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Abstract 

Stimuli-responsive polymers are macromolecules that undergo a significant change in conformation 

and interactions in response to an external stimulus such as temperature and addition of salts. The 

applications of these materials are numerous ranging from biomedical applications to fabrication of 

smart surfaces. The present PhD thesis deals with understanding the fundamentals and mechanisms, 

which control the physiochemical properties of stimuli-responsive polymers in aqueous saline 

solutions. The whole study can be divided into two sections: (i) polymers in bulk solution and (ii) 

polymers adsorbed/grafted to a solid/aqueous interface. The first research approach comprises of 

three subprojects mainly concerned with understanding the mechanisms through which the salts can 

affect the polymer stability in solution, an effect that is widely known as the Hofmeister effect. The 

second research approach includes two subprojects that address adsorption and behavior of homo- 

and copolymers at solid/aqueous interfaces. Besides understanding the fundamentals of polymer 

properties at the interfaces, this part aims to indicate how changing the structure of the polymers or 

addition of salts can affect the structure of the polymer layer. The experimental methods that have 

been used in this project can also be divided into bulk-related and surface-related measurements. 

Differential scanning calorimetry was used in order to obtain the phase transition temperature of the 

polymer solutions, as well as thermodynamics of the transition. Dynamic light scattering was 

employed to assess the hydrodynamic size of the polymer coils and interchain aggregates. To study 

adsorption, hydration and conformation of the polymers at the solid/aqueous interfaces, quartz 

crystal microbalance with dissipation monitoring was used. Ultimately, atomic force microscopy 

imaging and colloidal probe measurements were conducted to study the topography of the polymer 

layers and the interactions between the polymer-coated surfaces.  

  



ii 
 

Abstrakt 

Stimuli-responsive polymerer er makromolekyler, der undergår en signifikant ændring i struktur og 

interaktioner som response på et eksternt stimulus, såsom temperatur og tilsætning af salte. 

Anvendelserne af disse materialer er talrige og rækker lige fra biomedicinske applikationer til 

fremstilling af ”smarte” overflader. Denne ph.d.-afhandling beskæftiger sig med de grundlæggende 

mekanismer, der styrer de fysiokemiske egenskaber ved stimuli-responsive polymerer i vandige 

saltopløsninger. Undersøgelsen kan opdeles i to sektioner: (i) polymerer i opløsning og (ii) 

polymerer adsorberet eller vedhæftet til en fast overflade. Den første sektion består af tre 

delprojekter, der hovedsageligt omhandler forståelsen af de mekanismer, hvormed saltene kan 

påvirke polymerstabiliteten i opløsning, en effekt, der bredt er kendt som Hofmeister-effekten. Den 

anden sektion omfatter to delprojekter, der adresserer adsorption og opførsel af homo- og 

copolymerer som er vedhæftet en fast overflade. Ud over at undersøge de grundlæggende 

polymeregenskaber ved grænseflader, sigter denne del på at angive, hvordan ændring af den 

kemiske struktur af polymererne eller tilsætning af salte kan påvirke den fysiske struktur af et 

polymerlag. De eksperimentelle metoder, der er blevet anvendt i dette projekt, kan også opdeles i 

”bulk”-relaterede og overfladerelaterede metoder. Differentiel scanningskalorimetri blev anvendt til 

bestemmelse af faseovergangstemperaturen af polymeropløsningerne såvel som bestemmelse af 

andre termodynamiske parametre for faseadskillelsen. Dynamisk lysspredning blev anvendt til at 

bestemme den hydrodynamiske størrelse af polymerskæderne og eventuel aggregering af 

polymererne. For at studere adsorption, hydrering og struktur af polymererne ved de faste 

overflader blev en resonansteknik kaldet QCM-D anvendt. Atomkraftmikroskopi blev anvendt for 

at studere topografien af polymerlag samt interaktionerne mellem polymeroverflader.  
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* The schematic illustration describes the various types of materials that are related to the phase behavior of macromolecules in bulk solution and at 

aqueous interfaces.[1]  
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This thesis aims to present and discuss some fundamental aspects of stimuli-responsive 

polymers stability in the aqueous saline solutions, which I have investigated during my PhD studies. 

The provided knowledge can be of great importance, both from a fundamental and a practical point 

of view. Understanding the underlying mechanisms that control the macromolecular stability in the 

aqueous solution can shed light on the role of these entities in various biological systems, as well as 

enabling us to control their properties more effectively for multiple applications such as drug 

delivery or fabrication of smart surfaces. The major part of my studies were dedicated to 

investigating the behavior of thermo-responsive polymers in saline solutions, in order to understand 

how different ions affect the polymer solubility and properties in water, an effect that is widely 

recognized as the Hofmeister effect. My research objective was to assess how each existing 

component in the solution can contribute to the Hofmeister effect, as well as testing the validity of 

the previously reported mechanisms. As another part of my investigations, though in the same line 

with the first part, I inspected the properties of polymers at gold/aqueous and silica/aqueous 

interfaces, in terms of the polymer conformation and interactions in saline and salt-free solutions. 

The work conducted during my PhD studies has resulted in six papers, which form the backbone of 

this thesis.  

In the first paper, I investigated the Hofmeister effect of salt mixtures on the stability and phase 

separation of poly(propylene oxide) (PPO). The main objective of this study was to understand the 

specific-ion effects when a mixture of two different salts is present. There were two primary reasons 

behind this study. First, to assess the previously reported mechanisms for the Hofmeister effect of 

weakly- and strongly-hydrated anions, which could successfully explain the effects of single salts in 

solution. In addition, I wanted to investigate the Hofmeister effect under a condition that is more 

similar to the physiological and biological systems. For instance, various diseases and disorders in 

human body have been attributed to the ions present in the body fluids and their corresponding 
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Hofmeister effects on the biomacromolecules such as proteins. Nevertheless, in body fluids, one 

could always find a mixture of different ions not just a single entity. With this in mind, I 

systematically investigated the behavior of three basic salt mixtures, i.e., mixture of two salts with a 

salting-out effect (destabilizer), two salts with a salting-in effect (stabilizer), and one salt with a 

salting-out and the other with a salting-in effect.   

In the second paper, I inquired the role of polymer properties on the Hofmeister effect. For a given 

polymer, various parameters such as the molecular weight can affect the phase separation of the 

polymer solution. Interestingly, in almost all the previously reported studies on the Hofmeister 

effect in polymer solutions, the effect of varying salt type or salt concentration have been studied on 

a particular polymer. My experimental approach was to fix the salt type, then see how the 

corresponding Hofmeister effect can be affected by changing the polymer molecular weight and 

concentration in the solution. In this case, the Hofmeister effect of two salts (one salting-in and one 

salting-out) was studied on PPO with four different molecular weights and at two different polymer 

concentrations. 

By this point, I examined the role of ions and polymer properties in the Hofmeister effect. In the 

third paper, I aimed to study how changing the solvent properties can affect the Hofmeister effect. 

Therefore, the polymer and the salt entities were fixed and the Hofmeister effect was assessed in 

light (H2O) and heavy (D2O) water in parallel. Due to the more restricted atomic vibrations, the 

hydrogen bonding strength in heavy water is roughly 5% stronger compared to in light water; 

hence, one can investigate the effect of solvent perturbation on the ions hydration, as well the 

polymer hydration.  

In the fourth paper, I investigated the Hofmeister effect of three different salts on Poly(N-

isopropylacrylamide) (PNIPAM) in bulk solution and at the gold/aqueous interface. This extensive 
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study helped me to perceive how different salts can affect the conformation of PNIPAM, as well as 

the interactions between PNIPAM-covered gold surfaces. In particular, I wanted to better 

understand the ion-specific effects by weakly hydrated anions. As reported in the literature, such 

anions preferentially accumulate at the polymer surface; nevertheless, it has been less discussed 

how the accumulated anions give rise to polymer stabilization. Herein, I closely characterized the 

following effects by a strongly hydrated anion, i.e. fluoride (F-) and two weakly hydrated anions, 

i.e., thiocyanate (SCN-) and trichloroacetate (TCA-) on PNIPAM conformation and interactions.  

In the fifth paper, I scrutinized the properties of two cationic block copolymers at the silica/aqueous 

interface. The story behind this research work was to more closely examine the adsorption of 

polymers at the solid/aqueous interfaces, which was partly addressed in my fourth paper. The only 

difference between the two copolymers was that one included an additional hydrophilic PEG block, 

which indeed affirmed to have significant effects on the copolymer adsorption, structure and 

interactions at the surface. Therefore, the results were directed towards suggesting how one can tune 

the properties at the interface and obtain more homogenous polymer layers through modification of 

the copolymer structure.  

At last, my sixth paper is devoted to review what I have learned and what I have investigated during 

my PhD studies. The first part of the review paper deals with the essential mechanisms that have 

been formerly suggested to explain the Hofmeister effect in polymer solutions. This indeed covers 

different models and theories ranging from molecular descriptions to macroscopic thermodynamic 

explanations that I have perused in the literature. The second part of the review paper includes my 

personal opinions and suggestions about the future research on the Hofmeister effect in polymer 

solutions, which indeed are the topics that I have partly addressed during my PhD studies, but 

surely require further excavation and scrutiny.  
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After concisely introducing the outline and outcome of my PhD studies, I will discuss the 

theoretical and experimental facets of my work in the coming sections. In section two, I will 

provide the background knowledge about physicochemical aspects of thermo-responsive polymers 

in salt-free and saline solutions, both in bulk state and at solid/aqueous interfaces. This section 

encompasses the underlying knowledge about polymer physics, phase separation mechanisms, 

polymers at solid interfaces, specific ion effects in water, Hofmeister effect in polymer solutions, 

and finally surface forces between polymer-covered substrates. These topics are not illustrated in 

details in the attached papers, thus the following section can be served as a basis for understanding 

the findings and discussions provided in my papers. The third section is dedicated to the 

experimental methods that I have employed during my PhD projects. This section presents a basic 

introduction to each method and then describes how the experiments were performed and analyzed. 

In addition, some experimental procedures, e.g. preparation of colloidal probes for the AFM 

measurements, are not explained in details in the papers, thus are elucidated here. In section four, I 

will discuss the most notable findings and conclusions of each of my papers. Combination of all 

these results together can surely provide a better understanding of the obtained knowledge and the 

relation between my studies.  
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In this background section, I will provide the essential knowledge and principles of the 

investigated systems. Although most of the topics are briefly highlighted in the attached papers, a 

concise recapitulation is necessary for a better grasp and interpretation of my results. The section 

begins with a rather basic description of the behavior and properties of polymers, from physical and 

thermodynamical viewpoints. This will be useful to perceive better the principles of polymer 

mixing and phase transition. Next, I will discuss the hydration, thermo-responsivity, and phase 

separation of polymers in aqueous solution in terms of the molecular interactions. Together with the 

polymer physics approach, this can render a deeper insight into different aspects of polymer 

solutions, before digging into the more complex systems that contain ions as well. I will then bring 

up some important facets of polymers behavior at the solid/aqueous interfaces, which can be useful 

for interpretation of my fourth and fifth papers. After being acquainted with the behavior of 

polymers in water, I will propound the specific-ion effects on polymers solution stability. In this 

case, a succinct but essential description of the hydration of ions is first provided; afterwards, the 

most important mechanisms through which the ions can affect the polymer stability are illustrated. I 

will complete this section with some essential discussion about surface forces existing between 

polymer-covered surfaces, which are relevant to my studies on polymers behavior at the 

solid/aqueous interfaces.   

2.1. Physical polymer science  

Several terms such as polymer chain conformation, phase separation, miscibility, phase boundary, 

lower critical solution temperature, radius of gyration, random coil conformation, etc., are 

repeatedly used in this thesis to describe different aspects of polymers behavior and properties. 

Since these terms indeed form the basis of my research, I first provide some relevant basic 

knowledge that mostly comes from a branch of polymer science known as polymer physics. For a 
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more detailed description of the enclosed topics, I would like to refer you to “Introduction to 

Polymer Physics” by L. H. Sperling, which indeed is one of the most interesting sources for digging 

into general physical polymer science. For a deeper understanding of the physical behavior of 

polymers at interfaces, I strongly encourage you to have a look at “Polymers at Interfaces” by G. J. 

Fleer et al.            

2.1.1. Molecular weight and conformation  

Polymers are large chain-like molecules of varying molecular weights ranging from a few 

thousands to millions; hence, they are generally referred to as the macromolecules.[2-4] An 

individual polymer chain is composed of numerous repeating subunits, which are recognized as the 

monomers or building blocks. Unlike small molecules, all common synthetic polymers as well as 

most natural polymers possess a distribution in their molecular weight, meaning that one can find 

polymer chains of different length and sizes in the same sample. Accordingly, the average 

molecular weights and the molecular weight distribution were introduced. The number-average 

molecular weight (Mn) and the weight-average molecular weight (Mw) are defined as:  

𝑀𝑛 =
∑ 𝑁𝑖𝑀𝑖𝑖

∑ 𝑁𝑖𝑖
 

𝑀𝑤 =
∑ 𝑁𝑖𝑀𝑖

2
𝑖

∑ 𝑁𝑖𝑖 𝑀𝑖
 

Herein, Ni is the number of the polymer chains with the molecular weight of Mi. The molecular 

weight characterization is actually the first consideration before any investigation on any polymer. 

The typical molecular weight distribution of a copolymer, which was partly studied during one of 

my PhD studies, is depicted in Figure 2.1. 
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Figure 2.1 The molecular weight distribution of a synthesized copolymer partly investigated during my PhD studies, 

which is obtained from the asymmetric flow field-flow fractionation (AFFFF) measurements.[5]    

The molecular weight distribution can be assessed by different techniques such as gel permeation 

chromatography (GPC) and asymmetric flow field-flow fractionation (AFFFF). As shown in Figure 

2.1, Mn is usually found to be near the distribution peak maximum, while Mw is always larger than 

Mn. The ratio of these two (Mw / Mn) indicates the molecular weight distribution and is considered as 

the polydispersity index (PDI), which strongly depends on the employed polymerization method 

and conditions. For my investigations, a narrow molecular weight distribution or in other words a 

PDI value close to unity was always desired, since the presence of extremely short or long polymer 

chains could have additional effects on the overall polymer properties and solubility.[6, 7] 

 

Figure 2.2 Some examples of random coil conformation. The random coil term merely refers to spatial arrangement of 

the polymer segments with no preferred orientation.    
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The other fundamental property of a polymer chain is its conformation in space, which represents 

different spatial arrangements that the polymer chain can adopt through rotations about its single 

bonds.[8-10] There are many possible conformations for a polymer chain, e.g. stretched zigzag, 

helical, globular, and random coil. I should underline that these are just the principal types of 

polymer conformations, which differ significantly in their spatial arrangement and properties, while 

almost none of them refer to a specific conformational structure. The random coil conformation, 

which is typically considered for the neutral hydrophilic polymers in my studies, is a general term 

to describe the polymer chain conformation when the monomer subunits are randomly oriented; 

hence, the random coil indeed represents many different conformations (Figure 2.2).  

 

Figure 2.3 A freely jointed polymer chain (linear homopolymer) made of n randomly oriented vectors of length l. Each 

vector represents a single carbon-carbon bond and the angle between two vectors is arbitrary.   

A helpful visualization of polymer chain conformation is provided in Figure 2.3, where we start 

from point A aiming to reach point B, through drawing n consecutive randomly oriented vectors of 

the same size (l). The obtained sketch represents a randomly oriented polymer chain, which is 

known as the freely jointed chain (FJC), because the angles between all the vectors are arbitrary 

and random. Propagation of the end point of such a polymer chain reminisces the Brownian motion; 

accordingly, the distance between A and B points, or in other words the mean square end-to-end 

distance of the sketched polymer chain can be calculated as: 
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〈𝑟𝑓
2〉 = 𝑛 × 𝑙2 

In the formula, rf is the end-to-end distance of the freely jointed polymer chain (the distance 

between the A and B points), while n and l are the number and length of the single carbon-carbon 

bonds (vectors), respectively. To obtain a more realistic picture of the polymer chain conformation, 

now we have to consider two additional constraints for the chemical bonds.      

              

Figure 2.4 (Left) Torsional angle of a single bond with respect to the plane delineated by the previous two bonds. The 

third bond can be located on the surface of the cone. (Right) The rotational energy diagram for C-C single bonds in a 

linear hydrocarbon polymer. The energy wells of gauche minus (ϕ = -120º), trans (ϕ = 0º) and gauche plus (ϕ = +120º) 

conformations are shown.[2] 

First, the angle between two C-C bonds (recognized as the bond angle) (θ) is fixed at 109° 28', 

which expands the chain mean square end-to-end distance by a factor of [(1-cosθ)/(1+cosθ)]. 

Besides that, each bond can only adopt specific angles with respect to the plane delineated by the 

previous two bonds, referred to as the conformation angles (ϕ) (Figure 2.4). For a linear 

homopolymer made of single C-C bonds, three stable conformations angles are possible for each 

bond, i.e., the trans (ϕ = 0º), the gauche plus (ϕ = +120º), and the gauche minus (ϕ = -120º). We 

can see these stable conformations from the rotational potential energy diagram shown in Figure 

2.4. The higher the population of the trans conformation would be, the more elongated and planar 
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the polymer chain conformation will be. The energy difference between the gauche and trans states 

determines the thermodynamic flexibility of the chain. If the energy difference is smaller than the 

thermal energy (kT) then flexibility is infinite, while if the energy difference is much larger than kT, 

the trans conformation will be more likely and the polymer chain will be stiff. If we consider the 

constraints, the mean square end-to-end distance of the polymer chain is corrected to be: 

〈𝑟𝑓
2〉 = 𝑛 × 𝑙2 ×

1 − cos 𝜃

1 + cos 𝜃
×

1 + cos ∅

1 − cos ∅
= 𝑛 × 𝑙2 × 𝐶∞ 

The term C∞, known as the characteristic ratio, is a measure of polymer chain stiffness or softness. 

Relatively speaking, the higher this value is, the polymer chain is more extended and stiffer. For 

instance, poly(ethylene oxide) has a C∞ of around 4, which is considered to be a flexible polymer 

chain due to the presence of ether bonds in the backbone and no side groups.[11] On the other hand, 

poly(N-isopropylacrylamide) has a C∞  of around 10 and is relatively more stiff than poly(ethylene 

oxide), due to the presence of side groups that can restrict the free rotations.[12]  

This equation is still quite simplified, as it underestimates the end-to-end distance of the real 

polymer chain by neglecting some essential factors such as the excluded volume effect and the 

short-ranged interactions between the monomers. However, it can provide a sensible picture of the 

polymer chain conformation, which I will frequently refer to in the coming sections. 

2.1.2. Thermodynamics of polymer solutions  

Knowing the preliminary information about the polymer chain conformation, the next step is to 

address how a polymer chain is dissolved in the aqueous solution, which was the first step for each 

of my experiments. I would like to commence with the thermodynamic perspective, since it can 

highlight the entropic and enthalpic aspects of the polymers solubility and phase behavior. Several 

advanced models and equations of states, e.g. Sanchez-Lacombe (SL) equation of state or Flory-
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Orwall-Vrij equation of state, have been suggested in this case, which are beyond the scope of this 

study. Herein, I present the basic but essential thermodynamic description of polymer mixing 

proposed by Flory and Huggins, which indeed serves as the basis for the more elaborated theories. 

It renders a simple description of polymer mixing process in terms of enthalpy and entropy changes 

of the system; moreover, it can distinguish between some basic differences between the mixing of 

small molecules and macromolecules with water.[13-17]  

 

Figure 2.5 Placement of solute molecules on a lattice. (Left) N2 small molecules. (Right) A polymer chain occupying 

N2 cells. The number of possible ways to put a single polymer chain on the lattice is relatively less, because the 

occupied cells by the chain should be necessarily connected with each other.      

From the thermodynamic point of view, dissolving a polymer in water is plainly accompanied with 

an entropic and an enthalpic change, just like any other phenomenon. According to the statistical 

thermodynamics, the entropy of mixing is determined by counting the number of possible 

arrangements in space (Ω) that the molecules can adopt, which can be converted into the entropy of 

mixing, according to the Boltzmann’s relation:  

∆𝑆 = 𝑘 ln 𝛺 

Now consider the solvent (water) as component 1 and the solute (small molecule) as component 2. 

Using the lattice system (Figure 2.5), we can approximate the number of possible ways to put N2 
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solute molecules (small molecules of the same size of solvent molecules) on a lattice including 

N0=N1+N2 empty cells. This provides us the following equation for the entropy of mixing:  

∆𝑆𝑚𝑖𝑥 = −𝑘(𝑁1 ln 𝑛1 + 𝑁2 ln 𝑛2) 

Where ni represents the mole fraction of component i. Now, for a polymer chain composed of x 

segments, and by considering that each segment occupies a cell (same size of the solvent molecule), 

the above equation is rearranged: 

∆𝑆𝑚𝑖𝑥 = −𝑘(𝑁1 ln 𝜐1 + 𝑁2 ln 𝜐2) 

In this case, υi is the mole fraction of the component i, which can be defined as: 

𝜐1 =
𝑁1

𝑁1 + 𝑥𝑁2
 

𝜐2 =
𝑥𝑁2

𝑁1 + 𝑥𝑁2
 

This equation tells us that the number of the ways that the system can be rearranged in space is 

reduced when one of the species exists as long chains. This can plainly explain why the monomer of 

a polymer is always more soluble in the solvent rather than the polymer chain itself.     

For the same polymer-solvent system, the enthalpic term of mixing is taken into account using the 

Flory-Huggins interaction parameter (χ) given as: 

𝜒 =
(𝜖11 + 𝜖22 − 2𝜖12)

𝑘𝑇
=

∆𝐻𝑚𝑖𝑥

𝑘𝑇𝑁1𝜐2
 

The interaction parameter is defined as the difference between the mixed interaction energy 𝜖12 and 

sum of the pure component energies (𝜖11 and  𝜖22). Therefore, it describes how favorable polymer-
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solvent interactions are in comparison to polymer-polymer and solvent-solvent interactions. 

Combining the provided entropic and enthalpic terms gives us the statistical free energy of mixing: 

∆𝐺𝑚𝑖𝑥 = 𝑘𝑇(𝑁1 ln 𝜐1 + 𝑁2 ln 𝜐2 + 𝜒𝑁1𝜐2) 

The first two terms on the left represent the entropic role and the last term indicates the enthalpic 

contribution. The derived equation suggests two major features that distinguish the thermodynamics 

of polymer mixtures in comparison with their small molecules analogous. First, the considerably 

reduced combinatorial entropy contribution typically results in immiscibility in absence of 

favorable enthalpic interactions. Second and more interestingly, unlike most of the small molecules 

mixtures, macromolecular mixtures can undergo phase separation upon heating through a lower 

critical solution transition (LCST), which I will discuss more in the coming sections.     

As mentioned, the Flory-Huggins interaction parameter determines if the interaction between the 

polymer segments and the solvent molecules is favorable or not. This brings up some new terms, 

which are repeatedly used in this thesis to describe the behavior of stimuli-responsive polymers at 

different temperatures. Accordingly, when χ is smaller than 0.5, the polymer-solvent interactions 

are considered to be more favorable than the polymer-polymer interactions, known as the good 

solvent condition. The favorable interaction between the polymer and solvent gives rise to swelling 

of the polymer chain in solution. When χ is larger than 0.5, the polymer-polymer interactions are 

more favorable than the polymer-solvent interactions, referred to as the bad solvent condition, 

where the polymer chain tends to shrink and minimize its solvent-accessible surface area. The 

interaction parameter of 0.5 is considered as the Flory θ-solvent condition, meaning that the 

polymer-solvent interactions are identical to the polymer-polymer interactions, thus the repulsive 

and attractive contributions to the chain excluded volume cancel out each other. Under such 
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condition, the polymer chain is considered to be in the unperturbed state, adopting a random coil 

conformation. To quantify the size of the random coil, the radius of gyration (Rg) is defined as: 

𝑅𝑔
2 = (

1

𝑁
) ∑ 𝑟𝑖

2
𝑁

𝑖=1
 

  

Figure2.6 Center of mass and radius of gyration of a polymer chain with random coil conformation.[2] It is a more 

meaningful parameter to address the polymer coil size rather than the end-to-end distance. More importantly, it can be 

experimentally determined using scattering techniques.      

The radius gyration of a polymer coil can be mathematically interpreted as the mean square distance 

of all the segments of the polymer coil from its center of mass (Figure 2.6). Hence, the polymer 

chain with random coil conformation is approximated with a sphere with the radius of Rg. Several 

scaling laws between the properties of a random coil polymer and its radius of gyration have been 

suggested, including the must-know relation between the radius of gyration and number of 

monomers: 

𝑅𝑔 = 𝑏𝑁𝜐 

I have frequently used this equation during my studies, whenever I required a rough but realistic 

estimation of the polymer coil size. It solely requires the estimated monomer length (b) that is 

typically in the range of 0.2-0.3 nm, and the degree of polymerization (N) that can be estimated 

from the average molecular weight. Depending on solvent condition, the exponent (υ) roughly 

varies from 0.3 to 0.6 (Figure 2.7).    
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Figure 2.7 General scaling law between the radius of gyration and the degree of polymerization for a random coil.    

2.1.3. Phase equilibrium   

Based on the described statistical free energy change of mixing, now we can examine the phase 

diagrams of the polymer solutions. This is of great importance for understanding the phase behavior 

of thermo-responsive polymers in aqueous solution, which indeed was the primary phenomenon 

that I investigated in saline solutions during my studies.  

 

Figure 2.8 ΔGmix as a function of polymer composition in the biphasic regime. For each temperature, the first order 

derivative of the free energy function provides the corresponding binodal boundary concentrations, so the whole phase 

boundary can be provided.     

Bad solvent condition

υ = 1/3

θ-solvent condition

υ = 1/2

Good solvent condition

υ = 3/5

Rg ~ Nυ
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According to basic thermodynamics, equilibrium between two phases is obtained only if the partial 

chemical potential of the components (1 as the solvent and 2 as the solute) in the two phases 

(solvent-rich (I) and polymer-rich (II)) are equal:  

𝜇1
𝐼 = 𝜇1

𝐼𝐼 𝑎𝑛𝑑 𝜇2
𝐼 = 𝜇2

𝐼𝐼 

To meet these criteria, free energy of mixing plotted as a function of polymer composition should 

have a common tangent. In Figure 2.8, the B′ and B′′ represent the points at which the common 

tangent criterion is met, meaning that μ1 and μ2 between the phases are equal and an equilibrium 

state is obtained. Accordingly, all the compositions between B′ and B′′ are unstable and will phase 

separate into B′ and B′′ compositions, which form the so-called binodal phase boundary. The 

inflection points (S′ and S′′) are obtained from the second order derivative of the free energy, 

indicating the spinodal phase boundary. Discussion on binodal and spinodal phase boundaries is 

beyond the scope of this thesis; however, I should highlight that phase separation through the 

binodal phase boundary differs from the spinodal boundary, in terms of the kinetics of transition 

and the final morphology. Finally, the critical point is calculated by solving the first order and 

second order derivatives of the chemical potential function: 

𝜐𝐶 =
1

1 + 𝜒0.5
     𝑎𝑛𝑑     𝜒𝐶 ≅

1

2
+

1

𝑛0.5
 

Now if we repeat the same procedure for other temperatures, the binodal and spinodal phase 

boundaries will be found as a function of temperature. The obtained phase boundary may show 

either an upper critical solution temperature (UCST) or a lower critical solution temperature 

(LCST). The LCST behavior –characteristic of the polymers studied in my projects- in general is 

related to systems where mixing is accompanied with a negative entropy change and release of heat 

(exothermic).[18, 19] It can be also reasoned based on the effect of temperature on the Flory-
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Huggins interaction parameter; where with increasing the temperature, an increment in the 

interaction parameter is observed (Figure 2.9). 

 

Figure 2.9 Different types of polymer solution phase diagrams resulting from temperature-dependence of the Flory 

Huggins interaction parameter.[20]      

2.1.4. Concentration regimes 

The next background topic I want to highlight is different concentration regimes in a polymer 

solution, which is a significantly important parameter of a polymer solution. The importance of this 

parameter is addressed in one of my studies (paper II), in which it is demonstrated how changing 

the polymer solution can affect the polymer stability in certain salt solutions.  

 

Figure 2.10 Typical phase diagram of a polymer solution, suggested by Daoud and Jannink. τ is the reduced 

temperature defined as 
𝑇−θ

θ
.[21]  
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Depending on the concentration of the polymer, solutions of different properties can be obtained, 

which differ greatly in microscopic and macroscopic characteristics. In a renowned work by Daoud 

and Jannink [21, 22], the polymer-solvent phase diagram was divided into four distinct regions, 

each possessing specific characteristics and scaling laws (Figure 2.10). The first region (I) is 

considered as the dilute regime, which is constrained by τ and C*. This region corresponds to a 

solution in which the polymer coils are well separated and no overlapping and entanglement is 

found between the chains (Figure 2.11). In all of my investigations, the polymer solutions were 

prepared in the dilute regime, to be able to study the single chain behavior. The C* indicates the 

critical polymer concentration at which the chains start overlapping, which can be approximated 

using the following equation:  

𝐶∗ =
3𝑀

4𝜋𝑅𝑔
3𝑁𝐴

 

Where M and Rg are the molecular weight and radius of gyration of the polymer chain, respectively. 

This is another essential equation, which I frequently used during my studies to estimate the dilute 

concentration range. It solely requires the average molecular weight, and the radius of gyration of 

the polymer that can be estimated from the introduced scaling law.     

 

Figure 2.11 Polymer solution concertation regimes: (a) Separated chains, (b) Overlapping chains, (c) Overlapping 

comparable to bulk polymer state.  
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2.2. Phase separation from molecular perspective 

In the former section, I briefly discussed the phase behavior of polymer solutions in terms of 

general thermodynamics of polymer mixing. In this section, I will look over the same system but 

from the molecular interactions perspective, which is the prerequisite to understand my studies on 

the effect of salts on the polymers miscibility with water.  

 

Figure 2.12 Typical phase diagram of a polymer solution with a LCST behavior. Below the phase transition 

temperature, the polymer chain is found in a swollen random coil conformation (good solvent condition) and is 

considered to be hydrophilic. Above the phase separation temperature, the polymer chain turns into a collapsed globule 

considered to be hydrophobic. Accordingly, mixing of polymers with a LCST behavior is accompanied with a 

decrement in entropy but an increment in enthalpy. The former is related to the hydrophobic effect and the latter refers 

to specific interactions with water.         

With respect to molecular interactions point of view, the solubility and phase behavior of polymers 

in water can be argued based on the interplay between the segment-segment (either short-ranged or 

long-ranged) and segment-solvent interactions.[23-25] In case of uncharged thermo-responsive 

polymers studied in my project, the most decisive interactions are the hydrophobic attractions and 

the hydrogen bonding. The strength of these interactions is closely related to the temperature of the 
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system, and that is the reason that changing the temperature can affect the polymer-solvent 

miscibility and phase separation occurs.   

As shown in Figure 2.12, The LCST phase separation of stimuli-responsive polymers is generally 

envisaged as a transition from a swollen random coil conformation to a dehydrated collapsed 

(globular) state. With respect to the hydration and interaction, the polymer chain below the phase 

separation temperature is considered to be in the hydrophilic state (good solvent condition), while it 

becomes hydrophobic (or more accurately less hydrophilic!) above the phase separation 

temperature (bad solvent condition). Such a single molecular transition is only probable under an 

extremely dilute solution condition (considerably below the C*).[26-28] At relatively higher 

polymer concentrations, the collapsed globules also tend to form aggregates due to attractive 

interchain interactions.  

 

Figure 2.13 Chemical structure of the thermo-responsive polymers studied in my projects. (Left) Poly(N-

isopropylacrylamide) with hydrophobic backbone and isopropyl side groups and hydrophilic amide groups. (Middle) 

Poly(ethylene oxide) with hydrophobic backbone and hydrophilic ether groups. (Right) Poly(propylene oxide) with 

hydrophobic backbone and methylene side groups and hydrophilic ether groups. For PEO and PPO, at sufficiently low 

molecular weights, the hydroxyl end groups can also contribute to polymer hydrophilicity.  

Herein, I exclusively discuss the thermo-responsive polymers, which I have investigated during my 

studies (Figure 2.13), i.e., Poly(N-isopropylacrylamide) (PNIPAM) as member of the family of 

Poly(N-acrylamide)s [29-31], Poly(ethylene oxide) (PEO) and Poly(propylene oxide) (PPO) 
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representing the poly(alkaline oxide)s [32-34]. With respect the chemical structure, all these 

polymers render a delicate balance between the hydrophilic (polar) and hydrophobic (apolar) parts 

in their repeating units. The former is responsible for the enthalpically favorable specific 

interactions with the water molecules, i.e. hydrogen bonding, while the latter is associated with the 

entropically unfavorable hydrophobic effect of water.[35-37] It has been widely discussed that 

inserting a purely hydrophobic solute in water changes the structure and hydrogen bonds network of 

the adjacent water molecules.[38-40] Compared to the bulk solution, the water molecules 

surrounding the hydrophobic solute are believed to interact more strongly with each other 

(favorable enthalpic term); nevertheless, they possess a smaller degree of freedom and thus a lower 

entropy. This indeed is referred to as the water hydrophobic effect, which strongly contributes to 

various physiochemical aqueous phenomena, including phase transition of the polymers that I 

investigated.     

Accordingly, with respect to hydration structure, water molecules around a polymer chain (with 

hydrophilic and hydrophobic surfaces) can be divided into two groups: (i) the water molecules that 

are hydrogen bonded to the hydrophilic groups of the polymer (ii) the hydration layer adjacent to 

the hydrophobic surfaces of the polymer. The LCST phase behavior of polymers then originates 

from the temperature-dependent balance of these two hydration effects.[41, 42] Below the phase 

separation temperature, the favorable enthalpic term (specific interactions) dominates, thus the 

polymer chains are miscible with water. On the other hand, above the LCST, the unfavorable 

entropic term (hydrophobic dehydration) prevails and the polymer becomes immiscible with water. 

As a result, the polymer chain contracts and minimizes its solvent-accessible hydrophobic surface, 

which allows the water molecules in the hydrophobic hydration shell transfer to the bulk solution. 

Such a transition (phase separation) is then accompanied with a gain in entropy (due to the release 

of water molecules) and a drop in enthalpy (due to the breakage of relatively strong interactions), 
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which is in accordance with the thermodynamics of the phase separation that I provided in the 

former section.  

Regarding the water molecules in the hydrophilic hydration shell, different mechanisms are likely 

depending on the type of the polar groups and polymer structure. In case of PEO and PPO (Figure 

2.14), it has been suggested that the hydrogen bonds between ether groups and water molecules 

become gradually weaker with an increase in temperature, meaning that the number of bonded 

water molecules per segment monotonically decreases, giving rise to a relatively broad phase 

separation.[43-46] In contrast, it has been demonstrated that PNIPAM never becomes hydrophobic 

even above the LCST, as the collapsed coil still contains around 60% water, suggesting that the 

hydrogen bonded water molecules (to the amide groups) are not significantly affected during the 

phase separation, causing an abrupt phase separation.[47-51]   

 

Figure 2.14 (Top) Schematic illustration of PEO chain conformation and hydration below and above the LCST 

point.[35] (Bottom) Phase diagram and number of water molecules per segment for different PEO/water systems of 

different segment numbers. As shown, by decreasing the molecular weight of PEO the phase diagram turns into a 

closed loop (UCST and LCST), and increasing the temperature leads to gradual dehydration of the polymer.[43]     
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Figure 2.15 Phase separation of PNIPAM can produce stable mesoglobules (black squares), flocks (blue filled stars), 

space-filling aggregates (blue open stars) or shrinking gels (red circles).[30]  

There are various factors can affect the phase separation and LCST of the polymers. In general, any 

parameter that favors polymer-solvent interaction will give rise to stabilization, or in other words 

increases the phase separation temperature. In contrast, the factors that promote segment-segment 

interaction destabilize the polymer and thus a drop in LCST is predicted. The chemical structure or 

in other words the balance between hydrophilic/hydrophobic parts of the polymer segment is the 

first parameter that governs the polymer stability. For instance, PEO typically has a phase 

separation temperature above 100 ºC in the salt-free aqueous solution; however, (PPO) typically 

phase separates at temperatures below 20 ºC that drastically decreases with increasing its molecular 

weight.[52, 53] The only difference in the structure of the two polymers is the methylene side group 

present in PPO chain, which besides making the polymer more hydrophobic can affect packing of 

the polymer chains in solution. Nevertheless, it should be noticed that the situation is not always 

this simple. In other words, the ratio of carbon to oxygen atoms cannot readily determine the 

polymer solubility and phase separation temperature. For instance, poly(methylene oxide) (PMO) 

has a similar linear structure as PEO with one less carbon atom per segment, so it is relatively more 

hydrophilic than PEG and expectedly must have a higher LCST. Now the fact is that PMO is nearly 
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insoluble in water, most probably due to the strong packing and strong polymer-polymer 

interactions in the pure crystalline state, so water cannot dissociate the chains and dissolve 

them.[35, 54]  

For a given polymer, increasing the molecular weight decreases the LCST because of the larger 

entropic loss for a longer polymer chain.[55, 56] This can be even seen for PNIPAM, which is 

actually believed to have an almost molecular-weight independent LCST; however, by going to 

relatively low molecular weights one can observe a clear increment in LCST.[57, 58] Such an effect 

is more pronounced for PEO (and PPO), where for relatively low molecular weights the LCST is 

found to be around 170 ºC, while for relatively large molecular weights it is around 100 ºC.[59] 

Confinement of the polymers at the interfaces has been also suggested to affect the LCST compared 

to the unperturbed state in the bulk solution. I will further discuss this effect in the next section, in 

which the behavior of polymers at aqueous/solid interfaces is addressed. 

2.3. Polymers at solid/aqueous interfaces      

Polymer chains can spontaneously adsorb from the bulk solution to the solid surfaces through 

different mechanisms. Before going any further, I would like emphasize that the properties of the 

surface, e.g., roughness, curvature, and local chemical heterogeneity, can significantly affect the 

adsorption process.[60-62] What I discuss herein describes the adsorption of polymers on a flat, 

atomically smooth and chemically homogenous solid surface, which is impenetrable by the polymer 

chains. Regarding adsorption of polymers on spherical particles (employed in the conducted AFM 

colloidal probe measurements); the particle surface can be assumed as a flat substrate, regarding the 

considerably larger diameter of the particle compared to the polymer chains size.[63-65]  

Three different approaches of preparing polymers layers at the solid/aqueous interfaces were 

employed and studied during my PhD studies, which I will illustrate and compare them in terms of 
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the layer formation and conformation. In one of my accomplished studies (paper IV), the physical 

(segmental) adsorption of a high molecular weight PNIPAM homopolymer on the gold surface was 

investigated. With respect to a neutral polymer, the polymer chains spontaneously adsorb on the 

surface in case of having a relatively strong segmental affinity for the surface.[66-70] The other 

important factor that must be taken into account is the segment-segment attraction compared 

relatively with the segment-surface interaction.[70-73] Besides the already-discussed effects of 

temperature on the interactions of the polymer with solvent and surface, one has to consider that the 

thermal energy of the polymer chain favors desorption from the surface.[67, 68] With respect to a 

polymer chain adsorbed on a solid surface, three typical conformations can be present throughout 

the polymer chain backbone. [74-76] The polymer segments that are bound to the surface (trains), 

the sections that form the loops between the trains, and finally the dangling tails of the polymer 

chain in the solution (Figure 2.16). 

      

Figure 2.16 Segmental adsorption of a polymer chain on a solid surface. (Left) The interplay between segment-segment 

attraction and segment-surface attraction controls adsorption and conformation of the adsorbed chain.[70] (Right) 

Conformation of a strongly adsorbed polymer chain on the surface. The segment-segment and segment-surface affinity 

affect the polymer adsorption in opposite directions. While relatively stronger segment-segment interaction tend to 

withdraw the polymer chain from the surface, the relatively stronger segment-surface interaction promotes adsorption 

and formation of trains on the surface.       
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Besides the favorable polymer-surface attraction (the enthalpic term), adsorption of a neutral 

polymer chain on an impenetrable solid surface is associated with an unfavorable entropic 

restriction, imposed by the surface.[77-79] In other terms, the number of the conformations that the 

polymer chain can adopt at the surface is smaller compared to in bulk solution. In this case, the 

polymer chain is typically broken up into the so-called blobs, where the polymer structure and 

conformation within each blob is considered as an unperturbed polymer chain (Gaussian chain) far 

from the surface.[80, 81] This provides the opportunity to employ the relevant scaling laws for an 

unperturbed coil, in order to calculate the entropic repulsion resulting from adsorption of a polymer 

chain at a specific temperature. The interaction potential of segment-surface attraction should be 

summed up with this entropic repulsive force. The compromise of these two opposite effects thus 

governs the segmental adsorption of a neutral polymer chain on a solid surface.        

 

Figure 2.17 Schematic illustration of grafting-from and grafting-to methods.[82] 

In another part of my studies (paper IV), grafting of a mono thiol-terminated PNIPAM sample to 

the gold surface was assessed. In general, grafting the polymer on the surface at one end can be 

carried out via two different approaches.[83, 84] (i) The grafting-from method, in which the 

monomers are polymerized from the surface sites, so the polymer chains grow from the surface. (ii) 

The grafting-to method where the polymer chains are end-functionalized with specific chemical 

groups that can establish strong bonding with the surface[85-88], e.g., thiol-gold chemistry[89, 90] 

that I employed in my studies.    
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Figure 2.18 End-tethered polymer chains. (Left) pancake (low grafting density, bad solvent condition, strong segmental 

affinity) and mushroom (low grafting density, good solvent condition, weak segmental affinity for the surface) 

conformations. (Right) mushroom-to-brush conformation transition resulting from increment in the grafting density.[82] 

For a polymer grafted to the surface, besides the segment-surface affinity and the solvent quality, 

the other essential parameter is the grafting density σ, which is defined as the number of anchored 

polymer chains per unit area of the surface. To quantify this parameter, the overlap grafting density 

is defined as σ* that scales with segment length and number of segments according to 𝑎−2𝑁−6/5 

under good solvent condition.[91] For grafting densities smaller than σ*, the polymer chains are 

well separated on the surface, in other words the distance between the grafting points are larger than 

the polymer coil size, where depending on segment-surface affinity and solvent condition two 

possible conformations are possible.[92-94] In case of relatively strong segment-surface interaction 

and (or) bad solvent condition, the polymer chains are expected to flatten on the surface, giving a 

so-called pancake conformation. In case of weak segment-surface affinity and (or) good solvent 

condition, the polymer chains are found in the swollen random coil conformation, providing a 

mushroom conformation. Polymer layers prepared using the grafting-to method usually give rise to 

these two structures, since the diffusion barrier typically prevents formation of densely grafted 

structures. For grafting densities larger than σ* (the distance between the grafted points is smaller 

than the unperturbed coil size), the polymer chains overlap and interact. Considering the solvent 

quality to be good, the polymer segments will repel each other. Nevertheless, since the lateral 
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distance between the anchored chains is fixed by the grafting density, the polymer chains inevitably 

extend away from the surface to avoid each other as much as it is possible. Under such a condition, 

the layer thickness is considerably larger than the unperturbed polymer coil size, and is known as 

the brush conformation.[95-97] Such a dense layer structure is usually obtained using the grafting-

from method.    

 

Figure 2.19 Adsorption of a cationic copolymer on a negatively charged surface. (Left) Depending on segment-surface 

affinity, the uncharged block can form pancake or mushroom conformations. (Middle) Adsorption scaling diagram for 

strongly charged surfaces. (Right) Adsorption scaling diagram for weakly charged surfaces. A fully charged 

polyelectrolyte chain is expected to adsorb as a flat layer, whereas charge-diluted polyelectrolytes can form coiled 

layers with loops and dangling ends or even desorb from the surface.[98]      

In another part of my investigations (paper V), the adsorption of synthesized cationic diblock and 

triblock copolymers on the negatively charged silica surface was assessed. The dominant driving 

force for adsorption of a polyelectrolyte chain on an oppositely charged surface is considered to be 

the electrostatic attraction, and other interaction contributions such as segmental affinity are 

typically neglected.[99-104] Nevertheless, it should be considered that a polyelectrolyte chain 

adsorbing on the surface gives rise to desorption of counter ions existing on the surface, which is 

accompanied with a favorable entropic term.[105, 106] Adsorption of a polyelectrolyte on an 

oppositely charged surface then should be studied in terms of the electrostatic repulsions between 

the polymer segments, and the electrostatic attraction between segment and surface. The amount of 
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the electrostatic charge on the polyelectrolyte chain and the surface as well as the salt concentration 

strongly affect the adsorption and conformation of the adsorbed chain on the surface (Figure 

2.19).[98] With respect to the cationic copolymers examined in my project, the uncharged blocks 

can possibly adopt different conformations depending on the segment-surface interactions. If the 

uncharged block has a relatively weak affinity for the surface, then a mushroom conformation will 

be expected. This can be the case for adsorption of the cationic copolymer with a neutral PEG block 

on silica surface, where PEG was shown to have a weak affinity for the silica surface. On the other 

hand, if the uncharged block has a strong segmental tendency for the surface, a pancake 

conformation is likely, e.g., adsorption of the cationic copolymer with neutral PNIPAM block on 

the silica, where PNIPAM was affirmed to have a relatively strong affinity for the silica.  

At last, I shortly bring up some aspects of thermo-responsive behavior of polymers at the solid 

surfaces. For a polymer adsorbed or grafted at a solid/aqueous interface, the phase separation (either 

the phase separation temperature or the phase separation width) can be different from that in bulk 

solution, which has been confirmed by both theoretical and experimental studies.[107-114]  

 

Figure 2.20 Phase transition of a PNIPAM brush studied with QCM-D.[109] (Left) Positive frequency shift with 

heating suggests dehydration of the brush. (Right) Negative dissipation shift with heating indicates conformational 

collapse of the layer. Unlike the abrupt single chain collapse of PNIPAM in bulk, the coil-globule transition at the 

surface occurs over a broad temperature range.    
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There are two important considerations regarding the coil-globule collapse of the polymers at the 

surface. First, the polymer layers of low grafting density not only indicate a vertical collapse, i.e. 

decrement in the layer thickness, but also can undergo a lateral phase separation through which the 

collapsed chains can form clusters on the bare substrate. Such a lateral phase separation becomes 

less likely for polymer layers of high grafting density, which exhibit a large enough degree of chain 

stretching. Second and more importantly, unlike the sharp coil−globule transition for isolated chains 

in bulk solution, the polymer chains confined at a solid surface usually render a gradual and broad 

collapse. This can be seen from Figure 2.20, where the thermo-responsive behavior of a PNIPAM 

brush layer is assessed using quartz crystal microbalance with dissipation (QCM-D). In brief, the 

frequency data refers to dehydration of the brush and the dissipation data indicates conformational 

collapse and shrinkage of the layer. As can be seen, both sets of data suggest broadening of 

PNIPAM phase transition, which can be attributed to the lower solvent strength caused by the 

repulsive interactions between the grafted chains, as well as the entropic constraint cause by 

confinement at the solid surface and the excluded volume repulsion between the chains.  

  

Figure 2.21 (Left) Vertical collapse with heating for a grafted PNIPAM at three different grafting densities, studied by 

atomic force microscopy colloidal probe measurements.[115] (Right) The effective Flory-Huggins interaction 

parameter as a function of polymer local density below and above the collapse temperature.[116] 
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In addition, the phase separation of polymer layers has been demonstrated to strongly depend on 

several factors such as the molecular weight of the polymer and the grafting density.[115-120] Such 

an effect can also be reasoned based on the concentration-dependence of the Flory-Huggins 

interaction parameter together with the well-known chain stretching effect caused by increasing the 

grafting density under good solvent condition (Figure 2.21). 

2.4. Ions in aqueous solution  

In the previous sections, I provided the prerequisite knowledge for understanding the polymer 

hydration and phase transition behavior. From now, I switch the topic to the behavior and properties 

of polymers in aqueous saline solution. I start with a concise introduction to specific ion effects in 

pure water, and then I will discuss how ions can affect polymer stability in water. For a more 

detailed discussion on these topics, I strongly suggest the “specific ion effects” book by W. Kunz.        

 

Figure 2.22 Schematic of relative intensity of interactions of anions and cations with the surrounding water molecules. 

Ions to the right strongly interact with water and make the adjacent water molecules more ordered, thus are called 

kosmotropes. In contrast, ions to left are poorly hydrated and promote disorderness in the water network, thus are 

recognized as chaotropes. Chloride and potassium are considered as the borderline ions, since they have negligible 

effects on the water structure.[121]   

Water is a highly structured liquid with an extensive network of hydrogen bonds; whereas, the exact 

structure of the network and the extent of hydrogen bonding is still under debate.[122-124] 
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Electrolytes in water dissociate into hydrated ions, which can affect the structure of hydrogen bonds 

network. The electric field around the ions can cause the water molecules to rearrange their 

orientation around the ion, suggesting that the structure of the water molecules in the ionic 

hydration shell differs from the bulk network. The continuum electrostatic models, e.g. Debye and 

Huckel model, assume all the interactions to be purely electrostatic and consider the ions as simple 

point charges; hence, the electric charge is the only decisive parameter.[125, 126] This means that 

such models cannot distinguish between ions of the same charge but different size or shapes, e.g. 

the halide anions. This indeed makes these classic models unable to describe the ion-specific 

phenomena.[125-129] The examples of ion-specificity in aqueous solution are numerous, e.g., the 

differences in ion pairing tendency, e.g., fluoride has a considerably stronger tendency to pair with 

lithium rather than iodide does.[130, 131] As another example, according to the classic electrostatic 

models, all the ions are strongly hydrated and a repulsion between all the ions and non-polar 

surfaces is predicted due to the image forces. Nevertheless, it has been confirmed that bulky ions 

with a low surface charge density preferentially accumulate at the non-polar surfaces and interfaces, 

an ion-specific phenomenon that is attributed to the polarizability of the ions and the contribution of 

dispersion forces, which are indeed neglected in the classic electrostatic models.[132, 133] In 

addition, it has been also shown that anions and cations interact differently with the water 

molecules; hence, their hydration characteristics and the following effects on the water structure are 

entirely different.[134, 135]  

Further attempts in order to distinguish the effect of different ions on the water structure led to the 

introduction of water structure maker and water structure breaker terms.[135, 136] The former –

also known as kosmotropic- describes the behavior of relatively small ions with a strong hydration 

capacity, suggesting that such ions make their adjacent water molecules more ordered than bulk 

water. One way to quantify these effects is through the Jones-Dole viscosity coefficients.[137]  
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𝜂

𝜂0
= 𝐴√𝑐 + 𝐵𝑐 

In the formula, A is an electrostatic parameter, and B is an ion-specific parameter that is known as 

the Jones Dole Viscosity coefficient (Table 2.1). Accordingly, kosmotropic ions have a positive 

Jones-Dole viscosity coefficient, meaning that their corresponding saline solution has a higher 

viscosity than pure water. On the other hand, structure breakers or chaotropic ions are relatively 

large and bulky ions with poor hydration power, which can disrupt the water network structure and 

decrease the viscosity of water (have a negative Jones-Dole viscosity coefficient). Classification of 

ions into water structure maker and structure breakers has been fairly accepted by now; nonetheless, 

the question regarding the distances through which the ions can influence the structure of water has 

not been clarified exactly yet.[138-140]  

Table 2.1 Electrochemical mobility, Jones-Dole viscosity coefficient, enthalpy of hydration, crystal radii, and 

polarizability of some important anions and cations.[127]   

 

The first hydration shell is found for most of the ions, even the large monovalent species.[141, 142] 

This can be seen from Figure 2.23 in which the radial distribution of the water molecules around 

lithium, sodium and potassium cations are compared with that in pure water. Accordingly, the 

distance between lithium and sodium with the nearest water oxygen atom is shorter than the 

oxygen-oxygen distance in pure water, which represents a relatively strong hydration power. On the 
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other hand, potassium indicates a relatively larger distance, suggesting a weak hydration. Presence 

of the second hydration shell is common for small and highly charged ions.[142, 143] 

  

Figure 2.23 (Left) The radial distribution functions for Li+, Na+, water, and K+ in liquid water, showing the distance 

between the cations to the nearest solvent oxygen, while the water curve measures the oxygen–oxygen distance in pure 

water.[141] (Right) The entropy of water near an ion minus the entropy of bulk water. Kosmotropes are in the upper 

portion of the figure and the chaotropes are in the lower portion.[144]  

It should be considered that presence of these hydration shells changes the effective radii of the ions 

in solution, which has been confirmed by different methods such as conductivity measurements of 

different salt solutions.[127, 145] In this experiment, the cations migrate towards the negative 

electrode and the anions move toward the positive electrode. At the first glance, one would expect 

higher mobility for the small ions and lower for the large entities; nevertheless, in reality the order 

is reversed (Table 2.1). Observations like this have confirmed that the effective size of the ions in 

water is very different from that in a crystal state, i.e., small and strongly hydrated ions carry 

several water molecules with them. Another way of addressing ion-specificity on water structure is 

illustrated in Figure 2.23, which compares the effect of different ions on the entropy of their 

adjacent water molecules. Accordingly, small ions of high charge density such as fluoride 

immobilize their neighboring water molecules (decrease the entropy); while large ions of low 

charge density such as iodide actually free up the nearby water molecules (increase the entropy).  
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Table 2.2 Entropy of hydration of different ions.[135]  

 

This can also reveal the difference between the hydration of anions and cations, i.e., fluoride and 

potassium ions are comparable in size and charge, but the anion is strongly hydrated while the 

cation is weakly hydrated, which suggests difference in the ways anions and cations interact with 

water.[134] The electronegative oxygen atom of water can accept negative charge from anions, 

while charge transfer from cations to water is difficult. In addition, since anions interact with the 

hydrogen atom of water, they allow intra-shell hydrogen bonding within the hydration shell, which 

is not possible for cations that interact with the oxygen atom.[146-148]  

 

Figure 2.24 The Volcano plot. (Left) The standard heat of solution of salts (at infinite dilution) vs the difference 

between the absolute heats of hydration of the corresponding gaseous anion and cation. (Right) The enthalpy of solution 

of chaotrope–chaotrope and kosmotrope–kosmotrope salts is positive; nevertheless, for a negative enthalpy, the salt 

must have a kosmotropic and a chaotropic ion.[144] 
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As I mentioned before, ion pairing is another important ion-specific phenomenon, which can be 

quantified based on the so-called volcano plot (Figure 2.24).[144] Accordingly, a negative standard 

heat of solution is obtained only if we have a chaotrope and a kosmotrope in the salt. In other terms, 

neutral salts of a kosmotrope plus a chaotrope favorably dissociate into hydrated ions, since the 

kosmotropic ion forms relatively stronger interactions with water in solution than it has with the 

chaotrope in the crystal (release of heat upon dissolution). In contrast, a kosmotrope plus a 

kosmotrope tend to stay together as ion pair, thus heat is required for breaking the strong 

kosmotrope–kosmotrope interactions. Moreover, the relatively stronger water–water interactions 

will keep the chaotrope plus chaotrope ion pairs together, and heat is required to break the strong 

water-water interactions. Considering that all the salts in the volcano plot are monovalent, thus the 

long-ranged electric fields generated must be quite similar. Therefore, the striking differences in the 

salts behavior refers to difference in the strength of short-ranged chemical interactions with water. 

These arguments form the basis of the well-known Law of Matching Water Affinities, which I will 

discuss in more details in the coming section about ion-specificity in polymer solutions.      

2.5. The Hofmeister effect  

Hofmeister or lyotropic effect is a ubiquitous term referring to the ion-specific phenomena, which 

cannot be explained by the classic electrolyte theories.[149-153] Examples of these phenomena are 

numerous, e.g. bubble coalescence, enzymatic activities, proteins stabilization, bacterial growth and 

many others.[154-162] Back to 1888, Franz Hofmeister reported the effect of different salts on 

precipitation of the egg yolk protein.[163, 164] For that salts with same cation, he sorted the anions 

in a series with respect to their power in precipitating the protein, while by fixing the anion, a 

ranking for the cations was obtained, which together establish the framework of the Hofmeister 
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series. This ranking of ions was later affirmed to describe the effect of salts on the solubility of 

polymers in water, as well.[165-167]       

Anions series: SO4
2- > F- > CH3COO- > Cl- > Br- > NO3

- > I- > ClO4
- > SCN- 

Cations series: Rb+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ 

Accordingly for neutral polymers, anions to the right are the most stabilizers known to have a 

salting-in effect, meaning that they can increase the phase separation temperature. On the other 

hand, the anions to the left are strong destabilizers that have a so-called salting-out effect and 

decrease the phase separation temperature. For decades, there has been an extensive debate on 

whether these effects should be attributed to bulk water or the surface-related effects. In the 

beginning, the Hofmeister effect was argued with respect to the specific interactions of ions with 

water molecules. As discussed in the previous section, ion-specificity on the water properties has 

been addressed in various terms such as Jones-Dole viscosity coefficients, electrochemical mobility 

of ions and ion pairing. This classification of ions into kosmotropes and chaotropes could provide a 

rather general explanation for the observed Hofmeister series in polymer solutions; nevertheless, 

various observations remained unexplained. One of the most important observations was the 

Hofmeister effect of cations, where the strongly hydrated cations have a salting-in effect and the 

weakly hydrated cations destabilize the polymer.[168, 169] This indicates that the hydration 

capacity and water withdrawing power is not the only decisive factor. As another important 

observation, in some systems a reversed Hofmeister series has been obtained.[170-173] For 

instance, with respect to proteins aggregation, the direct Hofmeister series is usually observed at pH 

values above the protein isoelectric point (IEP). The series however reverses by decreasing the pH 

below the IEP, while again at a pH below IEP the series changes from inversed to direct order. Such 

examples suggest that both specific ion-surface and ion–water interactions are involved in the 
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Hofmeister effect. In addition, the water-polymer interactions should be taken into account. It has 

been recently shown that the direct and reversed series can be obtained depending on the nature of 

the surface, e.g. hydrophobic or hydrophilic, charged or uncharged; nonetheless, the idea that there 

is a fixed universal Hofmeister series persists. According to the current opinion, reversal of the 

Hofmeister series or similar discrepancies from the early-suggested ranking should be considered as 

“a rule rather than an exception”.[174, 175] For decades, it was thought that Hofmeister effects 

were associated merely with phenomena occurring at high salt concentrations, but later, ion 

specificity was found at low salt concentrations as well.[176-178] It has been also discussed that 

ions do not influence hydrogen bonding of water beyond their first or second solvation shells, which 

indeed rule out the speculated long-ranged effects of ions on the water structure.[179] All these 

together highlight the importance of considering specific ion effects to explain the Hofmeister 

series. I will introduce and discuss the previously reported mechanisms that have gained attention 

during recent years, in which ion-specificity in polymer solutions has been addressed. The 

explanations in the previous sections regarding polymer phase behavior and ionic hydration will be 

used together with the ion-specific effects on the polymer hydration layer and polymer surface to 

scrutinize the Hofmeister effect in polymer solutions, which form the basis of papers I to IV. 

 

Figure 2.25 The Hofmeister series of sodium salts on the phase separation temperature of PNIPAM.[180] Weakly 

hydrated anions such as thiocyanate have a non-linear salting-in effect, while strongly hydrated anions such as fluoride 

cause a linear salting-out effect.    
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2.5.1. Triple effects: polarization, surface tension and direct binding  

Cremer and coworkers have published a series of publications going back to 2004, in which they 

extensively investigated the specific ion effects on PNIPAM and proteins stability.[180-192] They 

have suggested three principal mechanisms through which different anions can affect the stability of 

polymers and proteins, which are summarized in Figure 2.26. 

 

Figure 2.26 Interactions of anions with PNIPAM surface and its hydration water. (a) Polarization effect on the 

hydration shell of the amide bonds (b) The surface tension effect at the hydrophobic surfaces of polymer (c) Direct 

binding to the amide.[180]   

The first suggested mechanism is the polarization of the water molecules that are hydrogen bonded 

to the amide groups of PNIPAM, through which the anions affect the hydration shell of the 

polymer, which in turn can facilitate dehydration of the amide groups. As argued by the authors, 

such a destabilizing effect is possible for the strongly hydrated anions, and the extent of the effect is 

in direct correlation with the entropy of hydration of the anions or the hydration power. As the 

second mechanism, anions could interfere with the hydrophobic hydration of PNIPAM by 

increasing the surface tension of the cavity surrounding the backbone and the isopropyl side chains, 

and thus making the hydrophobic hydration more entropically costly and thus the polymer becomes 

destabilized. Such a mechanism was considered to be possible for all the anions; however, in their 

later publications the authors claimed that depending on the polymer surface chemistry, some 

weakly hydrated anions can indeed decrease the surface tension causing a stabilizing effect. Finally, 

the poorly hydrated anions can directly bind to the amide bond, and cause stabilization of the 
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polymer. The authors further discussed this mechanism in their later publications, in which 

suggested other possible binding sites on the polymer backbone, i.e., atoms with a partial positive 

charge. To quantify these effects together, the authors suggested the following empirical equation:  

𝑇 = 𝑇0 + 𝑐[𝑀] +
𝐵𝑚𝑎𝑥𝐾𝐴[𝑀]

1 + 𝐾𝐴[𝑀]
 

In this equation, T is the phase separation temperature of the saline solution, T0 is the phase 

separation temperature of PNIPAM in pure water and [M] is the molarity of the salt. By fitting the 

measured phase separation temperatures to this equation, three parameters can be determined. c is 

the slope of the linear part of the figure (Figure 2.25) indicating the strength of the first and second 

mechanisms, KA is the binding constant of the anion to the polymer and Bmax is the maximum 

increase in the phase separation temperature or the saturation value. Therefore, the c value 

represents the destabilization effects and the last term on the right hand, which is reminiscent of the 

Langmuir isotherm binding, indicates the third mechanism.  

Table 2.3 Fitted values obtained for c, KA, Bmax and the water surface tension increment and hydration entropy.[180]  

 

2.5.2. The solute partitioning model  

Pegram and Record have discussed the Hofmeister series and the effect of different salts on the 

polymers and proteins stability, in terms of the partition coefficient of the ions at the polymer 

surface and the change in the solvent-accessible surface area of the polymer.[193-200] The authors 
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initially discussed the effect of different salts on the surface tension of water in terms of the 

preferential accumulation or exclusion of the ion at or from the air/water interfacial region, 

confirming that the effect of salts on the surface tension follows the Hofmeister series. In order to 

explain the effect of the salts on the polymers stability, the authors introduced the Solute 

Partitioning Model (SPM) to examine the Hofmeister effect in terms of the surface hydration 

(H2O/Å2) and the solute partition coefficient Kp. The partition coefficient is defined as the ratio of 

the ion concentration at the surface to the bulk solution, which then indicates the extent of surface 

accumulation/exclusion. A Kp larger than unity indicates surface accumulation, while a Kp smaller 

than unity describes surface exclusion. According to this model, the effect of salts on aqueous 

phenomena can be characterized by the m-values given as: 

𝑚 =
𝑑∆𝐺

𝑑𝑚3
= −𝑅𝑇

𝑑𝑙𝑛𝐾

𝑑𝑚3
= 𝑅𝑇∆

𝑑𝑙𝑛𝑓2

𝑑𝑚3
= ∆

𝑑𝜇2

𝑑𝑚3
= ∆𝜇23 

Where m3 is the salt concentration, K is the equilibrium constant of the process in terms of 

equilibrium concentrations of the products and reactants and G is the free energy change.[201, 202] 

Accordingly, interaction of the salt (3) with the polymer (2) affects the activity coefficient of the 

polymer (f2) in solution, and thus leads to a change in the chemical potential (μ2) of the polymer.  

 

Figure 2.27 Hofmeister effect on model processes involving nonpolar surfaces exposed to water.[199] (Left) Increase 

in surface tension of water as a function salt concentration. (Right) Effect of salts on the relative solubility of benzene.  
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A typical usage of this model is shown in Figure 2.27, in terms of the effect of different salts on 

surface tension of water, and solubility of a non-polar solute in water, where the m-value can be 

extracted from the slope of the lines. Accordingly, it has been shown that the effect of salts on the 

surface tension and solubility of the hydrophobic solute follows the same order. The obtained 

chemical potential derivative is proportional to the accessible surface area (ASA) of the 

macromolecules through the proportionality constant α, which includes an average hydration (b1) 

term average solute partitioning coefficient (Kp):        

𝑚 − 𝑣𝑎𝑙𝑢𝑒

𝑅𝑇
= ∆

𝜇23

𝑅𝑇
= 𝛼3,2∆𝐴𝑆𝐴 =  

−(𝜐+𝐾𝑝,+ + 𝜐−𝐾𝑝,− − 𝜐)𝑏1(1 + 𝜀±)

55.5
∆𝐴𝑆𝐴 

Where ε is salt-salt non-ideality correction term, i.e., derivatives of activity coefficient of the salt 

with respect to its concentration. The interaction potential (α) quantifies the strength and direction 

of preferential interaction of salt with polymer surface, which is almost independent of the change 

in accessible surface area, salt concertation and non-ideality correction parameter. Based on this 

equation, the partition coefficients of various ions for non-polar surfaces and polar groups such as 

amide and hydroxyl groups were calculated (Figure 2.28).  

 

Figure 2.28 Partition coefficients for the cations and anions at nonpolar and polar surfaces.[199] 
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2.5.3. The law of matching water affinities 

As explained in the section about hydration of ions, the law of matching water affinities (LMWA) 

was formulated by Collins to address specificity in the ion-ion and ion-charged site 

interactions.[125, 136, 141, 144, 203-206] First, the ions are classified as being kosmotropic or 

chaotropic to distinguish their hydration power and resulting effects on the water structure. Then, 

the association of anions and cations to form ion pairs is discussed with respect to the Volcano plot, 

which can be interpreted as cations and anions form stable ion pairs if their corresponding hydration 

enthalpies match. In other words, a kosmotropic cation likes a kosmotropic anion, and a chaotropic 

cation likes a chaotropic anion (Figure 2.29).  

 

Figure 2.29 (Left) Schematic illustration of ion pairing based on the LMWA. As shown, when both anion and cation 

are kosmotropic or chaotropic, they form stable ion pairs. While if one ion is kosmotropic and the other is chaotropic, 

they tend to dissociate in solution.[141] (Right) LMWA schematic illustration of ion-headgroup binding. Small and 

strongly hydrated ions are referred to as hard ions, while bulky and weakly hydrated ions are called soft ions. [207]   

Using the same framework, Kunz provided a qualitative explanation for the affinity of the charged 

functional groups for different counter ions (Figure 2.29).[207] In a similar argument, for a 

chaotropic head group, the binding tendency of the chaotropic counter ions is larger and vice versa, 

which can be used to justify the observed series for counter ion binding to the charged residues of 

the proteins, as well.  
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This speculation has been used to explain many biological observations. For instance, the fact that 

the strongly hydrated Ca2+ and Na+ ions are pumped out of the living cells, whereas the weakly 

hydrated K+ is pumped in. This is because Ca2+ and Na+ are well matched to the strongly hydrated 

intracellular anions (phosphate, the carboxylate, and carbonate), and tend to form contact ions pairs 

with them (and then come out of solution).[127] However, it is worth mentioning that the LMWA is 

not actually a theory, but rather an empirical rule based on the observed Hofmeister series for ion-

ion and ion-site interactions. It does not clearly explain why the hydration properties of the ions at 

infinite dilution should determine ion pairing and ion-site binding. More importantly, it merely 

addresses the interaction of the ions with the charged groups of polymers and proteins; nevertheless, 

as mentioned before, ions can interact with the hydrophobic surfaces and uncharged polar groups.  

2.5.4. Ion dispersion interactions  

While electrostatic and hydration forces have been typically considered to explain the Hofmeister 

effect, Ninham and coworkers have suggested dispersion interactions as another source of ion-

specificity.[126, 132, 152, 175, 206, 208-212] As explained before, electrostatic interactions solely 

cannot elucidate the ion-specific phenomena, because ions of the same charge can have different 

size and shapes. Therefore, one has to consider the dispersion forces to account ion-specificity.  

Accordingly, at any aqueous interface, ions experience a dispersion potential given by the Lifshitz 

theory. Therefore, for a colloidal particle in the solution, an additional mean field term (Ux
dispersion) 

related to the dispersion potential should be included in the mean field Poisson-Boltzmann equation, 

to address the image forces, many body diploe-dipole, diploe-induced dipole, and induced dipole-

induced dipole forces, as interactions that strongly depend on the nature of the species:    

𝜌𝑥 = 𝜌0𝑒−(𝑧𝑒𝜓𝑥+𝑈𝑥
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

)/𝑘𝑇 
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The dispersion potential itself is given as:  

𝑈±(𝑥) =
1

𝑥3
∫

𝛼(𝑖𝜔)

𝜀𝑤(𝑖𝜔)
(

𝜀𝑤(𝑖𝜔) − 𝜀𝑠(𝑖𝜔)

𝜀𝑤(𝑖𝜔) + 𝜀𝑠(𝑖𝜔)
) 𝑑𝜔

∞

0

 

Where α represents the polarizability and ε refers to the dielectric constants of water and surface. 

This equation demonstrates that frequency dependence of the dielectric function of the substrate 

determines the sign of the dispersion potential, meaning any ion experiences an additional 

dispersion potential, which can either enhance or decrease the electrostatic potential. (Figure 2.30) 

 

Figure 2.30 Schematic representation of the classic Poisson-Boltzmann theory and the modified version with the 

dispersion and hydration forces included.[152]   

The dispersion potential can be estimated from the static polarizability of the ions and single 

adsorption frequency, providing:  

𝑈𝑥
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

=
𝐵

𝑥3
 

𝐵 =
𝛼∗(0)ℎ𝜔

16𝜋
(𝑛𝑤

2 − 𝑛𝑠
2) 

Where n represents the refractive index, hω indicates the ionization potential of the ions, and α*(0) is 

the static polarizability of the ion. Based on this equation, we can evidently find out that the 

difference between the refractive index of water and the substrate determines the sign of the 
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dispersion potential, i.e., if the refractive index of the substrate is larger the dispersion potential will 

be positive and vice versa. Moreover, the higher the polarizability of the ion is, the stronger the 

dispersion force contribution will be. In order to include the ion hydration role into the dispersion 

potential, Parsons and coworkers[152, 212] calculated the frequency dependent dynamic 

polarizability of the ions, giving the dispersion potential as:  

𝑈𝑥
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =

𝐵

𝑥3
𝑓(𝑥) 

𝐵 =
𝑘𝑇

2
∑

𝛼∗(𝑖𝜔𝑛)

𝜀𝑤(𝑖𝜔𝑛)
(

𝜀𝑤(𝑖𝜔) − 𝜀𝑠(𝑖𝜔)

𝜀𝑤(𝑖𝜔) + 𝜀𝑠(𝑖𝜔)
)

𝑛

 

In this equation, f(x) is called the form factor and accounts for the finite size of the ion and 

hydration, and α*(iω) is the excess dynamic polarizability. 

 

Figure 2.31 Schematic comparison between (A) LMWA and (B) the theory of dispersion forces, to explain the specific 

interactions of weakly- and strongly hydrated ions with an oppositely charged surface. Depending on the nature of the 

surface, the two approaches may predict opposite Hofmeister series.[127] 

This theory indicates that the ionic size and polarizability have opposite effects on the dispersion 

potential. Polarizability increases with size, thus enhancing the dispersion forces. On the other hand, 



49 
 

the increased size weakens the dispersion forces. In addition, hydrated ions have a different 

effective size, which can also affect the dispersion interactions. The outcome is thus a balance 

between all these effects, which can address the ion-specificity in the ion-ion and ion-surface 

interactions. This indeed reveals the differences between the LMWA and the quantum approach 

(Figure 2.31). While the former merely concerns with binding of ions to the charged binding sites 

on the surface, the latter examines ion-surface interaction by considering a uniformly charged 

substrate with a dielectric constant.   

   

Figure 2.32 (Left) Parts of the electrostatic double layer for a gold surface in CsCl aqueous solution.[213] (Right) 

Electrostatic potential decay in different NaCl concentrations.[214]  

2.6. Surface forces in aqueous media  

In this section, I will describe the general principles of the colloidal stability and surfaces forces 

between the polymer-covered surfaces, which can be useful for understanding and analysis of my 

AFM colloidal probe results (paper IV and V). The main forces that had to be considered during my 

work are electrostatic double layer forces, Van der Waals forces, hydration forces, and more 

importantly polymer-related steric and bridging interactions. I will go through the nature and origins 

of each of these interactions to provide a framework for interpretation of the AFM force profiles. 

For a deeper understanding of these concepts, I would like to refer you to “Intermolecular and 
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Surface Forces” by Jacob N. Israelachvili, which is definitely one of the best sources on this topic. 

For a more exclusive knowledge on the polymer-mediated interactions, “Polymers at Interfaces” by 

G. J. Fleer et al. is definitely a useful book.         

2.6.1. Electrostatic double layer force  

Surfaces in the aqueous medium can be charged through different mechanisms such as ionization or 

dissociation of surface groups, e.g. deprotonation of surface carboxylic groups, or adsorption of 

ionic species from the solution to the surface, e.g., adsorption of the hydroxide anion to 

water/hydrophobic interfaces.[215] The formed surface charge is compensated with a distribution of 

the counter- and co-ions, which was described by the Gouy and Chapman diffusive double 

layer.[216, 217] Afterwards, Stern introduced the concept of the adsorbed counter ions in the fixed 

first layer from the surface, known as the Stern plane.[218, 219] Accordingly, the potential at the 

surface ψ0 linearly decreases to a value of ψd located at the Stern plane, and then exponentially 

decreases to zero value in the bulk solution (Figure 2.32).[220] The double layer thickness is 

accordingly formulated as: 

𝜅−1 = (
𝜀𝑟𝜀0𝑘𝑇

𝑒2 ∑ 𝑐𝑚𝑖𝑍𝑖
2

𝑖

)

0.5

 

Where εr is the relative permittivity, ε0 is the permittivity of vacuum, k is the Boltzmann constant, T 

is the absolute temperature, Cm is the molarity of the ions, Zi is the valiancy of the ions, and e is the 

electric charge. For 1:1 electrolytes, the equation is reformulated to:  

𝜅−1 =
0.304

√𝐶
 

In this equation, C should be inserted in mol.dm–3 and the Debye length then comes out in nm. 

Accordingly, by increasing the electrolyte concentration, the double layer thickness decreases. For 
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instance, in the 0.01 mM NaCl solution, the double layer thickness is found to be around 100 nm, 

and in a 100 mM solution, it is roughly 1 nm (Figure 2.32). Therefore, the double layer thickness is 

determined by the salt concentration and indicates how extensive the double layer repulsion will be. 

When the surfaces get too close such that their electrostatic double layers overlap, a repulsion force 

will be produced, because the limited space between the surfaces does not allow complete potential 

decay for each double layer. The produced electrostatic repulsive potential energy is formulated in 

the following form [215, 220]:  

𝑊𝑅(𝐷) = 𝐶𝑒−𝜅𝐷 

Accordingly, the electrostatic potential energy exponentially decays with an increase in the 

distance, and becomes zero at large separations. The rate of the decay is determined by the double 

layer thickness, i.e., the larger the double layer thickness is the slower the decay will be and vice 

versa.[221-223] The parameter C is a constant that accounts for the geometry of the interacting 

surfaces and their surface charge density. In my AFM colloidal probe measurements, I typically 

used 10 mM NaCl solution (Debye length of around 3 nm) as the buffer, in order to screen the long-

ranged electrostatic repulsions so the polymer-related interactions could be studied.   

2.6.2. Van der Waals forces  

Atoms and molecules can attract each other at relatively short distances due to the Van der Waals 

(VdW) forces, which has three components.[224-226] First, the attractive interaction between two 

molecules with permanent dipoles (dipole moment of μi), which for freely rotating dipoles provides 

an interaction energy (Keesom orientation force) of: 

𝑊(𝐷) = −
𝜇1

2𝜇2
2

3(4𝜋𝜀𝜀0)2𝑘𝑇𝐷6
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Second, a molecule with permanent dipole can induce a dipole to another molecule (with 

polarizability of α2), which produces an attractive interaction potential (Debye induction force) of:  

𝑊(𝐷) = −
𝜇1

2𝛼2

(4𝜋𝜀0)2𝐷6
 

Third, the dispersion (London) forces that exist between all atoms and molecules, even between the 

non-polar species. Displacement in the electron clouds of the atoms can produce an instantaneous 

dipole moment, which can thus affect the surrounding molecules through attractive or repulsive 

interaction potential, given by:  

𝑊(𝐷) = −
3𝛼1𝛼2

2(4𝜋𝜀𝜀0)2𝐷6

ℎ𝜐1𝜐2

(𝜐1 + 𝜐2)
 

To account the VdW forces between two identical macroscopic bodies (1) interacting in a medium 

(3) such as water, the Lifshitz expression for the Hamaker constant needs to be considered: 

𝐴 =
3𝑘𝑇

4
(

𝜀1 − 𝜀3

𝜀1 + 𝜀3
)

2

+
3𝜐𝑒(𝑛1

2 − 𝑛3
2)2

16√2(𝑛1
2 + 𝑛3

2)
3

2⁄
 

In this formula, the atomic structure is ignored and the large bodies are treated as continuous media; 

accordingly, the forces between the surfaces are derived in terms of the bulk properties as their 

dielectric constant εi and refractive index ni.[227, 228] By having the Hamaker constant between 

two surfaces in a medium one can calculate the VdW interaction force for different geometries, 

such as between a flat surface and a spherical particle, which can represent the AFM colloidal 

probe-flat surface geometry: 

𝐹𝑉𝑑𝑊

𝑅
= −

𝐴123

6𝐷2
 

This equation is obtained by assuming that the particle radius is considerably larger than the 

separation distance between the surfaces.[220] I should emphasize that roughness of the surface or 
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presence of a polymer layer on the surface can significantly affect the VdW interactions between 

the substrates[229, 230], which is why in my results the contribution of VdW forces can be 

considered to be of minor importance. 

 

Figure 2.33 Forces between mica surfaces in 1:1 salt solutions. The right-hand axis gives the theoretical interaction 

energy between two flat surfaces from the Derjaguin approximation. For low salt concentrations, the theoretical DLVO 

theory works, while at high concentrations an additional short-ranged hydration repulsion is produced due to the 

presence of adsorbed cations.[220] 

2.6.3. Solvation (hydration) forces    

The primitive form of the DLVO theory based on the repulsive double layer forces and the 

attractive Van der Waals forces cannot address all the existing interactions in systems that are more 

complex, e.g., polymer-covered surfaces. It has been demonstrated that when two surfaces approach 

closer than a few nanometers, the continuum theories of DLVO forces often fail to describe the net 

interactions.[231] This has led to the introduction of a new class of surface forces known as the 

non-DLVO interactions.  

One of these interactions is the presence of a monotonically repulsive force at very short distances 

(typically < 5 nm), which has been attributed to the hydration (solvation) forces (Figure 1.33).[232-

234] This can occur for hydrophilic surfaces where polar or ionic head groups are effectively 
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hydrated, or when the hydrated counter ions are accumulated at the surface.[235-237] For instance, 

the repulsive hydration force between two silica surfaces in presence of different salts solutions 

indicated a ranking for the dehydration repulsion by cations Mg+2 > Ca+2 > Li+ ~ Na+ > K+ > Cs+, 

suggesting that the hydration capacity and number of the ions is a decisive factor in the observed 

solvation forces.[220] In both cases, when the surfaces are sufficiently close, the disjoining pressure 

corresponding to dehydration of the species is likely and thus a short-ranged repulsion is found. 

   

Figure 2.34 (Left) Several systems that are driven by the hydrophobic interaction and the hydrophobic effect.[238] (a) 

Low solubility of nonpolar solutes in water and vice versa, (b) The strong attraction between solid hydrophobic 

surfaces, (c) Dewetting, (d) Bubble coalescence and adsorption of hydrophobic entities to the air/water interface, (e) 

Micellization, (f) Protein folding. (Right) Typical force curve in an area containing nanobubbles (a). The force curve 

represents the interaction between a single nanobubble and the AFM probe tip.[239]  

2.6.4. Interaction between hydrophobic surfaces in water  

As explained before, the theory of hydrophobic effect has been postulated to address the behavior of 

non-polar solutes and molecular surfaces in water (such as low solubility of nonpolar solutes in 

water, micellization and proteins folding (Figure 2.34)), an effect that has been suggested to be of 

entropic origin.[240-242] The theory of ice-berg water structures was one of the initial attempts to 

explain this phenomenon[243, 244], while later the presence of a hydrophobic bond between 
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nonpolar molecules was also speculated.[245, 246] Such an effect has been considered as the source 

of the unusually strong attraction between nonpolar groups and surfaces in water, which is 

considerably larger than that of the classic Lifshitz theory of VdW interactions. One critical 

consideration regarding the hydrophobic effect is the fact that such attractions are due to not only 

the properties of the particles themselves, but also the suspending aqueous medium.  

During recent years, there has been an extensive research on direct measurement of forces between 

macroscopic hydrophobic surfaces using various techniques such as AFM [247-251]; however, 

there is no single theory that can elucidate all the experimental results and a deep understanding of 

the exact origins is still missing. One of the intriguing observations is the long range of the 

attractive interactions between the macroscopic surfaces, which can go up to hundreds of 

nanometers. In this case, it should be considered that although a depletion layer of water molecules 

exists at the hydrophobic surfaces, the thickness of this layer is expected to be in the range of one or 

two water molecules, which can only justify the short-ranged attractions. Accordingly, several 

speculations have been proposed to illustrate the extremely long-ranged attractions, e.g., 

coalescence of the nanobubbles existing on the hydrophobic surfaces.[252-254]                     

2.6.5. Polymer-mediated forces  

In section 2.3, I discussed the mechanisms through which the polymer chains can adsorb or 

anchored to the surfaces in aqueous solution. Presence of an adsorbed or grafted polymer layer at 

solid surfaces can give rise to either repulsive or attractive interactions between the surfaces, which 

again cannot be elucidated based on the DLVO theory.[255, 256] For a specific type of polymer, 

there are various factors such as the molecular weight of the polymer, the thickness of the layer, 

grafting density (or the amount of adsorbed polymer), conformation of the polymer chains, solvent 
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quality, segment-surface affinity, etc., that can considerably contribute to these interactions (Figure 

2.34).[257-261]  

  

Figure 2.34 Steric repulsive forces between polymer-covered surfaces. (Left) Effect of grafting density on the repulsive 

steric force of a polymer.[259] (Right) Effect of polymer molecular weight on the steric repulsion.[220] 

One possible interaction is the repulsive steric or overlap forces between the polymer-covered 

surfaces. Consider two flat surfaces each covered with a polymer layer with a uniform thickness of 

𝛿. When the surfaces get close in a way that the separation distance (h) becomes smaller than 2𝛿, 

the local segment density in the interaction region enhances. Considering that the polymer chains 

are effectively hydrated, such an increment in the local segment density produces a strong 

repulsion, resulting from two factors.[262-265] First, the overlap of the chains (higher local 

segment density) increases the osmotic pressure within the layers due to the unfavorable mixing of 

the polymer chains under the good solvent condition. Second, compression of the polymer chains 

indeed reduces the configuration entropy and number of possible conformations of the chains, due 

to the restriction in the available volume for the chains. The former is then related to the free energy 

of mixing of the polymers, while the latter refers to the entropic or elastic free energy of the 

polymer chains.  
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With respect to the first contribution, I refer to the section 2.1.2, in which I discussed the free 

energy of mixing of polymers. As I explained in more details there, the free energy of mixing 

depends on the solvent quality or in other words the polymer-solvent Flory Huggins interaction 

parameter. In simple terms, if the polymer-polymer interaction is stronger than polymer-solvent 

(bad solvent condition); the free energy contribution is negative. On the other hand, if the polymer-

solvent interaction is stronger than polymer-polymer (good solvent condition) the free energy 

contribution is positive. Therefore, depending on the solvent quality, the free energy contribution to 

the steric forces can be either attractive or repulsive. I observed this effect in some of my AFM 

measurements on PNIPAM-covered surfaces below and above the phase separation temperature 

(Paper IV). Unlike the mixing term, the entropic contribution always produces a repulsive force due 

to the unfavorable restriction in polymer configurational entropy by compression, even under bad 

solvent condition.  

 

Figure 2.35 Polymer-substrate bridging.[220] (Left) Non-specific segmental adsorption to the opposite surface. (Right) 

Specific binding to the opposite surface.    

Besides the steric force, one can also observe attractive polymer-mediated forces between polymer-

coated surfaces, known as bridging forces.[266-268] It can originate from attractive interactions 

between the polymer chains from one surface, with the chains on the other surface. In addition, 
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polymer chains can also bridge to the opposite bare surface, on condition of having strong segment-

surface affinity and relatively low surface coverage (Figure 2.35).   

 

Figure 2.36 (a) Theoretical and (b) experimental force-distance curves between two flat substrates covered with 

different amounts of polymer under ϴ-solvent condition.[64] At relatively low surface coverage, the birding dominates. 

By increasing the surface coverage, the repulsive steric forces dominate.    

The polymer-polymer bridging is possible under the bad solvent condition where polymer-polymer 

interactions are more favorable than polymer-solvent interactions. The attractive interactions can be 

due to VdW or solvent-mediated forces, or can be more specific interactions such as hydrogen 

bonding between the polymer chains, e.g. in case of PNIPAM. The polymer-substrate bridging 

depends on various parameters such as solvent quality, layer thickness and conformation, surface 

coverage by the polymer chains, and segmental affinity for the surface.[257-259] The polymer-

substrate can also be non-specific physical interactions (observed between PNIPAM and gold in my 

AFM measurements) or specific binding interactions, e.g., if the polymer bears a specific end group 

such as thiol that can bound to the opposite surface.[269] The combination of steric repulsions and 

attractive bridging can be attractive or repulsive depending on several parameters such as the 
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polymer surface coverage. This can be seen from Figure 2.36 in which the effect of surface 

coverage on the force-distance profile between polymer-coated surfaces is depicted. At relatively 

low surface coverages, the overall interaction close to the surface is attractive (bridging dominates); 

while by increasing the surface coverage the overall interaction becomes purely repulsive (steric 

forces dominate).            
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In this section, the experimental methods that were employed during my PhD studies are 

described in details. Each method is briefly introduced in terms of its fundamentals, and then the 

typical experimental procedure of the measurements and analysis of the data are explained. 

Regarding the chemicals that were used for the projects, I would like to refer you to the attached 

papers, in which the characteristics of all the supplied polymers are provided. The employed 

experimental methods can be divided into two categories: (i) characterization of the properties of 

polymers in bulk solution state, i.e., differential scanning calorimetry and dynamic light scattering, 

(ii) characterization of the polymer properties at a solid/aqueous interface, i.e., quartz crystal 

microbalance with dissipation monitoring and atomic force microscopy. 

3.1. Differential scanning calorimetry (DCS)  

Often as the first experiment, I performed DSC measurements on the polymer solution samples. It 

can provide the accurate phase separation temperature of the polymer solutions. This information is 

of great importance, since the phase separation temperature of the polymer was the basic 

information required for all the conducted projects. In some studies (papers I-III), the effect of 

different salts of various concentrations was assessed on the stability of the polymers, while for the 

other studies (papers IV and V) the polymer properties were investigated at temperatures below and 

above the collapse temperature.  

In addition to the phase separation temperature, DSC can provide information on thermodynamics 

of the phase transition, i.e., the enthalpy change of transition, the entropy change of transition, and 

the change in the heat capacity upon transition.[270, 271] Based on the discussions I provided in the 

background section, such thermodynamic data can be attributed to the energy change upon 

dehydration of the polymer; accordingly, could be helpful in case of understanding the underlying 

mechanisms of the phase transition.  
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Figure 3.1 Typical DSC setup. The instrument consists of two parallel U-shaped cells, one for the reference (buffer) 

solution, and the other for the sample (polymer) solution. The temperature of both cells is increased with a specific 

heating rate. Any exothermic or endothermic phenomenon that occurs in the sample cell will be compensated with an 

equal amount of heat so the temperatures of the cells remain identical.[270]  

Briefly about the technique, DCS is a thermoanalytical method that measures the amount of the heat 

required to increase the temperature of a sample and a reference cell as a function of temperature 

(Figure 3.1).[270] The instrument consists of two U-shaped cells for the reference and the sample 

solutions. For my measurements, the reference (buffer) was the solution without the polymer, which 

could be pure water or saline solutions. The sample solution was the buffer plus the dissolved 

polymer. After loading the buffer and polymer solutions in their corresponding cells and 

instrumental thermal stabilization, the temperature of the cells is increased with a constant heating 

rate (ºC/min). As long as no thermal phenomenon occurs in the sample solution, a stable baseline is 

recorded by the instrument, which means that both the solutions require constant amounts of heat to 

increase their temperatures. When a thermal phenomenon such as polymer phase separation occurs 

in the sample solution, the amount of heat required to increase the temperature of the sample cell 

(with the same heating rate) changes. If the phase transition absorbs heat, the instrument heater will 

transfer the same amount of heat to the sample cell and vice versa; so the temperatures of the 
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reference and sample cells remain identical. The additional exchanged heat with the sample cell is 

then recorded as a function of temperature, which produces the DSC thermogram.  

The appeared peak in the thermogram represents the phase separation of polymer solution and 

thermodynamic data of the process can be extracted from it (Figure 3.2). The temperature of the 

peak maxima (point 3 on the figure) can be considered as the phase separation temperature of 

polymer. However, the more accurate phase separation temperature can be the onset of the peak 

(point 2), i.e., the temperature at which the peak appears. The area under the peak (region 4) 

corresponds to the total additional heat exchanged with the sample cell, which after normalization 

to the amount of the polymer in solution (in gram or mole) provides the enthalpy change associated 

with the phase separation (ΔH). Considering that at the phase separation point, ΔG of transition 

equals to zero, then the entropy change of the phase separation can be obtained from ΔS = -ΔH/T. 

The change in the heat capacity (ΔCp) can also provide additional information on changes in the 

solvent-accessible surface area of the polymer.   

 

Figure 3.2 Typical DSC thermogram of a polymer solution. The pre-transition baseline refers to the temperatures at 

which the polymer is fully soluble in water. The peak area corresponds to the temperature range at which the phase 

separation occurs. The post-transition baseline indicates the temperatures where the phase separation is terminated.   
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As mentioned, to be able to calculate the enthalpy change of transition, the raw heat data must be 

normalized to the amount of the polymer in the sample cell, to obtain the molar heat capacity data 

(MHC) that can be used for analysis and comparison[272]: 

𝑐𝑝 (
𝑘𝐽

𝑚𝑜𝑙. 𝐾
) = 𝐶𝑝 (

𝑘𝐽

𝐾
) ×

𝑀𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝑉𝑐𝑒𝑙𝑙 × 𝑤𝑝𝑜𝑙𝑦𝑚𝑒𝑟 × 𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

In this equation, cp is the molar heat capacity, Cp is the raw measured heat data, Mpolymer is the 

molecular weight of the polymer, Vcell is the volume of the instrument sample cell, wpolymer is the 

weight concentration of polymer in solution, and ρsolution is the density of the solution. After 

converting the raw data to the molar heat capacity values, the area under the peak can be integrated, 

using a first order fitting for pre- and post-transition baselines.  

 

Figure 3.3 Schematic illustration of DSL. As shown, the laser beam is scattered from the particles in the solution, while 

the Brownian motion of the entities gives rise to time-dependent fluctuations in the scattered light intensity.   

3.2. Dynamic light scattering (DLS) 

For some projects (papers IV and V), I conducted DLS measurements to provide information on the 

hydrodynamic dimeter (Dh) distribution of the polymers in solution. By doing the measurements at 

various temperatures, it was also possible to study the polymer solution in terms of the aggregation 
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temperature and to assess the aggregation type, i.e., macroscopic phase separation, micellization, or 

formation of mesoglobules.  

In a dilute polymer solution (below the overlapping concentration) where inter-chain interactions 

are negligible, the individual polymer coils can be considered to have random Brownian motions, 

which originates from the strikes from the water molecules and the thermal energy of polymer 

chains. These motions give rise to randomness in the phase of the scattered beam from a spatially 

limited volume of the solution, which causes time-dependent fluctuations in the scattered light 

(Figure 3.3). This time-dependence in the scattering intensity is recorded, which can be related to 

the diffusion constant of the polymer coils and then using the Stokes-Einstein equation can provide 

the hydrodynamic size distribution.[273] The fluctuation are assessed using the second order 

correlation function, as follows: 

𝑔(2)(𝜏) =
〈𝐼(𝑡)𝐼(𝑡 + 𝜏)〉

〈𝐼(𝑡)〉2
 

Where I(t) is the scattering intensity at the time t and τ is the delay time. The obtained correlation 

data (also known as the correlogram) can be analyzed through different methods and algorithms, to 

obtain the diffusion coefficient and size distribution profile. For a mono-dispersed sample, the 

Cumulants approach, which is based on the moment analysis of the linear form of the correlogram, 

can be employed to calculate the mean or Z-average size and the polydispersity index (PdI). In 

brief, the first cumulant is used to calculate the intensity weighted Z-average mean size, which is 

related to the initial slope of the linear form of the correlation function. The second moment 

provides the PdI value, which is related to the inflection point at which the correlogram (in semi-log 

scale) deviates from linearity. The Cumulants analysis considers merely the initial (i.e., small delay 

time values) parts of the correlation function to stabilize the analysis and fitting, because using more 

data points will produce fitting errors. 
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Figure 3.4 Typical DLS data of two copolymer solutions used in my studies; (Left) A monodispersed size distribution 

where the Cumulants fit can provide reliable data, (Right) a bimodal size distribution that is not suitable for the 

Cumulants fit, and distribution fit can be used to assess the size distribution of different entities in the solution. For 

instance, having single polymer chains and intermicellar complexes together in the solution.  

Accordingly, for polydisperse samples, the Cumulants analysis can be rather misleading as only a 

limited portion of the correlation data is analyzed and a single average size is reported for a 

multimodal size distribution. Under such condition, the CONTIN algorithm can be used to extract a 

more accurate data, and model the correlation data as an intensity contribution for each of a number 

of size bands. These intensities will be represented in the displayed size distribution as peaks, each 

with a characteristic width. As a note, I should emphasize that for a hydrated polymer coil the 

measured hydrodynamic radius is larger than the radius of gyration of the polymer.[274] 

Nevertheless, it can provide an approximate information about the polymer size in solution and its 

aggregation behavior, which was useful for my studies.   
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3.3. Quartz crystal microbalance with dissipation monitoring (QCM-D) 

I conducted QCM-D measurements (paper IV and V) in order to investigate the adsorption/grafting 

of polymers to the solid/aqueous interfaces (gold/aqueous and silica/aqueous), as well as assessing 

the changes in hydration state and conformation of the prepared polymer layers.  

A QCM-D sensor chip consists of a thin quartz disc, which is sandwiched between a pair of 

electrodes. By applying an alternating voltage, the sensor is excited to oscillate at its fundamental 

resonance frequency. The resonance frequency (f) inversely depends on the total oscillating mass of 

the sensor and the adhering layers on the sensor surface, which herein includes the adsorbed 

polymer chains plus their water content. In the salt solutions, the ions adsorbed or trapped within 

the polymer layer as well as the ions adsorbed to the sensor surface can contribute to the resonance 

frequency value. Accordingly, adsorption of any species such as polymer chains to the sensor 

surface is accompanied with a negative shift in the frequency.  

 

Figure 3.5 QCM-D response in presence of a rigid and soft adhered layer. 

On condition that the adsorbed film is thin and rigid, the decrement in the frequency is linearly 

proportional to the amount of the added mass to the sensor. Assuming the layer to be of a uniform 

thickness and density, the calculated layer mass can be converted into layer thickness by having the 
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density of the layer. The mass of a rigid adhering layer is calculated using the Sauerbrey 

relation[275]: 

∆𝑚 = −𝐶
∆𝑓

𝑛
 

Where C is a proportional constant that depends on fundamental frequency, thickness and density of 

the quartz crystal (17.7 ng.Hz-1.cm-2 for a 5 MHz quartz crystal) and n (1, 3, 5, 7, 9, 11, 13) is the 

overtone number. Nevertheless, in most cases including adsorbed/grafted polymer layers, the 

Sauerbrey relation is not valid. As mentioned, the Sauerbrey estimation assumes that the added 

mass is small compared to the crystal mass, rigidly adsorbed with no slip or deformation during the 

oscillation and evenly distributed.  

During a QCM-D measurement, the drive generator output repeatedly ceases and the subsequent 

decay of the sensor oscillation is also monitored. Accordingly, the dissipation (damping) factor (D) 

is calculated as the energy dissipated per oscillation divided by the total energy stored in the system: 

𝐷 =
𝐸𝑙𝑜𝑠𝑡

2𝜋𝐸𝑠𝑡𝑜𝑟𝑒𝑑
 

Herein, Elost is the dissipated energy during one oscillation cycle, and Estored is the total energy 

stored in the oscillator. A rigid adhered layer follows the oscillation with no significant deformation 

and thus has a small damping factor. On the other hand, a soft adhered film is deformed during the 

oscillation; hence, gives rise to a high dissipation value. Therefore, for polymer layers, the 

dissipation value can provide semi-quantitative structural and conformational information about the 

swelling and collapse of the polymer film. The Sauerbrey estimation can be employed when there 

are no significant dissipation shifts (ΔD < 1) and the frequency shifts do not spread between the 

harmonics, or in other words, the frequency curves are not overtone-dependent.  



69 
 

 

Figure 3.6 Typical adsorption curve of a polymer on the QCM-D sensor. (Left) Frequency shifts. (Right) Dissipation 

shifts. The negative frequency shift corresponds to attaching the hydrated polymer chains to the sensor surface. The 

clear overtone-dependence of the frequency shift curves suggests viscoelasticity of the adsorbed layer. The positive 

dissipation shift suggests formation of a dissipative layer on the sensor that can damp the sensor decaying oscillation.    

For a soft and viscoelastic polymer layer the Sauerbrey relation will underestimate the mass at the 

surface. This is the case when the adsorption curves indicate significant dissipation shifts (ΔD > 1) 

and well-separated frequency shifts for the different harmonics (overtone-dependence). This 

provides the opportunity to consider different fundamental frequencies and overtone numbers, 

which can render additional information about the layer viscoelasticity and thickness, by applying a 

viscoelastic model, e.g. the Voigt model, in order to approximate properties of the film.[276, 277] 

In the viscoelastic Voigt modeling, the adhered film is represented by a layer of homogenous 

thickness and density, with elastic and viscous components. The frequency and dissipation shifts for 

such a layer can be calculated from to the imaginary and real parts of the β function:  

∆𝑓 =
𝐼𝑚(𝛽)

2𝜋𝑡𝜌
 

∆𝐷 =
𝑅𝑒(𝛽)

𝜋𝑓𝑡𝜌
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Where t and ρ are thickness and density of the quartz crystal, respectively. The β function represents 

shear viscosity η and shear elasticity μ of the adhered layer, which in the case of a single 

viscoelastic film (1) covered with a Newtonian liquid (2) can be obtained from the following 

equation:  

𝛽 =
𝜉1𝜔𝜂1 − 𝑖𝜇1

𝜔

1 − 𝛼2𝜉1ℎ1

1 + 𝛼2𝜉1ℎ1
 

𝜔 = 2𝜋𝑓 

𝛼 =

𝜉1𝜔𝜂1 − 𝑖𝜇1

𝜉2𝜔𝜂2
+ 1

𝜉1𝜔𝜂1 − 𝑖𝜇1

𝜉2𝜔𝜂2
− 1

 

𝜉1 = √−
𝜔2𝜌1

𝜇1 + 𝑖𝜔𝜂1
 

𝜉2 = √𝑖
𝜔𝜌2

𝜂2
 

By fitting the Voigt model to the measured Δf and ΔD data of different overtones, one can estimate 

the density (ρ1), thickness (h1), shear viscosity (η1) and shear elasticity (μ1) of the adhered layer. The 

film viscosity and density cannot be obtained together; hence, usually the density of the polymer 

layer is independently determined or assumed.  

In my studies, I used the instrument software for viscoelastic Voigt modeling of the data. It provides 

two solutions from the fitting, where one would be a thin and rigid layer, and the other is a thicker 

and soft layer. One of the solutions usually has a much better fit quality than the other has and is 

therefore used. Density and viscosity of the solvent together with the density of hydrated polymer 

layer are required for fitting, which can be estimated from the values in the literature.  
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Figure 3.7 Typical viscoelastic Voigt modeling of the QCM-D data of a polymer layer by the instrument software.  

3.4. Atomic force microscopy (AFM) 

AFM is a member of the scanning probe microscopes that is working based on the interaction 

between the sample surface and a so-called probe.[278] It constitutes of a cantilever with a probe, a 

piezoelectric scanner, a laser beam, and a photodiode detector. The piezoelectric scanner provides 

the ability to scan over the sample surface in three directions at sub-nanometer scale. The tip that is 

mounted to the cantilever is thus scanned over the sample surface, and the forces between the tip 

and the sample are measured by detecting the deflection of the cantilever, and can be used to obtain 

topographical images. The resolution of the imaging is determined by the tip geometry and size. 

The local attractive or repulsive interactions between the sample surface and the tip give rise to 

bending of the cantilever. To monitor the deflection of the cantilever, a laser beam is employed that 
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is reflected from the backside of the cantilever onto a detector. When the cantilever is bent, the 

angle of the reflected laser beam changes and the laser spot falls on a new spot of the quadrant 

photodetector, which can be converted into the vertical and lateral deflection of the cantilever 

(Figure 3.8). The cantilever itself can be considered as a spring, meaning that deflection of the 

cantilever can be converted into force by knowing the accurate spring constant of the cantilever. 

Depending on the type of measurement, various cantilevers with different tip shapes and spring 

constants can be used.  

 

Figure 3.8 Schematic illustration of AFM 

The most basic mode of operation of AFM is the contact mode, where the cantilever is deflected on 

the surface. During contact imaging, the deflection or in other words the amount of applied force is 

kept at a constant setpoint, through adjusting the z-position of the piezo element controlled by a PI 

controller. However, for some cases such as molecular layers and polymer films, this mode can be 

quite vigorous and can change or even destroy the structure. Alternatively, the tapping mode 

imaging is employed, where the cantilever is forced to oscillate vertically near its resonance 

frequency. When the sample-tip distance decreases the frequency and amplitude of the oscillation 

changes, thus the piezo withdraws the tip from the surface, and vice versa.  
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Figure 3.9 Contact and tapping modes.[279] 

Besides imaging the surfaces, AFM can be used as an accurate tool to measure the interactions 

between surfaces of different chemistries and structures.[280] In the initial studies, the forces 

between the AFM tip and flat substrates were measured.[281, 282] Nevertheless, since the exact 

shape and size of the AFM tip was unknown, quantitative comparison of such measurements and 

the obtained force profiles with theories such as DLVO was not possible. Later, Ducker and 

coworkers[283] solved this problem by attaching a spherical silica particle to the end of the 

cantilever, then measuring the forces between the silica particle and a flat silica surface. 

Accordingly, the measured forces can be compared with the theoretical data. Furthermore, the 

measured forces between a micron-sized particle and substrate are considerably larger than between 

the nano-meter sized AFM tip and substrate, which can make the measurements more accurate. In 

addition, this technique can be used to attach particles of different chemistries, as well as preparing 

polymer-covered particles and measure the interactions between the polymer layers.   

3.4.1. Determination of the cantilever spring constant 

In the AFM measurements, the forces are simply calculated using the Hooke’s law: 

𝐹 = −𝑘𝑧 
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Where F is the force, z is the deflection of the cantilever, and k is the cantilever spring constant. The 

purchased cantilevers often render approximate spring constant (which is enough for AFM 

imaging); nevertheless, for accurate colloidal probe measurements, these numbers are not precise 

enough. The width, length, thickness, back-coating thickness and material, etc., differ from one 

cantilever to another, which indeed can significantly affect the spring constant value. Therefore, it is 

required to calibrate the cantilever’s spring constant prior to performing the force measurements. 

Several methods have been proposed to calculate the spring constant of the cantilevers.[284] 

Herein, I used the thermal noise method suggested by Sader and coworkers[285, 286], which 

calculates the spring constant from the resonance frequency of the unloaded cantilever. To do so, 

the accurate length and width of the cantilever are required, as well as the medium properties (air) 

such as density. For a tipless rectangular cantilever, the spring constant is given by: 

𝑘 = 0.1906𝜌𝑓𝑏2𝐿𝑄𝑓𝛤𝑖(𝜔𝑓)𝜔𝑓
2 ,

𝐿

𝑏
> 5 

Where ω is the fundamental resonance frequency, b is the width, L is the length, ρ is the density of 

the fluid (air), Qf is the quality factor, and Γi is the imaginary component of the hydrodynamic 

function. Accordingly, the first step is to obtain the precise plan view dimensions of the cantilever, 

using an optical microscope. After that, the resonance frequency and quality factor of the cantilever 

is measured in air at room temperature using the AFM instrument and analyzed by the software.  

3.4.2. Attaching the particle to the AFM cantilever  

To prepare the colloidal probe, one requires a sharp wire for handling the glue and the particle, an 

optical microscope, a micromanipulator, and a water-resistant epoxy glue. Using the wire, a small 

amount of the glue is first put on the tipless cantilever end, and then a particle is put right on the 

glue. For the first step, the tungsten wire is etched by immersing one end of it in a 1 M KOH 
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solution, and applying a voltage of around 30 Volts between the wire and the electrode placed in the 

solution.  

Figure 3.10 Schematic illustration of colloidal probe preparation 

The etching is continued until the end of the wire has a relatively smaller size than the particles 

diameter. Then the wire is washed, dried, and then mounted on the micromanipulator. A small 

amount of the two-component epoxy adhesive is prepared on the glass slide. Using the 

micromanipulator, the end of the wire is dipped in the glue to pick up a small amount of glue. The 

amount of glue can be controlled to some extent. For instance, if too much glue is picked up, one 

can decrease the amount of glue by touching the glass slide for a few times until a tiny amount of 

glue is remained on the wire. The wire is then moved on the cantilever and the glue is placed on the 

very end of the cantilever. It should be considered that a very small amount of glue is enough for 

attaching a micron-sized particle (excess glue can make serious problems such a coverage of the 

particle with glue). The next step is to place the particle on the glue before it hardens, so this step 

must be performed rather quickly. Using a new sharpened tungsten wire, a single particle is picked 

up from the particles on a glass slide. There is always a thin water layer on the surfaces under 

ambient condition, which can cause capillary attractive forces and adhesion between the wire and 

the particle, which is enough for handling the particle. The particle is then maneuvered over the 

cantilever, and placed exactly on the glue, and in the center of the cantilever. The fabricated 



76 
 

colloidal probe should be kept for around one day (depending on the glue) in room temperature to 

let the glue cure and set.    

 

Figure 3.11 7 μm silica particle attached to the tipless cantilever using the described method.  

3.4.3. Force measurements 

The prepared colloidal probe can be used for performing the AFM force measurements. During 

AFM force measurements, the tip (colloidal probe) is repeatedly brought into contact with the flat 

substrate (approach step), and separated again (retract step), while the piezo element moves only in 

the Z-direction. Forces between the probe and the substrate will cause the cantilever to deflect, 

which is monitored and then plotted as cantilever deflection vs piezo movement (Figure 3.12).  

As seen, at large separation distances where there is no interaction between the probe and the 

substrate, a stable baseline corresponding to zero force is found. Close to the surface, the attractive 

or repulsive interactions between the probe and the substrate give rise to a downward or upward 

bending of the cantilever. When the surfaces come into contact (no indentation), the probe 

movement complies with the movement of the piezo. This renders a linear region, known as the 

constant compliance region or the hard wall compression. When retracting the probe from the 

surface, usually an adhesion between the surfaces is found. Finally, after separation of the surfaces, 

the piezo is moved to the initial separation distance where no interaction exist between the surfaces. 
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Figure 3.12 Typical AFM force-distance profile.[287] (a-b) at far separation distance where no interaction between the 

probe and surface is found. (b-c) close to the surface, an attractive interaction causes jump-in. (c-d) the cantilever is 

pressed on the surface. (d-f) the cantilever is retracted from the surface. (f-g) the tip leaves the surface. (g-h) far 

separations where no interaction is found. This procedure provides the force-distance profile at one point of surface. To 

obtain statistically reliable data, the force measurements are performed on various points over a surface area.   

3.4.4. Construction of force vs distance curves    

The deflection vs piezo movement graph should be converted into the force vs distance curve, in 

which the force in Newton is plotted as a function of actual separation distance between the probe 

and the substrate. This is done through multiple consecutive steps. First, by using the calculated 

cantilever spring constant (using the thermal noise method), the deflection in mV is converted into 

force in Newton. Next, the separation distance baseline at which no force is found between the 

surfaces should be shifted to zero force value. Afterwards, the point of zero separation should be 

found from the constant compliance region. The onset of the hard wall compression is considered as 

the zero separation distance. This can be a tricky step specifically in case of having a soft polymer 

layer on the surface, where there is always a finite distance between the surfaces.  
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Figure 3.13 Construction of the force vs tip-sample separation distance curve. (Left) cantilever deflection vs piezo 

displacement. (Right) force vs tip-sample separation distance  

Once the zero separation distance is found, the separation is calculated from the distance travelled 

by the piezo and the change in cantilever deflection relative to the onset of the constant compliance 

region. Moreover, as explained, the output of the photodiode is in Volt. To convert the change in 

Volt into deflection in nanometer, the linear part is again used, since in this region the movement of 

the piezo and the probe are the same. Thus, the slope provides the relation between the photodiode 

output and the cantilever deflection, which is known as the cantilever sensitivity. For my studies, I 

usually performed an initial force measurement between the colloidal probe and solid substrate 

(before grafting or adsorbing the polymers), in order to obtain the correct sensitivity from the hard 

wall compression. By subtracting this Voltage-output from the raw data for each point, the final 

force vs tip-sample separation distance curves is obtained. Usually the force curve is presented in 

terms of force per probe diameter, which is related to interaction energy per unit of area according 

to the Derjaguin approximation[288]:  

𝐹(𝐷)

𝑅
= 2𝜋𝑊(𝐷) 
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In this section, I will discuss the main findings of my papers and provide the relation 

between them. The first paper is about the Hofmeister effect of salt mixtures on the phase 

separation of PPO. The objective of this study is twofold. First, to study the Hofmeister effect in 

systems that are more similar to biological systems, where a mixture of ions can be found. Second, 

to assess the previously reported mechanisms for the salting-out and salting-in effects in such a 

complex system. The effect of four single salts, i.e., NaCl, NaBr, NaI and NaSCN was firstly 

studied on the phase separation temperature of PPO. NaCl and NaBr both showed a linear salting-

out effect, while the former had a stronger destabilizing effect. NaI and NaSCN both showed a non-

linear salting-in effect, while the latter demonstrated a stronger stabilizing effect. With respect to 

the mixtures, I investigated NaCl + NaBr (mixture of two destabilizer salts), NaCl + NaSCN 

(mixture of one destabilizer salt and one stabilizer salt) and NaI + NaSCN (mixture of two stabilizer 

salts). In order to follow the effect of having two different salts in the solution, I systematically 

varied the concentration of one salt while keeping the concentration of the other salt constant at 0.1 

M. In other words, the effect of adding a second type of salt to the solutions only containing 

different concentrations of the first type of salt was investigated. The effects of the salt mixtures and 

their single salt solutions on the phase separation temperature of PPO are compared in Figure 4.1.  

The results in general indicated that the Hofmeister effect of salt mixtures strongly depends on the 

type of the salts, as well as the absolute and relative concentration of each salt. Accordingly, the 

behavior of the salt mixtures was divided into additive and non-additive Hofmeister effects. The 

mixtures of one salting-in and one salting-out demonstrated additivity in the Hofmeister effects. 

This observation can support the idea of anion-polymer surface interaction for the weakly hydrated 

anions together with anion-polymer hydration shell for the strongly hydrated anions. In other terms, 

since the two anions affect the polymer through different mechanisms, they do not have to compete 

with each other for the polymer surface or for the polymer hydration water.  
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Figure 4.1 Hofmeister effect of salts mixtures: (a, b) mixtures of NaCl and NaBr, (c, d) mixtures of NaCl and NaSCN, 

(e, f) mixtures of NaI and NaSCN.        

On the other hand, mixtures of two salts with similar Hofmeister effects indicated non-additivity. 

With respect to the mixture of two salts with salting-in effects, the stronger stabilizer was shown to 

govern the overall salting-in behavior of the mixture, while the weaker stabilizer has a relative 



82 
 

salting-out effect. This can indicate the competition of two weakly hydrated anions for the polymer 

surface. For the mixture of two salts with salting-out effects, the stronger destabilizer was 

demonstrated to dominate the overall salting-out behavior, while the weaker one should have a 

relative salting-in effect. This suggests the competition of two strongly hydrated anions for the 

polymer hydration water.  

 

Figure 4.2 Effect of PPO molecular weight and concentration. Increasing the PPO molecular weight weakens both the 

salting-out and salting-in effects. Increasing the polymer concertation weakens the salting-out effect, but intensifies the 

salting-in effect.    

My second paper examines the effect of PPO molecular weight and concentration on the 

Hofmeister effect of salts. NaCl was chosen to represent the salting-out effect and NaSCN the 

salting-in effect. The objective of this study was to understand the contribution of polymer in the 

Hofmeister effect. We already observed that the Hofmeister effect of certain salts could be different 

on various polymers. Since comparison between two different polymers can be more complicated 

(many parameters are changed), investigation of how changing the molecular weight and 

concentration for a certain polymer can affect the Hofmeister effect can be a reasonable approach 



83 
 

towards studying the polymer role. In other words, fixing the chemical structure while changing the 

solvent-accessible surface area of the polymer. Four different molecular weights between 1000 to 

4000 g/mol and two concentrations 0.5 and 2 wt% were studied. Regarding the salting-out effect, it 

was shown that increasing the molecular weight of PPO leads to a considerable decrement in the 

salting-out effect, while increasing the PPO concentration has a similar but weaker effect. It was 

considered that Cl− is effectively repelled from the PPO interface and that it can destabilize the 

partially hydrophobic surface of the PPO coils. Since increasing either the molecular weight or the 

concentration decreases the accessible surface area of PPO in solution, the unfavorable interplay 

between ion and polymer is decreased and the magnitude of the salting-out is then attenuated. With 

respect to NaSCN, increasing the molecular weight of PPO resulted in a pronounced decrease in the 

magnitude of the salting-in effect, while increasing the PPO concentration amplified the salting-in 

effect, specifically in the case of PPO1000. It was suggested that SCN− preferentially accumulates 

around and within the PPO coils, and stabilizes partially hydrophobic surface of the coils. Since 

increasing the molecular weight leads to a decrease in the accessible surface area of PPO in 

solution, the magnitude of the salting-in effect becomes weaker. The larger salting-in effect on 

PPO1000 and to some extent PPO2000 and PPO2700 upon increasing the PPO concentration was 

explained by the stronger effect of electrostatic repulsions between closely-packed coils compared 

to more isolated coils. 

 

Figure 4.3 Effect of solvent perturbation (red in H2O and blue in D2O) on the Hofmeister effect of salts. 
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In the third paper, I discussed the effect of solvent perturbation on the Hofmeister effect. The idea 

behind the project was to investigate the role of solvent properties on the Hofmeister effect. The 

Hofmeister effect of three salts, i.e., NaSCN, NaCl and NaF on PPO was assessed. The idea behind 

choosing these salts was: (i) NaSCN has a salting-in effect, while thiocyanate becomes more 

weakly hydrated in heavy water. (ii) NaCl has a salting-out effect, while chloride becomes more 

weakly hydrated in heavy water. (iii) NaF has a salting-out effect, but fluoride is one of the fewest 

anions that becomes more strongly hydrated in heavy water. Besides the information that I obtained 

from the literature on ions hydration in heavy water, we observed that PPO in salt-free D2O is less 

stable than in salt-free H2O. Putting these two effects together, I tried to reason the following 

observations.  

With respect to the effect of NaSCN, the salting-in effect was found to be considerably stronger in 

D2O. Due to the relatively weaker hydration of thiocyanate in D2O, It was suggested that the 

thiocyanate anions are more strongly attracted to the PPO interface in D2O. With respect to the 

effect of NaCl, the salting-out effect was found to be weaker in heavy water. In D2O, the hydration 

of chloride becomes slightly weaker and the polymer accessible surface area diminishes as well. 

These two effects can both give rise to a weaker salting-out effect in heavy water. With respect to 

the effect of NaF, no significant difference between the salting-out effects in light and heavy water 

was observed. I reasoned this observation based on the opposite solvent isotope effects on the ion 

hydration and the polymer accessible surface area, which in this case apparently are nearly 

cancelling each other. 

In the fourth paper, I assessed the Hofmeister effect of three sodium salts on PNIPAM both in bulk 

and at the gold/aqueous interface. Two important objectives were considered for this work. First, to 

understand the effect of weakly hydrated anions on the properties of the polymer in terms of 

conformation and interaction. Second, to understand the behavior of weakly hydrated salts that 
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show a salting-in to salting-out transition. NaF was studied as the destabilizer and NaSCN was 

considered as the weakly hydrated salt with a salting-in effect. NaTCA was chosen as the third salt, 

as a weakly hydrated salt that has a salting-out effect. The thought behind working with these salts 

was to compare the behavior of NaTCA with the two other salts, so the similarities and differences 

in behavior could be assessed. 

 

Figure 4.4 Hofmeister effect of NaF, NaTCA and NaSCN salts on PNIPAM. (First column) DSC thermograms, 

(Second column) QCM-D dissipation shifts for a PNIPAM layer adsorbed to the gold surface when changing the 

solvent from water to saline solutions, (Third and fourth column) AFM force-distance curves between two PNIPAM-

covered gold surfaces in the salt solutions at 20 and 40 ºC. 

The phase separation of PNIPAM in bulk solution was firstly studied. Then the effect of the salts on 

PNIPAM at the gold/aqueous interface was investigated. Addition of NaF led to a large decline in 

the phase separation temperature, conformational collapse and shrinkage of the polymer layer, and 

considerably strong PNIPAM–gold and PNIPAM–PNIPAM attractive interactions were detected. 
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Addition of NaSCN increased the phase separation temperature, caused swelling of the PNIPAM 

film, and showed relatively weak attractive forces. At last, addition of NaTCA revealed features of 

both a stabilizing and a destabilizing salt, as a decrement in the phase separation temperature was 

found, whereas a swollen film conformation and relatively weak chain–substrate and chain–chain 

interactions were detected, which was discussed in terms of previously reported mechanisms.  

 

Figure 4.5 AFM images (at 20 ºC), approach (a, c) and retrace (b, d) force-distance curves (at 20-45 ºC) of the 

copolymers adsorbed on the silica surface.  
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In my fifth paper, I compared the adsorption of two copolymers at the silica surface and their 

corresponding films. Both the copolymers bear a cationic block that enables them to adsorb 

electrostatically on the negatively charged silica surface. The diblock copolymer has a PNIPAM 

block and the triblock copolymer has the same PNIPAM block plus a PEG block. The bulk solution 

of the copolymers was firstly studied using dynamic light scattering. Then, the polymers were 

adsorbed on the silica surface and the film thickness of each was estimated using QCM-D data and 

corresponding viscoelastic Voigt modeling, which indeed suggested quite similar film 

characteristics. Then, the topography of the films was studied by AFM imaging and surprisingly it 

was shown that the diblock forms large clusters on the surface, while the triblock produces a 

uniform and homogenous layer. To support this observation, I performed AFM colloidal probe 

measurements on the copolymer-coated surfaces. Similar conclusions could be made from the 

results, i.e., the layer thickness for the diblock was found to be around 50 nm (As a note, average 

thickness is not meaningful for such a heterogeneous layer.); while for the triblock the average 

thickness was around 5 nm. Thermo-responsive behavior of the layers was also studied to see how 

the interactions are affected. In case of the diblock copolymer, it was shown that the adhesion 

between the copolymer-coated surfaces progressively increases, while for the triblock no adhesion 

was found even at temperatures up to 45 ºC. I should mention that although this study was not 

focused on the Hofmeister effect, it was interesting to perceive how variations in the polymer 

structure can significantly affect the adsorption behavior and following film properties.  

Finally yet importantly, my sixth paper recapitulates everything I have learned and explored during 

my PhD studies. This review paper constitutes of two sections. First, a summary of the Hofmeister 

effect in polymer solutions and more importantly a compilation of the essential mechanisms. The 

second part is devoted to my rather personal opinions and suggestions regarding the future research 

on the Hofmeister effect in polymer solutions, which indeed are the ideas that I have partly 
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investigated during my PhD studies; however, further experimentation and research is necessary on 

these important topics for a progression in ion-specificity research.            
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