the main objectives in Personal Informatics is to
facilitate self-reflection through a deeper understanding of
personal behavior [5] [1]. However, it is challenging to
quantify this as a precise metric. What does it mean to
have a deeper understanding and what exactly causes
behavior change (if it occurs)?

In our case we applied qualitative analysis using
questionnaires asking the participants how often the app
was used, how interested the participants were in the
feedback, and if they discovered something new about

their own behavior. As it is challenging to convert the
qualitative data from the answers into unambigous
measures, we also analyzed the usage patterns of the
system from the usage logs. This allow us to infer the
interests in the different features in the app. From the
analysis of the usage logs we were able to quantify the
frequency of use and time spent on the different feedback
interfaces. However, it is not clear how much these usage
patterns are indicative of increased understanding of
personal behavior and whether it facilitates self-reflection.

Personal Informatics systems typically support the
reflection stage [5] through some type of data
visualization. A possible approach of the evaluation is to
measure the effectiveness of the chosen visualization for
representing the considered data. In our system we
evaluated the proposed feedback interfaces in terms of
which insights they were offering. However, the evaluation
of the visualization as such is still an open problem in
research [2], and often there is no conclusive answer to
which visualization type is optimal for a given dataset.
Even choosing an appropriate visualization is open to
interpretation, as this representation may vary from person
to person depending on cultural and technical background.

Challenges in the Large Scale Deployment
From our survey with 45 respondents (33%) [3] we found
that keeping users engaged was very challenging, and our
system failed to engage but a limited subset of the
participants on a regular basis.

Many respondents commented that the app was
interesting and provided new insights about personal
behavior, however 58% of the respondents reported using
the app less than once a week, 31% about once a week,
and 11% more than once a week.
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Figure 1: Number of active users per day over the duration of
the full study. The aggregate usage data contains many peaks
and valleys, and some peaks happened immediately after the
release of a new version of the app that introduced new
features (1 January and 4 February).

For quantifying user engagement, we analyzed the usage
logs in the form <userid, timestamp, event>, with
events generated for each different view of the app, and
when the app is sent to the background. For each day, we
count a user as active if he/she had at least one event of
duration ≥ 10 seconds.

Figure 1 shows that the number of active users and
contains many peaks and valleys. Some peaks happened
immediately after the release of a new version of the app
(1 Jan and 4 Feb). This may indicate that after releases
of new versions of the app, there are spikes of interest.
However, the usage rapidly declined in the days and weeks
following. We suggest that one possible explanation is
that the provided feedback was not interesting enough to

justify frequent usage. We suspect that one reason for
this is that human activity is highly periodic and regular,
so the provided feedback such as daily movement patterns
would become repetitive and uninformative after a while.
This suggests that highlighting deviations from routine
might provide higher value to the users.

0 20 40 60 80 100 120 140 160
total time (min)

0

5

10

15

20

25

30

n
u
m

b
e
r 

o
f 

u
se

rs

Figure 2: Distribution of the total time spent by number of
users. The distribution has an exponential-like decay, where
the large majority of participants spent a limited amount of
time with the app, while only 10-15% of the participants were
more active.

From the usage logs, we could also deduce the cumulative
time that each user spent on the app and particular
feedback interfaces. Figure 2 shows that there is a very
large variation of usage patterns among the users. The
time distribution has an exponential-like decay, where the
large majority of participants spent a small amount of
time with the app, while a few were much more active.
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This ”long tail” effect illustrates a challenge with limited
sustained uptake among this broad population in the large
scale deployment. The limited sustained usage suggests
that this approach is quite costly in terms of evaluating
the personal informatics feedback system as such.

We found that participants preferred simpler but less
informative feedback to more complex but more
informative one. Usage logs showed a preference for the
simple Movement view over the TimeSpiral view, and
several participants reported not understanding how to
interpret the TimeSpiral. This level of quantitative data
about own behavior is a novel concept, thus a suitable
level of complexity in the feedback interface is necessary.

The goal of SensibleJournal was limited to facilitate
reflection. However, promoting behaviour change is often
the goal of a Personal Informatics system, and it can be
unclear how self-reflection may actually promote such
behavior change. An increased awareness of limited
mobility or social behavior does not necessarily push
towards a more active or social lifestyle. An open question
is how to design a feedback loop that uses self-reflection
to promote positive behavior change. In our survey a few
participants reported increased awareness of their
sedentary behavior, but it was not clear if this would lead
to actual behavior change or the sustainability of this
increased awareness longer-term.

Conclusions
The deployment of a mobile personal informatics system
as part of a large scale mobile sensing study has been
described. The challenges in identifying a suitable metric
for evaluation beyond usage logs was discussed and
especially the difficulty in creating a system that engage
participants and keep a sustained interest. Measuring

actual behavior change caused by usage of the system was
not possible. So although a large scale deployment may
appear promising for obtaining substantial data and novel
insights, the ”long tail” issue of limitations in uptake and
sustained usage lead to limited results considering the
scale and cost of the approach.
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Abstract

We describe an empirical study of the usage of a mobility self-tracking app,
SensibleJournal 2014, which provides personal mobility information to N=796
participants as part of a large mobile sensing study. Specifically, we report on the app
design, as well as deployment, uptake and usage of the app. The latter analysis is based
on logging of user interactions as well as answers gathered from a questionnaire
provided to the participants. During the study enrollment process, participants were
asked to fill out a questionnaire including a Big Five inventory and Narcissism NAR-Q
personality tests. A comparison of personality traits was conducted to understand
potential differences among the users and non-users of the app. We found a relation
between self-tracking and conscientiousness, but contrary to the view in popular media,
we found no relation between self-tracking behavior and narcissism.

Introduction

Recently, the area of lifelogging, Quantified Self and Personal Informatics have gained
substantial attention and uptake due to the availability of smartphones, low-cost
wearable sensors and, more recently, smart watches. This development has significantly
lowered the barrier for people to engage in a wide range of self-tracking activities, with
monitoring of exercise, physical activity, and step counting being widely adopted. Also
in research, the area has gained increased attention in recent years, with international
workshops on Personal Informatics [1–3], as well as conferences having sessions on
Quantified Self. However, paradoxically, empirical research describing the self-tracking
phenomenon is somewhat limited [4, 5].

In this paper we describe an empirical study of mobility self-tracking, using a
smartphone app that has been developed as part of our research. We measured the
usage of the self-tracking app on a population of almost 800 individuals – bachelor level
university students from all technical sciences, for a duration of four months. In an
ongoing mobile sensing study [6] we offered all participants a self-tracking app that
provides a feedback interface reporting on personal mobility patterns on a daily basis.
All participants were informed about the existence of the app through a notification
system. While all participants were instructed to install the app on their smartphone,
usage of the app was optional.
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The motivation behind the study was to measure the uptake of a Quantified Self app
in order to see how many would be interested in self-tracking, as well as the duration of
the interest in the app, in terms of usage patterns over time. As the participants were
enrolled in the mobile sensing study at the time of the introduction of the app, mobility
and social interaction data were already being collected. Thus, the participants were
merely provided with a mobile feedback interface providing access to personal data that
was already being collected about them.

As it has been debated whether specific personality traits are distinctive among
self-trackers, we wanted to measure the relation between self-tracking behavior and
personality traits. In particular, the narcissism label has been associated with
self-tracking in popular media and has been debated in research literature too [5, 7].

Related work

Li et al. [8] describe Personal Informatics using a model that involves a five stage
process, where a key stage is self-reflection, which is often supported through
visualization of the collected personal data. Data visualization is seen as a mean to gain
insights into personal behaviors, which can shape the basis for achieving behavior
change.

There is a plethora of examples, both scientific and commercial, that attempt to
leverage the potential of data visualization as the means for individuals to interact with
and gain insights from personal data. The most relevant to this study is the 2013
version of SensibleJournal, providing visualizations of mobility patterns [9], as well as
visualizations on social interactions of its users [10]. Other examples that involve
visualizing information on a map are Personal Driving Diary [11], which presents
images of the detected events during driving along with pinpointed locations, and Now
Let Me See Where I Was [12], which creates mobility-based visualizations for each
participant by pinpointing locations on a map.

The self-tracking phenomenon has attracted attention in popular media, with
articles sometimes suggesting a tendency of self-trackers towards narcissism [13].
Similarly, in recent report from Symantec on Quantified Self data security, Quantified
Self is described as part of “a trend towards [...] narcissism” [14].

Research literature has discussed this popular media view on the practice of
self-tracking as obsessive or narcissistic [7, 15,16] and in [17], the initial encounter with
self-tracking is being described as something that would appear to be “just another
example of technology stretching the limits of narcissism”. However, this viewpoint on
self-tracking has been criticized by Bode and Kristensen [5], with a call for a more
varied description of the self-tracking phenomenon.

An attempt to measure narcissism among self-trackers has been made on a small
scale (N=36) in an online survey in the Quantified Self community, using the NPI-16
test [18] with 16 questions related to narcissism [19]. The result was a 0.38 score on
narcissism compared to the mean scores in five American studies, which reported to be
in the range 0.31-0.41 [18]. While concluding that there was no correlation between
self-tracking and narcissism, it is also suggested that the definition of narcissism may
not be clear [19].

Method

This work is part of the SensibleDTU project, a large-scale study of high-resolution
social networks, which is described in detail in [6]. Data collection was approved by the
Danish Data Protection Agency, and informed consent has been obtained for all study
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all participants. We study N=796 first year students provided with an Android
smartphone. The phone is equipped with a data collector app running continuously in
the background. The latter collects and periodically uploads data to a server from
multiple sources: location, Bluetooth, calls, SMS, and WiFi. The participants were also
asked to fill out a questionnaire including the Big Five inventory [20] and Narcissism
NAR-Q [21], from which we can deduce the following six personality traits: extraversion,
agreeableness, conscientiousness, neuroticism, openness and narcissism. We have found
that our population under study is unbiased with respect to the personality traits of the
general population [6].

All participants that had joined the study were requested to install SensibleJournal
2014, a self-tracking mobile app designed to support self-reflection [8] on personal
mobility, in terms of places visited and movements between them. The locations are
extracted by clustering groups of consecutive locations within a predetermined distance,
as described in [22].

The SensibleJournal 2014 App

The mobile app uses a card-based user interface, which shows mobility related
information on cards that appear on a continuous timeline from most to least recent.
Each card contains a static mini-map, which pinpoints locations of interest, along with
specific informative text. We provide six different types of cards, each presenting
different information about personal mobility: “My Current Location”, “Last Visited
Place”, “Latest Journey”, “Daily Route”, “Weekly Route”, and “Most Visited Places”.
The cards contain a static map along with descriptive text. An example card is shown
in Fig. 1.

A card can be tapped in order to open the corresponding detailed view, which offers
a more informative visualization through an interactive map which offers the ability to
pan and zoom. Users can also access their history through an archive view that
chronologically lists specific older detailed views, accessible from a “navigation drawer”
(by tapping on the app title area). In order for the participants to be reminded to check
for newly available cards, the app sends a periodic reminder using a notification on
users’ devices. To avoid intrusive behavior, the notification is sent once every three days
at noon.

Usage Data Collection

SensibleJournal 2014 gathers data about the way users interact with the app. In
particular, the app logs interaction events, such as when a user launches/pauses the app,
or navigates through the interface. Each card contains an “Awesome!” button (see
Fig. 1), which can be tapped in order to provide feedback about the cards. The usage
log is periodically uploaded and stored on our server.

Results

We analyze the usage logs between late June and October 2014. For each participant we
consider events that lasted at least 5 seconds and at most 10 minutes to avoid
considering accidental app launches, or anomalies in the usage collection. In total, 242
(30.4%) of all 796 participants had no interaction with the app at all. Even though they
had to install the app when joining the study, they never launched it. The cumulative
distribution function of the total number of times that the app was launched per user,
illustrated in Fig. 2, shows that the usage decays exponentially: around 60% of the
participants launched the app less than 5 times or not at all and less than 5% launched
it more than 20 times. This is in line with our findings in previous work [23].
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Fig 1. An example card showing mobility information in the SensibleJournal 2014
mobile app. The app user interface contains a list of such cards showing different views
of personal mobility

Additionally, we count the per-day number of users with at least one launch (Fig. 3).
The number of active users slowly decays from the start of the experiment. There is a
peak in the beginning of September, which coincides with the start of the new university
semester. A similar decay over time was also reported in previous work [23].

From the 796 participants, only 16 individuals (2%) used SensibleJournal 2014 more
systematically. We defined as more regular users, the ones that used the app at least 20
times and at least once per month during the experiment.

Usage and Notifications

As mentioned, a notification system alerted the participants about new cards every three
days, at noon. Fig. 4 shows that the total number of the app launches was significantly
higher between 12:00 and 14:00, which suggests that the notification was an important
factor in engaging users (Fig. 3). This observation is in line with [24], which reported a
notably higher usage of a self-tracking mobile app with reminding through notifications.

Survey

In December 2014, all the participants were contacted and asked to fill out an electronic
survey with the following questions:

1. Have you discovered something new or interesting about yourself? If yes, what?
(open answer)
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Fig 3. The number of active users as a function of time illustrates the decreasing trend
from the beginning of the experiment, with an exception being early September, which
coincides with the beginning of a new semester

2. If you no longer use SensibleJournal 2014 app, why not? (multiple options)
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Fig 4. Usage per time of day. A clear peak happens between 12 and 14, probably due
to the notifications scheduled at noon

(a) The app is too slow

(b) The visualizations are confusing

(c) I am not interested in my location data

(d) I do not know the app

(e) The app always shows similar information

(f) I do not learn anything new from my data

3. What do you think of the notifications?

(a) There should be more

(b) There should be less

(c) They should be removed

4. Have you clicked “Awesome!”? If yes, why?

(a) I liked the visualizations

(b) I liked the information shown in the visualizations

5. How do you use the app? (open answer)

6. Do you have any other comments or suggestions? (open answer)

A total of 51 participants answered the survey (6% response rate). The majority
reported not learning anything interesting, however some reported being surprised to
gain new knowledge about their daily patterns: “I am very surprised about my
monotonous patterns, home-work-home”, “Although I thought that I move around a lot,
I basically spend my time with a specific friend of mine”, “there is a whole routine in
our lives, that is surprising!” and “I go out at the same places (more or less)”. One
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participant reported checking the app after a change in his/her routine, and several
reported using the app for learning about the time spent between home and university.
The repetitiveness of daily routine and consequently of the app feedback, was one of the
prominent causes for many users to stop using it: 43% reported not learning anything
new and 22% reported that the app shows similar information every time. One
participant even suggests that the app should provide feedback only when “something
new happens” such as visiting a place never seen before. Moreover, 16% complained
that the visualizations were confusing and 28% said not to be interested in their
location data. Regarding the “Awesome!” button, 18% reported to have clicked it
because they liked the visualizations and 20% because they found the information
shown in the visualizations useful. 16% reported that there should be more notifications,
30% preferred less and 24% would prefer not to have notifications at all.

Personality

For each participant we compute the following six personality traits based on the
answers to the questionnaire including the Big Five inventory [20] and Narcissism
NAR-Q [21]: extraversion, agreeableness, conscientiousness, neuroticism, openness and
narcissism. Additionally, for each participant we determine a number of features based
on the collected usage data:

• number of days with at least one launch

• total time interacting with the app

• total number of launches

• mean session duration

For the users who have no usage data we assigned the value 0 to all the above
mentioned features. We split the population into the top 10% and remaining 90%
quantiles according to each usage feature and compared the distribution of each
personality trait between the top and remaining quantiles using t-tests (6 personality
traits x 4 usage features = 24 tests). Table 1 contains the corresponding p-values for
each trait and feature pair.

Table 1. p-values for the t-tests for each trait-feature pair

extra-
version

agreeable-
ness

conscien-
tiousness

neuroti-
cism

openness narcissism

total
events

0.6970 0.5653 0.0342 0.5141 0.2301 0.0677

total
time

0.6943 0.7673 0.0009 0.5214 0.4531 0.3882

mean ses-
sion dur.

0.3382 0.3485 0.4042 0.4401 0.0614 0.7776

active
days

0.0416 0.3702 0.3418 0.2676 0.0319 0.1147

However, after correcting for multiple comparisons using the Holm-Bonferroni
method [25], we find that the only statistically significant difference is between
conscientiousness and total time. Table 2 displays the corrected p-values.

The Holm-Bonferroni correction is quite strict, therefore we provide another view of
the results using bootstrap to illustrate the differences. We calculate the bootstrapping
distributions of the means of the top 10% quantiles, for each personality trait-usage
feature pair. In particular:
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Table 2. p-values for each trait-feature pair, after the Holm-Bonferroni correction

extra-
version

agreeable-
ness

conscien-
tiousness

neuroti-
cism

openness narcissism

total
events

1.0000 1.0000 0.7515 1.0000 1.0000 1.0000

total
time

1.0000 1.0000 0.0210 1.0000 1.0000 1.0000

mean ses-
sion dur.

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

active
days

0.8726 1.0000 1.0000 1.0000 0.7338 1.0000
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Fig 5. Distributions of the bootstrapped means of the subsamples. The red line is the
measured mean of the top 10% quantile for each trait. The cases where the mean of top
10% are more extreme than 95% of the bootstrapped samples are highlighted in dark
blue.

• We calculate the mean of the trait for the top 10% according to the usage feature

• We bootstrap n = 5000 subsamples from the initial population and obtain their
means

• We compare the distribution of the means of the subsamples and the mean of the
top 10%

Fig. 5 depicts the bootstrapping distributions of each personality trait and usage
feature. The red line indicates the measured mean of the top 10%. We note that, as
before, conscientiousness with total time have the most visible difference from the
bootstrapped means, but also some for other feature-trait pairs (highlighted in dark
blue) there are quite large differences.
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Discussion

A key area of interest in this work is to understand the reasons for usage and non-usage
of the SensibleJournal 2014 app as a Personal Informatics self-tracking system. Our
population consists of well-educated, tech-savvy young adults, a fact that may introduce
some biases. However, we suggest that this population would be possible adopters of
self-tracking tools.

The total usage varies greatly from participant to participant. About 30% of the
participants did not use the app at all and only a small fraction used it every few days.
Since significant amount of time and resources are spent in developing such Personal
Informatics systems, this inability to engage the potential users can be a concern for any
such system, either within a research project in academia, or a product in commercial
settings. A possible factor for the limited uptake of the app is the fact that the
participants might receive similar knowledge from other commercial and more visually
polished apps or services, thus resulting in rapid loss of interest.

The interest was higher in the initial phase, and then declined as time progressed.
The decrease over time may have multiple explanations, such as the repetitive nature of
the feedback. As many respondents reported, the app tends to report similar
information over time, that is time spent usually at the same few places, like home and
work. Therefore, users may not be able to learn anything new and would eventually
abandon the app. The repetitive feedback information is due to the inherent nature of
human mobility, which tends to be habitual and predictable [26]. Habitual living
suggests that once initial insights have been obtained, limited new significant knowledge
can be gained from the data itself. This problem may potentially affect many Personal
Informatics systems measuring periodic behavior such as fitness activity, heart rates and
sleep patterns. Any app reporting about the status of the user will soon produce
repetitive feedback and may risk to become uninteresting for the user.

One possible solution is to generate feedback only when new or deviating
information is available, such as something that has not happened before, something
that is different or something requiring user attention. A goal-setting feature could also
stimulate the interest in self-reflection and facilitate the process of behavior change.

One hypothesis was that personality traits are a factor in the adoption of Quantified
Self tools. We find, however, that narcissism makes no significant difference in respect
to adoption, in contrast to conscientiousness, which is the only trait making a
statistically significant difference. The present data is insufficient for a full
understanding of the casual relationship, but we hypothesize that the organization and
self-discipline characteristics of conscientiousness could be an important driver for the
usage of such self-tracking apps.

Conclusions

We have presented results from an empirical study on the usage of a mobility
self-tracking smartphone app, among N=796 participants in an ongoing mobile sensing
study. The app was offered to all participants, but whether they would use it or not was
left optional and not enforced in any way.

A relatively low uptake of the app was observed, as 30% of the participants never
used the app. Only 16 participants (2%) ended up using the app on a regular basis and
among that group, a decline in usage over time was observed. A questionnaire on the
participants’ interests and attitudes towards the self-tracking app provided indications
that the recurring data patterns lead to a drop in interest, once initial insights on
personal mobility had been obtained. The fact that the app does not provide radically
different information over time, or suggestions based on the data obtained, is a possible
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reason for the participants’ gradual loss of interest in the app, as well as in their
personal mobility data.

Personality traits of the N=796 participants were corresponding to those of the
general population. In order to understand potential differences between those who
adopted the self-tracking behavior by using the app and those who decided not to use it
(or only use it short-term), we compared their personality traits. Through this
comparison, we found a relation between self-tracking and conscientiousness, an
observation that is in contrast with the view in popular media, which suggest a
tendency towards narcissism among people that adopt self-tracking behavior.
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Abstract. In this paper we discuss how to facilitate the process of reflec-
tion in Personal Informatics and Quantified Self systems through inter-
active data visualizations. Four heuristics for the design and evaluation
of such systems have been identified through analysis of self-tracking de-
vices and apps. Dashboard interface paradigms in specific self-tracking
devices (Fitbit and Basis) are discussed as representative examples of
state of the art in feedback and reflection support. By relating to exist-
ing work in other domains, such as event related representation of time
series multivariate data in financial analytics, it is discussed how the
heuristics could guide designs that would further facilitate reflection in
self-tracking personal informatics systems.

Keywords: personal informatics, quantified self, self-tracking, informa-
tion visualization, feedback, reflection, heuristics

1 Introduction

In recent years self-tracking and lifelogging have received increased interest with
the introduction of a wide variety of low-cost mobile apps, wearable comput-
ers, and sensors. These devices allow easy collection of data that can describe
various aspects of human behavior. However, making sense of the ever increas-
ing amounts of everyday self-tracking data retrieved across multiple domains
create new demands for turning data points and trends into affordances for ac-
tion. The reflection stage is a fundamental component in modeling and using
Personal Informatics (PI) systems [18, 8, 16] to facilitate an understanding of
self-tracking data reflecting daily habitual patterns and to make such data ac-
tionable for behavioral change [9]. Different solutions have been suggested to
facilitate self-reflection, including the usage of charts [18, 20, 21, 6], avatars [22,
12, 14], notifications [1], narrative [23] and abstract art [7, 10]. Although these
solutions may facilitate increased awareness due to the fact that behavioural
aspects are being observed, the process of turning observations and insights into
actions remains a challenge. Even a recent review of activity trackers in The



New York Times1 emphasized that while self-tracking devices enable the user
to collect behavioral data, they fall short of assisting the user in learning how
to change habits.

One element of personal informatics is the iterative process with self-reflection
questions phrased by a user and feedback provided by a self-tracking system to
answer those questions. However, we suggest that state-of-the art systems offer
fairly limited flexibility in terms of the types of questions that can be phrased,
and the possible feedback that can be provided. In a broader perspective, the self-
tracking data obtained might be characterized as quantitative time series data
which combines behavioral data with associated discrete events. Similar to how
financial analytics like those provided by Bloomberg might combine a vertical
flow of business related earning reports or corporate news updates, with distinct
time stamped markers, outlined horizontally within the continuous timeline fluc-
tuations of stock values. Thus hierarchically adding layers of relevant information
embedded both within the chart and in adjacent panels linked to external events,
that may facilitate interpretation or be a direct cause of rising or falling trends
visualized in the data [26]. The emphasis of integrating distinct interpretable
events in continuous flows of quantitative data within financial analytics reflects
a need for these interfaces to provide a foundation for taking concrete action
related to aspects of optimizing profits or avoiding a loss. We suggest that these
advances within financial analytics software for interpretation of complex data
may both provide underlying design patterns for long term comparison of trends
in multivariate flows, as well as defining thresholds which could likewise turn
quantified self generated data into actionable parameters for optimizing lifestyle
in personal informatics systems.

2 Related Work

Several frameworks have been proposed to formalize the reflection process in
personal informatics. Li et al. [19] identify six kinds of questions for reflection:
Status (what is my situation now?), History (what was my situation in the
past?), Goals (what future status should I aim for?), Discrepancies (how does
my status compare with my goals?), Context (what affects my status?), Factors
(how are different attributes related?). Moreover, two alternating phases are de-
fined: Maintenance (known relation between status and behavior) and Discov-
ery (not known goals or effect of behavior). Fleck et al. [8] define a multi-layer
reflection framework: Description, Reflective Description, Dialogic Reflection,
Transformative Reflection, Critical Reflection. Each layer builds on top of the
previous, and corresponds to a deeper understanding of personal data. Guide-
lines for facilitating reflection are proposed, including supporting questions and
providing multiple perspectives on the data. Rivera et al. [24] apply Boud’s
reflective learning framework to personal informatics, and identifies two levels

1 http://www.nytimes.com/2014/01/30/technology/personaltech/review-the-fitbit-
force-activity-tracker.html Last accessed Jan 29, 2014



of reflection: Triggering (active notification or passive feedback) and Recalling
(aggregating, contextualizing, visualizing).

Several feedback schemes have been suggested including avatar-based feed-
back that employs a virtual object to represent a judgment on behavior. These
solutions exploit participants’ empathy with the virtual avatars to persuade them
in adopting positive behavioral changes. For example, Fish’n’Steps [22] provides
feedback about daily step count as a virtual fish, Ubigreen [12] using virtual trees
and polar bears to provide feedback on green transportation habits, and UbiFit
Garden [5] represents fitness activity as a virtual garden. Spark [7] visualizes
physical activity as abstract art through an ambient display, whereas Lifestyle
Stories [23] provides feedback about mobile sensing personal data in form of sto-
ries composed by events of various categories. Many commercial self-tracker sys-
tems employ a combination of traditional charts, maps and dashboards (see for
example Nike+2, Fitbit3, Basis4, Jawbone UP5, Mint6, DailyBurn7, Moves8).

3 Reflection as Data Analysis

We suggest to treat reflection as data analysis on personal information. What
are the crucial questions or answers that analytics should provide? In Bloomberg
financial analytics the ability to couple external events to timeline charts appears
crucial for interpreting the causality behind the data. One might in a more gen-
eral context consider online news media like The Wall Street Journal or Twitter
feeds an expanded version of this paradigm, providing not only the current mar-
ket data but also a highly curated selection of background material as well as live
updates on events, that would provide the necessary foundation for making in-
formed decisions. Even in admirably simple single sensor quantified self apps like
Fitbit, limited to measuring the number of steps taken during the day or week,
data might provide valuable insights into user behavior. But it would require
that annotations are added automatically with calendar events or smartphone
location data, thereby enriching the representation beyond the current ability of
manually attaching labels. We see a similar potential for advanced self-tracking
devices with multiple sensors like Basis, which likewise translates complex pat-
terns of behaviors into singular goal oriented habits to be fulfilled on a daily basis
at regular hours. Coupling calendar events for monitoring heart rate related to
specific physical tasks, indicating how this sensor data is correlated to differences
in sleep patterns, or influenced by levels of exercise across weeks, might provide
additional value.

2 http://nikeplus.nike.com/plus/
3 http://www.fitbit.com/
4 http://www.mybasis.com/
5 http://jawbone.com/up
6 http://www.mint.com/
7 http://dailyburn.com/
8 http://www.moves-app.com/



A user may want to retrieve specific information from his own dataset (cur-
rent status, progress), or explore it for finding interesting patterns. In order to
facilitate this analysis, we propose to use data visualization, that is the repre-
sentation of data using position, size, shape, color, and text [3]. Visualization
facilitates analysis by exploiting the human visual system, which is extremely
good at processing large quantities of information and spotting patterns. Visual-
ization is widely used in Exploratory Data Analysis [28], a statistical technique
for exploring datasets, in order to gain insights, obtain a better understanding,
spot patterns, trends, correlation, and outliers. In many cases, the data analyst
does not know in advance which specific question to ask, so he can explore the
data in order to find interesting patterns. This process is highly iterative, as once
a question has been posed, its answer often leads to more questions to be asked.
Similarly, in PI systems the user may not know which questions to ask, or may
not be interested in a specific question but in exploring his own data for curiosity.
Indeed, one of the barriers for reflection is not knowing which questions to ask
to personal data [18]. We can represent this iterative process as a cycle between
questions asked, and feedback provided. We define question space the set of all
possible questions, and feedback space the set of all visualizations. Each feedback
type can answer one or more questions, and each question can be answered by
one or more type. In data analysis, there are a number of common questions
that can be asked: distribution of values (mostly around a central value and
gradually less on the sides? Mostly for a value and very rapidly decaying? Multi-
ple peaks?), grouping and outliers (are there values much different than most of
the others? Are items clustered into groups?), correlation (what is the relation
between x and y? Is there a linear, quadratic, exponential, sinusoidal trend?), ge-
ographical (how are values related to locations? Are there locations with similar
values?), connectivity (are there items related together? Are there items which
are more tightly connected? Are there non-connected items?) We identify the
most relevant questions for the goal of self-reflection, and we summarize them
into heuristics.

4 Design Heuristics

In this section we introduce four design heuristics that can be applied as a guide-
line for creating and evaluating interactive visualizations of self-tracking data
with the aim to facilitate effective exploration of personal data and make such
data actionable for behavior change. Throughout the discussion of the heuristics
we relate to existing state of the art self-tracking systems using Fitbit and Basis
as examples of personal informatics systems with interactive visualizations. We
do not intend to criticize these two systems in particular, but rather consider
them as representative and illustrative examples of state of the art in personal
self-tracking systems. The scope of the discussion is limited to facilitating the
reflection process, while acknowledging that further discussion is needed in terms
of providing actionable items as well as other aspects of reflection in personal
informatics as mentioned in the Related Work Section.



4.1 Make Data Interpretable at a Glance

Often users want to obtain answers to a question with the minimal effort and
time. For this reason, data visualizations optimized for interpretation at a glance
are needed, in order to provide a swift overview of personal tracking activities,
and to augment and support subjective recollection. Quantified self apps like Fit-
bit or Basis may aim to simplify visualization of complex patterns by transform-
ing the collected measurements into single activity dashboard dials or progress
bars reflecting goal oriented accomplishments. Figure 1 shows the personal dash-
board provided by Fitbit, which reduces the collected data to simple indications
of (daily) goal fulfillment (percentage) and an overview of daily activity levels.
Although it provides an overview of the level of goal fulfillment this division
of activities into separate silos makes it a challenge to interpret the data in a
larger context. In contrast financial analytics interfaces like those provided by
Bloomberg [26] may contain large amounts of data which is nevertheless made
interpretable based on established conventions for using dynamically changing
font colors to signify up- or downward moving prices, or positive negative out-
looks based on earning reports, which when collapsed form independent parallel
layers of color coded trend lines that remain surprisingly legible on top of con-
trasting neutral background screens.

Fig. 1. The Fitbit dashboard show daily goal fulfillment (percentage) and an overview
of daily activity

While data visualizations can be very useful they may be complex and dif-
ficult to interpret and understand. The complexity of visualizations can range
from data-poor, informal infographics for the general audience to complex, rigor-
ous scientific visualization aimed at scholars. Several issues should be considered
when designing a visualization, including the technical and domain knowledge of
the users, the goals of reflection (exploring data, asking specific questions, test-
ing hypothesis), the time and effort expected from the user (a quick glance or a
long interaction?). We suggest to provide a simple visualization as the starting



point, and allow advanced users to dynamically increase the level of complex-
ity and details. The usage of explanatory elements, such as text, axes, legends,
annotations can greatly facilitate the comprehension. Visualizing data is often
compared to storytelling, especially in the fields of journalism and business re-
porting. Some authors prefer to present the data as raw as possible, with little
or no annotations and highlighting, in order to give the reader full freedom in
the interpretation of the facts behind the data. Others prefer to editorialize the
data to various degrees, by marking samples, comparing with other distribu-
tions, providing comments. We argue that a certain editorialization is good for
PI system, as it can act as a persuasive force towards positive behavior. For
instance a fitness tracker system that encourages the user to be more active by
visualizing and forecasting the positive consequences.

4.2 Enable Exploration of Patterns in Time Series Data

There are two fundamental patterns to analyze: global trends (does the vari-
able increase, decrease or remain constant over a period of time?) and periodic
patterns (does the variable value change with a repeating pattern, for example
hourly, weekly or yearly?).

Although several self-tracking app interfaces emphasize simplified dashboard
representations of accumulated data which limits exploration, the recently added
Basis sleep monitoring goes far beyond the previous single modality heatmaps
by breaking down total sleep duration into the different phases of rapid eye
movement (REM) and deep sleep, thereby making it possible to translate these
periodic patterns into quantifiable aspects of mind and body refresh, see Figure 2.

Fig. 2. The Basis sleep visualization interface also break continuous sleep data into
discrete sleep phases including rapid eye movement (REM), light, and deep sleep

Time series analysis is a common task for self-trackers, which may be in-
terested in observing changes over time, periodic patterns, rate of change, and
time left to reach goals. The most common representation for time series data



is line plots, which allow to easily see the overall change over time of a variable.
Due to the unavoidable noise, it is useful to add trend lines such a LOWESS [4]
or least squares. This enable the support of forecasting on future status if the
current behavior is kept or modified, thus a prediction of future values can be
visualized [15]. As an example Figure 3 shows the amount over time of money
in a bank saving account with a clear trend of increase among the individual
month-to-month fluctuations. When the duration of time periods is a factor,
timelines may be used to represent events in a linear layout to captures the
temporal sequence.

Fig. 3. Amount of money in a bank sav-
ing account, visualized as line plot with
LOWESS trend line

Fig. 4. Number of steps per day repre-
sented as a spiral heatmap, with colors
from white (low) to red (large)

Line plots and linear timelines do not however facilitate the exploration of pe-
riodic patterns, which are characteristic of human behavior. A familiar metaphor
for displaying regular patterns is a calendar. A calendar heatmap represents each
day as a cell, and the variable value as the color shade of the cells. Cells can be
aligned for example by day of the week to allow to spot weekly patterns. Spi-
rals have been recently proposed [17] as another representation to facilitate the
exploration of periodic patterns in the quantified-self domain. A spiral heatmap
represents each time unit as an arc in the spiral, and variable value as the color
shade of the arcs. By choosing different periods, periodic patterns at various
time scale can emerge. Figure 4 show a step count value over time as calendar
as spiral heatmaps, with a color scale ranging from white (small count) to red
(large count).

4.3 Enable Discovery of Trends in Multiple Data Streams

Financial analytics may also offer inspiration in terms of comparison of key
performance indicators in multivariate data. As an example The Wall Street
Journal allows for extensive personalization when exploring moving averages
for smoothing fluctuating trends in time series data, high and low relative to



previous values, weighted blends of values and their variation over time, which
may be further customized based on choice of display graphics, adjustable time
frames or sensitivity of measures.

Fig. 5. The Basis Activity Details visualization allows the user to explore the relations
between multiple biometric time series data (heart rate, steps, calories, skin tempera-
ture, perspiration, and activities) in an adjustable time interval

The Basis activity details visualization only allows the user limited possibili-
ties of exploring the relations between multiple time series data in an adjustable
time interval, as shown in Figure 5. Multivariate analysis is the process of ana-
lyzing multiple variables together, in order to find and understand their relation.
In the simplest case, two variables x and y are to be compared, and the following
relations can exist: direct correlation (y increases as x increases), inverse correla-
tion (y decreases as x increases), or no correlation. For example, fitness trackers
may be interested in how the weight loss is affected by exercise and food intake,
or productivity trackers may be interested in how coffee intake, sleep patterns,
and exercise affect productivity.

The relation between two variable can be visualized as a scatterplot, where
each variable is represented on one axis. Scatterplots allow to easily spot trends
and outliers. If more than two variables are to be compared, a scatterplot ma-
trix allows to inspect all possible combinations. A scatterplot matrix is a array
of n × n scatterplots, where the scatterplot Sij displays the relation between
variables Xi and Xj . Scatterplot matrices are a very powerful tool, but can also
be intimidating for users. A simpler version of multivariate visualization is the
Corrgram [11] which distinguishes positively and negatively correlation between
pairs of variables using color-coding. As a constructed example Figure 6 and 7
show the relation between coffee intake, hours at work, hours of sleep, and steps.
The coffee intake appears directly correlated with working hours, and inversely
correlated with sleep hours, and no correlation seem to be present with number
of steps.



Fig. 6. Scatterplot matrix: all pairs of 4
variables are plotted. The alignment of
the data points helps to identify direct,
inverse or no correlations.

Fig. 7. Corrgram: the correlation between
all pair of 4 variables is represented in a
color scale from blue (inverse correlation),
grey (no correlation) and red (direct cor-
relation)

Fig. 8. The composition of dietary intake
over time as a streamgraph
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Fig. 9. Small multiples: the three vari-
ables of dietary intake are shown side-to-
side in separate sub-views

Often users do not need to explore relations of variables between each oth-
ers, but they are interested in the change of multiple variables over time. A
Streamgraph [2] can be used when it is important to show the contribution of
each variable to a total. Each variable generates a section of different height, and
the resulting areas are stacked to form a stream. Small multiples [27] allow to
display multiple facets of a dataset, often in comparison to time. Each variable
is displayed separately in his own subview, and subviews are layed out side-by-
side to facilitate comparison. Figures 8 and 9 show the composition of dietary
intake over time. The small multiples enable multivariate comparison, and the
streamgraph facilitates the understanding of the total caloric intake.



4.4 Turn Key Metrics into Affordances for Action

The emphasis on interaction in data visualization [13] is reflected in a typical
analyst workflow including the generation of a data view, exploration of the re-
sult, adjustment of parameters or creation of a completely different visualization
in order to further explore the data. This process may lead to new insights or
the identification of key metrics. As an example, financial portfolio management
often requires a specific action in response to events that cause values to get out
of bounds due to regulatory terms that trigger alarms for reevaluation. Likewise
in currency trading applications one may need to quickly buy or sell when prices
transcend previously set values indicating pain or gain thresholds. In a similar
fashion we suggest that the self-tracking workflow involves feedback provided by
a personal informatics system which may generate insights about personal data.
This may lead to phrasing new questions or directly imposing threshold values
that proactively trigger responses to be considered, based on general monitoring
of health issues known to be of general concern. This iterative process may be
one approach to identify key metrics that can be turned into affordances for
actions related to changing behavior.

With the complexity of multi channel self-tracking data sets it may have
limited utility to try to visualize all data at once. A user may want to slice
the data in various ways, such as by time or category. A user may also want to
select a specific set of elements that match a given criteria, such as points inside a
geographical region, or values between some thresholds. Filtering allows to focus
on a specific subset of the data. One of the recommended interaction pattern is
“Overview first, zoom and filter, then details-on-demand” [25]. Navigation may
be supported by allowing scroll and zoom views. When focusing on a subset of
the data, the context for the current details could hold valuable information to
understand behavior.

The long sequence of interactions with a visualization system, such as filter-
ing, zooming, transforming can be recorded in form of history. This log helps
the user remember the steps he took, navigate in his interaction sequence, undo
eventual mistakes and facilitate a trial-and-error exploration. Providing a visual
representation of this history (such a timeline or snapshots of the views) can
help the user to orient in his own workflow. In the process of reflection, the user
may want to document his findings, write down questions to be investigated,
add notes to self. To this end, a visualization can support annotation with text
and sketches.

These interaction techniques can be readily applied in data visualization in
personal systems in order to facilitate the reflection process. Imagine a fitness
tracking system, where the user is provided with an overview of his activities.
He filters the activity log to a specific part of the year. He views his activity
both as a timeline of step counter and as a breakdown of his caloric intake and
annotated activities.



5 Conclusions

In this paper we have discussed the support of reflection in state of the art
personal informatics systems arguing that it is limited in terms of making obser-
vations and insights obtained from interactive visualizations of self-tracking data
actionable. We have proposed four heuristic principles for the design and evalu-
ation of interactive data visualization feedback that could further facilitate the
process of reflection in self-tracking personal informatics systems. Each design
heuristic has been discussed on the basis of an analysis of visualization feedback
available in state of the art personal informatics systems.
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Abstract

We propose a Bayesian model for extracting sleep patterns from smartphone events.
Our method is able to identify individuals’ daily sleep periods and their evolution over
time, and provides an estimation of the probability of sleep and wake transitions. The
model is fitted to more than 400 participants from two different datasets, and we verify
the results against ground truth from dedicated armband sleep trackers. We show that
the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at
the individual and at the collective level. Moreover the Bayesian model is able to
quantify uncertainty and encode prior knowledge about sleep patterns. Compared with
existing smartphone-based systems, our method requires only screen on/off events, and
is therefore much less intrusive in terms of privacy and more battery-efficient.

Introduction

Sleep is an important part of life, and quality of sleep has a significant impact on
individual well-being and performance. This calls for methods to analyze sleep patterns
in large populations, preferably without laborious or invasive consequences, as people
typically disapprove of the use of intrusive technologies [1].

Large scale studies of human sleep patterns are typically carried out using
questionnaires, a method that is known to be unreliable. It is possible to perform more
accurate studies, but these are currently carried out within small controlled
environments, such as sleep labs. In order to perform accurate measurements of sleep in
large populations—consisting of thousands of individuals—without dramatically
increasing costs, alternative methods are needed.

Smartphones have become excellent proxies for studies of human behavior [2, 3], as
they are able to automatically log data from built-in sensors (GPS, Bluetooth, WiFi)
and on usage patterns (phone calls, SMS and screen interaction), from which underlying
user behavioral patterns can be derived.

Smartphone data has been used to infer facets of human behavior such as social
interactions [4], communication [5], mobility [6], depression [7] and also sleep
patterns [8]. Either paired with additional sensors or on their own, mobile app solutions
are able – sometimes very ingeniously – to track individual sleep patterns and visualize
them. We cite as examples Smart Alarm Clock [9], Sleep Cycle [10], SleepBot [11], and
Sleep as Android [12].

1



Using mobile phone data to derive sleep patterns has thus already been
demonstrated and verified, and offers advantages (i.e. reduced cost) as an alternative to
dedicated sleep monitoring devices. In this paper we suggest extending previous
approaches, using a Bayesian model to infer rest and wake periods based on smartphone
screen activity information. The advantages of our proposed Bayesian approach
SensibleSleep, as compared to previous work, are that it:

• is less sensitive to “noisy” data, for instance infrequent phone usage during sleep
interruptions (such as checking the phone at night)

• is able to quantify not only specific rest and wake times but also characterize their
distributions and thus uncertainty

• can encode specific prior beliefs, for instance on expected rest periods (when
desirable)

• can capture complex dependencies between model variables, and possibly even
detect and relate patterns that are common to a group of people with diverging
individual patterns (when using one of the proposed hierarchical models), such as
detecting how available daylight may modulate sleep patterns across an otherwise
heterogeneous group of users

Our method, moreover, only needs screen on/off events and is thus non-intrusive,
privacy-preserving, and has lower battery cost than microphone or accelerometer based
ones.

We start by providing an overview of the related work. We then describe the
collected data, and introduce the Bayesian model. We compare the model results with
ground truth obtained by sleep trackers, and show how the model is able to infer the
sleep patterns with high accuracy. Finally we describe the individual and collective
sleep patterns inferred from the data.

Related Work

A key finding by Zhang et al. [13] shows a global prevalence of sleep deprivation in a
group of students, partly linked to heavy media usage. In this study sleep patterns are
largely deduced from the teachers’ perception or based on individual self-reports,
lacking more direct measurements.

Corroborating this finding, Orzech et al. [14] report that digital media usage before
bedtime is common among university students, and negatively impacts sleep. The
findings are based on studies involving self-reports through (online) sleep diaries and
digital media surveys, and also lacks more direct measurements of sleep patterns.
Additionally, this would make it possible to increase the scale of the experiment and
enable the study of larger populations.

Abdullah et al. [8] have previously demonstrated using 9 subjects how a simple
rule-based algorithm is able to infer sleep onset, duration and midpoint based on a
(filtered) list of screen on-off patterns with the help of previously learned individual
corrective terms, and further analyzed behavioral traits of the inferred circadian
rhythm [15, 16]. The algorithm uses an initial two weeks of data with journal
self-reported sleep for learning key corrective terms in order to improve the accuracy
and compensate for differences between actual sleep and inferred nightly rest period.
The method has been verified against a daily online sleep journal and results in
differences less than 45 minutes of average sleep duration over the entire analysed
period. While our proposed Bayesian model, which has been applied to more than 400
users, may be more complex, it increases the robustness and allows us to better quantify
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the uncertainties of the inferred resting periods as well as offer the possibility of
building more advanced models across heterogeneous groups of users. In particular, our
model may better be able to handle short midnight interruptions, which appear to be
not uncommon, without any additional filtering.

In contrast to Abdullah et al. using (only) screen on-off events, a fine-grained sleep
monitoring by “hearing” and analyzing breathing through the earphone of a smartphone
is suggested by Ren et al. [17]. Here six users tested the system over a period of 6
months, demonstrating the feasibility of using smartphones for the purpose of analysing
breathing patterns, using a Respiration Monitor Logger as ground truth. Sleep estimates
are not directly inferred in this paper, however. This technology is also non-invasive,
although it does requires capturing and analyzing large samples of audio data.

iSleep [18] proposes detecting sleep patterns by means of a decision tree model, also
based on audio features. The system was evaluated with 7 users for a total of 51 days,
and shows high accuracy in detecting snoring and coughing as well as sleep periods, but
report drops in performance due to ambient noise.

Increasing the number of features, the Best Effort Sleep model [19] is based on a
linear combination of phone usage, accelerometer, audio, light, and time features using a
self-reporting sleep journal, and subsequently achieved a 42 minutes mean error on 8
subjects in a test period of 7 days.

Other work also tries to estimate sleep quality, for example Intelligent Sleep Stage
Mining Service with Smartphones [20], which uses Conditional Random Fields on a
similar set of features trained on 45 subjects over 2 nights, and reports over 65%
accuracy of detection of sleep phases, compared to EEG ground truth on 15 test
subjects over 2 nights.

Candy Crushing Your Sleep [21] uses the longest period of phone usage inactivity as
heuristic for sleep, with some ad-hoc rules for merging multiple periods, and proceeds to
quantify the sleep quality and to identify aspects of daily life that may affect sleep. The
inferred sleep period was however not validated against any ground truth.

The Sleep Well framework [22] deploys a Bayesian probabilistic change-point
detection, in parallel with an unsupervised classification, of features extracted from
accelerometer data, in order to identify fine-grained sleep state transitions. It then uses
an active learning process to allow users to incrementally label sleep states, improving
accuracy over time. It was evaluated both on existing datasets with clinical ground
truth, and on 17 users for 8-10 days with user diary data as ground truth, reaching an
average sleep stage classification accuracy approaching 79%.

In comparison, even though sleep quality is not estimated, our non-intrusive model
only needs screen on/off events and has been tested on a large user-base, and can
suitable for very large-scale deployment.

Methods

Data Collection

We have analyzed two datasets in this work.
The first dataset (A) was provided by Sony Mobile, and contains smartphone app

launches coupled with sleep tracking data from the SWR10 and SWR30 fitness tracking
armbands [23]. For each user we have a set of records containing an anonymized unique
user identifier, a timestamp and the unique app package name. Note that the model
only uses the app launch timestamp and completely ignores the app identifier, therefore
no privacy risks related to app names are present. The sleep tracking data indicates
when each user is detected asleep or awake with a granularity of one minute, serving as
ground truth that we will compare our results against. From this dataset we select 126
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users that have at least 3 hours of tracked sleep per day, and have between 2 and 4
weeks of contiguously tracked sleep.

The second dataset (B) originates from the SensibleDTU project [24], which
collected smartphone sensor data for more than 800 students at the Technical
University of Denmark. In this dataset we focus on the screen interaction sensor that
records whenever the smartphone screen is turned on or off, either by user interaction or
by notifications. Each record contains a unique user identifier, a timestamp, and the
event type (on or off). From this dataset we select 324 users in November 2013 that
have at least 10 events per day, thus filtering out users with gaps in the collected data
or with very sparse data. There is on average ≈ 76 screen-on activations pr. day pr.
user in this period.

Data collection for the SensibleDTU dataset was approved by the Danish Data
Protection Agency, and informed consent has been obtained for all study all participants.
For the data from Sony, written consent has been obtained from all the participants.

Model Assumptions

The underlying assumptions of the model are (1) that the user is in one of two modes:
being awake or sleeping, and (2) that mobile phone usage differs between the two modes.
In particular a user will have many screen interactions when awake, and very few or
even no interactions when sleeping.

Sleeping is here considered as an extended resting period that typically takes place
once every 24 hours at roughly similar times, as governed by the users circadian rhythm
and influenced by socio-dynamic structures, during which the owner physically rests
and/or sleeps. Resting periods, however, might be interrupted by short periods of
activity, such as checking the time on the phone or responding to urgent messages. This
behavior leads to two different activity levels, which we label λawake and λsleep, one for
each mode.

If we can deduce when the switchpoint between the two distributions occur during
each 24 hour period, we can also infer the time during which the owner is resting for the
night, and thereby also the period within which sleeping takes place.

Short of using the more invasive EEG or polysomnographic methods, properly
differentiating the resting period and actual sleep is difficult; even sleep diaries may
easily contain reporting bias or be somewhat inaccurate. To remove self-reporting bias
and to study a larger population we have therefore decided on using a motion-based
detector (Sony fitness tracking armbands) as ground truth.

If higher accuracy would be required, applying individual corrective terms (i.e.
average sleep/rest time differences) learned from an initial period by more accurate
means (polysomnography, external observer or possibly a careful user diary) might be
possible, similar to what as demonstrated by Abdullah et al. [8].

Model Structure

Each user is considered independently. We divide time into 24−hour periods starting at
16:00 and ending at 15:59 on the next calendar day, so that the night period and the
expected sleep midpoint is in the middle, for convenience. Each day is divided into
n = 24 ∗ 4 = 96 time bins of size 15 minutes. We count the number of events that start
within each time bin, where an event is an app launch for dataset A and a screen-on for
dataset B. Information about the duration of the events is purposely discarded, as
phone usage typically takes place in short bursts. This is supported by the median
duration of screen events in dataset B, which is ≈ 26.5 seconds.

4



It is reasonable to assume that the count of events k in each time bin follows a
Poisson distribution:

P (k) = Poisson(k, λ) =
λke−λ

k!
with λ = λawake or λ = λsleep, depending on the mode of the user. It is, furthermore,

assumed that the user mode, and consequently the value for λ, is determined by two
switchpoint variables tsleep and tawake, both assuming values from 0 to n:

λ =

{
λsleep if tsleep ≤ t < tawake

λawake if t < tsleep ∨ t ≥ tawake
For simplicity, all models assume that λsleep is identical for all days of a given user. It
can be expected that users have a very low number of screen events during sleep mode,
which is encoded in this prior belief:

λsleep ∼ Exponential(104)

Here Exponential represents the exponential distribution:

f(x;λ) =

{
λe−λx x ≥ 0

0 x < 0

The rate parameter is set to a very large value to encode our prior belief that almost no
events should happen during the sleep time.

Fig. 1 shows an illustration of the model idea.

Fig 1. Conceptual illustration of the model. We assume that for each day the event
counts follow two different Poisson distributions: one for sleep periods (rate λsleep) and
one for awake periods (rate λawake). Furthermore we assume that two switchpoints
tsleep and tawake determine the rate (i.e. the Poisson distribution) that generates the
events.

We now propose four different models, which differ in the assumptions made on the
relation of the rate and sleep/awake time parameters for different days.
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Pooled-Pooled Model: Pooled Times and Rates

The simplest model assumes that for a given user there is a single λawake; i.e. the user
has very similar phone interaction patterns each day. Also tsleep and tawake are each
identical for all days, that is: the user goes to sleep, and wakes up, at the same times
each day:

tsleep ∼ DiscreteUniform(0, n)

twake ∼ DiscreteUniform(0, n)

λawake ∼ Gamma(2.5, 1)

Here DiscreteUniform(0, n) represents a uniform probability to choose a timebin
between 0 and n = 96. No additional prior knowledge of tsleep and tawake is assumed;
there is equal probability of any bin value. In other words, sleep and awake time are
equally probable at any time of the day. The prior for λawake is chosen to represent our
prior belief of a reasonable rate of events, specifically with both mean and variance =
2.5 (events/bin) and a longer tail than a normal distribution.

Independent-Pooled Model: Independent Times

A somewhat more realistic model would assume that each day has independent tsleep
and tawake times, while still sharing λawake rates. Therefore in this model there are
tisleep and tiawake, with i = 1...m, one for the each of the considered days:

tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

λawake ∼ Gamma(2.5, 1)

The rest of the model remains as above.

Independent-Independent Model: Independent Times and Rates

It may further be assumed that each day could have its own specific activity rate. We
modeled this as separate λiawake for each of the m days, in addition to tsleep and tawake
for each of the m days:

tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

λiawake ∼ Gamma(2.5, 1) for i = 1...m

Independent-Hyper Model: Hierarchical Rates

The assumption that each day’s interaction rate is completely independent may not be
correct. It may not be unreasonable to imagine that the daily rate(s) arise from an
underlying user-specific rate; i.e. the user may have certain habits that varies from day
to day but share some similarities specific to that user. This is modeled by adding αλ
and βλ hyperparameters to the Gamma priors for λiawake:
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tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

αλ ∼ Exponential(1)

βλ ∼ Exponential(1)

λiawake ∼ Gamma(αλ, βλ) for i = 1...m

We do not have strong prior beliefs for α and β, so we set their prior distributions to
generic exponential distribution with rate parameter = 1, Exponential(1).

Hyper-Hyper Model: Hierarchical Times and Rates

Finally we could assume that each day’s sleep and awake times derive from an
underlying circadian rhythm that is specific to the user, but still modulated by events
that take place during the week. This can be modeled by changing the tisleep and tiawake
priors to a normal distribution, with hyperparameters αt, βt and τt as follows:

αt ∼ Exponential(1)

βt ∼ Exponential(1)

τt ∼ Gamma(αt, βt)

tisleep ∼ Normal(8 ∗ (n/24), τt) for i = 1...m

tiwake ∼ Normal(15 ∗ (n/24), τt) for i = 1...m

αλ ∼ Exponential(1)

βλ ∼ Exponential(1)

λiawake ∼ Gamma(αλ, βλ) for i = 1...m

The tisleep are here chosen to be centered at the bin corresponding to 23:00, while the

tiawake are centered at the bin corresponding to 07:00. Also in this case we have no
strong prior knowledge of the τt, αt and βt parameters, so we set their prior distribution
to a non-informative Exponential and Gamma respectively.

Model Fitting and Selection

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling [25], where
the parameter values are estimated by a random walk in the parameter space guided by
the log likelihood. We use the pymc3 python library [26,27] for running the sampling,
but any MCMC framework could be used to implement our model. The result of the
Bayesian inference is a trace that captures the most probable values of the parameters,
and also gives an indication of the uncertainty of the estimation.

It is important to note that the models are unsupervised, which means that they are
fitted only to the number of events without having access to the ground truth of the
actual sleep patterns. This allows the model to be fit to other datasets where we do not
have ground truth of sleep patterns, which is desirable if the sleep inference has to be
deployed on a large scale. For dataset A we verify the fit by comparing with the sleep
patterns from sleep trackers, while for dataset B we evaluate the fit by inspecting the
inferred sleep patterns.

In order to find the model that provides the best overall fit for the intended purpose
without introducing too many degrees of freedom, we compare the log posterior from
the traces of the models, logp, and see how they converge.
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Fig 2. Typical logp traces (A top, B bottom)

One example of a plot of logp traces for the five models is shown in Fig. 2, which
shows that the hyper-hyper model (blue) has the highest (least negative) logp, followed
by the independent-hyper model for dataset B. The three other models appear with
lower logp. In 76% of the analyzed cases of dataset A (84% for dataset B), the
hyper-hyper model has the highest logp score, followed by the independent-hyper model
with the highest logp in 11% (13%) of the cases.

The logp estimation does not, however, take into account the added complexity of
the more advanced models. An attempt to do so is the Deviance Information Criterion
(DIC) [28], which penalizes the increased degrees of freedom (more model parameters)
that usually result in a model that is easier to fit to the data. Fig. 3 shows the Relative
DIC score (vs. the simplest model, pooled-pooled). The order is identical for both
datasets.

Further, Table 1 compares the 5 models by ranking the calculated DIC for all 126
and 324 users. The median rank shows that the hyper-hyper model is the “best” model;
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Fig 3. Relative DIC scores (A top, B bottom), sorted by their mean value (error bars
represent one standard deviation). For both datasets the order is the same, with the
hyper-hyper model having the lowest mean DIC.

it has a probability of being the best ranked model (p(Best)) in 62% of the cases for
dataset A (69% for dataset B). The independent-hyper model follows as a somewhat
distant 2nd best, ranking highest in 17% (19%) of the cases.

It should be noted that, in addition to their different abilities to reflect the
underlying assumptions and provide varying levels of fit to the actual data, the models
also differ in their runtime; the most complex model typically takes 15 times longer to
execute than the simplest. In particular, the hyper-hyper model on average had a
runtime that is 60% longer than the independent-hyper model, so there may be cases
where the latter would be a better model to use despite the slightly worse DIC ranking.
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Model Ranks Median Mean p(Best) Mean Relative DIC
Value (StdDev) Value (StdDev)

A pooled-pooled 5 4.27 (1.37) 0.10 0.96 (0.16)
independent-pooled 4 3.82 (0.85) 0.03 0.95 (0.05)
independent-independent 3 2.86 (1.08) 0.08 0.91 (0.09)
independent-hyper 2 2.29 (0.83) 0.17 0.90 (0.14)
hyper-hyper 1 1.76 (1.11) 0.62 0.88 (0.20)

B pooled-pooled 5 4.70 (0.89) 0.02 0.99 (0.01)
independent-pooled 4 3.75 (0.66) 0.02 0.93 (0.05)
independent-independent 3 2.92 (1.02) 0.09 0.92 (0.06)
independent-hyper 2 2.06 (0.69) 0.19 0.91 (0.05)
hyper-hyper 1 1.56 (0.94) 0.69 0.91 (0.04)

Table 1. Model DIC comparisons

Results

All five models have been run on both datasets, producing an estimation of the times of
sleep and wake up for each day, as well as estimates for the other hyperparameters, for
each user. Moreover, we calculated logp and DIC as discussed in the previous section.
We firstly verify the accuracy our method using the ground truth from the sleep
trackers. We then provide a qualitative analysis of some key examples of individual
sleep patterns, and a description of the aggregated sleep patterns for both datasets. For
the remainder of the paper we restrict our analysis to the model with the best fit, the
hyper-hyper model.

Comparison to Related Work and to Ground Truth

To assess the results, we compare the sleep periods inferred by our model and those
inferred by a previously suggested rule-based method to the ground truth collected by
the Sony sleep trackers.

For each day we calculate the time of sleep and time of awake inferred by our model
as the mean of the tisleep and tiwake respectively, and we consider the user asleep (Z = 1)

for all time bins between tisleep and tiwake, and awake (Z = 0) for the remaining bins.
For a representative and comparable method, we chose to implement a rule-based

algorithm similar to what is proposed by Abdullah et. al. [8] to derive sleep data for
dataset A. This rule-based method essentially works by finding the longest contiguous
sleep period, with a prior assumption that sleep must start after 10 PM and before 7
AM next morning. Note that the original algorithm is based on screen on-off events and
furthermore discards events of short duration during the night; in our case we use app
launches with no available duration, and thus cannot discard events of short duration.

For the sleep trackers we can directly mark each time bin as sleep (Z = 1) if the
trackers have detected at least one sleep status in that bin, and awake (Z = 0) otherwise.

We again consider one user at a time. For each user we now have three binary
matrices: two inferred sleep status values per time bin from either model, and one
measured sleep status value per time bin (ground truth) . We evaluate this as two
binary classification problems, and calculate accuracy, precision, recall and F1 for each
model and for each user according to the definitions:

accuracy =
correct predictions

predictions

precision =
true positives

predicted positives
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recall =
true positives

all positives

F1 = 2 · precision · recall

precision + recall

Fig. 4 shows the resulting distribution of accuracy, precision, recall and F1 scores for
the proposed method. The SensibleSleep method achieves a mean accuracy of 0.89, and
a mean F1 score of 0.83. The below-average scores for some users are expected, since it
is likely that among the large population under study there will be people having
irregular sleep schedule or noisy sleep ground truth.

Fig 4. Histogram of the calculated accuracy, precision, recall and F1 score for users in
dataset A, comparing the proposed method to the sleep tracker ground truth.

Fig. 5 shows the corresponding complementary cumulative distributions of the
accuracy, precision, recall and F1 scores of the proposed SensibleSleep model vs that of
the rule-based model [8]. The results are generally comparable between the two models,
on this particular dataset. Our model has slightly better accuracy and precision
whereas the previously suggested rule-based model has a slightly better recall. The F1
scores, which weights precision and recall equally, are comparable. This particular
dataset has only very limited sleep interruptions during the night. For populations with
more interrupted sleep, we expect our model to maintain a high score.

Individual Sleep Patterns

We now analyze individual sleep patterns to show the results of the model in details.
For each user we create a visualization of sleep schedules. We call this the sleep matrix.
Each row represents one day, and each column represents one time bin. The blue color
shows the probability that sleep takes place within the interval; the darker the color the
higher the probability. The red dots show activity count per bin; the larger the radius
the more events are registered within that particular bin. This compact representation
is able to capture at a glance the sleep patterns of individuals over time. We have
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Fig 5. Complementary cumulative distribution of accuracy, precision, recall and F1
scores for users in dataset A, comparing the proposed model (solid line) to the
rule-based model (dashed line), showing the proportion of users (y-axis) having a score
less than or equal to a specific value (x-axis).

created one such sleep matrix for each of the users, which allows us to inspect hundreds
of sleep patterns quickly. Large individual variability both in sleep schedules (regular,
irregular) and in phone activity (low, high, during day or night) are noticeable. Still, in
most cases it is evident that the model is able to capture a reasonable sleep period, even
if it may have been somewhat interrupted.

Let us consider the inferred sleep patterns for two example users in Fig. 6. The top
user has a pretty regular schedule, waking up around 5:30 except every few days, when
he/she wakes up later – presumably due to vacation or weekends. Notice the light blue
sections that indicate how the model is less confident about the probability of sleep due
to events that do not follow the usual patterns. The bottom user instead has a much
more unstable app usage, therefore the model infers a correspondingly more unstable
sleep schedule. The bottom user has also some events in the middle of the night
throughout many days (which is presumably checking the phone at night) yet the model
is still able to correctly infer this being a sleep phase. Finally notice how the two users
have significantly different intensity of app usage (the bottom one uses the phone much
more than the top one), yet this is not a problem since the model learns individual
activity rates.

Aggregated Sleep Schedules

In this section we also quantify the aggregated sleep patterns. From the posterior
probability distribution functions (PDFs), Ptsleep(t) and Ptawake

(t), the probability that
the user is sleeping can be estimated as follows:

Psleep(t) = Ptsleep(t)− Ptawake
(t)
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Fig 6. Sleep matrix of two sample users (21 days from dataset A top, 30 days from
dataset B bottom)

Sleep Time Wake Time
Mean (Std) Mean (Std)

A 23:38 (2h 16m) 7:40 (2h 2m)
B 0:35 (2h 6m) 7:55 (2h 15m)

Table 2. Aggregated sleep and wake times

This is equivalent to stating that a user is currently sleeping if he has passed the
time of falling asleep but has not yet passed the time waking up.

The derived values of sleep-length tsleeplength and mid-sleep time tmidsleep can be
calculated directly from the values of tsleep and tawake for each sample of the trace, and
the posterior density can be estimated for these derived values in a similar way as for
the model parameters. Fig. 7 shows the aggregate posterior probability density
functions for tsleep and tawake for the 126 users of dataset A over 15− 30 days, and for
the 324 users of dataset B over a selected period of 30 days (just after semester start).
It may not be entirely meaningful to average the sleep patterns from all users, but it
serves to illustrate the distribution of tsleep and tawake for a larger population. Table 2
summarizes the sleep and wake times.

Across the 30 (14-28) analyzed days for the 324 (126) users of the study, the
distribution of sleep durations are as shown in Fig 8. The model allows us to easily
compute such metrics. The mean value is around 8:02 (±2h 36m) for dataset A and 7:20
(±2h 28m) for dataset B. Notice how the distributions are not completely similar; this is
likely due to the fact that the larger dataset B captures the sleeping behavior of students
as opposed to dataset A that may have a more diverse demographic distribution.

Fig. 9 shows the probability density functions for the tsleep and tawake times for all
users of dataset B, grouped according to weekday. Mondays to Thursdays appear quite
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Fig 7. Aggregate Posterior Probability Distributions of tsleep (blue) and tawake (green)
(A top, B bottom), showing what the probability is for the specific population to go to
sleep or wake up at the specified time.
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Fig 8. Aggregated Sleep Durations (A top, B bottom), based on the Posterior
Probability Functions. This illustrates the probability of the length of a nights sleep
within the population within the datasets.
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Fig 9. tsleep (blue) and tawake (green) over weekdays for dataset B

similar, but Friday shows a much wider distribution; users typically go to bed much
later on Friday and sleep in on Saturday. The distributions start to narrow down
Saturday and Sunday but are more “week-like” only from Tuesday morning again.

Discussion

The main contribution of this work is to show how simple counts of smartphone
interactions can be used to infer sleep patterns with reasonably high accuracy. We have
demonstrated how the seemingly weak signal of screen events carry significant
information of the user status. Our method has several advantages:

• The method requires only a smartphone and can therefore be deployed without
the need for special equipment or methods, such as fitness or sleep tracking bands,
or sleep diaries.

• The data collection is completely automated, as no action is required from the
user in setting up the tracking or remembering to log his/her activity.

• Since the model requires only screen interactions, it is absolutely non-intrusive
and privacy-preserving. Although in this work we stored the data on a central
server for analysis purposes, the data could remain on the phones and the sleep
analysis could in principle be run directly on the phones as well.

• Compared to accelerometer or microphone-based methods, using only screen
events is much more battery-efficient.
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Although solutions using screen events have been proposed before [8, 21], our model
provides a number of key improvements:

• It is more robust to noise such as screen events generated by checking the phone
at night.

• Using a Bayesian formulation allows us to provide confidence intervals for the
sleep and awake times, instead of point estimates only.

• It does not depend on ad-hoc rules, but it is based on a well-defined statistical
formulation.

• It is fitted and verified on a much larger userbase of over 400 users, and a longer
time duration (between 2 and 4 weeks).

Demonstrating the feasibility of inferring reasonable sleep patterns from simple event
counts opens the way for new exciting research directions. In particular we believe that
similar methods can be applied to large datasets of user activity. For example on social
network (such as Twitter, Facebook, Meetup, Gowalla) users leave a trace of their
activity in the form of messages, posts, likes, etc. Another great example is Call Detail
Records, the logging information kept by telecom providers about user calls and SMS.
These events could be treated again as a proxy for sleep and wake cycles.

The main drawback of the proposed method is that it requires that users
periodically interact with their phones during their wake time. In line with other recent
polls (see for example [29–31]), we show that in most cases this does happen, as the
population of users analyzed here tend to check their phone from the early morning to
the late night when awake. Different populations, however, such as elderly people less
accustomed to smartphone usage, may not show similar usage patterns. There is
therefore a need for additional work in order to understand how increased sparsity
would affect sleep pattern reconstruction.

Conclusions

We have presented a Bayesian model to infer sleep patterns from smartphone
interactions, which we have applied to two datasets of more than 400 users in total. We
have compared the model output with ground truth from sleep trackers, and we have
shown how the model is able to recover the sleep state with a mean accuracy of 0.89
and a mean F1 score of 0.83. Furthermore, we have shown how the model is capable of
producing very reasonable individual and aggregated sleep patterns. Our method
represents a cost-effective, non-intrusive and automatic alternative for inferring sleep
patterns, and can pave the way for large-scale studies of sleep rhythms.
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Abstract

We introduce geoplotlib, an open-source python toolbox for visualizing geographical
data. geoplotlib supports the development of hardware-accelerated interactive
visualizations in pure python, and provides implementations of dot maps, kernel density
estimation, spatial graphs, Voronoi tesselation, shapefiles and many more common
spatial visualizations. We describe geoplotlib design, functionalities and use cases.

Introduction

Geographical data visualization is a fundamental tool for communicating results related
to geospatial analyses, and for generating hypotheses during exploratory data
analysis [1, 2]. The constantly increasing availability of geolocated data from social
media, mobile devices and spatial databases implies that we need new tools for
exploring, mining and visualizing large-scale spatial datasets.

The python programming language [3] has been gaining attention as a data analysis
tool in the scientific community [4, 5] thanks to the clarity and simplicity of its syntax,
and due to an abundance of third-parties libraries e.g. within many disciplines including
scientific computing [6, 7], machine learning [8], bayesian modeling [9], neuroscience [10],
and bioinformatics [11]. Currently, however, there is limited support for geographical
visualization.

Here, we introduce geoplotlib, a python toolbox for visualizing geographical data.
geoplotlib provides a simple yet powerful API to generate geographical visualizations on
OpenStreetMap [12] tiles. We release geoplotlib as open-source software [13],
accompanied by a rich set of examples and documentation.

In the remainder of this paper, we discuss existing tools for geographical
visualization and document the geoplotlib functionalities in detail, and finally we
evaluate the computational performance on a large-scale dataset.

Related work

In this section we compare existing tools for visualizing geographical data using python.
We divide the related work into three categories: pure python packages, HTML-based
packages and Geographical Information System plug-ins.
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Pure-python packages

The matplotlib [14] library has become the de-facto standard for data visualization in
python and provides a large array of visualization tools including scatter and line plots,
surface views, 3D plots, barcharts, and boxplots, but it does not provide any support for
visualization on a geographical map by default.

The Basemap [15] and Cartopy [16] packages support multiple geographical
projections, and provide several visualizations including point plots, heatmaps, contour
plots, and shapefiles. PySAL [17] is an open-source library of spatial analysis functions
written in Python and provides a number of basic plotting tools, mainly for shapefiles.
These libraries however do not allow a user to draw on map tiles, and have limited
support for custom visualizations, interactivity, and animation.

HTML-based packages

There is a very rich ecosystem for data visualization for the web. A number of
frameworks allow users to generate plots and charts: we cite as representative
Protoviz [18], d3 [19], Google Charts [20], sigmajs [21]. There is also a large number of
libraries for displaying online tile maps, including Google Maps [22], Bing Maps [23],
Leaflet [24], OpenLayers [25], ModestMaps [26], PolyMaps [27].

In order to generate a HTML visualization from python code, it is needed to
generate the HTML and JavaScript code that maps the data to the graphical elements.
A number of libraries attempt to automate the conversion, such as Folium [28],
Vincent [29] and mplleaflet [30]. This process however is often complex, error-prone and
time consuming. The complexity can be even greater if some support for animation or
interaction is needed. Finally, the JavaScript rendering performance may not be
adequate for plotting very large datasets.

Geographical Information System plugins

Geographic Information Systems (GIS) such as QGIS [31], GrassGIS [32], ARCGIS [33],
MapInfo [34] provide very powerful tools for spatial data analysis and visualization. GIS
tools usually provide some support for python scripting, although the availability varies
from one to another. The main limitation of GIS products is their complexity, requiring
a significant amount of training to be used effectively, and as discussed before, the need
to export the data from python.

Overview

An overview of the geoplotlib architecture is given in Fig. 1. geoplotlib builds on top of
numpy [6] and scipy [7] for numerical computations, and OpenGL/pyglet [35] for
graphical rendering. geoplotlib implements the map rendering, the geographical
projection, the user interface interaction and a number of common geographical
visualizations.

Design principles

geoplotlib is designed according to three key principles:

• simplicity : geoplotlib tries to minimize the complexity of designing visualizations
by providing a set of built-in tools for the most common tasks such as density
visualization, spatial graphs, and shapefiles. The geoplotlib API is inspired by the
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Fig 1. Conceptual overview of the geoplotlib architecture. geoplotlib builds on top of
numpy, scipy, and OpenGL/pyglet. It allows to generate geographical visualization as
raster, in an interactive window or inside IPython notebooks.

matplotlib [14] programming model and syntax, the de-facto standard for data
visualization in python; this makes it easier for matplotlib users to get started.

• integration: geoplotlib visualizations are standard python scripts, and may
contain any arbitrary python code and use any other package. There is no need to
export to other formats (e.g. shapefiles, HTML) or use external programs. This
supports a complete integration with the rich python data analysis ecosystem such
as scientific computing, machine learning and numerical analysis packages. The
visualization can even run within an IPython [36] session, supporting interactive
data analysis and facilitating the iterative design for visualizations.

• performance: under the hood, geoplotlib uses numpy/scipy for fast numerical
computations, and pyglet/OpenGL for hardware-accelerated graphical rendering.
This allows the visualizations to scale to millions of datapoints in realtime.

A first script

A simple geoplotlib script looks like this:

data = read csv ( ’ data/bus . csv ’ )
g e o p l o t l i b . dot ( data )
g e op l o t l i b . show ( )

This script launches the geoplotlib window and shows a dot map of the data points, in
this example the location of bus stops in Denmark (Fig. 2). geoplotlib automatically
determines the map bounding box, downloads the map tiles, perform the geographical
projection, draws the base map and the visualization layers (the dots in this example).
The map is interactive and allows a user to zoom and pan with mouse and keyboard.

As discussed above, the usage of the geoplotlib API is very similar to matplotlib.
The visualization canvas is initially empty, and each command adds a new layer of
graphics. The geoplotlib window is displayed when show() is called. Alternatively, the
map can be rendered to image file using savefig(’filename’), or displayed inline in
an IPython notebook using inline().

Layers

The geoplotlib package provides several common geographical visualizations in form of
layers. The API provides convenient methods for quickly adding a new visualization
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layer. In this section we provide a summary of the built-in visualizations. The data for
all examples is available on the project website [13].

Dot Map

An elementary operation in geographical visualization is to display “what is where”,
that is to place a graphic element on the map for each of the objects in consideration.
This provides an immediate idea of the absolute and relative locations of objects.
Moreover, the density of points directly maps to the density of objects on geographical
surface, identifying zones of higher and lower density. An example of dot map is shown
in Fig. 2. The dot map shows the spatial distribution of bus stops in Denmark at a
glance. The zones of higher density – corresponding to the Copenhagen metropolitan
area and to the other major cities are immediately recognizable. The dot method allows
users to configure points size, color and transparency, and optionally to attach a
dynamic tooltip to each point.

Fig 2. A dot map of bus stops in Denmark, where each sample is represented by a
point.

2D Histogram

One limitation of dot maps is that it is hard to distinguish between areas of high
density, as the number of point is so high that they uniformly cover the visualization
canvas. A more direct visualization of density is to compute a 2D histogram of point
coordinates. A uniformly spaced grid is placed on the map, and the number of samples
within each cell is counted. This value is an approximation of the density, and can be
visualized using a color scale. In geoplotlib we can generate the 2D histogram of the
data using hist:

data = read csv ( ’ data/ openc e l l i d dk . csv ’ )
g e o p l o t l i b . h i s t ( data , c o l o r s c a l e=’ sq r t ’ , b i n s i z e =8)
g e op l o t l i b . show ( )

Here binsize refers to the size in pixels of the histogram bins.
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Fig 3. A 2D histogram of cell tower locations in Denmark, using the ‘hot’ colormap
(dark red is lower, yellow-white is higher).

The example above loads some data related to cell tower positions in Denmark, and
then generates a histogram with a specific colorscale and bin size (Fig. 3). Compared to
the dot map example, the histogram provides a clearer depiction of the density
distribution.

Heatmap

The main deficiency of histogram visualizations is that they are discrete approximations
of a (effectively continuous) density function. This creates a dependence on the bin size
and offset, rendering histograms sensitive to noise and outliers. To generate a smoother
approximation, a kernel density estimator approximates the true density function
applying kernel functions in a window around each point [37]. The size of this window
depends on the bandwidth parameter: a smaller bandwidth will produce more detailed
but also noisier estimation, while a larger bandwidth will produce a less detailed but
smoother estimation. A kernel estimation function can then be visualized by a surface
where the color encodes the density value (this visualization is often called a “heatmap”).
In geoplotlib, the kde method generates a kernel density estimation visualization:

data = read csv ( ’ data/ openc e l l i d dk . csv ’ )
g e o p l o t l i b . kde ( data , bw=[5 ,5 ] )
g e o p l o t l i b . show ( )

Fig. 4 shows the kernel density estimation applied to the cell tower data. Comparing
the histogram from Fig. 3 with the kernel density estimation in Fig. 4, it is evident how
the latter produces a smoother and consequently clearer visualization of density. The
kernel bandwidth (in screen coordinates) can be configured to regulate the smoothness.
The density upper bound can be set to clip density values over a threshold. Also the
density lower bound can be set, to avoid rendering areas of very low density:

# lowering c l i p above changes
# the max value in the co lor sca l e
g e op l o t l i b . kde ( data , bw=[5 ,5 ] ,

cut be low=1e−6, c l i p above=1)
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Fig 4. A heatmap (kernel density estimation) of the cell tower locations in Denmark,
using a hot colormap (dark red is lower, yellow-white is higher). The kernel density
produces a much smoother estimation and therefore a clearer visual representation of
the density, if compared with a histogram (Fig. 3).

# d i f f e r e n t bandwidths
g e op l o t l i b . kde ( data , bw=[20 ,20 ] ,

cmap=’ coolwarm ’ , cut be low=1e−6)
g e op l o t l i b . kde ( data , bw=[2 ,2 ] ,

cmap=’ coolwarm ’ , cut be low=1e−6)

# l inear co l o r s ca l e
g e op l o t l i b . kde ( data , bw=[5 ,5 ] , cmap=’ j e t ’ ,

cut be low=1e−6, s c a l i n g=’ l i n ’ )

Markers

In some cases it is useful to represent objects on the map using custom symbols with
specific meaning. The markers method allows a user to place customs markers on the
map:

metro = read csv ( ’ . / data/metro . csv ’ )
s t og = read csv ( ’ . / data/s−tog . csv ’ )

g e o p l o t l i b . markers (metro , ’ data/m. png ’ ,
f t o o l t i p=lambda r : r [ ’name ’ ] )

g e o p l o t l i b . markers ( s tog , ’ data/s−tog . png ’ ,
f t o o l t i p=lambda r : r [ ’name ’ ] )

g e o p l o t l i b . show ( )

Fig. 5 shows an example of custom markers for metro and train stops in Copenhagen.
Markers graphics can be any common raster format (png, jpeg, tiff), and can be
rescaled to a custom size. Optionally a dynamic tooltip can be attached to each marker.

Spatial Graph

Spatial graphs are a special type of graphs where nodes have a well-defined spatial
configuration. Examples includes transport networks (bus routes, train tracks, flight
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Fig 5. Markers showing the location of train and metro stations in the Copenhagen
area. geoplotlib can use any raster image (png, jpg) as markers.

paths), supply chain networks, phone call networks and commute networks. In
geoplotlib graph renders a spatial graph:

data = read csv ( ’ . / data/ f l i g h t s . csv ’ )
g e o p l o t l i b . graph ( data ,

s r c l a t=’ l a t d epa r tu r e ’ ,
s r c l o n=’ l on depar tu r e ’ ,
d e s t l a t=’ l a t a r r i v a l ’ ,
d e s t l on=’ l o n a r r i v a l ’ ,
c o l o r=’ hot r ’ ,
alpha=16,
l i n ew id th=2)

g e op l o t l i b . show ( )

Fig. 6 shows the resulting spatial graph of airport locations, where each node represents
an airport and each edge represents a flight connection. Edges are colored using a
colormap encoding the edge length.

Voronoi Tessellation

A Voronoi tessellation [38] is a partition of space into regions induced by some seed
points, so that each region (called a Voronoi cell) consists of all points closer to a
specific seed than to any others. The analysis of Voronoi tessellation is used in
numerous fields including ecology, hydrology, epidemiology, mining and mobility studies.

In geoplotlib voronoi can be used to generate a Voronoi tessellation visualization.
Voronoi cell fill, shading and colors can be configured.

data = read csv ( ’ data/bus . csv ’ )
g e o p l o t l i b . voronoi ( data , l i n e c o l o r=’b ’ )
g e o p l o t l i b . show ( )

Fig. 7 provides an example of Voronoi tessellation of bus stops in Denmark. Voronoi
cells provide a measure of the space closer to one stop than any others. The density of
points is also captured by the size of Voronoi cells, as smaller cells indicate more densely
covered areas.
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Fig 6. Spatial graph of airport locations, where each node represents an airport and
each edge represent a flight connection. Edges are colored using a colormap encoding
the edge length.

Delaunay triangulation

A Delaunay triangulation [39] is a convenient method for generating triangles meshes
from a set of points. In geoplotlib the delaunay method can be used for this purpose.

Fig 7. Voronoi tessellation of bus stops in Denmark. Voronoi cells provide an
estimation of the space closer to one stop than any others. The density of points is also
captured by the size of Voronoi cells, as smaller cells indicate more densely covered
areas.
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The edge color can be configured to a fixed value, or to encode the length of the edges.

data = read csv ( ’ data/bus . csv ’ )
g e o p l o t l i b . delaunay ( data , cmap=’ hot r ’ )
g e o p l o t l i b . show ( )

Fig. 8 shows the Delaunay triangulation of bus stops, with edges colored according to
length.

Fig 8. A Delaunay triangulation of the bus stops in Denmark, with edges colored
according to length

Convex Hull

A convex hull [39] of a set of finite points is the smallest convex polygon that contains
all the points. Convex hulls can be used for example to visualize the approximate area
corresponding to a set of points. In geoplotlib:

g e op l o t l i b . convexhul l ( data , co lo r , f i l l =True )

Fig. 9 shows the bus stops points split into 6 groups, and each group is represented by a
differently colored convex hull.

Shapefiles

Shapefile [40] is a popular file format for describing vector graphics for geographical
information systems. geoplotlib uses pyshp [41] to parse the shapefiles. The line color
can be configured and an optional tooltip can be attached to each shape. In the
following example we display the kommuner administrative regions in Denmark
(Fig. 10):

g e op l o t l i b . s h a p e f i l e s ( ’ data/dk kommune/dk kommune ’ ,
f t o o l t i p=lambda a t t r : a t t r [ ’STEDNAVN’ ] ,
c o l o r =[0 ,0 ,255 ] )

g e o p l o t l i b . show ( )
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GeoJSON

GeoJSON [42] is a human-readable format for encoding geographical data, such as
polygons and lines. geoplotlib can render shapes from the GeoJSON format, and shape
color and tooltip can be dynamically altered to encode data. For instance GeoJSON
shapes can be used to generate a choropleth where each geographic unit is colored to
encode a continuous variable. In the following example (Fig. 11) we generate a
choropleth of unemployment in USA [43]:

de f g e t c o l o r ( p r op e r t i e s ) :
key = s t r ( i n t ( p r op e r t i e s [ ’STATE’ ] ) )
key += prop e r t i e s [ ’COUNTY’ ]
i f key in unemployment :

r e turn cmap . t o c o l o r ( unemployment . get ( key ) ,
. 1 5 , ’ l i n ’ )

e l s e :
r e turn [ 0 , 0 , 0 , 0 ]

with open ( ’ data/unemployment . j son ’ ) as f i n :
unemployment = json . load ( f i n )

cmap = ColorMap ( ’ Blues ’ , alpha=255 , l e v e l s =10)
g e op l o t l i b . geo j son ( ’ data/ gz 2010 us 050 00 20m . j son ’ ,

f i l l =True , c o l o r=ge t c o l o r ,
f t o o l t i p=lambda p r op e r t i e s : p r op e r t i e s [ ’NAME’ ] )

g e o p l o t l i b . geo j son ( ’ data/ gz 2010 us 050 00 20m . j son ’ ,
f i l l =False , c o l o r =[255 , 255 , 255 , 6 4 ] )

g e o p l o t l i b . show ( )

Advanced Functionalities

Data access

The DataAccessObject class is the fundamental interface between the raw data and all
the geoplotlib visualizations. A DataAccessObject is conceptually similar to a table

Fig 9. The bus stops points are split into 6 groups, and each group is represented by a
different colored convex hull.
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Fig 10. Rendering the shapefiles for the kommuner administrative regions in Denmark.

with one column for each field and one row for each sample. This paradigm is very
common in data analysis terminology, and is equivalent to ndarrays in numpy, and
dataframes in pandas and R. A DataAccessObject can be initialized by reading a
comma-separated values (CSV) file with the built-in read_csv method, or can be
constructed from a python dict, or from a pandas [44] dataframe:

dao1 = DataAccessObject ({ ’ f i e l d 1 ’ : somevalues ,
’ f i e l d 2 ’ : o the rva lue s })

dao2 = DataAccessObject (mydataframe )

Fig 11. Choropleth of unemployment in USA using GeoJSON shapefiles
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dao3 = read csv ( ’ s ome f i l e . csv ’ )

The only two fields required are lat and lon, which represent to the geographic
coordinates. Most of the built-in visualization implicitly refer to these two fields to
locate entities in space. DataAccessObject also provides a few method for basic data
wrangling, such as filtering, grouping, renaming and deleting rows and columns.

Tile providers

Any OpenStreetMap tile server can be configured using the tile_provider method
(users are kindly asked to check the tile usage policy for the selected server, and make
sure to provide attribution as needed). A number of common free tiles providers are
supported, including Stamen Watercolor and Toner [45], MapQuest [46], CartoDB
Positron and DarkMatter [47].

Defining custom layers

The built-in visualizations provide various commonly used tools for geographical data
visualization. Multiple layers can be combined into a single visualization for richer
display. For even more complex visualizations, geoplotlib allows users to define custom
layers. In order to generate a new visualization, a new class extending BaseLayer must
be defined. The custom layer must at least define an invalidate and a draw method.
The invalidate method is called each time the map projection must be recalculated,
which typically happens each time that the map zoom-level changes. The invalidate

method receives a Projection object, which provides methods for transforming the
data points from the geographic coordinates to screen coordinates. The screen
coordinates can then be passed to a BatchPainter object for the rendering. A
BatchPainter can efficiently draw OpenGL primitives such as points, lines and
polygons. The draw method is called at each frame, and typically calls the batch_draw

method of the painter prepared during invalidate. The following is a complete
example of a custom layer, which simply draws samples as points:

c l a s s CustomLayer ( BaseLayer ) :

de f i n i t ( s e l f , data ) :
s e l f . data = data

de f i n v a l i d a t e ( s e l f , p ro j ) :
x , y = pro j . l o n l a t t o s c r e e n ( s e l f . data [ ’ lon ’ ] ,

s e l f . data [ ’ l a t ’ ] )
s e l f . pa in t e r = BatchPainter ( )
s e l f . pa in t e r . po in t s (x , y )

de f draw ( s e l f , proj , mouse x , mouse y , ui manager ) :
s e l f . pa in t e r . batch draw ( )

The final step needed is to add the layer to the visualization using add_layer, then call
show:

g e op l o t l i b . add laye r (CustomLayer (mydata ) )
g e o p l o t l i b . show ( )

Animation

A custom layer can be also used for creating animated visualizations. Each time the
draw method is called, the custom layer can update its state to the next frame. As an
example, let us imagine having data containing the position of an object over time. A
simple animation can use a frame counter, and at each frame render only the datapoint
at the current instant:
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c l a s s AnimatedLayer ( BaseLayer ) :

de f i n i t ( s e l f , data ) :
s e l f . data = data
s e l f . f rame counter = 0

de f i n v a l i d a t e ( s e l f , p ro j ) :
s e l f . x , s e l f . y = pro j . l o n l a t t o s c r e e n (

s e l f . data [ ’ lon ’ ] , s e l f . data [ ’ l a t ’ ] )

de f draw ( s e l f , proj , mouse x , mouse y , ui manager ) :
s e l f . pa in t e r = BatchPainter ( )
s e l f . pa in t e r . po in t s ( s e l f . x [ s e l f . f rame counter ] ,

s e l f . y [ s e l f . f rame counter ] )
s e l f . pa in t e r . batch draw ( )
s e l f . f rame counter += 1

Notice that in this case we do not initialize the BatchPainter inside invalidate, but
we create a new one at each frame. We also keep track of the current frame with the
frame_counter variable. Even this very simple code is able to visualize a non-trivial
animation of an object moving over time. To produce a movie from the animation,
individual frames can be captured using the screenshot method, and then combined
together.

Colormaps

Colors can be used as additional mapping for encoding information into a visualization.
Continuous variables (for example points density or the edges distances) can be mapped
to a continuous color scale. The ColorMap class allows a user to perform this conversion.
A ColorMap object is constructed by passing any of the matplotlib colorscales, and
optionally an alpha value and a number of discretization levels. The to_color method
performs the conversion from real value to color:

# hot colormap
cmap = ColorMap ( ’ hot ’ )

# Reds colormap with transparency
cmap = ColorMap ( ’Reds ’ , 128)

# coolwarm colormap with 4 l e v e l s
cmap = ColorMap ( ’ coolwarm ’ , l e v e l s =4)

# l inear sca l ing
cmap . t o c o l o r (10 , 100 , ’ l i n ’ )

# logar i thmic sca l ing
cmap . t o c o l o r (10 , 100 , ’ l og ’ )

# square−root s ca l ing
cmap . t o c o l o r (10 , 100 , ’ s q r t ’ )

Discrete variables such as categories can be represented using categorical colormaps.
The colorbrewer method provides access to the ColorBrewer [48] colors. Categorical
colormaps can be also generated from regular colormaps using using create_set_cmap:

cmap1 = co lo rbrewer ( [ 1 , 2 , 3 ] )
cmap2 = crea te s e t cmap ( ’ hsv ’ , [ 1 , 2 , 3 ] )

Controlling the map view

The map view is determined by the projection parameters: the latitude offset, the
longitude offset and the zoom level. By default, the projection is chosen so to fit all
selected points, with the maximum zoom level possible. The view can changed to a
specific portion of the map by passing a BoundingBox object to the set_bbox method.
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A BoundingBox object defines the map view boundaries, and can be constructed in
multiple ways. The most direct way is to specify two ranges of latitudes and longitudes.
Alternatively, a BoundingBox can be constructed to fit a subset of points using the
from_points methods.

bbox1 = BoundingBox ( north =51.3 , west=−124.3 ,
south =14.8 , ea s t =−56.8)

bbox2 = BoundingBox . f rom po int s ( lons , l a t s )

Interactivity

Finally, geoplotlib allows users to create interactive visualizations by provides support
for rendering a user interface, and dynamically changing the visualization on user input:

• on-screen text such as information or status can be added using the UiManager

class.

• mouseover tooltips can be configured on arbitrary graphical elements or screen
regions using the HotspotManager class.

• layers can be configured to react to specific key presses by defining a
on_key_release method

Performance

We test the performance of geoplotlib by generating some of the described visualization
on a dataset consisting of one million samples, using the default visualization
parameters. All tests consider only the time needed for the actual rendering of the
visualization, excluding the time for loading the data. The measurements are repeated
10 times for each visualization type. The experiments were performed on a MacBook
Pro 2012 with an Intel 2.3 GHz i7 CPU, 8 GB RAM and nVidia GeForce GT 650M
GPU. Table 1 shows that in all cases the visualizations require only a few seconds, thus
demonstrating that geoplotlib is suitable even for large-scale datasets.

Table 1. Execution time for one million samples

visualization type mean time [s] SD [s]

dot 1.57 0.08

graph 1.99 0.09

hist 8.12 0.55

kde 5.37 0.37

voronoi 3.08 0.66

Conclusion

We have presented geoplotlib, a python toolbox for generating geographical
visualizations. We demonstrated how geoplotlib provides a simple yet powerful API to
visualize geographical data, greatly facilitating exploratory data analysis of geographical
information. We believe that geoplotlib can become a powerful tool in the data analyst
toolbox, both for analyzing complex spatial patterns and for communicating results in
forms of geographical visualizations. Future work includes the addition of more
visualization tools, and the integration of spatial analysis methods.
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Abstract
Understanding both collective and personal human
mobility is a central topic in Computational Social
Science. Smartphone sensing data is emerging as a
promising source for studying human mobility. However,
most literature focuses on high-precision GPS positioning
and high-frequency sampling, which is not always feasible
in a longitudinal study or for everyday applications
because location sensing has a high battery cost. In this
paper we study the feasibility of inferring human mobility
from sparse, low accuracy mobile sensing data. We
validate our results using participants’ location diaries,
and analyze the inferred geographical networks, the time
spent at different places, and the number of unique places
over time. Our results suggest that low resolution data
allows accurate inference of human mobility patterns.
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Author Keywords
Spatial data mining; mobile sensing; place discovery;
location sensing; mobility;
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Introduction
Understanding human mobility has a number of important
applications, ranging from containment of infection
diseases [4] to urban planning and traffic management [8].
Moreover mobility plays an important role in
understanding face-to-face [1] and long distance social
interactions [12].

Most studies on mobility have been using Call Detail
Records (CDR) as proxy for location [15, 7, 3], inferring
people’s positions depending on the cell towers that
mobile phones are connected to. Such data sources can
only produce very rough location estimates with space
granularity of kilometers and time granularity of hours.
Thanks to the explosive adoption of smartphones
equipped with location sensors, mobile sensing data is
becoming a promising alternative for inferring patterns of
human mobility and social interaction [14].

An extensive literature on mining location data has been
produced, but a large amount of this work focuses on
high-precision GPS positioning and high-frequency
sampling, with location collected every few minutes
[20, 21] or even every few seconds
[2, 19, 10, 18, 11, 5, 17]. Such collection methods are not
realistic in a longitudinal study based on smartphone data,
since high frequency GPS sampling would lead to rapid
battery drain. For this reason, in the Copenhagen
Network Study [16] we collect location data in an
opportunistic fashion using Android smartphones and the
Google Location API1, which provides an improved
battery life at the price of lower sampling frequency and
more variable accuracy. Understanding data collected at a
fixed rate is a necessary baseline and point-of-comparison

1http://developer.android.com/google/play-
services/location.html

for more advanced low energy approaches, such as
adaptive sampling [9]. Thus, in this paper we focus on the
specific problem of inferring human mobility from such
sparse, low accuracy mobile sensing data. We perform a
small experiment using diaries collected by 6 participants
and one researcher, and we motivate that it is possible to
infer mobility patterns with reasonable accuracy.

Related work
A number of recent studies on inferring mobility from
mobile sensing data have been performed, and they differ
for number of participants, frequency of sampling, and
data mining techniques. Here we cite a few representative
examples. Ashbrook et al. [2] collect data for 6 users at 1
sample per second; places are extracted using k-means and
evaluated by user interviews. Zhou et al. [21] collect data
for 28 users at 1 sample per minute, and extract places
using DBSCAN clustering. Palma et al. [13] propose a
speed-based DBSCAN clustering, but give no user
evaluation of the results. Montoliu et al. [11] collect data
for 8 participants using continuous sampling; locations are
identified using grid clustering, and the results evaluated
comparing with participants diaries. Cao et al. [6] analyze
the GPS traces of 119 cars, and exploit GPS signal loss for
detecting stops; the inferred network of places is analyzed.
Yan et al. [17] determine stops using a dynamic speed
thresholding and places are extracted using intersection
with geometry; results are evaluated for 6 users.

Problem definition
We collect location data as a sequence of samples
represented by tuples in the format (timestamp, latitude,
longitude, accuracy) ordered by non-decreasing
timestamp. A point of interest (POI) is a location of
relevance for a person, such as his home, his workplace or
a gym he frequents. A POI can be described as a tuple
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(POI-id, POI-latitude, POI-longitude), where POI-latitude
and POI-longitude refer to the centroid of the POI. A stop
at a POI is a specific occasion when the person has visited
a POI in a given day and hour. A stop is thus described
by a tuple (timestamp-arrival, timestamp-departure,
POI-id). By definition, each stop is related exactly to one
POI, but one POI can be related to many stops. Stops are
non-overlapping, that is timestamp-arrivali+1 >
timestamp-departurei for every stop. A stops extraction
algorithm accepts as input a sequence of location samples,
and produces as output a set of stops related to POI.

Given the discovered stops and the ground truth stops, we
need to compute how many actually match. In several
related studies [21, 11, 17, 2] the participants were
interviewed and asked to manually match the discovered
locations with the personal diaries. In our case we set
threshold parameters to define when a match occurs,
trying to emulate human judgment. A person asked to
decide whether two stops are matching would probably say
yes if they are reasonably close to each other and the time
interval was approximately the same. Therefore we set the
following threshold parameters: we use a distance of 150
meters (roughly the average size of one city block), and
we adopt a time threshold equal to 25% of the total stop
duration, so that shorter stops must be identified more
precisely than longer stops. Although it is possible to
argue for different choices of these parameters, we found
that different values (distance threshold = 50 and 100
meters, and time threshold = 10%) have only minor effect
on the results. Let Bstops be the baseline stops (stops in
the diary), Dstops the discovered stops (stops extracted by
an algorithm), and Bstops ∩Dstops the baseline stops

which are discovered and recognized as matching. Let:

recallstops = |Bstops ∩Dstops|/|Bstops|
precisionstops = |Bstops ∩Dstops|/|Dstops|

f1stops =
2 · precisionstops · recallstops
precisionstops + recallstops

In a similar fashion we evaluate the performance of
identifying POI by calculating f1POI , considering a
match if the centroids are at distance < 150 meters.

Experimental settings
We recruited a total of 6 participants, all of them students
at our campus. Participants were provided with a
Samsung Galaxy Nexus smartphone, with a collector app
based on the Funf Open Sensing framework [1].
Participants were instructed to use the provided
smartphone as their main phone. We asked participants
to keep a diary of their daily movements, and we provided
them an electronic spreadsheet where they could fill
entries in the format: date, hour, place description. We
instructed them to keep the diary updated as accurately
as possible, and we sent weekly reminders via email. One
author also carried a Samsung Galaxy Nexus smartphone
for collecting his own data and kept his own location
diary. Table 1 shows the summary statistics of diary
entries for each participant (P1-P6) and for the researcher
(R). The participants’ data was collected in October and
November 2013, while the researcher’s data was collected
in four periods between September and January 2014. At
the end of the study, the participants were asked to create
a list of POI with description, latitude and longitude
obtained using Google Maps2.

2http://maps.google.com
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User Stops µ(Stops/day) σ(Stops/day) Unique POI
P1 120 2.9 1.3 33
P2 127 3.2 1.5 34
P3 187 4.0 1.9 37
P4 130 2.9 1.3 49
P5 61 2.3 0.9 18
P6 111 4.4 2.3 22
R 227 3.5 1.4 39

Table 1: Summary statistics of diary entries for each
participant (P1-P6) and for the researcher (R).

The usage of diaries as ground truth presents some
challenges, as participants’ compliance tends to decrease
over time, and the process of filling a diary every day can
be tedious, so participants may avoid or simply forget to
do it. Moreover the concepts of stops and POI are
complex and often ambiguous. Finally, any human task is
error-prone, and by manually inspecting the diary entries
we noticed self-evident errors such as sequence of stops in
wrong temporal order and typos in descriptions, dates and
times.

Data collection
Location samples are collected with a custom version of
the Funf Open Sensing framework [1], which requests one
sample every 15 minutes using the Android location API.
We have indications that these settings do not
significantly impact power consumption, since participants
did not report reduced battery life using our collector app.
The location is provided either by GPS positioning, Wi-Fi
or cellular networks, depending on availability. Location is
acquired in an opportunistic manner, so every time
another app requests a location, this sample is also
recorded in our system. The collected data is temporarily
stored on the phone, and periodically uploaded to our

servers.

This sampling method presents several challenges,
including the variability of accuracy, the unpredictability of
samples arrival, and the presence of outliers and
duplicates. We firstly investigate the quality of the raw
location data. We calculate the empirical cumulative
distribution function (CDF) for the samples accuracy, and
we find that the vast majority (> 90%) of samples have
accuracy better than 60 meters.

We then analyze the time distribution of samples. We
calculate the CDF of the time in seconds between samples
∆t = timestampi+1 − timestampi. Figure 1 shows that
around 60% of the intervals of time between samples are
under 10 seconds, 80% are under 60 sec, and 90% are
under 200 seconds.
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Figure 1: Cumulative Distribution Function for the time
between samples ∆t. Around 60% of the intervals of time
between samples are under 10 seconds, 80% are under 60 sec,
and 90% are under 200 seconds.
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Even though many samples are collected with high
frequency, they are unevenly distributed in time. In fact
the opportunistic sensing settings produce a pattern of
burst collection, where a rapid sequence of samples is
collected, and then none for a longer period of time. To
investigate what is the probability of finding at least one
sample in a given time interval, we divide the samples into
time bins, and count what fraction of bins are empty for
different bin sizes. Figure 2 shows that the fraction of
empty bins decreases for larger bin sizes, with a large
fraction of empty bins for smaller sizes. Starting from 900
seconds the fraction of empty bins becomes approximately
constant.
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Figure 2: Fraction of empty time bins versus time bin size.
The fraction of empty bins decreases for larger bin sizes, with a
large fraction of empty bins for smaller sizes. Starting from
900 seconds the fraction of empty bins becomes approximately
constant.

This shows that in most cases the samples collected
opportunistically tend to be highly redundant as they

capture approximately the same location in a very short
timespan.

Stops detection algorithms
In this section we describe three simple algorithms for
extracting stops from location data, based on methods
from the literature: distance grouping, speed thresholding
and Gaussian Mixtures Model (GMM) clustering.

Each algorithm accepts as input a sequence of location
samples and produces as output a sequence of stops. We
discard stops with duration shorter than a minimum time,
since very short stops may be inferred from the location
data but they are not meaningful in human terms.
Although the choice of what is the minimum time
duration of a stop is quite subjective, we chose the
minimum time as 15 minutes, since the very large majority
of diaries entries have duration greater than 30 minutes.

Each algorithm has parameters that influence the stop
extraction, and ultimately determine the f1 performance.
We are interested in how estimating the parameters on a
set of participants would generalize to all others, therefore
we perform cross-validation. We select the parameters
that perform best for one participant and we calculate the
scores for the remaining participants using these
parameters. We repeat the operation for a each
participant, and we calculate the average f1. This
procedure is used for each algorithm.

Distance grouping
The distance grouping algorithm is built on the idea that
a stop corresponds to a temporal sequence of locations
within a maximal distance dmax from each other.
Locations are examined sequentially by non-decreasing
timestamp. Each stop initially contains only one location
loci, and each subsequent location loci+k is added to the
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stop until distance(loci+k, loci) < dmax. Then the
process starts again from loci+k+1. The choice of the
parameter dmax influences the detection of the stops. A
large dmax tends to merge more location samples and
produce less stops of longer duration, while a smaller
dmax tends to merge less locations and produce more
stops of shorter duration. An initial increase in dmax leads
to better f1 performance since smaller stops are correctly
merged into more meaningful larger stops. For a range of
values the f1 score stabilizes around an optimal value, as
increasing dmax does not result in merging more stops.
Finally for larger values of dmax, even very far stops are
merged together, resulting in worse performance shown by
the lower f1 score.

Speed thresholding
Speed thresholding uses the calculated speed of
movement to classify location samples as stops and
moves. Given two successive geographical positions we

calculate speedi+1 = distance(posi+1,posi)
timestampi+1−timestampi

. In our

dataset however the sample-by-sample speed oscillates
widely, due to the variability of the frequency and
accuracy of samples. We are instead interested in a
smoother speed estimate, in order to detect transitions
between places. Therefore we create time bins of size T ,
and for each bin we consider the position as the median of
all the samples in the bin. We then calculate the speed
between bins. Using the speed information, we can
discard samples with speed > speedmax, and then group
consecutive static locations into stops. The choice of the
bin size T and of the speedmax threshold influence the
performance of the algorithm. A longer period produces
smoother transitions but may fail to detect shorter stops.
A lower speedmax threshold will result in discarding a
larger number of location samples and consequently to
more information loss.

Gaussian Mixtures Model
The distance grouping and the speed thresholding
algorithms take a sequential approach to the stops
detection, as they examine samples one by one in
temporal order. A different approach is to look at the
overall distribution of the samples independently of time,
and identify POI as clusters of location samples with
higher density. A Gaussian Mixtures Model (GMM)
assigns samples to clusters modeled as a finite number of
Gaussian distributions with unknown parameters. Once
each sample is assigned to a cluster, we group temporally
consecutive samples with the same cluster label into
stops. The condition that determines the cluster
assignment is the min covariance parameter. A larger
min covariance tends to produce larger clusters, while a
smaller min covariance produces smaller clusters.

Results and Discussion
In this section we provide the results of the f1stops and
f1POI scores. Since our work focuses on sparse
opportunistic sampling, we cannot compare directly with
results in the existing literature, which are based on data
sets with high-frequency, high-precision sampling.
Additionally, most studies provide either an informal
performance assessment based on aggregated
data [6, 13, 5, 17], or limit their evaluations to the overall
identification of POI [20, 21, 19, 18, 11]. Here, we directly
evaluate how well we can infer the full stop-by-stop
sequence. This is a more challenging task, which shifts
the focus to evaluating the feasibility of inferring mobility.

Evaluation of stop extraction
We apply the three algorithms for stops extraction for
each participant (P1-P6) and for the researcher (R), and
we obtain the f1stops scores (Figure 3).
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Figure 3: f1stops scores for each participant (P1-P6) and for
the researcher (R).

For each participant, the three algorithm have a
substantially similar performance. The scores suggest that
it is possible to infer mobility patterns with reasonable
accuracy, despite the very sparse nature of the collected
data.

There is an evident difference between the researcher and
participants, with the researcher’s score being much higher
than any participants’ scores. To estimate an upper limit
of how well diaries can be matched against the location
data, we compare the sequence of locations inferred from
the data against the sequence inferred from the diary. In
order to generate a sequence of positions from the
location data we create time bins of size 900 seconds and
take the median position for each bin, while for each diary
entry we generate one position at the corresponding POI
for every 900 seconds. We compare the two sequences as
follows: for each time bin we count a match if the distance

between the diary position and the inferred position is <
100 meters. The we calculate an overlap score as:

overlap = |matches|
|bins| We find a significant correlation

between f1stops score and overlap (ρdistance = 0.939,
ρspeed = 0.944 and ρGMM = 0.941). We suggest that the
higher f1stops score for the researcher is probably due to a
better quality of the ground truth. The researcher’s data
was curated to be as precise as possible and record every
single stop, while it is quite likely that participants have
not been as consistent in their diaries.

Evaluation of POI extraction
The stop extraction algorithms produce a sequence of
stops, which can then be grouped into clusters
corresponding to POI. In the case of GMM, the stops are
automatically marked with a poi-id associated with the
corresponding cluster. The distance grouping and speed
thresholding algorithms instead do not provide any
information about groups of stops. In this case we infer
the POI membership for stops applying DBSCAN
clustering to the stops extracted by distance grouping.
We set minpts = 1 and we determine the optimal eps by
cross-validation, selecting the parameter value that
performs best for one participant and calculating the
f1POI scores for the remaining participants using this
value.

Figure 4 shows the f1POI for the GMM and the
DBSCAN algorithms. The results are consistent with our
findings about f1stops. The two algorithms have similar
performance for the same participant, but there is a quite
significant difference between participants’ and
researcher’s scores. Also in this case there is a correlation
with overlap, which again suggests that the lower
participants score is due to inaccurate ground truth.
Finally if we compare the f1stops and f1POI for each
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participant, we see that the f1POI is better, which is
probably because it is easier to infer POI than stops.
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Figure 4: Comparison of the f1POI for the GMM and the
DBSCAN algorithms.

Mobility analysis
In this section we further validate the discovery of stops
and POI by performing an analysis of the mobility
patterns. We consider the results obtained using the
GMM algorithm, although similar results are obtained
using the other algorithms.

We first look at the geographical network of the 20 POI
where most time is spent. We draw a node to represent
the geographical coordinates of each stop at a POI, and
one arc for each transition between stops. We find that
the two networks are quite similar, although some POI are
notably missing from the discovered network. Figure 5
shows the comparison of the geographical network as
inferred from the diary (left) versus the one from the
discovered stops (right) for one participant.
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Figure 5: Comparison of the geographical network from the
diary (left) versus the one from the discovered stops (right) for
one participant.

We then look at the distribution of time versus POI. It is
common knowledge that we spend the most of our lives at
home and at work, and rest the of our time is shared
between all other locations, some of which are regularly
visited. Several studies have confirmed this notion, as
they found that the distribution of time spent at different
locations is heavy-tailed [7]. For each participant, we
compute the time spent at POI both from the diary stops
and from the discovered stops. The two time distributions
are remarkably close, and both show heavy-tailed
distributions, with the 2 most visited POI (presumably
home and work) corresponding to the majority of time.
Figure 6 shows as example the comparison for one
participant.
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Figure 6: Comparison of the time spent at POI as inferred
from the diary and from the discovered stops for one
participant.

Finally, we calculate the number of unique POI over time.
For each timestampi we count the unique POI visited by
the stops between timestamp0 and timestampi. We find
that for all participants the two distributions follow a
similar trend, although in some periods the discovered
POI are fewer than the POI in the diary.

Conclusions
We have evaluated the feasibility of inferring human
mobility from sparse low accuracy mobile sensing data.
We have performed a comparison with ground truth in
form of location diaries, and evaluated in details the
inferred mobility in terms of geographical networks, time
spent at different places, and the number of unique places
over time. Our results indicate that it is possible to infer
the mobility patterns accurately, despite the sparse nature
of the data. As future work, different algorithms could be

tested to see if the detection performance can be
improved. We also find a significant difference in
performance between the researcher’ and the participants’
scores, and we suggest that it may be caused by the
inaccuracies in the participants’ diaries which seem to be
a limiting factor for accurately studying human mobility.

Having indication of the feasibility of inferring mobility, we
intend to apply these procedures to the dataset of nearly
one thousand participants that we are actively
collecting [16]. We believe that replacing raw location
data with meaningful points of interest will allow us to
understand human mobility at a level much closer to the
human point of view.
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Measuring Human Mobility at Multiple Scales

Andrea Cuttone, Marta C. González, Jakob Eg Larsen, Sune Lehmann

Understanding human mobility is of fundamental importance for many applications, in-

cluding traffic management and urban planning1–3, epidemics containment4–8 and disaster

response9, 10. Some of the key results in the human mobility field are the high degree of

predictability11 and periodicity12 of movement patterns, the heavy-tailed staying times13 and

the Zipf’s law of frequency versus place rank14, which have been explained with the mech-

anism of preferential return15. Moreover human movements have been described by scale-

free random walks known as Lévy flights13. Despite many of the mobility properties are

scale-free, human understanding of mobility is based on multiple discrete scales within a hi-

erarchical organization, such as buildings, neighborhood and cities. Here we develop a model

capturing the hierarchical organization of human mobility, and measure mobility properties

at multiple scales. We measure a number the heavy-tailed staying time, the daily and weekly

periodic behavior, the exploration patterns, and the navigation in the spatial hierarchy. Our

results provide a new view of human mobility properties, and show the importance of con-

sidering the scales of human mobility.

1 Introduction

Human mobility patterns have been described by scale-free random walks known as Lévy flights13,

and human diffusion have been characterized by a heavy-tailed radius of gyration14. Despite mo-

bility properties are typically scale-free, human understanding of mobility is based on multiple
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discrete scales within a hierarchical organization, for example in terms of buildings within cities.

The contrast between the two views has generated a large amount of work trying to explain the ori-

gin of the heavy-tailed distribution for human properties. For example it has been shown that the

power-law behavior may emerge due to a time-dependent activity rate16, the mixture of multiple

individual rates17 and behaviors18, and the mixture of different transportation modes19, 20.

The concept of hierarchical and multi-scale organization of human mobility has been pro-

posed in several fields: in Geography, the Central Place Theory21 assumes the existence of a hi-

erarchy of spatial regions to explain the distribution of human settlements; in Environmental Psy-

chology the Bio-Ecological Systems Theory22 suggests the existence of nested spatial structures;

in Spatial Analysis the Modifiable Area Unit Problem (MAUP)23 warns about the influence of the

size of the spatial units of the statistical properties. But surprisingly no model has been developed

to capture such hierarchical organization and measure the emerging mobility properties at multiple

scales. In this work we fill the gap by developing a model which is able to capture the hierarchical

organizations of human mobility, and therefore study mobility properties at multiple scales.

2 Method

We analyze a dataset from the Copenhagen Network Study24, which collected mobile sensing data

for more than 800 students at the Technical University of Denmark. In particular we focus on the

location data, which is collected with frequency one sample every 15 minutes and has a median

accuracy of ≈ 20 meters, with more than 90% of the samples having an accuracy better than 40
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meters. The data has been collected mainly in Copenhagen and in Denmark, but covers also many

other countries as participants kept collecting their data also during travels abroad. In order to filter

users with good data quality, we select for each users the longest period with at least one sample

in 90% of the 15-minutes time bins. Moreover we keep only users for which we have at least 3

months of data. We remain with 454 users, which have data for periods ranging from three months

to one year.

We define our model in the following way. For each user individually we consider the se-

quence of location samples in time order. We identify stops as sequence of locations where the user

has been approximately stationary, which means that the distance between the location at time t

and t+ ∆t is less than a threshold δ = 50 meters, roughly corresponding to the GPS accuracy. For

each stop we calculate a centroid as the median latitude and longitude of all its location samples,

and a duration equal to the difference between the timestamp of its last and first locations. To

remove brief stops generated when the user is moving, we discard stops with duration less than 15

minutes.

We now want to group stops into places, where a place is group of stops representing a

spatial unit at a given scale (e.g. building scale). Therefore we apply a recursive clustering using

the DBSCAN25 clustering. We apply the clustering with a very large grouping distance (ε = 150

kilometers), which produces clusters of very large size, roughly corresponding to country-scale

partitions. For each cluster we then apply the clustering to its members with a smaller grouping

distance (ε = 5000 meters), therefore producing sub-clusters of roughly at city scale. We repeat
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once again the clustering with ε = 500 meters (roughly a neighborhood-size scale) and ε = 20

meters, roughly a building-size scale. At the end of this process, each stop is marked as being

member of a cluster at four scales: country, city, neighborhood and building. Although the clusters

do not necessarily correspond to the exact administrative boundaries, they very often capture well

the geographical scales. From now on we will refer to the clusters with their level names.

Fig. 1 represents an example of the model results for one user. Each cluster is depicted as

a circle enclosing all its points, and each scale of clusters has a different color: blue for building,

green for neighborhoods, orange for cities and red for countries. The leftmost panel shows the sev-

eral building clusters (blue) within one neighborhood cluster (green) at the Technical University

of Denmark campus. The center panel shows the previous neighborhood cluster (green) within a

city cluster (orange), and other two city clusters around the Copenhagen metropolitan area. Fi-

nally the rightmost panel shows the previous city clusters (orange) within a country cluster (red),

together with other two country clusters. Another view of the result of our model is that we can

directly reconstruct the whole hierarchy of clusters and sub-clusters which represents the hierarchy

of personal mobility in terms of countries, cities, neighborhoods and buildings partitions. From the

world-scale point of view, we can measure the division into country clusters, and for each country

cluster we can measure the division into cities clusters, and for cities into neighborhoods, and fi-

nally neighborhoods into buildings. We now proceed to use our hierarchical model to measure a

number of mobility properties.
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3 Staying time

To investigate the scaling of staying times and visits, we measure staying time at the four scales.

We considered each user individually, and one scale at the time. We calculate the total time at a

place as the sum of the individual stops durations at that place. We sort the places by the decreasing

total time spent, so that the most visited place has rank 1, the second most visited rank 2 and so

on. We then divide the individual total times at places by their sums, to obtain the fraction of time

spent at each place. After repeating this operation for each user, for each rank we calculate the

average by user thus obtaining the average fraction of time at rank k. We repeat this procedure for

each scale separately, so at the end we finally obtain the average fraction of time spend at place

rank k for each scale. Fig. 2 displays the results, limited to the top 10 ranks. The figure shows

how at each scale there is a sharp decrease of the fraction of time with increasing rank. At all

scales, the most visited place captures the vast majority of the time, and the rest of the time is

split among the other places. Moreover the scale determines the degree of this decay, with larger

scales having a much stronger drop in the fraction of time. For example, the most and second most

visited countries capture on average 97.6% and 3.7% of the time respectively, while the most and

second most visited building capture on average 63.3% and 11.9% of the time respectively. This

result confirms previous findings that staying times are heavy-tailed13–15, but it also shows how this

property holds at multiple scales. One interpretation of this result is that the preferential return to

places is strongly influenced by the scale: it is common to have a building where we spend most of

the time (home), and another one that we visit a bit less (work), and then the rest. But it is typical

to have one country where we spend virtually all of our time, and very rarely spend time in another
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country.

4 Cumulative time

A question related to the distribution of time at places is the number of significant places which

capture the majority of mobility patterns. In other words, how many places are needed to capture

most – say 90% – of your time? In order to investigate this question we start similarly as before.

Again we considered each user individually, and one scale at the time. We calculate the total time

at a place as the sum of the individual stops durations at that place. We sort the places by the

decreasing total time spent, and we divide the individual total times at places by their sums, to

obtain the fraction of time spent at each place. This time however we consider the cumulative

fraction of time at rank k, which is the total amount of time captured considering places at rank

1, 2, ..., k − 1, k. For example the cumulative fraction of time at rank 1 is simply equal to the

fraction of time for rank 1, while the cumulative fraction of time at rank 2 is the sum of the fraction

of time at rank 1 and the fraction of time at rank 2, and so on. We repeat this operation for each

user, and for each rank we calculate the average by user thus obtaining the average cumulative

fraction of time up to rank k. This procedure is done for each scale separately, so at the end we

finally obtain the average cumulative fraction of time spend at place up to rank k for each scale.

Fig. 3 displays the results, limited to the top 10 ranks. Looking at the figure we can now answer

our original question: how many places are needed to capture 90% of the time? The answer is that

on average up to 8 buildings are needed for capturing 90% of time, but only 3-4 neighborhoods,

and only 1 city and 1 country are enough.
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5 Periodicity

We consider another characteristic aspect of human mobility: periodicity14. The times of arrival

and departure at different places are not random, but follow specific patterns due to the human

circadian rhythm and the individual schedules: we return home everyday, go to work during week-

days, visit our favorite restaurant in the weekend and so on. In order to characterize the periodicity

of mobility behavior, we measure the distribution of the inter-event times between arrivals at the

same place. We consider the union of all inter-event times for all places of all users at a given

scale, and we repeat this operation for the four scales. We obtain four probability density functions

(one for each scale) which describe the probability of returning to the same place after a given

interval of time (Fig. 4). The probability functions display two strong periodic patterns: one every

24 hours, and one every 7 days, in agreement with our intuition of human periodicity. Interestingly

these periodic patterns are evident at the building scale, but also present at the neighborhood scale,

and in minor measure at the city scale, while the pattern breaks down at the country scale due to

lack of data.

6 Navigation in the spatial hierarchy

The hierarchical organization of mobility captured by the model can measure details which are lost

in a flat model. Consider for example the probability of arriving at any building over the hour of

the week. Since we have information about the hierarchical relation between spatial units we can

investigate the following question (which would be impossible in a flat model): when are there

7



transitions between buildings in the same neighborhood, and when are there transitions between

different neighborhoods? Fig. 5 shows the probability functions for the two cases. It is evident

how the two probabilities differ significantly around 12pm-1pm, when the probability of changing

building in the same neighborhood is much higher than changing neighborhoods. This is likely

explained by the fact that it is common for the population under study (mainly student) to change

buildings within the university neighborhood during lunch break. Although this is an example

specific to our population, it illustrates how our model is able to capture novel aspects of mobility

behavior.

7 Exploration

Exploration of new places over time is a fundamental part of mobility15, and so is the number

of unique places visited over time. We quantify this aspect of mobility at multiple scales in the

following way. We consider again each user individually and one scale at the time. For each user

we count the number of unique places visited for each week of the year, and we calculate a baseline

exploration as the median over the year. We divide each week value by the baseline exploration

thus obtaining a normalized value for each week, and we call this value exploration score. We

repeat this operation for each user, then we average by user the exploration scores for each week

thus obtaining an average exploration score for each week of the year. Finally we repeat this

process for each of the four scales obtaining average exploration scores for each week of the year

and for each scale (Fig. 6). The result shows how the exploration score changes over time at all

scales – especially notable are the peaks in middle October (Autumn break), December (Christmas
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and New Year’s Eve), February (Winter break), middle of April (Easter) and from July (Summer

break). Moreover in the same periods of the year the changes in exploration scores depend on

the scale: in particular notice how in February the peak for exploration score is much stronger

at the country scale – this is likely because students in our population typically go abroad for ski

vacations during that break. Again we show here that some mobility properties details may be lost

without considering the right scale.

8 Discussion

The proposed model can measure mobility properties at multiple scales, and demonstrates the

universality of many mobility properties: the same patterns apply at multiple scales. Moreover

this work raises some questions about the scale-free nature of mobility: are there really scales in

human mobility, and if so, can they be detected from the data alone? Although in the current work

the scales are somewhat arbitrarily set, and sometimes do not correspond to real administrative

boundaries, it is evident that different behaviors happen at different scales.
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Figure 1: An illustration of the hierarchal spatial structure identified by the model. Each cluster
is represented by a circle, and each color represents a different scale. The leftmost panel shows
several building clusters (blue) within a neighborhood cluster (green). The center panel shows the
previous neighborhood cluster within one of the city clusters (orange). The right panel shows the
city clusters within one of the country clusters (red).
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Figure 2: The fraction of time spent at places for different ranks and scales. The fraction of time
rapidly decays as a function of rank, and this decay is stronger for larger scales. For example the
difference in fraction of time between the first and second top country is much larger than between
the first and second top building.
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Figure 3: The cumulative fraction of time spent for different ranks and scales (the black line at
90% is a guide for the eyes). It is possible to see how many places are needed to capture the
majority of the time: on average up to 8 buildings are needed for capturing 90% of time, but only
3-4 neighborhoods, and only 1 city and 1 country are enough.
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Figure 4: The probability of returning to the same place. It is possible to see two strong periodic
trends: one every 24 hours and one every 7 days.
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12pm-1pm is probably because typically students need to change building within the university
campus for lunch break.
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Figure 6: A quantification of exploratory behavior over the year. For each week of the year we
compute an exploration score as the number of visited places normalized by the yearly median. We
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1 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
2 The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
3 Department of Civil and Environmental Engineering and Engineering Systems,
Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, United States
of America

* ancu@dtu.dk

Abstract

Predictive models for human mobility have important applications in many fields such
as traffic control, ubiquitous computing and contextual advertisement. The predictive
performance of models in literature varies quite broadly, from as high as 93% to as low
as under 40%. In this work we investigate which factors influence the accuracy of
next-place prediction, using a high-precision location dataset of more than 400 users for
periods between 3 months and one year. We show that it is easier to achieve high
accuracy when predicting the time-bin location than when predicting the next place.
Moreover we demonstrate how the temporal and spatial resolution of the data can have
strong influence on the accuracy of prediction. Finally we uncover that the exploration
of new locations is an important factor in human mobility, and we measure that on
average 20-25% of transitions are to new places, and approx. 70% of locations are
visited only once. We discuss how these mechanisms are important factors limiting our
ability to predict human mobility.

Introduction

Billions of personal devices, ranging from in-car GPS to mobile phones and fitness
bracelets, connect us to the cloud. These ubiquitous interconnections of the physical
and the digital world are opening up a host of new opportunities for predictive mobility
models. Each user of these devices produces rich information that can help us to
capture their daily mobility routine. This core knowledge, when obtained from massive
number of individuals, impacts a wide range of areas such as health monitoring [1],
ubiquitous computing [2, 3], disaster response [4] or smart traffic management [5].

In the age of ubiquitous computing, recent contributions to mobility modeling have
flourished in computer science [6–8], transportation engineering [9, 10], geographic
information sciences [11, 12], and complexity sciences [13–15]. While these findings have
enhanced our level of understanding of mobility modeling we need further work to
tackle the problem of individual predictability.

Human mobility has been studied using a multitude of proxies (for example Call
Detail Records (CDR), GPS, WiFi, travel surveys), and a variety of techniques have
been suggested for predictive models, such as Markov chains, Naive Bayes, artificial
neural networks, time series analysis. Studies report varying results for the predictive
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power of these models, with accuracy as high as 93% and as low as under 40%. In this
paper we set out to uncover the reasons behind these differences in performance by a
thorough investigation of the factors that may influence an estimation of mobility
predictability. The key contributions of this paper are:

1. We describe the factors that have influenced the various ranges when estimating
predictability. These include: (a) Does the analysis concern the upper limit of
predictability, or actual next-place prediction? (b) What is the specific
formulation of the prediction problem? E.g. is the goal to predict the next
location, or is the goal to identify location in the next time-bin? (c) What is the
spatial resolution? E.g. is the analysis based on GPS vs. CDR data? (d) What is
the temporal resolution e.g. minutes, hours?

2. We quantify the amount of explorations and locations visited only once, and show
that these are key limiting factors in the accuracy of predictions for individual
mobility.

3. We measure the predictive power of a number of contextual features (e.g. social
proximity, time, call/SMS).

4. We study the problem of predictability of human mobility using a novel,
longitudinal, high-precision location dataset for more than 400 users.

The rest of the paper is organized as follows. We first provide an overview of related
work in the field of human mobility prediction. Next, we introduce the dataset and
describe the preprocessing steps. In the subsequent section we describe the baseline
models, and compare their performances. Finally we introduce the exploration
prediction problem and report the performance of the predictive models.

Related work

In a seminal paper Song et al. [13] investigate the limits of predictability of human
mobility, using Call Detail Records (CDR) as proxy for human movement. In their
analysis, the authors discretize location into a sequence of places, and estimate an upper
limit for the predictive performance using Fano’s inequality on the temporal entropy of
visits. Their results show that for a majority of users, this upper bound is surprisingly
high (93%). This framework has been further explored to refine the upper limit.
Specifically, Lin et al. [16] study the effects of spatial and temporal resolution on the
predictability limit, Smith et al. [17] consider the spatial reachability constraints when
selecting the next place to visit, and obtain a tighter upper bound of 81-85%, and Lu et
al. [4] analyze the predictability of the population of Haiti after the earthquake in 2010,
and show that the upper limit of predictability remains as high as 85%.

The work described above focuses on the upper limit of predictability based on
estimating the entropy of trajectories. When the topic is actual prediction performance,
some of the most studied models are Markov chains, where the probability of the next
location is assumed to depend only on the current location. Markov chains have been
applied to a variety of data sets. Lu et al. [18] applied Markov chain models to
CDR-based locations in Cote D’Ivore, with a prediction goal of estimating the last
location of the day at the prefecture (county) level. Under these conditions the models
perform extremely well, reaching an accuracy of over 90%. In [19] the authors apply the
Markov models to WiFi traces at Darthmouth campus and find that the best
performing model is order 2 and has a median accuracy of about 65− 72%. Finally,
Bapierre et al. [20] applied a variable-order Markov chain to the Reality Mining [6] and
Geolife [21] datasets.
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Another frequently used category of models is naive Bayes, where the probability of
next location is factorized as independent probabilities for a number of context variables.
Gao et al. [22] applied this approach to the Nokia Data Challenge dataset [23] using
time and location features, and obtained an accuracy of approximately 50%. Do et
al. [24] applied the same technique but used a larger number of features including also
SMS, calls and Bluetooth proximity, and obtained an accuracy of approximately 60%.
In a subsequent paper [25] the same authors then explore a kernel density estimation
approach for improving performance.

A number of more complex methods have also been explored in the literature,
including non-linear time series [26], Principal Component Analysis [27], Gaussian
Mixtures [28] and Dynamic Bayesian Networks [29].

While recent work on predictability has resulted in richer methods and incorporated
interesting new features such as social contacts, they have not deeply characterized the
intrinsic characteristics of human mobility that form the basis for the limitations in
predicting the next visited location. In this paper we focus on that aspect, showing that
in 53 weeks, individuals visit on average 200 unique locations, of which 70% of them are
visited only once. Despite most of the trips being among 30% of their recurrent
locations; the occurrence of an exploration can be predicted with at best 41% of
accuracy. Separating the two types of visited locations and improving the ways to
predict an exploration would advance the methods in this area.

Materials and Methods

Data description

In this study we analyze a dataset from the Copenhagen Network Study [30]. The
project has collected mobile sensing data from smartphones for more than 800 students
at the Technical University of Denmark (DTU). The data sources include GPS location,
Bluetooth, SMS, phone contacts, WiFi, and Facebook friendships. Data collection was
approved by the Danish Data Protection Agency, and informed consent has been
obtained for all study all participants.

For this study we focus on the location data, which is collected by the smartphone
with frequency of one sample every 15 minutes. Each location sample contains a
timestamp, a latitude and longitude, and an accuracy value. The location is determined
by the best available provider, either GPS or WiFi, with a median accuracy of ≈ 20
meters; more than 90% of the samples are reported to have an accuracy better than 40
meters. For individual participants, there may be periods missing data. These periods
can occur for various reasons, for example due to a drained battery, the phone being
switched off, the location probe being disabled, or due to software issues. Since we are
interested in reconstructing mobility histories without large gaps, we select the longest
period that has at least one sample in 90% of the 15-minutes time-bins for each
participant. Moreover we consider only participants that have at least 3 months long
period of such contiguous data. We are left with 454 users, with data collection periods
of data ranging from three months to one year. Fig. 1 shows the distribution of period
lengths.

The data is mainly concentrated in Denmark where the study takes place, but
because students use the phones during travel, the dataset spans several other countries
as well. Fig. 2 shows a map of the locations in the world (left pane) and in Denmark
(right pane).

In this work we are interested in the location prediction task. This task can be
broadly stated as follows: given your location history, how well can we predict your
future location? The specific details of how this question is implemented have a
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Fig 1. Durations for the periods of collected data for all 454 users. For each user we
select the longest period that has at least one sample in 90% of the 15-minutes
time-bins.

Fig 2. Map of recorded locations across the world (left pane) and in Denmark (right
pane). Each red marker corresponds to a location sample.

profound impact on the prediction accuracy. Below we investigate how various factors,
e.g. spatial and temporal data resolution play a role in determining the reported
accuracy for a single underlying dataset.

Because the prediction task can be stated in many different ways, we start the
discussion by analyzing different problem formulations. In terms of spatial prediction it
is possible to discretize space in grid cells, Voronoi cells or define places using a
clustering method. In terms of temporal prediction we could decide to predict a location
in the next time-bin, or within a time horizon, or as the next visited place. In this
paper we select two of the most common problem formulations: next-cell and next-place.
In the next-cell formulation we discretize space into grid cells, and we predict the cell in
the next time-bin. In the next-place formulation we detect visits to places and we
predict the next visited place. The following sections provide details on the two
alternative formulations, and show how each formulation affects the prediction task.

next-cell prediction

In the first problem formulation, we convert geographical coordinates (lon,lat) into
discrete symbols by placing a uniform grid on the map and retrieving the grid cell id
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associated with the coordinates. Specifically, we start by considering a grid of
approximate size 50 meters x 50 meters. At each timestep ∆t = 15 minutes, we convert
the current (lon,lat) into a cell id, therefore producing a sequence of symbols through
which we can represent a user’s location history. Fig. 3 illustrates the process.

Fig 3. Process for converting raw geographical coordinates into sequence of grid cells.
An approximately uniform grid is placed on the map. For each timestep, the
geographical coordinates are converted into the corresponding grid cell ID. The mobility
trace becomes the sequence of visited cell IDs.

In this formulation, the problem can be restated as follows: given your past cell
sequence up to time t, which cell will you visit at time t+ ∆t? Before trying to perform
any prediction at all, following the process suggested in [13], we calculate the theoretical
upper limit for the predictability of the cells sequence. Fig. 4 shows how the maximum
predictability for the grid cell formulation is peaked at around 0.95.

We now consider different baseline strategies for next grid cell prediction. For each
of the strategies, we perform prediction in an online manner, by training the algorithm
on the data up to timestep t, and predicting cell at timestep t+ ∆t. We measure the
accuracy as number of correct predictions over the number of total predictions.

We first consider the toploc strategy, where at each timestep we predict the most
frequent symbol in the history so far. Given the highly stationary nature of most
human mobility trajectories, we expect this simple strategy to achieve a relatively high
accuracy. Fig. 5 top panel shows the distribution of accuracies for all the users. The
accuracy of the toploc is indeed reasonable, peaking at around 0.4.

We now consider the Markov chain model. In this model, the prediction of next
state depends only on the current state. The transition probabilities between locations
are estimated based on past transitions in the location history. For making a prediction,
we then consider the transition that has the highest probability among all possible
transitions from the current cell. If the current state has never been seen before, then we
have no information about the transition probability to other states. In this case we fall
back and predict the most frequent state. Again we fit the model in an online manner,
updating at each step the transition probabilities and then making a prediction for the
next timestep. Fig. 5 middle panel shows the distribution of accuracies for all the users.
The accuracy of the Markov model is much higher than toploc, peaking at around 0.7.

Considering the highly stationary nature of typical trajectories, we hypothesize that
a significant part of the Markov prediction power in this formulation comes from
self-transitions, that is, the model predicting the user to remain in the same state as in
the previous time-bin. To test this hypothesis, we consider the stationary strategy: at
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Fig 4. Upper bound of predictability for all users for the next-cell and next-place
formulations.

Fig 5. Accuracy of the prediction in the next-cell formulation. The top panel shows
the results of the toploc strategy, that is predicting the most common location at each
step. The middle panel shows the accuracy for the Markov chain model. The bottom
panel shows the accuracy for the stationary strategy, that is predicting remaining in the
previous cell.

each step we predict that the user will remain in the current cell. Fig. 5 bottom panel
shows that the distribution of accuracies for stationary closely matches the one for
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Markov. Furthermore Fig. 6 shows how the two are very strongly correlated (Pearson’s
r = 0.993, p < 0.001). This strongly suggests that, in this formulation, most of the
Markov model power comes from self-transitions, as suspected.

Fig 6. Correlation between the accuracy for the Markov model and the stationary
model in the next-cell formulation.

We now investigate another issue related to this problem formulation. Intuitively, we
expect that the size of our spatial units will influence the accuracy of prediction.
Predicting a user’s location with the precision of few meters is intuitively much more
difficult that predicting with precision of several kilometers. In order to examine the
effect of spatial resolution, we also consider results for cell size 500 meters and 5000
meters, and apply the Markov model. Fig. 7 compares the accuracy for different spatial
resolutions. As expected the accuracy dramatically improves as the spatial size
increases.

Finally we investigate the effect of temporal resolution within this problem
formulation. Our findings above suggest that using a very fine-grained temporal
resolution will increase the number of self-transitions, thus driving up the accuracy of
the prediction that is mainly able to capture stationarity. We achieve this by
discretizing the location at 50 meters cell size, but varying the temporal time binning to
15 minutes, 30 minutes and 60 minutes, and then running the Markov model for each
scenario. Fig. 8 compares the accuracy for different temporal resolutions. As expected,
the accuracy is decreased as the time-bins grow larger due fewer self-transitions.

next-place prediction

We now consider an alternative problem formulation. Instead of predicting the cell in
the next timestep, we want to predict only when we observe a transition between places,
eliminating the possiblity of self-transitions. In order to do so, we convert the raw GPS
locations into a sequence of stops at places. A large amount of literature has been
dedicated to the problem of place detection, such as methods based on WiFi
fingerprint [31], grid clustering [32], and kernel density estimation [33].
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Fig 7. Effect of spatial granularity of the accuracy for the Markov model in the
next-cell formulation. Each panel shows the accuracy for a different spatial bin size:
50m, 500m and 5000m. Increasing the size of the spatial bins increases the accuracy
prediction.

Fig 8. Effect of temporal sampling of the accuracy for the Markov model in the
next-cell formulation. Each panel shows a different temporal bin resolution: 900s, 1800s
and 3600s. Decreasing the temporal resolution in this problem formulation increases the
accuracy, since there are more self-transitions.
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In this paper we consider the following process, based on density-based clustering
approaches such as [34–36]. Each user is treated individually. We define a “stop” as
sequence of location-observations where the user has been approximately stationary,
that is, the distance between position at time t and t+ ∆t is less than a threshold
δ = 50 meters, roughly corresponding to the GPS accuracy. This produces a sequence of
stops, each one with a centroid calculated as the median of the locations coordinates,
and a duration equal to the time between the last location and the first location sample.
In order to filter out the short stops during commute, we consider only stops with
duration greater than 15 minutes. The average number of stops per user per day is 2.89
with standard deviation 0.89.

We are now interested in grouping stops into places, where a “place” is a group of
spatially related stops representing a self-contained area such as a building. In order to
do so, we apply the DBSCAN [37] clustering to the stops in the geographical coordinate
space, using the haversine distance. We set as parameter the grouping distance ε = 50
meters, and min pts = 2. This distance threshold is set to produce places of the
approximate size of a large building. The result of the clustering is an assignment of a
cluster label to each stop, where the label represents the place that the stop belongs to.
Finally, in order avoid artifacts due to missing samples or noise, we merge multiple
consecutive stops at the same place into one. This process converts the raw location
history into a sequence of stops at places. Fig. 9 and 10 illustrate the complete process
of stop detection.

Fig 9. Extraction of stops. The sequence of location samples t1, ..., t6 are examined
sequentially, and are grouped into a stop as long as they are within a distance threshold.
In the example, t1, t2 and t3 are assigned to the first stop but t4 does not, since it too
far away. Subsequently t4, t5 and t6 are assigned to stop 2.

As example result of this process, let us consider the stops and places extracted for a
user. The sequence of stops at places can be represented as a weekly schedule capturing
the user’s movement patterns. In Fig. 11 each row represents a week from Monday to
Sunday; each place is encoded as a different color. Inspecting this visualization it
immediately possible to spot the periodic patters characterizing human mobility, such as
evening returns to the home location, and morning trips to class. We can also spot
many irregularities however, that deviate from the normal schedule: small stops, new
explorations, and day-by-day variability. Finally we can also see a large change in
routine starting week 20, where the home location changes. Each user can be
characterized by a similar plot.

The prediction task can now be re-formulated as follows: given a sequence of stops

9



Fig 10. Stops are spatially clustered into places using the DBSCAN clustering
algorithm, which groups stops according to their haversine distance. The left panel
shows all stops before the algorithm is run, and the right panel shows the assignment of
places labels, with each place represented by a different color.

up to step n, can we predict your next stop at step n+ 1? Notice that a key difference
from the cell grid formulation is that in this case there are (by definition) no
self-transitions; we are interested in the place changes only.

As before, we start by investigating the upper predictability limit bound. Fig. 4
shows how the maximum predictability for the stops formulation is peaked at 0.68,
significantly lower than what we observe in the grid cells formulation.

We now apply the two prediction strategy toploc and Markov to this new
formulation. The two models remain conceptually the same, but instead of trying to
predict the grid cell at each step, they try to predict the next stop (note that in this
formulation we cannot use the stationary strategy, as by construction we are interested
in transitions to new places). In this case we also fit each user separately, and we
perform the prediction in an online manner. Fig. 12 shows the accuracy for both models.
It is evident that the accuracy for these models (around 0.3 for toploc and 0.4 for
Markov) is significantly lower in the next-place formulation, indicating that this
problem formulation presents a more difficult task.

Importance of contextual features

We have investigated how the details of the problem formulation strongly impact the
reported accuracy for location prediction tasks. We now focus on next-place prediction
and study the influence of different contextual features on the prediction task. We
formalize the problem as follows. At each step, we want to compute the most probable
next location given the current location. We may also want to include other context
variables, such as time of the day, day of the week, call activity, or distance from home
for example. In other words we want to compute P (L̂|c1, c2, c3, ..., cn), where L̂ is the
next location, and c1, c2, cn are the variables representing different contexts. For this
purpose we use a logistic regression model, and we study the usefulness of various
predictor features. The goal of the model is not to suggest a new state-of-the-art
method, but rather to evaluate the importance of individual contextual features.
Specifically, we consider the current location, the time metadata (hour of the day, day
of the week, hour of the week, weekend), a ‘home’ binary indication, distance from
home, call and SMS activity, and Bluetooth proximity. Table 1 provides a summary of
the features.

We model each user separately since we want to perform next-place prediction at the
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Fig 11. Example of the sequence of stops from one user. Each row represents a week,
from Monday to Sunday. Each rectangle represents a stop, and its color encodes the
corresponding place. This visualization highlights the complexity of human mobility,
with a weekly schedule, periodic returns and irregularities.

individual level. As before, we perform an online prediction where we fit the data up to
step n, and we predict the next location at step n+ 1. For each user, we fit a logistic
regression model using all the individual features separately, and then a model with all
features. Fig. 13 shows the accuracy for each of the models, averaged by user.

The Markov chain model baseline is highlighted in red. Using the current location
and time features, the logistic regression model outperforms the Markov chain based
model. Even using the current location only (which is conceptually very similar to a
Markov chain model), the logistic regression shows stronger performance, likely due to
the explicit optimization of the model. It is also interesting that other context variable
such as call and SMS data have little predictive power in this model formulation. The
most complex model that considers all features is practically identical in performance to
the model using only current location and hour of the week.

Although the logistic regression model does improve the accuracy over the Markov
model, the absolute value of accuracy is remains low (below 45%). We therefore
investigate the possible reasons of this difficulty in prediction.
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Fig 12. Accuracy for the toploc and Markov models in the next-place formulation.
The accuracy in this formulation is considerably lower than in the next-cell formulation.

Fig 13. Summary of next-place prediction accuracy for all logistic regression models.
The location and time-related features are the most predictive ones, and outperform the
Markov model baseline.

Understanding the set of location states

It is well known that the majority of individuals tend to spend most of the times at very
few places such as home and work, and only sporadically visit other places. This
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feature name description
location location ID
hour hour of the day (0-23)
weekhour hour of the week (0-167)
weekday day of the week (0-6)
weekend sat/sun (1) or Mon-Fri (0)
explore before 1 if the previous stop is an exploration, 0 otherwise
explore now 1 if the current stop is an exploration, 0 otherwise
home 1 if the current stop is at the home location (most visited

place), 0 otherwise
d from home distance from the current stop to the home location
sms received 30min number of SMS received in the 30 min before the current

stop timestamp
sms sent 30min number of SMS sent in the 30 min before the current stop

timestamp
calls received 30min number of phone calls received in the 30 min before the

current stop timestamp
calls sent 30min number of phone calls sent in the 30 min before the current

stop timestamp
bt entropy 30min entropy of Bluetooth devices scanned in the 30 min before

the current stop timestamp
bt unique 30min number of unique Bluetooth devices scanned in the 30 min

before the current stop timestamp

Table 1. Description of the features used for the logistic regression models.

phenomenon has been described using concepts such as preferential return [38],
heavy-tailed stay times and return rate based on the number of visits [39]. For the
location prediction tasks, the consequence is that the target classes are very unbalanced,
which implies that most records belong to very few classes and most classes are
represented by only few records. To illustrate this issue, we consider the extreme case of
places visited only once. Fig. 14 shows that surprisingly this fraction is quite large (0.7).
This fact is, in large part, the central reason behind the difficulty of the prediction task.

As we shall see below, another central challenge is not just that our population visits
a large number of different places, but also that many new places are discovered over
time. We consider a stop at a location as “exploration” if this place has not been seen
in the location history so far for a given user. In other words, this place is being visited
for the first time by the user. To express this formally, we consider the sequence of
stops s1, s2, s3, ..., sn for each user . We consider a stop si as return (Y = 0) if si has
been seen before in the location history, that is there exists a stop sj = si for 1 ≤ j < i.
Otherwise we consider stop si an exploration (Y = 1), that is the place si is visited for
the first time at step i. For example given a location sequence A B A C B C, the target
variable exploration would have values 1 1 0 1 0 0.

We can then estimate the probability of exploration as fraction of explorations over
the number of stops. To our surprise, this probability is particularly large: between 0.2
and 0.25 (Fig. 15). This implies that most users discover a new place every 4 or 5 stops.

The fact that a large fraction of stop-locations have never been seen before poses a
challenge for the prediction task, since by construction any model that tries to predict a
place from an alphabet of previously visited places will be unable to predict new,
unseen symbols. Moreover, another consequence of this frequent exploration is that the
pool of possible places constantly grows over time and, given the longitudinal nature of
our dataset, ends up being very large. Fig. 16 shows how the average number of new
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Fig 14. For each user we measure the fraction of places visited only once. This fraction
is surprisingly large, as for each user on average 70% of the places were visited only once.

Fig 15. The probability of exploration estimated as fraction of explorations over the
number of stops per user. Surprisingly this probability is quite large, meaning that on
average users discover a new place every 4 or 5 stops.

place explored per week remains approximately constant around 4, and consequently
the total number of places keeps growing to hundreds of places (Fig. 17). This is a
problem for the prediction task, as the number of possible places that the classifier
needs to choose from increases constantly.
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Fig 16. Number of new visited (explored) places for each week, average by user.
Surprisingly, the number of explored places does not decrease over time, but remains
around 4. This highlights the highly exploring behavior of our population.

Fig 17. Cumulated number of new visited (explored) places for each week, average by
user. As consequence of the large amount of exploration, the number of possible places
to visit increases steadily over time, reaching on average almost 200 in one year.

In fact if we measure the relation between the number of unique places per user and
the performance of the best performing logistic regression model using Pearson’s
correlation coefficient, we find a quite strong negative correlation (r = −0.478,
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p < 0.001). On the other hand we find no significant correlation for accuracy with
period length or number of stops.

These facts suggest that the exploration phenomenon is a key reason for the
relatively low accuracy of mobility prediction tasks at high spatial resolution. Given the
importance of exploration, we now consider a novel task in mobility prediction:
exploration prediction.

Exploration prediction

The exploration prediction task can be stated as follows: given a user’s location history
up to step n, will the stop at step n+ 1 be an exploration or a return?

The first question is: what should be the baseline model for the exploration
prediction task? Surprisingly, most literature on human mobility prediction has focused
on next location prediction but has overlooked the exploration prediction problem, and
to the best of our knowledge no suitable solution has been proposed for this task. We
therefore suggest, as a reasonable baseline, random guessing with probability equal to
our prior knowledge of the fraction of explorations: P (exploration) ≈ 0.2.

For our main model we use as before the logistic regression model with the same
features constructed for the next place prediction model. We also add two additional
features: explore now and explore before, which capture if the current stop or the
previous stops were explorations, respectively. The intuition for these is that multiple
explorations may occur in a row, and therefore the current exploration may increase the
likelihood for an exploration at the next stop. As before, we fit each individual
separately, and we perform an online prediction, that fits based on the data up to step
n, and predicts exploration at step n+ 1. We fit one logistic regression model for each
of the single features, and a more complex model with all the features at once.

Measuring the performance of these models requires a few considerations. In this
case, the classification problem is imbalanced, that is the number of positive cases
(exploration) is much smaller than negative cases (return), as shown in Fig. 15. This
implies that accuracy is therefore not a good metric, since a classifier predicting always
return (the most probable class) would have good performance, but would not be useful.
Instead we employ the f1 score, which is the harmonic mean of precision (the fraction of
correctly predicted explorations over all predicted explorations) and recall (the fraction
of correctly predicted explorations over all true explorations). Fig. 18 shows the results
of the exploration prediction.

As we would expect, the model with the most complete set of features outperforms
the others. Among the single feature models, perhaps not surprisingly, the current
location feature has the best performance. This finding can be explained by the role of
some places as “gateways” for exploration such as public transport hubs (e.g. central
train station). The individual features that perform also well are the time-related ones,
in agreement with the intuition that exploration tends to happen to at specific times of
the day or week. The explore now and explore before also perform well, suggesting an
element of burstiness in the exploratory behavior. If we consider our best performing
model, we find that it has average precision of 0.3 and recall of 0.65. Overall the
performance of this model is far from perfect, showing that the exploration prediction
problem is a challenging one.

Discussion

In this paper we first show that when interpreting results of predictive performance
there are a number of factors that must be taken into consideration. The problem
formulation is the central factor what should be taken into account when interpreting
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Fig 18. Exploration prediction: f1 score for all models.

predictability results, since e.g. predicting the next time-bin is a very different (and
much easier) task than predicting the next transition. We show that the most
challenging problem is the next-place prediction, which is arguably the most useful task
for practical applications such as travel recommendations. Another issue to be taken
into account is the spatial resolution of the prediction, here we show how more coarse
spatial precision results in an easier task. Similarly the time resolution also has an effect
on the predictive power. We suggest that the factors described in this paper should be
taken in consideration as context when comparing results from prediction models.

Other than the factors discussed above, we believe that one further reason for
performance differences could be the demographics of the dataset. The population
under study is here composed by students that have no single workplace but tend to
change multiple classes per week, even multiple times per day. Moreover a younger
population may have a more irregular schedule and more exploratory behavior.
Certainly more work is needed to conclusively link demographics and predictability. For
future directions, we suggest considering demographic factors when trying to
characterize human mobility, as it has been done, for example, by linking changes in
mobility patterns with unemployment status [40].

We also discussed the issue of exploration, and we show how frequently new places
are discovered. Based on that, we show that the mechanism of exploration is an
important part of human mobility and plays a role in next-place prediction. Because
any model that tries to predict a next place from a set of visited place will fail when an
exploration occurs. This problem has rarely been addressed in mobility prediction
literature, which almost always assumes that the next place can be determined from the
past history. Providing a full solution for next explored place prediction is beyond the
scope of this work, and here we simply aim to stress the fact that the prediction of
explorations is very different from the predictions to returns to known places. Some
previous work on next-place prediction using social information [28,29] or nearby Points
Of Interest [41] may be the starting point for investigating this problem.

In this sense, we raise the question on whether the simple location history is enough
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for accurate next-place prediction. As we have discussed, there are indeed a lot of
regularities both in the sequence of visits, and in the daily and weekly temporal
patterns of visitation. However there are a lot of “exceptions to the rules”, where
schedules change, plans are canceled, and people run late. We speculate that other
channels such as email, social media, calendar, class schedule may be needed for
achieving a satisfying accuracy in the prediction task.
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Lessons from a Week-long Survey for the Extraction of Human Mobility Motifs
Related Information. In: Proceedings of the 2nd ACM SIGKDD International
Workshop on Urban Computing. ACM; 2013. p. 3.

16. Lin M, Hsu WJ, Lee ZQ. Predictability of Individuals’ Mobility with
High-resolution Positioning Data. In: Proceedings of the 2012 ACM Conference
on Ubiquitous Computing. ACM; 2012. p. 381–390.

17. Smith G, Wieser R, Goulding J, Barrack D. A Refined Limit on the
Predictability of Human Mobility. In: Pervasive Computing and Communications
(PerCom), 2014 IEEE International Conference on. IEEE; 2014. p. 88–94.

18. Lu X, Wetter E, Bharti N, Tatem AJ, Bengtsson L. Approaching the Limit of
Predictability in Human Mobility. Scientific Reports. 2013;3.

19. Song L, Kotz D, Jain R, He X. Evaluating Next-cell Predictors with Extensive
Wi-fi Mobility Data. Mobile Computing, IEEE Transactions on.
2006;5(12):1633–1649.

20. Bapierre H, Groh G, Theiner S. A Variable Order Markov Model Approach for
Mobility Prediction. Pervasive Computing. 2011; p. 8–16.

21. Zheng Y, Xie X, Ma WY. GeoLife: A Collaborative Social Networking Service
among User, Location and Trajectory. IEEE Data Eng Bull. 2010;33(2):32–39.

22. Gao H, Tang J, Liu H. Mobile Location Prediction in Spatio-temporal Context.
In: Nokia Mobile Data Challenge Workshop. vol. 41; 2012. p. 44.

23. Laurila JK, Gatica-Perez D, Aad I, Bornet O, Do TMT, Dousse O, et al. The
Mobile Data Challenge: Big Data for Mobile Computing Research. In: Pervasive
Computing. EPFL-CONF-192489; 2012.

24. Do TMT, Gatica-Perez D. Contextual Conditional Models for Smartphone-based
Human Mobility Prediction. In: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing. ACM; 2012. p. 163–172.

25. Do TMT, Dousse O, Miettinen M, Gatica-Perez D. A Probabilistic Kernel
Method for Human Mobility Prediction with Smartphones. Pervasive and Mobile
Computing. 2015;20:13–28.

26. Scellato S, Musolesi M, Mascolo C, Latora V, Campbell AT. Nextplace: A
Spatio-temporal Prediction Framework for Pervasive Systems. In: Pervasive
Computing. Springer; 2011. p. 152–169.

27. Sadilek A, Krumm J. Far Out: Predicting Long-Term Human Mobility. In:
AAAI; 2012.

19



28. Cho E, Myers SA, Leskovec J. Friendship and Mobility: User Movement in
Location-based Social Networks. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM; 2011.
p. 1082–1090.

29. Sadilek A, Kautz H, Bigham JP. Finding Your Friends and Following Them to
Where You Are. In: Proceedings of the fifth ACM International Conference on
Web Search and Data Mining. ACM; 2012. p. 723–732.

30. Stopczynski A, Sekara V, Sapiezynski P, Cuttone A, Madsen MM, Larsen JE,
et al. Measuring Large-scale Social Networks with High Resolution. PloS one.
2014;9(4):e95978.

31. Kang JH, Welbourne W, Stewart B, Borriello G. Extracting Places from Traces of
Locations. In: Proceedings of the 2nd ACM International workshop on Wireless
mobile applications and services on WLAN hotspots. ACM; 2004. p. 110–118.

32. Zheng VW, Zheng Y, Xie X, Yang Q. Collaborative Location and Activity
Recommendations with GPS History Data. In: Proceedings of the 19th
International Conference on World Wide Web. ACM; 2010. p. 1029–1038.

33. Thierry B, Chaix B, Kestens Y. Detecting Activity Locations from Raw Gps
Data: A Novel Kernel-based Algorithm. International Journal of Health
Geographics. 2013;12(1):1.

34. Zhou C, Frankowski D, Ludford P, Shekhar S, Terveen L. Discovering Personally
Meaningful Places: An Interactive Clustering Approach. ACM Transactions on
Information Systems (TOIS). 2007;25(3):12.

35. Zheng Y, Zhang L, Xie X, Ma WY. Mining Interesting Locations and Travel
Sequences from GPS Trajectories. In: Proceedings of the 18th International
Conference on World Wide Web. ACM; 2009. p. 791–800.

36. Montoliu R, Gatica-Perez D. Discovering Human Places of Interest from
Multimodal Mobile Phone Data. In: Proceedings of the 9th International
Conference on Mobile and Ubiquitous Multimedia. ACM; 2010. p. 12.

37. Ester M, Kriegel HP, Sander J, Xu X. A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. AAAI Press; 1996. p. 226–231.

38. Song C, Koren T, Wang P, Barabási AL. Modelling the Scaling Properties of
Human Mobility. Nature Physics. 2010;6(10):818–823.

39. Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding Individual Human
Mobility Patterns. Nature. 2008;453(7196):779–782.

40. Toole JL, Lin YR, Muehlegger E, Shoag D, González MC, Lazer D. Tracking
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