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1 Introduction

2 Since the turn of the century there has been a tremendous growth in wind power produc-

tion worldwide, and in several countries wind power now accounts for a significant share

of the total energy production. In contrast to traditional energy sources wind power is pro-

duced instantaneously as the wind blows and due to its uncertain and fluctuating nature

additional challenges for grid operators and energy producers have emerged. To allevi-

ate this, wind power forecasting has become a valuable tool for planning and decision

making.

For forecast horizons beyond three to six hours, say, the best wind power forecasts are

generally obtained using statistical methods with input from numerical weather prediction

(NWP) models (Giebel et al., 2011). Consequently, the skill of wind power forecasts

depends both on the quality of statistical and NWP models. In this article, the attention is

primarily paid to the role of the latter in such forecast systems.

NWP models are complex mathematical models of the atmosphere derived from the

fundamental laws of fluid dynamics and thermodynamics (Coiffier, 2011; Pielke, 2013).

The models are often defined on a grid in space and time and their resolutions determine

how accurate physical processes can be described. Unfortunately, the resolution is limited

by the availability of super computing resources, and, thereby, also forecast accuracy. As

NWP models require an estimate of the state of the atmosphere at the initialization time,

forecast accuracy will also be dependent on the quality of this estimate which further

depends on the methodology and the data being assimilated. Due to the atmospheric mo-

tions global NWP models covering the entire earth are needed for all weather forecasting

purposes. The spatial horizontal resolutions of these currently ranges from about 16 to 30

km3. Hence, small scale features in the wind flow within and around wind farms are not

resolved with these models. Nested within the global models are regional (limited area)

models defined for smaller regions with grid resolutions usually from 1 to 4 km. These

rely on data from a global model at their boundaries and are applied for weather forecast-

ing up to two or three days ahead. For special applications NWP models with even higher

resolutions are run, but their domains are often quite small and forecast quality can be

strongly influenced by the input at the boundaries.

The skill of operational NWP models is continuously being monitored by national me-

2The main work behind this report was carried out in 2012.
3http://srnwp.met.hu/C_SRNWP_project/Eumetnet_List.html
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teorological services and others; e.g. Richardson et al. (2012, page 32) showed that the

forecast error (standard deviation of error) of 10 meter wind speed forecasts has roughly

been reduced by 30% the last 20 years. In the context of wind energy there are several

studies related to the resolution of NWP models. Bedard et al. (2013) applied Envi-

ronment Canada’s NWP model at 2.5 km horizontal resolution and concluded that the

model does not have a sufficiently refined grid to properly represent the meteorological

phenomena over a complex Canadian coastal site. Alessandrini et al. (2013) compared

wind power forecasting skill based on a global and a regional ensemble prediction system

and found that the regional with the highest spatial resolution had slightly better skill for

a site in southern Italy. Möhrlen (2004) studied the performance of deterministic wind

power forecasts generated within NWP models run at horizontal resolutions from 1.4 to

30 km and concluded that higher resolution did not reduce the forecast errors at five Irish

wind farms. Dobschinski (2014) generated wind power forecasts for a large collection

of German wind farms using 20 NWP models with horizontal resolutions from about

6 to 22 km. A general trend in favor of the NWP models with the highest resolution

was noticed, although exceptions clearly were present. Draxl et al. (2014) studied seven

planetary boundary layer parametrization schemes in the WRF model and evaluated wind

forecasts at various heights at a Danish coastal site. Which parametrization scheme was

best, depended on the meteorological condition. Concerning data assimilation there has

to our knowledge not been any study on its direct impact on wind power forecasting skill.

For regional NWP models it would be possible to compare wind power forecasts based on

NWP models with and without data assimilation, while for global models only variation in

the data assimilation method and input data would be possible as all global models some-

how need a data assimilation system. In summary, the literature on NWP models’ impact

on wind power forecasting skill is somewhat sparse. Of particular interest would be more

studies involving high resolution NWP modeling for various types of terrain around the

world. The present article addresses the latter, but is limited to a few Norwegian wind

farms.

There are several ways to make wind power forecasts. One alternative would be to just

apply given wind power curves to NWP wind speed forecasts, but that approach would

be highly sensitive to possible biases in the wind speed. Hence, the underlying predictive

information in NWP models is not fully employed and the outcome of an inter-comparison

of NWP models using this strategy would to some degree be random. Instead in this study

probabilistic wind power forecasts are made using a statistical method with separate input
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from six operational NWP models, two global and four regional, with spatial horizontal

resolutions ranging from 1 to 32 km. From the probabilistic forecasts deterministic point

forecasts are also derived and the evaluation of the forecasts is carried out for both types.

Our main objective is to assess whether high resolution regional NWP models improve

wind power forecasts. It should be noted that from the results it is not possible to attribute

differences in quality to certain components or features of the NWP models – at least

not with certainty. Our study resembles that of Dobschinski (2014), though with several

differences. First, the orography of the three coastal Norwegian wind farms under study

are quite different from the German. Second, NWP models of finer spatial resolution are

considered. Third, both deterministic and probabilistic forecasts are made and evaluated,

and, fourth, forecasts are made directly for the wind farms and for each wind turbine

before aggregation to wind farm level. The latter may be in favor high resolution models

that to some extent are capable to model variations in wind within wind farms.

The article is organized as follows. In the next section the wind farms, measure-

ment data and NWP models are presented. Section 3 describes very briefly the statistical

meta-Gaussian method applied and the setup of the experiments. The forecast validation

approach is described in section 4. Section 5 contains the results, while discussions and

conclusions are in the final section.

2 Data

2.1 Wind farm measurement data

Data from three wind farms along the Norwegian coastline were considered in this study:

• the single offshore floating wind turbine HyWind about 10 km southwest of Kar-

møy. The turbine (2.3 MW) was installed in autumn 2009 and is primarily dedicated

for research and development.

• the Hitra wind farm with 24 turbines and a total capacity of 55.2 MW. The wind

farm is located on Eidsfjellet, a hill about 300 m above sea level on the island of

Hitra.

• the Smøla wind farm with 68 turbines and a total capacity of 150.4 MW. The wind

farm is located in flat and open terrain about 10 to 40 m above sea level on the

island of Smøla.

8



For all wind turbines hourly energy production data were made available and to some

extent also each turbine’s availability. In addition wind speed measurements at a central

turbine of each wind farm were available. The production data was manually examined

and suspicious cases were removed before further use.

Figure 1: The domains of the NWP models (EC16 and EC32 are global) and the locations

of the wind farms Hitra, Smøla and HyWind.

2.2 Wind speed measurements at synoptic stations

For wind speed validation 10-minute average wind speed measurements at 10 meter

height were also made available at 31 synoptic stations along the Norwegian coastline.

The data covered a period of eight months from February to September 2011.

2.3 Numerical weather prediction models

9



Table 1: List of numerical weather prediction models with information about model ver-

sion number, data-assimilation method, approximate spatial horizontal resolution, model

applied at the boundary of the domain, and lead times.
Model Model system Version Data Spatial Boundary Lead times

assimilation resolution model

UM1 Unified Model 7.3 No 1 km UM4 +3, +6, ..., +21h

UM4 Unified Model 7.3 No 4 km H8 +3, +6, ..., +66h

H4 HIRLAM 7.1.3 No 4 km H8 +3, +6, ..., +66h

H8 HIRLAM 7.1.3 3D-VAR 8 km EC16 +3, +6, ..., +66h

EC16 ECMWF IFS 36r1 - 37r2 4D-VAR 16 km - +3, +6, ..., +66h

EC32 ECMWF IFS 36r1 - 37r2 4D-VAR 32 km - +6, +12, ..., +66h

Six operational NWP models were considered in the study and wind forecasts from these

were bi-linearly interpolated to the location of each wind turbine. The details of the NWP

models are given in table 1. All forecasts were initiated at 00 UTC. The UM1, UM4, H4

and H8 models were all run at the Norwegian Meteorological Institute as part of the op-

erational weather forecasting service, while the EC16 and EC32 models were run at the

European Center for Medium Range Weather Forecasting (ECMWF). The EC32 is the

control run of their ensemble prediction system. Only forecasts of wind speed and wind

direction were applied. In order to make them consistent with the hourly measurement

data, hourly mean wind speed forecasts were computed by averaging the wind speed at

the start and end of each hourly period. For EC16 and EC32 hourly temporal resolution

was not available in the raw data, consequently the forecasts at the start of the hour were

obtained by linear interpolation in time. Hourly averaging was not applied to wind di-

rection. Instead the direction at the end of the hour were applied directly. Further, wind

forecasts at hub heights were not available for all models. It was therefore decided to

use wind forecasts at 10 meter above ground for all models. A sensitivity analysis to the

choice is reported in section 6 of the appendix where wind forecasts at selected model

levels from the UM1 model were used to generate wind power forecasts at a turbine in

the wind farm at Smøla.

Table 2 shows the time period and number of data cases for each wind farm after

merging the NWP forecasts and the energy production data. For HyWind wind forecasts

were only available from the EC32, EC16, and H4 models mainly due to the extended

data period for this turbine. The HyWind turbine was for several parts of the period used
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for experimental projects and these data were consequently excluded. In order to ensure a

fair inter-comparison in the experiments to follow it was required that for each wind farm

exactly the same cases in time were available for all NWP models.

Table 2: List of wind farms, data period and average number of cases for each lead time
Period

Wind farm Start End No. cases

HyWind 2010/01/10 2011/12/05 325

Hitra 2011/01/15 2011/10/02 260

Smøla 2011/02/25 2011/10/02 220

For validation of wind speed at the 31 synoptic stations the EC16, H8, H4, and UM4

models were also bi-linearly interpolated to the these measurement stations. No averaging

in time was made.

3 Methodology

3.1 Statistical forecasting method

During the last decade several statistical methods have been developed for making proba-

bilistic forecasts of wind power based on input from numerical weather prediction models,

e.g. Bremnes (2004); Nielsen et al. (2006); Pinson (2012); Bessa et al. (2012); Jeon and

Taylor (2012). In this article a meta-Gaussian method which provides forecasts in terms

of probability distributions was applied. The basic idea of the method is to transform all

variables to a joint multivariate Gaussian distribution and derive the conditional distribu-

tion of wind power from this on the transformed scale. Then the conditional distribution

is transformed back to the original scale and applied as wind power forecast. The method

was originally developed for precipitation forecasting, but has also been applied for op-

erational wind power forecasting for 7-8 years at the Norwegian Meteorological Institute

and in other wind power forecasting studies. Our experience is that the forecast quality is

slightly worse compared to local quantile regression. Further details of the meta-Gaussian

method are given in the appendix.

3.2 Wind power forecasting experiments
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There are mainly two strategies for making forecasts for the total energy production of

a wind farm. Depending on the data at hand, the total energy production can either be

forecast directly or by aggregating forecasts for each turbine. Both were applied here as

described below. Since only 10 meter wind forecasts were available for all models, a brief

sensitivity study comparing wind forecasts at different heights and their impact on wind

power forecasts skill was also carried out. The setup of this is described at the end of the

section, while the results are relegated to the appendix.

3.2.1 Direct forecasting approach

In order to forecast the total energy production of a given wind farm directly, the wind

speed forecasts were first averaged over all turbines, while the wind direction forecasts

were taken at a central turbine. The wind speed averaging had insignificant effect on

the wind speed forecasts for the coarse resolution models, but for the UM1 model who

had several grid points within the Hitra and Smøla wind farms an average seemed most

appropriate. Based on these data separate meta-Gaussian models were fitted for each wind

farm, NWP model and lead time. The statistical meta-Gaussian models were trained using

the 60 last cases in a rolling prediction framework. That is, for each prediction to be made

data for the preceding 60 days/cases were used for training.

3.2.2 Forecast aggregation approach

Within a wind farm turbulence and complex wake effects may affect turbines differently.

Thus, there may be systematic heterogeneities that can not be captured by modeling the

total energy production of a wind farm directly. In large wind farms high resolution NWP

models may to some extent also be able to forecast spatial variability of wind speed; for

example, within the Smøla wind farm the UM1 model had approximately 18 grid points.

Separate meta-Gaussian models were consequently set up for each wind turbine, NWP

model and lead time. As for the first study, the statistical models were fitted using the 60

last cases for training in a rolling prediction framework. Before validation, the predicted

50 percentiles were computed and added up for each wind farm. Probabilistic forecasts

were not made for the wind farm totals with this approach due to complexities in adding

up interdependent probabilistic forecasts from turbines.

3.2.3 Wind power forecast skill versus vertical wind level
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For wind power forecasting it would be sensible to apply wind forecasts at hub height,

but these are not necessarily available and one would often have to rely on wind fore-

casts at 10 meter above ground. This was also the case here, except for the UM1 model

where wind forecasts also were available for all model levels (20 in total). A selection

of these and the 10 meter wind were employed to investigate how skill of wind power

forecasts depended on the height of the wind forecast. Data for a 4-month period, July

to October 2011, at a central turbine of the Smøla wind farm were applied in a two-fold

cross-validation procedure to make wind power predictions for the whole period. The

predictions were made using the meta-Gaussian approach with wind speed and direction

forecasts separately from each level as input.

4 Validation approach

Since the main objective of the study was to compare the overall skill of various fore-

cast models the focus was only on summarizing scores. The most common metric for

forecasts in terms of probability distributions is the continuous ranked probability score

(CRPS) which quantifies the difference between the cumulative forecast distribution and

the measurement (Matheson and Winkler, 1976; Hersbach, 2000). The CRPS was cal-

culated by means of simulation using the identity established in Gneiting and Raftery

(2007) and averaged over the evaluation period. The CRPS is negatively oriented, that

is, the lower the better. From the probabilistic wind power forecasts the 50 percentile

(median) was derived and applied as deterministic point forecasts. The 50 percentile is

optimal with respect to absolute error and, consequently, the mean absolute error (MAE)

was the obvious measure for these forecasts. Prior to validation the power production

forecasts were normalized by the total power production capacity.

The skill of the NWP wind speed forecasts was also evaluated using common statistics

like the mean error (ME), mean absolute error, standard deviation of error (SDE), and the

ratio between the standard deviations of forecasts and measurements (SDR). The latter

was included to measure forecast variability compared to the actual variability. From a

physical modeling perspective its optimum value is 1. Since the statistical method will

account for simple biases, SDE was possibly the most interesting metric as it measures

the error without the bias.
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5 Results and discussion

In this section the outcome of the main wind power forecasting experiments is described

followed by a brief evaluation of the NWP wind speed forecasts at the end of the section.

5.1 Direct forecasting approach

The results of the direct forecasting approach are summarized in figure 2 using CRPS and

MAE of the 50 percentile. As expected, the forecast quality decreased with increasing

lead time for all models. Further, the ranking of the models was more or less the same for

both scores and each site. Overall the global models EC16 and EC32 with the coarsest

spatial horizontal resolutions clearly had the best performance except for the first few

hours. The scores were further investigated for pairs of the models for Hitra and Smøla

by averaging the scores over common lead times. These revealed that UM4 was 1.1 % and

3.2 % better than UM1 in terms of MAE at Hitra and Smøla, respectively. The numbers

for H8 versus H4 were 1.1 % and -0.2 %, while for EC32 versus EC16 they were 0.9 %

and 1.0 %. The figures were similar for the CRPS. Thus, the results seemed to be in favor

of the models with the coarsest resolutions. These have in general smoother wind fields

both in time and space than those with higher resolution. A possible explanation can be

that the spatial and temporal averaging of wind speed before it is applied in statistical

methods has a significant impact on the wind power forecasting quality. It should also

be added that there are minor differences in the model configurations within the model

groups, especially for the UM and Hirlam models, that also may have affected the results.

5.2 Forecast aggregation approach

The MAE scores for the forecast aggregation approach are given in figure 3; the results

for the single turbine at HyWind are omitted as they were the same as in the previous

subsection. The mean absolute errors showed more or less the same characteristics as in

the former section with EC16 and EC32 producing the best scores. It can also be noticed

that this approach gave better scores than modeling the energy production of wind farms

directly. The latter is likely due to that with this approach the relations between NWP

models and power production data are allowed to vary between turbines. Results for pairs

of models were also evaluated for this approach. UM4 was 0.1 % and 3.6 % better than

UM1 at Hitra and Smøla, respectively. The corresponding figures for H8 versus H4 were

14
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Figure 2: Skill of wind energy forecasts in terms of the continuous ranked probability

score (left) and the mean absolute error of the 50 percentile (right) by forecasting the

energy production directly.

15



Lead time [h]

3 9 18 27 36 45 54 63

0.04

0.06

0.08

0.10

0.12

Hitra

UM1

UM4

H4

H8

EC16

EC32

Mean Absolute Error

Lead time [h]

3 9 18 27 36 45 54 63

0.04

0.06

0.08

0.10

0.12

Smøla

Figure 3: Skill of wind power forecasts in terms of the mean absolute error of the 50

percentile by forecasting the energy production for each turbine first and then aggregating

to wind farm level.

0.6 % and -0.2 %, while for EC32 versus they were 1.4 % and 1.3 %. In summary, these

results are very similar to those of the direct forecasting approach.

5.3 Validation of wind speed forecasts

In order to investigate the underlying causes of the results in the previous two subsections,

a validation of the wind forecasts was carried out. For Hitra and Smøla hourly averaged

10 meter wind speed forecasts at a central turbine were compared to 10-minute average

wind speed measurements at the nacelle and similarly for HyWind except that the mea-

surements were 20-minute averages. For the former two wind farms measurements were

only available until 1 July 2011, resulting in 167 and 126 cases on average for each lead

time at the Hitra and Smøla wind farms, respectively, while for HyWind the period was as

before (325 cases). The mean error, standard deviation of error, mean absolute error, and

the ratio between the standard deviations of forecast and measurement were calculated

and the outcome is reported in table 3.

At Hitra all NWP models underestimated the wind speed as expected due to height

differences in the NWP wind and measurement. EC16 and EC32 were least biased and

had the lowest standard deviation of errors (SDE). Further, the variability in wind speed

was too low for all models, mainly due to the lack of strong wind speeds. The latter was
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Table 3: Validation of wind speed forecasts at Hitra, Smøla and HyWind with regard

to mean error (ME), standard deviation of error (SDE), mean absolute error (MAE) and

ratio between standard deviations of forecast and measurement (SDR). The statistics are

averaged over the lead times +6, +12, ...., +66 hours.
Hitra

ME SDE MAE SDR

UM4 -3.79 3.43 4.04 0.55

H4 -3.79 3.51 4.05 0.53

H8 -3.50 3.39 3.82 0.56

EC16 -2.63 3.13 3.19 0.68

EC32 -2.24 3.25 3.01 0.62

Smøla

ME SDE MAE SDR

UM4 -2.22 2.71 2.70 0.72

H4 -2.50 2.83 2.88 0.64

H8 -1.75 2.70 2.43 0.76

EC16 -0.14 2.61 1.95 0.94

EC32 -0.36 2.61 1.96 0.89

HyWind

ME SDE MAE SDR

H4 -0.52 2.67 2.13 0.83

EC16 -0.81 2.62 2.16 0.79

EC32 -0.78 2.65 2.17 0.81

17



least pronounced for the EC16 and EC32 models. At Smøla the biases for EC16 and EC32

were close to zero, but the SDEs were almost the same as for the other models. With

respect to variability (SDR) EC16 and EC32 were clearly in better agreement with the

measurements than the other models. In summary, the EC16 and EC32 models produced

the best wind speed forecasts for Hitra and Smøla. For HyWind there were only minor

differences between the NWP models.

The validation results for wind speed forecasting agreed well with that of wind power.

Thus, the quality of wind speed forecasts is to some extent indicative of wind power

forecasting skill, as expected. Using this, a second validation exercise on wind speed was

conducted to explore the potential skill of wind power forecasts at other sites. Wind speed

forecasts at 10 meter for the NWP models EC16, H8, H4, and UM4 at 31 locations along

the Norwegian coastline were compared to 10-minute average measurements at 10 meter

for a period of eight months. The results are summarized in terms of boxplots over the

sites, see figure 4. EC16 was superior with respect to SDE and partly also to MAE. In fact,

at 22 of the 31 stations EC16 had the best SDE. However, the variation (SDR) of EC16

was generally less than for the other models, which is in contrast to the results at Smøla

and Hitra. Despite the latter, it seems reasonable to anticipate that the main results at the

three wind farms also could apply for other wind farms along the Norwegian coastline.

6 Concluding remarks

The main objective of the study was to examine whether use of high resolution regional

numerical weather prediction models would improve hourly wind power forecasts at wind

farm level compared to using global NWP models with coarser resolution. For the three

Norwegian wind farms considered here this was not the case. On the contrary, the best

forecasts were produced by input from the two global NWP models. It is hard to gen-

eralize the results to other sites, but the quality of the global EC16 model’s wind speed

forecasts was better than for the high resolution models at most of the Norwegian coast-

line. Further inland, though, the regional NWP models UM and Hirlam generally verify

better than EC16 with respect to wind speed (Bremnes and Homleid, 2011) and would

therefore probably also yield better wind power forecasts. There are, however, no wind

farms in these areas.

Wind fields generated by high resolution NWP models are arguably more realistic

physically than those from coarser models, especially in complex terrain, but higher fluc-
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Figure 4: Boxplots of mean error (ME), mean absolute error (MAE), standard deviation of

error (SDE) and ratio between standard deviations of forecast and measurement (SDR) for

10-meter wind speed forecasts over 31 Norwegian coastal synop stations. The statistics

are averaged over the lead times +6, +12, ...., +66 hours.
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tuations also tend to imply higher phase shift errors (Möhrlen, 2001; Jørgensen et al.,

2002; Rife and Davis, 2005). For hourly wind power forecasting the timing and po-

sitioning in space are crucial. The dilemma resembles that of convective precipitation

forecasting where several studies, e.g. Roberts and Lean (2008); Rossa et al. (2008), have

shown that even though high resolution models generate realistic precipitation patterns,

they are often penalized strongly when validating against measurements. By smoothing

high resolution forecast data in space and/or time better scores can be obtained (Roberts

and Lean, 2008). In this study the spatial and temporal averaging was only over the wind

farms and one hour, respectively, in addition to the smoothing caused by the bi-linear

interpolation to the turbine locations. For future work it may therefore be worthwhile

to investigate whether further smoothing could be advantageous to high resolution NWP

forecasts before using them for wind power forecasting.

In this article we have only investigated skill of wind power forecasts using one NWP

model at a time. Methods for combining forecasts from several NWP models have been

proposed by Nielsen et al. (2007); von Bremen (2007) amongst other. These have also

demonstrated improved forecast quality by using several NWP forecasts simultaneously.

Hence, even if a high resolution model may not be better than a coarser model, it may con-

tribute to added skill in combination with other models. Lastly, it should be emphasized

that only the case of hourly wind power production forecasting has been evaluated. For

ramp forecasting, for instance, wind fields from high resolution models may have been

more decisive.
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Appendix

Meta-Gaussian forecasting method
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The first and most essential step of the meta-Gaussian method is to transform the data to

multivariate Gaussian. In general, it is very difficult to find an appropriate multivariate

transformation. Instead one usually resorts to the simpler task of transforming each vari-

able, in our case wind power measurement, wind speed forecast and wind direction fore-

cast, separately to the standard Gaussian distribution and assume that the joint distribution

of these is multivariate Gaussian. One option is to estimate the cumulative distribution

function of each variable and apply the probability integral transform Angus (1994), but

here the more direct approach of estimating the relation between quantiles is taken, also

known as quantile mapping. Evenly distributed quantiles of the standard Gaussian dis-

tribution are then paired with corresponding quantiles of the variable to be transformed.

By using these pairs the relation, and hence the transformation, can be estimated. Local

linear least square regression was here applied Cleveland and Devlin (1988), but other re-

gression approaches could have been applied as well. For the wind power variable cases

with zero and nominal production were removed before estimation of the transformations

in order to deal with the mixed discrete-continuous nature of this variable.

The next step is to create training data in the Gaussian space. For forecasted wind

speed and wind direction the estimated transformations are applied directly, while for

the wind power variable special attention is required for zero and nominal production

values. Assuming that wind power production is standardized to the interval [0,1]) let

plow and phigh denote the fractions of wind power measurements equal to zero and one,

respectively. Then for these cases, the transformed values are defined by Φ−1(U) where

Φ−1 is the inverse cumulative distribution function of the standard Gaussian distribution.

U is drawn from the uniform distribution on either of the intervals (0, plow] and [phigh,1),

depending on whether it is a zero or a one value to be transformed, respectively.

In the Gaussian space the transformed data are now assumed to be multivariate Gaus-

sian [
Y ∗

x∗

]
∼ N

([
µy

µx

]
,

[
σ2

y Σyx

Σxy Σx

])
(1)

where Y ∗ denote the wind power and x∗ the vector of wind speed and wind direction

forecast after the transformations. The mean and covariance parameters are estimated

by their sample statistics. By using one of the many nice properties of the multivariate

Gaussian the distribution of wind power given the wind forecast Y ∗|x∗ is also Gaussian
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with mean and variance

µ(x∗) = µy + ΣyxΣ−1
x (x∗−µx)

σ2 = σ2
y + ΣyxΣ−1

x Σxy

(2)

respectively, see e.g. Johnson and Wichern (1992).

Finally, it remains to transform back to the original units. Let h be the estimated

function transforming wind power to a standard Gaussian variable. Since it is strictly

monotone its inverse exists, but it is only well defined on the interval [h(0),h(1)]. For

values below h(0) the inverse is set to 0 and above h(1) to 1. It follows that the cumulative

distribution of wind power given the predictor variables are

FY |x(y) =

Φ
(

h(y)−µ(x∗)
σ2

)
y ∈ [0,1)

1 y = 1.
(3)

where x∗ is the transformation of predictor vector x, and µ(x∗) and σ2 are given by (2).

Similarly, the τ quantile is given by h−1(µ(x∗)+σ2Φ−1(τ)).
The success of the meta-Gaussian method clearly relies on the multivariate Gaussian

assumption, but to some degree also estimation uncertainty. In order to reduce the latter,

and thereby also improving forecast quality, a bootstrap procedure was introduced at two

stages. First, the estimation of the transformations was repeated ten times, each time by

re-sampling half of the data without replacement. The mean of the transformations was

used further on. Second, a similar re-sampling scheme was applied to the transformed

training data to estimate the parameters of the multivariate Gaussian distribution.

Wind power forecast skill versus vertical wind level

Wind power forecasts using wind forecasts at various model levels were generated as

described in section 3.2.3. In figure 5 the results are shown in terms of the CRPS and

MAE of the 50 percentile for selected levels. Not surprisingly, wind forecasts at 500

meter gave the worst wind power forecasts, though for some lead times the scores were

actually as good as for most other levels. The relative poor scores for the first 12 to 18

hours may be due to that the initial state is less accurate at higher heights due to the data

assimilation process. The fact that the boundaries are quite close to the site may also

have some influence. The lower levels gave more similar scores, but overall using wind

at 10 meter turned out to give the best wind power forecasts. It should be added that the

22



Lead time [h]

6 12 18 24 30 36 42 48

0.07

0.08

0.09

0.10

Continuous Ranked Probability Score

10m

60m

90m

130m

500m

Lead time [h]

6 12 18 24 30 36 42 48

0.09

0.10

0.11

0.12

0.13

0.14

Mean Absolute Error

10m

60m

90m

130m

500m

Figure 5: Skill of wind power forecasts at a central turbine of the Smøla wind farm us-

ing wind extracted from a few selected model levels of the UM1 model. The continuous

ranked probability score is shown to the left and the mean absolute error of the 50 per-

centile to the right.

10 meter wind is a post-processed field in NWP systems, and that due to the availability

of measurement data wind at the surface likely receives more attention than wind at for

example hub heights. Further, simple biases in wind speeds are not an issue since these

are generally well handled by statistical methods.

The quality of the wind forecasts at this site was briefly evaluated by comparing hourly

averaged wind speed forecasts against 10-minute average wind speed measurements at the

nacelle. The scores for the various wind levels are given in figure 6 showing the mean

error and the mean absolute error. Clearly, the 10 meter wind speed forecasts underesti-

mated the wind speed at hub height (as it should) by around 3 m/s and were inferior to

those at 60 meter height. The wind speed forecasts at 60 meter were best both in terms

of the mean error and the mean absolute error. In a pure physical based wind power fore-

casting system the wind at 60 meter would consequently be far better than at 10 meter,

but apparently this was not the case in a combined physical and statistical approach.

To conclude it seemed to be of no disadvantage to use wind forecasts at 10 meter

above ground at least for this site and model. This is in line with Joensen et. al. Joensen

et al. (1999) who also concluded that the 10 meter was better for wind power forecasting

than higher model levels in a Hirlam model. However, more recently Junk et. al. Junk

et al. (2012) found that wind forecasts at hub height were favorable. In the article wind

forecasts at 10 meter are applied throughout.
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Figure 6: Validation of wind speed forecasts for various levels of the UM1 model against

measurements at the nacelle of a central turbine of the Smøla wind farm. The mean error

is shown to the left and mean absolute error to the right.
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