Clustering on baseline clinical variables identifies subgroups of type 2 diabetes patients with different rate of progression over 18 months: a DIRECT study

Brorsson, Caroline Anna; Pedersen, H. Krogh; Gudmundsdottir, Valborg; Mari, A.; Kurbasic, A.; Vinuela, A.; Fernandez, J.; Mahajan, A.; Gupta, R.; Dermitzakis, E.

Published in:
Diabetologia

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
OP 45 Classifying diabetes

249 Clustering of diabetes into novel subgroups provides improved prediction of outcome
E. Ahlvist¹, A. Käräjämäki², M. Martinti³, P. Storm¹, M. Dorkhan¹, P. Vikman¹, R.B. Prasad¹, D. Mansour Aly¹, N. Shaat¹, E. Lindholm¹, T. Tuomilehto¹,⁵, A.H. Rosengren¹, L. Groop¹,⁴,⁵, A. Mari⁴, A. Sebastian², A. Mari², A. Kurkki², A. Viinuela⁴, J. Fernandez³, A. Mahajan⁵, R. Gupta¹, E. Demirtzakis⁶, M. MacCarthy⁵, P. Franks⁵, E. Pearson⁶, S. Brunak¹,², for the DIRECT Consortium;
¹Department of Bioinformatics, Technical University of Denmark, Lyngby, Denmark, ²Institute of Neuroscience - National Research Council, Padova, Italy, ³Lund University, Malmö, Sweden, ⁴University of Geneva, Geneva, Switzerland, ⁵University of Oxford, Oxford, ⁶University of Dundee, Dundee, UK, ⁷University of Copenhagen, Copenhagen, Denmark.

Background and aims: Type 2 diabetes is characterized by a heterogeneous presentation with varying degrees of insulin resistance and β-cell failure. Taking advantage of the detailed clinical information collected for type 2 diabetes patients included in the DIRECT study, our aim was to characterize inter-individual heterogeneity and identify subgroups with different presentations of diabetic phenotypes at baseline, and investigate the effect on the rate of progression during follow-up. Genotyping data was used to evaluate genetic differences between subgroups.

Materials and methods: 836 newly diagnosed individuals were enrolled in the DIRECT study. The clustering was based on 20 clinical variables from the baseline visit consisting of anthropometric, biochemical and glycaemic modeling variables. We clustered the individuals using an unsupervised, agglomerative clustering method. Diabetes progression was assessed using individual HbA1c slopes obtained from a conditional linear mixed-model using data at 0, 9 and 18 month adjusted for weight, diabetes medication and baseline HbA1c. An extra time-varying covariate defined to be 1 at baseline and zero for all other visits was introduced to account for presence of effect from baseline to subsequent visits. Linear regression models with cluster membership as predictor was used to calculate effect, 95% CI and p-values for differences between subgroups. A genetic risk score (GRS) was calculated from the cumulative number of risk alleles of 65 published GWAS SNPs for type 2 diabetes.

Results: Full clinical data was available for 790 individuals. We identified three major patient subgroups that differed significantly in regards to their baseline characteristics. The three groups could broadly be described as insulin resistant (IR), β-cell deficient (βD), and mixed. The most significant difference was seen in insulin sensitivity (ln(Matsuda), beta (95% CI): Mixed= -0.61 (-0.68- -0.55), p=9.9*10⁻⁴⁵; IR= -1.3 (-1.3- -1.2), p=4.9*10⁻⁰⁵) compared to the βD group, but also insulin secretion, C-peptide, BMI, basal glucose, triglycerides and ALT (p=10⁻¹⁶). The IR group was treated with significantly more metformin compared to the βD group (% maximum dose: IR= 5.13 (1.79-8.47), p=0.003). Investigating the rate of progression in HbA1c between baseline and 18 months showed that the IR group had the fastest progression compared to the βD group, which had the slowest progression (change in HbA1c (mmol/mol)/year: IR=0.77 (0.32-1.22), p=0.0008). There was no difference for the GRS constructed of 65 GWAS SNPs.

Conclusion: We have demonstrated that the newly diagnosed type 2 diabetes cohort from DIRECT has a heterogeneous presentation of their diabetic phenotype at baseline. Clustering identified three major subgroups, driven by their level of insulin resistance-related traits. The subgroups showed differences in their rate of progression over 18 months with the insulin resistant group showing the fastest progression.

Supported by: IMJ Joint Undertaking n° 115317, FP7/2007-2013 and EFPIA companies in kind
Disclosure: C.A. Brorsson: None.

250 Clustering on baseline clinical variables identifies subgroups of type 2 diabetes patients with different rate of progression over 18 months: a DIRECT study
C.A. Brorsson¹, H. Krogh Pedersen¹, V. Gudmundsdottir¹, A. Mari², A. Kurkki², A. Viinuela³, J. Fernandez³, A. Mahajan⁵, R. Gupta¹, E. Misra¹, A. Sebastian², X. Liu², L. Lupak¹, E.L. Williams¹, D.G. Johnston², N.S. Oliver²
¹Metabolic Medicine, Imperial College Healthcare NHS Trust, ²Metabolic Medicine, Imperial College London, London, UK.

Background and aims: Pancreatic autoantibody status may be used as a biomarker to differentiate diabetes subtype. Single antibody positivity in individuals presenting at older age has uncertain significance, but has not been