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A Bayesian Inference Approach to Unveil Supply

Curves in Electricity Markets
Lesia Mitridati, Pierre Pinson, Senior Member, IEEE

Abstract—With increased competition in wholesale electricity
markets, the need for new decision-making tools for strategic pro-
ducers has arisen. Optimal bidding strategies have traditionally
been modeled as stochastic profit maximization problems. How-
ever, for producers with non-negligible market power, modeling
the interactions with rival participants is fundamental. This can
be achieved through equilibrium and hierarchical optimization
models. The efficiency of these methods relies on the strategic
producer’s ability to model rival participants’ behavior and
supply curve. But a substantial gap remains in the literature
on modeling this uncertainty. In this study we introduce a
Bayesian inference approach to reveal the aggregate supply curve
in a day-ahead electricity market. The proposed algorithm relies
on Markov Chain Monte Carlo and Sequential Monte Carlo
methods. The major appeal of this approach is that it provides
a complete model of the uncertainty of the aggregate supply
curve, through an estimate of its posterior distribution. We show
on a small case study that we are able to reveal accurately
the aggregate supply curve with no prior information on rival
participants. Finally we show how this piece of information can
be used by a price-maker producer in order to devise an optimal
bidding strategy.

Index Terms—Bayesian inference, Sequential Monte Carlo,
Markov Chain Monte Carlo, Strategic bidding

NOMENCLATURE

Indexes

d Index for days (d = 1, ..., D)
h Index for hours (h = 1, ..., H)
w Index for wind producers (w = 1, ...,W )
g Index for market participants (g = 1, ..., G)
b Index for generation blocks (b = 1, ..., B)
m Index for Markov Chain Monte Carlo iterations

(m = 1, ...,M)
i Index for Sequential Monte Carlo particles (i =

1, ..., N)

Market Clearing Variables and Parameters

λ
spot
d,h Spot price at hour h of day d, in e/MWh

Pg,d,h Power output of market participant g at hour h of

day d, in MWh

Pw,d,h Power output of wind producer w at hour h of

day d, in MWh
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P g,d,h Offered quantity of market participant g at hour

h of day d, in MWh

Pw,d,h Wind power available from producer w at hour h

of day d, in MWh

Ld,h Electricity load at hour h of day d, in MWh

SFg,d,h Supply function of market participant g at hour h

of day d, in e/MWh

αg,d,h Supply function parameter of market participant

g at hour h of day d, in e/MWh2

βg,d,h Supply function parameter of market participant

g at hour h of day d, in e/MWh

Rg Ramp-up limit of market participant g, in MWh

P g Maximum power output of market participant g,

in MWh

Hidden Markov Model States and Parameters

Λb,d Random vector of latent states of generation block

b in day d

Λd Random vector of latent states of all generation

blocks in day d

Yd Random vector of observable states in day d

Θ Random vector of static model parameters

µb,θ(.) Initial density of the latent states Λb,1:D

fb,θ(.) Transition function of the latent states Λb,1:D

µθ(.) Initial density of the latent states Λ1:D

fθ(.) Transition function of the latent states Λ1:D

Lθ(.) Observations likelihood

π(.) Prior density of the static parameters Θ

Markov Chain Monte Carlo Algorithm Notations

M0 Number of burn-in iterations

q (.) Proposal density

α (.) Acceptance probability

K (.) Markov chain transition kernel

Sequential Monte Carlo Algorithm Notations

q (.) Importance function

w
(i)
d Normalized importance weight of the particle λ

(i)
d

Ai
d Ancestral index of the particle λ

(i)
d

p̂(.) Monte Carlo approximation of target density p(.)

I. INTRODUCTION

THE liberalization of the power sector has led to the

development of wholesale electricity markets. However,

high levels of market concentration and oligopolistic condi-

tions still prevail in various countries [1]. Additionally, due to
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the technical characteristics of the electricity supply industry,

market power is only imperfectly correlated with concentration

measures and can be exercised by small firms during peak

hours [2], [3]. Ref. [4] and [5] present an overview of market

power issues in various countries, and market designs to mit-

igate them. In particular, over the last decade regulators have

focused on monitoring competition behaviors, and increasing

market data transparency [6], [7].

In electricity markets, producers with non-negligible market

power bid a supply function that deviates form their true

marginal cost in order to can increase their profit [8], [9]. The

issue of optimal bidding for strategic producers has tradition-

ally been addressed in the literature as a profit maximization

problem under uncertainty. The authors in [10] modeled the

optimal bidding strategy of a producer on a wholesale market

as a robust optimization problem, introducing uncertainty in

market prices through confidence intervals. And, in [11] the

strategic offering of a wind power producer, for different risk

preferences, is formulated as a two-stage stochastic optimiza-

tion problem. Uncertainty in wind production, day-ahead and

real-time prices is introduced through a finite number of sce-

narios. However, for participants with non-negligible market

power, modeling the uncertainty of rival participants’ behav-

ior is essential. Novel approaches relying on game theory,

agent-based models [12], [13], equilibrium and hierarchical

optimization [14] enable us to design decision-making tools

modeling the interactions between rival participants.

A recently published work introduced a stochastic multi-

layer agent-based model of electricity markets, accounting

for uncertainty of rival participants’ behavior [15]. Ref. [16]

used evolutionary games and near Nash equilibrium to model

competition in electricity markets and predict local marginal

prices. Additionally, the authors in [17] implemented the

agent-based reasoning through a Dynamic Bayesian Network

(DBN) representation and proposed an online Bayesian learn-

ing algorithm to predict loads and Residual Demand Curves

(RDC). As discussed in [18], RDCs are commonly employed

to model and predict the behavior of rival participants. Based

on observed or predicted aggregate demand and supply curves,

each agent builds its individual RDC and optimal bidding

strategy. Finally, the authors in [19]–[22] formulated the

optimal bidding strategy of a price-maker wind producer in the

day-ahead and balancing markets as a stochastic hierarchical

optimization problem. In this model the market clearing is

explicitly formulated as a constraint of the producer’s profit

maximization problem. This approach showed a significant im-

provement in bidding performances, provided that an accurate

description of the aggregate supply curve in the electricity

market is available. Similarly, complementarity theory can

be used to model the optimal dispatch of combined heat

and power plants in sequential heat and electricity markets

[23]. This literature provides useful insight on the strategic

behavior of market participants in oligopolistic markets. The

efficiency of these methods relies on an accurate modeling of

uncertainty sources. The issue of wind production, spot prices

and load forecasting has been extensively addressed in the

literature [24]. However, a gap remains in the description of

the probability density of the aggregate supply curve.

The aforementioned studies suggest that a model for predict-

ing the aggregate supply curve in an electricity market is a key

piece of information for strategic producers to make informed

decisions. Ref. [25] introduced the bid function equilibrium

model, predicting supply curves of participants in an electricity

market based on available data on their marginal costs. The

predictions of this model were validated in a study comparing

the theoretical results to historical bids submitted to the British

spot market [26]. Additionally, the authors in [27] reviewed

two methods for aggregate supply curves prediction based

on principal component analysis and reduced rank regression,

using data on past supply curves. Finally, as discussed in [28]

the RealScen model is an integrated tool that collects and

analysis historic market participants’ bids data, and generates

realistic bids scenarios using artificial neural networks, support

vector models and simple average methods. Combined with

agent-based [12] or complementarity models of electricity

markets, the RealScen provides a powerful decision-making

tool for strategic producers.

However, information on rival participants’ historic bids or

marginal costs is seldom available due to market operators’

confidentiality policies. This type of information is valuable

for both electricity producers to design optimal bidding strate-

gies, and market regulators to monitor competition behaviors

[4]–[7]. To the best of our knowledge, only one paper proposed

a method for inferring these bids based on available market

data [29]. Rival participants’ offering bids on an electricity

market are revealed using an inverse optimization problem.

This approach provides an accurate estimation of the marginal

cost of each participant, provided the dispatched production of

each generation block and all the generators’ technical charac-

teristics are perfectly known. In practice these assumptions are

quite restrictive. Additionally, this approach does not provide

a model of the uncertainty of the offering bids.

That is why we propose a more flexible method, allowing

us to reveal the aggregate supply curve in an electricity market

solely based on historic market data. Bayesian inference

enables us to update our prior belief on the unknown states of

the system, e.g. supply curves, as new information is acquired

through the observed states. Since exact inference methods,

such as the exact expectation-maximization algorithm, are

often computationally intractable (see [30] and [31]), we focus

on approximate stochastic inference methods, such as Markov

Chain Monte Carlo (MCMC) [32]–[35] and Sequential Monte

Carlo (SMC) [36]–[40] algorithms. The aim of stochastic

inference algorithms is to iteratively build a large sample,

approximately distributed according to the distribution of in-

terest. These methods provide a description of the uncertainty

of the unknown states, through an estimate of their posterior

distribution, from which it is easy to sample. That is why

they have found applications in various research fields, such

as finance [41], multi-target tracking [42] and meteorology

[43], [44].

In view of the state-of-the-art described above, the contri-

butions of this paper are threefold:

• We model electricity market mechanisms using a Hidden

Markov Model (HMM). The net aggregate supply curve

is modeled as the hidden states of the system, and spot
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prices and total electricity traded as the observed states

[30], [45], [46]. The hidden states and observations are

modeled as random variables and the HMM provides a

graphical representation of the conditional dependences

between these variables. This model provides a natural

framework for a Bayesian inference approach.

• We present a novel algorithm to approximate the posterior

distribution of the aggregate supply curve in a day-

ahead electricity market, conditionally on observations

on spot prices and total electricity traded. The proposed

algorithm relies on classical MCMC and SMC algorithms

developed in the literature [47]. Our main contribution is

to introduce a simulation-based SMC approximation of

the traditional Gibbs sampler algorithm.

• We show the accuracy of the proposed algorithm on a

modified version of the IEEE 24-bus system. As informa-

tion on real supply curves is not available, we randomly

generate offering bids and clear the day-ahead market

over the thirty-day simulation period. The market out-

comes are used as inputs for the inference problem. This

way we can test the proposed algorithm in a controlled

environment and compare the outputs to the simulated

supply curves.

The structure of this paper is the following. Section II

introduces the problem and its formulation as a Bayesian

inference problem. The proposed Bayesian inference algorithm

is detailed in Section III. In Section IV we implement the

proposed algorithm on a modified version of the IEEE 24-bus

system and discuss the results. Finally, Section V concludes

the paper and gathers perspectives regarding future works.

II. INFERENCE PROBLEM FORMULATION

In this section, we introduce a novel HMM formulation of a

market clearing mechanism and we formulate mathematically

the supply curve inference problem. The proposed inference

algorithm and its implementation are further detailed in Sec-

tions III and IV.

A. Electricity Market Clearing Mechanism

We consider a strategic producer participating in a day-

ahead electricity market. We propose a market clearing model

similar to European electricity markets. Participants submit

their offers to the market operator for each hour of the

following day. They can place two types of offers: single

hourly or block orders, linking different hours of the day.

As a large majority of the energy is traded through single

hourly orders we neglect block orders [48]. For single hourly

orders, each participant bids a combination of prices and

quantities, represented by its supply function SFg,d,h (Pg,d,h).
In oligopolistic markets, strategic producers can increase their

profit by bidding a supply function that deviates form their true

marginal cost. We adopt a Linear Supply Function Equilibrium

(LSFE) model [49], such that

SFg,d,h (Pg,d,h) = αg,d,hPg,d,h + βg,d,h. (1)

Wind producers are assumed to offer their production at zero

marginal cost. Finally, producers can exercise their strategic

behavior by curtailing some of their production, i.e. by altering

their offered quantity P g,d,h.

Since in practice the competition on the demand side is

fairly limited, we assume a completely inelastic demand. It is

important to note that this market modeling assumption does

not result in any loss of generality in the proposed inference

algorithm. Indeed, we are only interested in inferring the

aggregate supply curve based on observations on spot prices

and total electricity traded. These observations can be thought

of as the intersection points between the demand and supply

curves. Hence, assumptions on the shape of the demand curve

do not influence the inference algorithm.

Finally, we neglect transmission constraints, ramping limits

and unit commitment variables because we focus on a Euro-

pean market. As a result, the market clearing for a specific

day d can be formulated as

min.
Ωd

∑

g,h

(αg,d,hPg,d,h + βg,d,h)Pg,d,h (2a)

s.t.
∑

g

Pg,d,h +
∑

w

Pw,d,h = Ld,h ∀h : λspot
d,h (2b)

0 ≤ Pg,d,h ≤ P g,d,h ∀g, h (2c)

0 ≤ Pw,d,h ≤ Pw,d,h ∀w, h (2d)

where Ωd = {Pg,d,h, Pw,d,h : ∀g, w, h}. The objective of this

convex optimization problem is to minimize the production

cost in (2a), subject to power balance equations (2b), and

power output limits (2c)-(2d). As a result, the spot prices λ
spot
d,h

are the dual variables of the power balance equations.

B. Bayesian Inference Framework

The supply functions of individual participants in the day-

ahead electricity market and the resulting aggregate supply

curve are not usually disclosed by the market operator. Our

aim is to reveal the historic aggregate supply curve, based on

publicly available information. In practice market data may

vary depending on the transparency policies of specific market

operators. For instance, in [29] it is assumed that spot prices

and dispatched production of each market participant can be

observed. However, this assumption limits the applicability of

the proposed method. That is why we consider that only spot

prices and total electricity traded are disclosed. The market

clearing mechanism described in Section II-A can be modeled

as a factorial HMM. In this approach the parameters of the

net aggregate supply curve, such as price parameters αg,d,h

and βg,d,h or offered production P g,d,h, can be modeled as

the hidden states of the system, and the spot prices and total

electricity traded as the observed states [30], [45], [46].

We can distinguish two applications. In the most general

case, no information is available on individual market partic-

ipants. We can then adopt a LSFE model for the aggregate

supply curve, such that

SFb,d,h (Pb,d,h) = αb,d,hPb,d,h + βb,d,h ∀b. (3)

Note that the generation blocks b are of arbitrary size (e.g.

10 MW) and do not necessarily represent individual market

participants. As a result, we can model the price parame-

ters of the aggregate supply function, αb,d,h and βb,d,h, as
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hidden variables. Furthermore, if more information on the

technical characteristics of market participants is available,

such as maximum power output and ramping limits, we can

model the price parameters of the individual supply function

SFg,d,h (Pg,d,h) and the offered production P g,d,h as hidden

variables. However, this is not included in the scope of our

study.

We consider for now that no information on individual

generators is available. Fig. 1 shows the structure of the

proposed HMM. Each generation block b fixes its price

ℒ� �� �� ℒ� ��+� ����

��,� ������ ����

���� ������ ����

… …

Latent states

(block 1)

Latent states

(block b)

Observations

	��� = ��	�

	�
� � ����

	���� � ������

	
���� � �
����

�� � �� ���� � ����

�� ���� ��	� � �� 	��� � ����

Fig. 1. HMM structure of the market clearing mechanism

parameters vector λb,d = [αb,d,h, βb,d,h : h = 1, ..., 24] for a

specific day d. The hidden variables λb,d are modeled as

random vectors, denoted Λb,d. Each generation block b updates

its offer from one day to the following, using a so-called

introspection process. It is not required for us to know the

nature of this introspection process. We model the stochastic

process Λb,1:D = {Λb,d : d = 1, ..., D} as a first-order Markov

process. Our prior knowledge of the latent states and the

introspection process is summarized by the initial density

µb,θ (λb,1) = P (Λb,1 = λb,1 | Θ = θ) , (4)

and transition function

fb,θ (λb,d+1 | λb,d)

= P (Λb,d+1 = λb,d+1 | Λb,d = λb,d,Θ = θ) .
(5)

The transition function and initial density also depend on a set

of static model parameters. These parameters are also assumed

unknown and modeled as a random vector Θ. The prior density

π(θ) = P (Θ = θ) represents our prior knowledge of these

parameters.

As we are interested in inferring the aggregate supply

curve rather than the individual supply curves of rival par-

ticipants, we consider directly the collated random vectors

Λd = [Λb,d : b = 1, ..., B] and the stochastic process Λ1:D =
{Λd : d = 1, ..., D}, taking values in Φ ⊆ R

2HBD , modeling

the aggregate latent states of all generation blocks. As partic-

ipants cannot observe the bids of their rivals, the stochastic

processes Λb,1:D are assumed mutually independent. As a

result, the stochastic process Λ1:D is a Markov process and our

prior knowledge of the aggregate latent states is summarized

by the initial density and transition function










µθ (λ1) =
∏

b

µb,θ (λb,1) ,

fθ (λd+1 | λd) =
∏

b

fb,θ (λb,d+1 | λb,d) .
(6)

The realizations of the stochastic process Λ1:D can not be

observed directly, however we can refine our prior knowledge

through observations of the spot prices and electricity loads,

denoted for simplicity yd =
[

λ
spot
d,h , Ld,h : h = 1, ..., 24

]

. In

HMMs these observed states are also modeled as random vec-

tors Yd and assumed conditionally independent given the latent

states. Hence, the observations’ likelihood can be expressed as

Lθ (yd | λd)

= P (Yd = yd | Λ1:D = λ1:D, Y1:d−1 = y1:d−1,Θ = θ)

= P (Yd = yd | Λd = λd,Θ = θ) .

(7)

Our aim is to infer the posterior density of the latent states

and parameters conditionally on the observations over the

selected period d = 1, ..., D,

p (λ1:D, θ | y1:D) = P (Λ1:D = λ1:D,Θ = θ | Y1:D = y1:D) .

(8)

III. BAYESIAN INFERENCE ALGORITHM

In this section, we propose a novel states and parameters

inference algorithm, targeting the posterior density of the

aggregate supply curve by iterative sampling. We first present

in Section III-A a general Gibbs sampler algorithm. We then

introduce in Section III-B a novel simulation-based SMC

approximation of the tradition Gibbs sampler and detail the

proposed algorithm in Section III-C. The implementation of

thi algorithm is further detailed in Section IV-B.

A. Gibbs Sampler

As the target density p (λ1:D, θ | y1:D) is unknown, it is

not possible to sample directly from it. But Bayes’ formula

provides an expression of the posterior density in function

of the observations’ likelihood and prior density, up to a

normalizing constant,

p (λ1:D, θ | y1:D)

∝ π (θ)µθ (λ1)

D
∏

d=1

Lθ (yd | λd) fθ (λd+1 | λd) ,
(9)

where ∝ represents the proportionality operator. In that case,

Markov Chain Monte Carlo (MCMC) methods allow us to

approximate this target density by generating a correlated

sequence of samples
{

λ
(m)
1:D , θ(m) : m = 1, ...,M

}

using a

Markov process [32]–[34]. That is, at each iteration (m+ 1)
the updated values are drawn from a Markov transition kernel

K
(

λ
(m+1)
1:D , θ(m+1) | λ

(m)
1:D , θ(m)

)

, from which it is easy to

sample. If this transition kernel satisfies the detailed balance

condition, the Markov chain will admit the target density as

stationary distribution [34]. Hence, after a transient phase,

the realized states
{

λ
(m)
1:D , θ(m) : m = M0, ...,M

}

will mimic

samples drawn from the target density.

MCMC methods mainly rely on the Metropolis-Hastings

(MH) algorithm [50]. At iteration (m+ 1) the MH update



0885-8950 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2757980, IEEE
Transactions on Power Systems

5

involves drawing a candidate value from a proposal den-

sity q
(

λ∗

1:D, θ∗ | λ
(m)
1:D , θ(m)

)

. The candidate is accepted with

probability

α
(

λ∗

1:D, θ∗ | λ
(m)
1:D , θ(m)

)

= min



1,
p (λ∗

1:D, θ∗ | y1:D) q
(

λ
(m)
1:D , θ(m) | λ∗

1:D, θ∗
)

p
(

λ
(m)
1:D , θ(m) | y1:D

)

q
(

λ∗

1:D, θ∗ | λ
(m)
1:D , θ(m)

)



 ,

(10)

otherwise the Markov chain remains at λ
(m+1)
1:D = λ

(m)
1:D and

θ(m+1) = θ(m). Although the target density is unknown,

based on Bayes’ formula (9) we can express it up to a

normalizing constant and compute the acceptance ratio in (10).

By construction the transition kernel of this Markov chain

satisfies the detailed balance equation and the MH algorithm

admits p (λ1:D, θ | y1:D) as stationary distribution. As a result,

under weak assumptions on the proposal density, asymptotic

convergence is guaranteed [34].

However, in high-dimensional problems such as this one,

designing an efficient proposal density function is a difficult

task. For that reason, we implement the Gibbs sampler al-

gorithm. It is a special case of the MH algorithm, for which

the parameters and latent states are updated alternatively using

their posterior densities as proposal densities [51], such that

θ(m) ∼ p
(

. | λ
(m−1)
1:D , y1:D

)

, (11a)

λ
(m)
1:D ∼ p

(

. | y1:D, θ(m)
)

. (11b)

It results from (10) that the acceptance probability in the Gibbs

sampler is always equal to one.

The Gibbs sampler is a O(dΦ) algorithm, which can become

computationally challenging when the dimension of the prob-

lem (dΦ = 2BDH) grows [35]. Finally, in most cases it is

easy to sample directly from p
(

θ | λ
(m−1)
1:D , y1:D

)

. Assuming

that we can sample from p
(

λ1:D | y1:D, θ(m)
)

, the Gibbs

sampler algorithm builds iteratively a sequence of samples
{

λ
(m)
1:D , θ(m) : m = M0, ...,M

}

approximately distributed ac-

cording to the target density.

B. Sequential Monte Carlo Approximation

For a given value θ(m) of the parameters it is gen-

erally not possible to sample directly from the posterior

density p
(

λ1:D | y1:D, θ(m)
)

. The authors in [47] suggest

approximating it using a Sequential Monte Carlo (SMC)

algorithm. The general idea behind SMC algorithms is to

build iteratively a large cloud of equally-weighted particles
{

λ
(i)
1:D : i = 1, ..., N

}

approximately distributed according to

the posterior density p
(

λ1:D | y1:D, θ(m)
)

[37]–[40].

For that, we divide the task by sequentially approximating

the densities p
(

λ1:d | y1:d, θ(m)
)

for d = 1, ..., D. At each

step d, we consider the cloud of equally-weighted particles

{

λ
(i)
1:d : i = 1, ..., N

}

approximately distributed according to

the density of interest p
(

λ1:d | y1:d, θ(m)
)

. The factorization

p
(

λ1:d+1 | y1:d+1, θ
(m)

)

∝ p
(

λ1:d | y1:d, θ
(m)

)

fθ(m) (λd+1 | λd)Lθ(m) (yd+1 | λd+1)

(12)

suggests propagating each particle λ
(i)
1:d to the following day

using an importance sampling-resampling mechanism. N off-

spring particles λ̃
(i)
d+1 are sampled from a so-called impor-

tance function q
(

λ̃
(i)
d+1 | λ

(i)
d , yd+1, θ

(m)
)

, and then resampled

based on their relative importance weights,

w
(i)
d+1 ∝

p
(

λ
(i)
1:d, λ̃

(i)
d+1, y1:d+1 | θ(m)

)

p
(

λ
(i)
1:d, y1:d | θ(m)

)

q
(

λ̃
(i)
d+1 | λ

(i)
d , yd+1, θ(m)

)

∝
fθ(m)

(

λ̃
(i)
d+1 | λ

(i)
d

)

Lθ(m)

(

yd+1 | λ̃
(i)
d+1

)

q
(

λ̃
(i)
d+1 | λ

(i)
d , yd+1, θ(m)

) .

(13)

At the resampling step, N particles λ
(i)
d+1 are drawn from

the weighted sample
{

λ̃
(i)
d+1 : i = 1, ..., N

}

. The resampling

mechanism implemented in this study is further detailed in

Appendix A. The resampling step is a bottleneck of the SMC

algorithm but the authors in [52] proposed an efficient stratified

resampling algorithm that takes O (N).
The resampled cloud of N equally-weighted parti-

cles
{

λ
(i)
1:d+1 : i = 1, ..., N

}

is now considered approxi-

mately distributed according to the probability density

p
(

λ1:d+1 | y1:d+1, θ
(m)

)

and propagated to the following step.

The appeal of this approach is that it provides an estimator of

the posterior density from which it is easy to sample,

p̂
(

λ1:D | y1:D, θ(m)
)

=
1

N

N
∑

i=1

δ
(

λ
(i)
1:D − λ1:D

)

, (14)

where δ(.) represents the Dirac delta function.

However, Ref. [47] showed that an approximate Gibbs

sampler, updating the states λ
(m+1)
1:D by sampling from this

Monte Carlo estimator does not admit the target density

p (λ1:D, θ | y1:D) as stationary distribution. Instead, it is nec-

essary to use a conditional SMC algorithm to approximate

the posterior density p
(

λ1:D | y1:D, θ(m)
)

at each iteration

m ≥ 1. The particles
{

λ
(i)
1:D : i = 1, ..., N

}

are generated

conditionally on the reference trajectory λ
(m−1)
1:D , associated

with the ancestral lineage Am−1
1:D . The conditioning on the

reference trajectory is implemented by ensuring that this path

survives all the sampling and resampling steps and generating

the remaining N − 1 particles the usual way. Informally, the

introduction of a reference trajectory can be thought of as

guiding the sampled particles to a relevant region of the space.

In practice, it ensures that the transition kernel leaves the target

distribution invariant for any number of particles N ≥ 2 [53].

Additionally, the importance function has a great influence

on the accuracy of SMC algorithms. It is usually recommended
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to set the posterior density p
(

λd+1 | λd, yd+1, θ
(m)

)

as impor-

tance function [47]. As it is not possible to sample directly

from the posterior density, we use the transition function

of the latent Markov chain fθ(m)

(

λ̃d+1 | λd

)

as importance

function. As a result, the importance weights defined in (13)

only depend on the observations’ likelihood

w
(i)
d+1 ∝ Lθ(m)

(

yd+1 | λ̃
(i)
d+1

)

. (15)

This method relies on the assumption that the observations’

likelihood Lθ(m) is known and can be computed pointwise. In

our model Lθ(m) is difficult to express analytically due to the

complex HMM structure. And designing a very uninformative

likelihood function would reduce the efficiency of the resam-

pling step in the SMC algorithm. Another solution, inspired by

[43], [44], is to simulate for each particle λ̃
(i)
d+1 a theoretical

market outcome y
(i)
d+1 =

[

λ
spot(i)
d+1,h , L

(i)
d+1,h : ∀w, g, h

]

using

the market clearing model in Section II-A. This way, we can

define the observations’ likelihood and importance weights

in function of the simulated markets outcomes. Additionally,

since power balance L
(i)
d+1,h = Ld+1,h is enforced for each

particle, we can express the importance weights only in

function of the observed and simulated spot prices without

loss of generality, such that

w
(i)
d+1 ∝ Lθ(m)

(

λ
spot
d+1 | λ

spot(i)
d+1

)

. (16)

The conditional SMC algorithm described above is detailed in

Algorithm 1.

C. Particle Gibbs Sampler

Based on the Gibbs sampler and the conditional SMC

algorithm described above, we propose a so-called Particle

Gibbs Sampler (PGS) targeting the joint posterior density

p (λ1:D, θ | y1:D). At each iteration m ≥ 1, the parameters are

updated using their posterior density p
(

θ(m) | λ
(m−1)
1:D , y1:D

)

as importance function. A conditional SMC algorithm

(Algorithm 1) is run to generate a cloud of particles
{

λ
(i)
1:D : i = 1, ...N

}

approximately distributed according to

the posterior density p
(

λ1:D | y1:D, θ(m)
)

. The latent states

are updated by sampling from the Monte Carlo estimator

defined in (14). In practice this is realized by sampling an

index i0 from the discrete uniform distribution U{1, N} and

setting the states λ
(m)
1:D = λ

(i0)
1:D , associated with the ancestral

lineage Am
1:D = Ai0

1:D . The PGS described above is detailed

in Algorithm 2.

IV. CASE STUDY: INFERRING THE AGGREGATE SUPPLY

CURVE

Data on rival participants’ real supply functions is not avail-

able. As a result we build the case study by simulating rival

participants bids and day-ahead market clearing over thirty

days. That way, we can apply the proposed inference method

in a controlled environment and assess its performance. Based

on the observations on spot prices and total electricity traded,

we try to infer the aggregate supply curve of this system. We

then compare the outputs of the inference algorithm to the

assumed data.

Algorithm 1 Conditional SMC algorithm at iteration m ≥ 1

Let λ
(m−1)
1:D be the reference path, associated with the

ancestral lineage Am−1
1:D

for d = 1 do

For i 6= Am−1
1 , sample the N − 1 particles λ̃

(i)
1 ∼

µθ(m) (.)

For i = Am−1
1 , set the particle λ̃

(i)
1 = λ

(m−1)
1

Simulate a market clearing for each particle λ̃
(i)
1 and

compute the theoretical market outcomes y
(i)
1

Compute the importance weights w
(i)
1 for all particles

For i 6= Am−1
1 , resample the N − 1 particles λ

(i)
1 and

their ancestral indexes Ai
1 from the weighted sample

{

λ̃
(i)
1 : i = 1, ..., N

}

For i = Am−1
1 , set the resampled particle λ

(i)
1 = λ

(m−1)
1

and Ai
1 = Am−1

1

end for

for d = 2, ..., D do

For i 6= Am−1
d , sample the N − 1 particles λ̃

(i)
d ∼

fθ(m)

(

. | λ
(i)
d−1

)

For i = Am−1
d , set the particle λ̃

(i)
d = λ

(m−1)
d

Simulate a market clearing for each particle λ̃
(i)
d and

compute the theoretical market outcomes y
(i)
d

Compute the importance weights w
(i)
d for all particles

For i 6= Am−1
d , resample the N − 1 particles λ

(i)
d and

their ancestral indexes Ai
d from the weighted sample

{

λ̃
(i)
d : i = d, ..., N

}

For i = Am−1
d , set the resampled particle λ

(Bd)
d =

λ
(m−1)
d and Ai

d = Am−1
d

Set λ
(i)
1:d =

{

λ
(Ai

d)
1:d−1, λ

(i)
d

}

and Ai
1:d =

{

A
Ai

d

1:d−1, A
i
d

}

end for

Algorithm 2 Particle Gibbs Sampler

Set arbitrary the initial parameters θ(0), states λ
(0)
1:D and

ancestral lineage A0
1:D

for m = 1, ...,M do

Sample the updated value of the parameters θ from their

posterior density: θ(m) ∼ p
(

. | λ
(m−1)
1:D , y1:D

)

Run a conditional SMC algorithm targeting the posterior

density p
(

λ1:D | y1:D, θ(m)
)

, conditionally on the refer-

ence path λ
(m−1)
1:D associated with the ancestral lineage

Am−1
1:D (Algorithm 1)

Sample the updated value of the latent states from the

Monte Carlo approximation: λ
(m)
1:D ∼ p̂

(

. | y1:D, θ(m)
)

(the ancestral lineage Am
1:D is also implicitly sampled)

end for
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A. Case Study Setup

We consider a modified version of the IEEE 24-bus system

as presented in [54], with twelve thermal generators, and six

wind farms of 200 MW each. The technical characteristics of

the participants are collated in Table I in Appendix B. We gen-

erate randomly the supply curves of each market participant

by sampling for each hour of the thirty-day simulation period

from the normal distributions






αg,d,h ∼ N
(

µα0
g
, σ2

α0
g

)

∀d, h,

βg,d,h ∼ N
(

µβ0
g
, σ2

β0
g

)

∀d, h.
(17)

The mean values and standard deviations of these Normal

distributions are collated in Table I in Appendix B. Fig. 2

shows the simulated price parameters for each participant, as

well as the median, upper and lower quartiles. In addition, we
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(a) Price parameters αg,d,h bids (median, upper and lower quartiles)
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Fig. 2. Case Study Setup: Price parameters bids over the simulation period
(30 days)

consider that market participants are not strategic in quantities,

and offer their maximum available production, such that

P g,d,h+1 = min
{

P g,d,h +Rg, P g

}

∀d, h. (18)

Fig. 3 shows the resulting aggregate supply curves for each

hour of the simulation period.

We use the load profile data provided in [54] and introduce

load factors for three representative days: base day, shoulder
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Fig. 3. [Simulated hourly aggregate supply curves and average supply curve
over the simulation period (30 days)

day and peak day and generate randomly the load profiles

for thirty days. As we assumed a European market framework

without transmission constraints, we can aggregate the loads at

each bus. In addition, we use historic wind production factors

from Nord Pool. Finally, using this data we simulate a market

clearing over thirty days. Fig. 4 shows the load profiles, total

wind production, and spot prices over the simulation period.
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Fig. 4. Case Study Setup: Market clearing simulation results
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B. Implementation of the PGS Algorithm

We now assume that spot prices and total electricity traded

on the market for each hour of the simulation period are

directly available from market data. In addition, wind pro-

duction over the simulation period can easily be estimated

using historical meteorological data. Our goal is to estimate the

posterior distribution of the aggregate supply curve, divided

into B = 10 generation blocks of 210 MW each.

Our prior knowledge on the latent states αb,1:D and βb,1:D

is characterized by their prior densities. There is no systematic

approach in the literature to select prior densities. When

no information is available, it is recommended to set an

uninformative prior density that covers the whole range of

possible values. For each generation block b, we model the

initial density and transition function of the Markov chain

αb,1:D as independent Normal distributions
{

αb,1 | µαb
, σαb

∼ N (Mαb
,Σαb

) ,

αb,d+1 | αb,d, σαb
∼ N (αb,d,Σαb

) ∀d,
(19)

where Σαb
= σ2

αb
I24 is the covariance matrix and Mαb

=
[µαb

: h = 1, ..., 24] the mean vector. In addition, the static

parameters µαb
and hαb

= 1
σ2
αb

are also considered unknown.

A standard scheme in the literature is to use an independent

Normal-Gamma prior to describe them, such that
{

µαb
∼ N (mαb

, Vαb
) ,

hαb
∼ Γ (aαb

, bαb
) ,

(20)

where aαb
is the shape parameter and bαb

the inverse scale

parameter. By analogy, we define Normal initial densities and

transition functions for the latent states βb,1:D, and Normal-

Gamma prior densities for the static model parameters µβb

and hβb
.

We select the hyperparameters of the prior densities

mβ = [10.0, 11.7, 13.3, 15.0, 16.7, 18.3, 20.0, 21.7, 23.3, 25.0] ,

mαb
= 0.001, Vαb

= 0.001, Vβb
= 100, aβb

= bβb
= 10−4,

aαb
= 0.1 and bαb

= 5 for all the generation blocks. Fig. 5

shows the initial guess on the average aggregate supply curve,

such that SFb (Pb) = mαb
P 2
b +mβb

Pb.
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Fig. 5. Initial guess on the average supply curve: SFb (Pb) = mαb
P 2

b
+

mβb
Pb

As explained in Section III-B, the observations’ likelihood

is defined in function of the simulated spot prices λ̂
spot(i)
d . For

simplicity we assume a Normal distribution

λ
spot
d | λ

spot(i)
d ,Σspot ∼ N

(

λ
spot(i)
d ,Σspot

)

(21)

where Σspot = σspot2I24 is the covariance matrix. We set

arbitrary σspot = 2.

At each Gibbs iteration m, we update the static parameters’

posterior densities based on the expression of the observations’

likelihood and prior densities, such that
{

µ
(m)
αb | y1:D, h

(m−1)
αb ∼ N

(

m̄αb
, V̄αb

)

h
(m)
αb

| y1:D, µ
(m)
αb

∼ Γ
(

āαb
, b̄αb

)

(22)

where






























1
V̄αb

= 1
Vαb

+ h
(m−1)
αb ,

m̄αb
= V̄αb

(

mαb

Vαb

+ h
(m−1)
αb

α
(m−1)
b,1

)

,

āαb
= aαb

+ D
2 ,

b̄αb
= bαb

+

(

α
(m−1)
b,1 −µ(m)

αb

)2
+
∑T

t=2

(

α
(m−1)
b,t

−α
(m−1)
b,t−1

)2

2 .

(23)

As suggested in the literature, an adequate number of

particles for the SMC algorithm is N = 2000. Although

MH and Gibbs sampler algorithms are guarantied to con-

verge asymptotically, at a given iteration m there is no clear

indication on whether they have converged. Providing tight

bounds for the convergence rate of these algorithms can be

challenging but the authors in [55]–[57] showed that under

mild assumptions the convergence rate is polynomial in the

dimension of the problem. Additionally, various diagnostic

tools can be applied to the outputs of the algorithm to assess its

convergence [58], [59]. As we implement the proposed PGS

algorithm in a controlled environment, we empirically choose

M = 200 iterations to achieve convergence.

C. Results

We implemented this algorithm in Python 3.5, using Gurobi

7.0.2 solver, on a Processor Intel Core i5-6200U CPU @ 2.30
GHz (8.00 GB RAM). The CPU time for each SMC iteration

is 9.15 seconds. The total execution time of the algorithm

depends on the mixing rate of the Markov chain.

After a transient phase (M0 = 100) the correlated sequence
{

λ
(m)
1:D , θ(m) : m = M0, ...,M

}

is considered approximately

distributed according to the target density p (λ1:D, θ | y1:D).

Fig. 6 shows the MCMC states of the static parameters µ
(m)
αg

and µ
(m)
βg

for m = M0, ...,M . Additionally, the estimated

values of the static price parameters are collated in Table II

in Appendix B. These values can not directly be compared

to the true price parameters of the participants. But, Fig. 7

shows the resulting estimated aggregate supply curve and the

2σ confidence interval, based on the estimated static price

parameters. This shows that the proposed algorithm is able

to approximate the aggregate supply curve with no prior

information on rival participants. However, few observations

are available for net loads lower than 420 MWh and higher

than 1850 MWh, i.e. the market participants in this region

of the aggregate supply curve are rarely marginal. As a

result, these regions of the aggregtae supply curve can not

be estimated accurately.

As previously discussed, the proposed algorithm provides

accurate information on the historic aggregate supply curve,
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(a) Static price parameters µαg
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(b) Static price parameters µβg

Fig. 6. MCMC states of the static parameters (median, upper and lower
quartiles)
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Fig. 7. Case study 1: Estimated aggregate supply curve and 2σ confidence
interval

which is a valuable input for supply function prediction tools

relying on multi-agent-based models and neural networks

[12], [17], [27]. Additionally, the accuracy of hierarchical

optimization approaches presented in [19]–[21], [23], relies

on the ability to generate accurate scenarios of the aggregate

supply curve. As a result, the description of the uncertainty

through its posterior density, is a key piece of information for

strategic producers.

V. CONCLUSION

The Particle Gibbs Sampler algorithm proposed in this paper

provides a complete model of the uncertainty of the aggregate

supply curve, through an estimate of its posterior probability

density. We showed on a modified version of the IEEE 24-bus

system that this method allows us to accurately approximate

the aggregate supply curve with no prior information on rival

participants. These results provide valuable inputs for supply

function prediction tools, and decision-making problems under

uncertainty. Additionally, for regulators this approach can be

useful to monitor market power and competition behaviors in

electricity markets.

This work opens up various opportunities for future re-

search. First, the model proposed in this paper can be gen-

eralized to accommodate different market frameworks by

adapting the market clearing mechanism in Section II. In

particular, it is possible to study unit commitment problems by

including network and operational constraints. In that setting,

the technical characteristics of the generators, can be treated

as unknown static parameters and their posterior density can

be estimated as well. Additionally, this study focuses on

inferring the aggregate supply curve. A natural extension to

this work is to estimate the individual supply curves of rival

participants. Competition in quantity can be introduced by

modeling quantities offered to the market as latent states.

Furthermore, as previously discussed, the computational

complexity and convergence rates is a major limitation for im-

plementing SMC and MCMC algorithms to high-dimensional

inference problems. Ref. [32] presents various methods for

improving the convergence rate of MH and Gibbs sampler

algorithms. Additionally, certain steps of the algorithm, such

as sampling and resampling, can easily be parallelized. Al-

ternative inference methods could also be investigated to

address this issue. It is sometime suggested that combining

deterministic and stochastic inference techniques, also called

Rao-Blackwellisation, can improve greatly the computational

time of MCMC algorithms [60]. Similarly, methods combining

variational approximation and MCMC could allow improving

convergence speed of standard MCMC algorithms [61]. Fi-

nally, the method proposed in this paper can be generalized

by investigating nonparametric Bayesian inference methods,

allowing us to reduce the number of assumptions on the

underlying states and parameters [62].

APPENDIX A: STRATIFIED RESAMPLING ALGORITHM

In order to mitigate the variance introduced by standard

multinomial resampling, we implement a stratified resampling

mechanism [63]. We sample N independent random variables

from the uniform distributions

u(i) ∼ U

(

i− 1

N
,
i

N

]

for i = 1, ..., N. (24)

We then define the ancestral indexes Ai
d+1 = j and the

resampled particles λ
(i)
d+1 = λ̃

(j)
d+1, such that

j−1
∑

k=1

w
(k)
d+1 < u(i) ≤

j
∑

k=1

w
(k)
d+1. (25)
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As a result, this resampling mechanism allows the particles

with the lowest importance weights to be resampled at most

once.

APPENDIX B: CASE STUDY DETAILED PARAMETERS AND

RESULTS

TABLE I
CASE STUDY SETUP: GENERATION UNITS PARAMETERS

g1 g2 g3 g4 g5 g6

P g 100 100 200 200 300 300

Rg 20 20 60 80 80 180

µβ0
g

4.5 5.5 7.6 8.5 9.2 10.9

σβ0
g

0.2 0.2 0.5 0.5 0.7 0.7

µα0
g

0.002 0.002 0.005 0.005 0.005 0.005

σα0
g

0.0005 0.0005 0.0005 0.0005 0.001 0.001

g7 g8 g9 g10 g11 g12

P g 200 200 250 250 100 100

Rg 20 20 60 80 80 180

µβ0
g

13.3 15.1 17.1 20.7 22.5 26.1

σβ0
g

1.0 1.0 1.0 1.5 1.5 2.0

µα0
g

0.007 0.007 0.01 0.01 0.015 0.02

σα0
g

0.001 0.001 0.0015 0.0015 0.0015 0.002

TABLE II
CASE STUDY: ESTIMATED POSTERIOR DENSITY OF THE AGGREGATE

SUPPLY CURVE

b1 b2 b3 b4 b5
µ̂βb

6.35 10.33 8.43 8.93 9.92

σ̂βb
4.02 1.92 2.41 1.41 2.64

µ̂αb
0.01438 0.00246 0.00440 0.00660 0.01067

σ̂αg 0.00154 0.00035 0.00088 0.00089 0.00138

b6 b7 b8 b9 b10
µ̂βb

13.19 16.01 19.79 22.20 29.05

σ̂βb
3.78 2.72 3.15 3.17 3.90

µ̂αb
0.00865 0.01077 0.00517 0.00792 0.01040

σ̂αb
0.00095 0.00197 0.00071 0.00100 0.00116
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[63] R. Douc and O. Cappé, “Comparison of resampling schemes for particle
filtering,” in Proc. 4th Int. Symp. Image and Signal Process. and Anal.

(ISPA). IEEE, 2005, pp. 64–69.

Lesia Mitridati received the Master degree in Sci-
ence and Executive Engineering from Mines Paris-
Tech, France, in 2015. She is currently pursuing
the Ph.D. degree at the department of Electrical
Engineering of the Technical University of Denmark
(DTU). Her research interests include electricity
markets, multi-energy systems, decision making un-
der uncertainty and game theory.

Pierre Pinson (M11-SM13) received the M.Sc. de-
gree in applied mathematics from the National Insti-
tute for Applied Sciences (INSA Toulouse, France)
and the Ph.D. degree in energetics from Ecole des
Mines de Paris (France). He is a Professor at the
Technical University of Denmark (DTU), Centre for
Electric Power and Energy, Department of Electri-
cal Engineering, also heading a group focusing on
Energy Analytics & Markets. His research inter-
ests include among others forecasting, uncertainty
estimation, optimization under uncertainty, decision

sciences, and renewable energies. He acts as an Editor for the International
Journal of Forecasting, and for Wind Energy.


