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Abstract 14 

To move towards environmentally-sustainable transport systems, electric vehicles (EVs) are 15 

increasingly seen as viable alternatives to internal combustion vehicles (ICVs). To ensure effectiveness of 16 

such deployment, holistic assessments of environmental impacts can help decision-makers determine 17 

optimized urban strategies in a long-term perspective. However, explicit guidance and conduct of such 18 

assessments are currently missing. Here, we therefore propose a framework using life cycle assessment that 19 

enables the quantification of environmental impacts of a transport system at full urban scale from a fleet-20 

based, foresight perspective. The analysis of the passenger car fleet development in the city of Copenhagen 21 

for the years 2016-2030 is used as a proof-of-concept. We modeled and compared five powertrain 22 

technologies, and we assessed four fleet-based scenarios for the entire city. Our results showed relative 23 

environmental benefits from range-extended and fuel-cell EVs over ICVs and standard EVs. These results 24 

were found to be sensitive to local settings, like electricity grid mix, which could alter the relative 25 

environmental performances across EV technologies. The comprehensive framework developed here can be 26 

applied to other geographic areas and contexts to assess the environmental sustainability of transport 27 

systems. 28 

  29 
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1. Introduction 30 

Following the recent advancements in electric vehicle technologies, transport systems have entered a 31 

transition period1. New policy strategies toward e-mobility, i.e. the increasing use of electric vehicles (EVs) 32 

for transport purposes, have for example been adopted in Europe2,3, and urban development aiming to 33 

encourage such a change have started4. Internal combustion engine vehicles (ICVs) are important 34 

contributors to climate change5 and local air pollution6 and some authors have suggested that such a 35 

transition has the potential to reduce environmental impacts and resource depletion7,8. Indeed, these 36 

technologies entail little or no direct tailpipe emissions of greenhouse gases (GHG) and the engines are more 37 

energy efficient than internal combustion engines9. Nevertheless, there are impacts associated with EVs 38 

during their manufacturing and disposal as well as from the indirect emissions at power plants10. Because 39 

electricity is often produced from coal, alternative vehicles technologies may also be associated with large 40 

environmental and health impacts. Only looking at the direct emissions and impacts during the use of these 41 

vehicles in decision-making processes (e.g. for eco-design purposes or e-mobility urban development) may 42 

therefore distort the picture and result in environmental burden-shifting from the use stage, where EVs may 43 

be associated with low impacts, to other stages of the vehicle life cycle, such as the extraction of the 44 

necessary raw materials, the manufacturing of the vehicle and/or its end-of-life. Therefore, decision-makers 45 

need holistic impact assessment tools to consistently decide how to develop or enhance the electric fleet at 46 

urban scale and specifically target part of the transport systems for environmental improvements. 47 

Life cycle assessment (LCA) can be used to comprehensively address these risks and identify when 48 

and where environmental burden-shifting occurs. LCA is an internationally-standardized methodology used 49 

to inventorise emissions and resource consumption of a product or a system in a life cycle perspective and 50 

subsequently assess their related impacts on human health, ecosystems and natural resources11,12. By 51 

covering the entire life cycle of the analyzed system and the broad range of environmental impacts, LCA can 52 

reduce the risk of burden-shifting when moving towards new technologies or systems13.  53 

Though LCA has been intensively used to assess the environmental impacts of EVs, previous 54 

reviews have highlighted a low compliance with LCA methodological guidelines14,15 and a lack of 55 

transparency in the inventories.16,17 Moreover, the inclusion of a future-oriented perspective have only been 56 

addressed in few past studies18,19 while there is an increasing need for quantitatively anticipating the 57 
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environmental impacts of the implementation of future policies, which require combining environmental 58 

impact assessment tools and simulations of scenarios over long periods of time20,21. Additionally, although 59 

LCA has been primarily developed as product oriented, Field et al.22 demonstrated that fleet-based LCA is 60 

preferred in a majority of sectors since it allows a thorough perspective of the comparative emissions 61 

burdens and reduces the simplifying assumptions inherent in analyzing a single product. Several authors 62 

have conducted studies on the deployment of EVs in current and future fleets (e.g. refs. 23–32). However, these 63 

assessments are often limited in that they (i) have a limited impact coverage (typically centered on climate 64 

change and energy demand),24–27 (ii) have a narrow technological scope that covers only a few EV 65 

technologies (often only hybrid and battery electric vehicles),23,25,28 (iii) do not embrace an all-inclusive fleet-66 

based perspective, thus leaving out parts of the system (e.g. charging infrastructures),29–31 or (iv) do not 67 

encompass a future-oriented perspective.32 To the knowledge of the authors, no studies have addressed all 4 68 

limitations and investigated a large panel of technologies in a complete, foresight fleet-based assessment 69 

with a large impact coverage.16,17,33 In the context of urban transport planning, such limitations undermine the 70 

reliability and relevance of the assessment results and the subsequent support provided to decision-makers. 71 

In this setting, we therefore aim to: (1) develop a comprehensive framework for performing foresight 72 

fleet-based LCAs of a urban transportation system, which can accommodate several powertrain technologies 73 

and a large set of impact categories while following the ISO guidelines14,15 and show high transparency of 74 

the inventories; (2) apply that framework to the progressive deployment of EVs in Copenhagen over the 75 

period 2016-2030, which thus serves as both proof-of-concept and illustrative case study; and (3) provide 76 

recommendations to LCA practitioners for their future LCA applications in that field and information to 77 

electric transportation stakeholders. The municipality of Copenhagen has been chosen for its ambitious 78 

climate plan of being the first carbon neutral capital by 2025 and for its data availability34. 79 

2. Materials and methods 80 

2.1. General framework 81 

We propose a generic framework and methodology to assess the life-cycle environmental impacts of 82 

an urban fleet, designed to be applicable on a specific city, over a certain period of time and for a defined 83 

type of vehicle. The different steps and data needs are synthesized in Figure 1 and they are described 84 
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succinctly in the subsequent subsections (complemented with detailed documentation and guidance in 85 

Supporting Information (SI)). Each of the steps is also illustrated by the case study of passenger cars in 86 

Copenhagen over the period of time 2016-2030, which also serves as insight into the type of data required 87 

for the assessment. 88 

The methodology includes two main stages: a vehicle-based LCA where the different powertrains 89 

selected for the study can be compared, thus giving an overview of the performances of individual vehicle 90 

technologies, and a fleet-based LCA, in which the vehicles, the charging infrastructures and the fuel and 91 

electricity production systems are assessed in their context taking into consideration the urban transport 92 

needs and the possible EV deployment scenarios over time. Both stages have a specific scope, functional unit 93 

and system boundaries and are conducted following the ISO 14040 and 14044 standards14,15.   94 

95 
Figure 1: General framework of the methodology. Note that “Equipment manufacturing” implies extraction 96 
and processing of raw materials. Red text indicates data needs. Blue shaded boxes indicate the assessment 97 
results (FU_Vehicle = functional unit at vehicle level & FU_Fleet = functional unit at fleet level).  98 
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2.2. Scoping of the vehicle-based LCA 99 

The technology landscape of passenger vehicles needs to be comprehensively modeled by 100 

considering a portfolio of powertrains as complete as possible, and corresponding to the city under study. For 101 

example, in the case of Copenhagen, five technologies of powertrains were considered: (1) ICVs, 102 

conventional vehicles powered by normal or optimized engines and driving on fossil fuels; (2) battery 103 

electric vehicles (BEVs), vehicles powered by an electric motor that carry a battery as energy storage; (3) 104 

hybrid electric vehicles (HEVs), vehicles powered by both an electric motor and a combustion engine 105 

(alternatively), and carry a battery (this includes plug-in HEVs (PHEVs), which charge their batteries from 106 

the electrical grid, and non-plug-in HEVs (nPHEVs), which charge their batteries from the combustion 107 

engine); (4) range-extended electric vehicles (REEVs), which are powered by an electric motor and carry a 108 

battery for principal energy storage but also have a combustion engine to extend the vehicle's range; and (5) 109 

fuel-cell electric vehicles (FCEVs), vehicles powered by an electric motor and carrying hydrogen fuel-cells 110 

for energy storage. Albeit not relevant for Copenhagen, other powertrains may additionally be considered, 111 

e.g. natural gas or biogas-based vehicles35. 112 

To compare their environmental performances, a functional unit (FU), which quantifies the service or 113 

function the system provides and serves as basis for the comparisons, should be defined. Here it has been 114 

defined as “the transport of an average weight of passengers over 1 km by a private vehicle in average 115 

driving and meteorological conditions in Copenhagen in either 2016 or 2030”. Such FU can easily be 116 

adapted to other settings in its current form. Including the entire life cycles of the vehicles (i.e. 117 

manufacturing, use, maintenance, and end-of-life), the fuels (i.e. well-to-wheel system for fossil fuels, 118 

electricity, or hydrogen) and the additional infrastructure (e.g. roads) ensure a comprehensive assessment16. 119 

In the present assessment at vehicle level, infrastructures associated with the charging systems and the 120 

hydrogen supply infrastructures were excluded as deemed of negligible impact (confirmed in the results; see 121 

Section 4.3).  122 

2.3. Scoping of the fleet-based LCA 123 

The fleet-based LCA is developed based on different deployment scenarios. The developed 124 

framework require to (i) obtain data on the transport needs in the given city over the considered time period, 125 

and (ii) frame a number of scenarios reflecting the dynamic distribution of the different technologies of 126 
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powertrain  that meet the transport demand for the given time period. In the case study of Copenhagen, four 127 

scenarios were investigated: two basis scenarios developed by McKinsey&Co36, and two explorative 128 

scenarios developed to investigate possibilities for significantly decreasing the environmental impacts of the 129 

private passenger transport sector. McKinsey&Co36 developed scenarios for the evolution of global market 130 

shares of different powertrain technologies up to the year 2050 (see Supplementary Methods section 2.2). 131 

Two scenarios were built based on hypothetical carbon emission averages for well-to-wheel emissions, 132 

namely the “Below 100” scenario (B100) and the “Below 10” scenario (B10). B100 corresponds to a 133 

business-as-usual scenario, in which the average private vehicle is associated with well-to-wheel emissions 134 

below 100 g-CO2eq/km in 2050. In B100, EVs have limited deployment, and FCEVs do not enter the market 135 

by 2030. The B10 scenario corresponds to an emission target for average private vehicle of less than 10 g-136 

CO2eq/km in 2050. In B10, REEVs and HEVs are transition technologies toward a large deployment of 137 

BEVs and FCEVs, deemed technically and environmentally more relevant.  138 

We developed two explorative scenarios: the BEV++ and the FCEV++ scenarios. The BEV++ 139 

scenario is based on the B10 scenario, but includes faster technological changes: the proportion of BEVs thus 140 

increases and replaces HEVs sooner. The FCEV++ scenario models a potential disruptive technological 141 

advancement in FCEVs that accelerates their introductions from 2019 and on. In the FCEV++ scenario, 142 

REEVs act as the main transition technology as opposed to HEVs. See Supplementary Methods for more 143 

details.  144 

The functional unit for the fleet-based LCA was defined here as the “supply of all the demand for 145 

private transportation via motorized passenger vehicles for the Copenhagen area from 2016 to 2030”. This 146 

FU can again be easily adapted to other cities and time frame. Each scenario is modeled as a dynamic 147 

system, which includes entire life cycles (i.e. raw materials extraction, production, use and 148 

decommissioning/disposal) of (i) the vehicles for all modeled technologies, (ii) the fuels (gasoline, diesel, 149 

electricity and hydrogen supply systems), and (iii) all support systems, encompassing the electricity grid, the 150 

roads and the EV-charging and fuel station infrastructures (see Figure 1). In the case of Copenhagen, 151 

hydrogen stations were not included because of lack of data availability. The dynamic perspective is 152 

provided by modeling the above systems with time differentiation. For the Copenhagen case, based on 153 

available data, the characteristics of the vehicles were modeled following five-year intervals to simulate 154 
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technological improvements, i.e. 2016-2020, 2020-2025 and 2025-2030, while the composition of the Danish 155 

electricity grid mix was changed every year. 156 

2.4. System modeling and data collection 157 

Data sources. Specific data pertaining to the modeling of the fleet system are to be collected from 158 

different sources and implemented into a LCA software, while the background data (e.g. for support 159 

systems) can rely on a life cycle inventory (LCI) database adapted to the country under study. In the present 160 

case study, we have used SimaPro37 (v.8.1.0.60) for the system modeling and have relied on the Ecoinvent 161 

database v.3.1 (consequential version), one of the largest life cycle inventory (LCI) databases38,39 for 162 

background data. A consequential modeling approach was adopted to include the consequences and 163 

interactions with other systems of the large-scale EV deployment at city level39, and thus system expansion 164 

was used for the multi-functionality of processes. Potential reinforcements of the electricity grid and further 165 

consequences of the positive public perception of electrified vehicles were not accounted for in the current 166 

study, but constitute interesting subjects for future research. Further details are available in SI Methods. 167 

General data, such as population growth, proportion of people living in single houses and number of 168 

private cars per inhabitant were collected from official national statistics40. Parameters for the current Danish 169 

passenger vehicle fleet, e.g. average distances driven per day per car, were extracted from national surveys41. 170 

We assumed that vehicle ownership and other transportation habits, such as the average number of vehicles 171 

per inhabitant or average distances driven per day, remain constant over the period 2016-2030.  172 

Vehicle technologies. The LCI for different vehicle powertrains are modeled, taking existing LCI 173 

processes in Ecoinvent v.3.138 and adapting several parameters, viz. vehicle weight, fuel consumption, 174 

lifetime of the vehicle and weight and lifetime of the battery (when applicable). The passenger cars modeled 175 

in the Ecoinvent database are equipped with gliders based on Volkswagen Golf VI42. They follow the EURO 176 

5 standards for diesel and petrol cars and are equipped with Lithium-ion batteries for electric ones 38,39. For 177 

each of the technologies, a base model can be developed for the beginning of the time-scope using the 178 

current average vehicle. For example, for Copenhagen, the ICV and BEV base models were built from the 179 

fleet-weighted average characteristics of corresponding vehicles in Denmark43,44. The HEV, REEV and 180 

FCEV base models were developed from the BEV base-model since these technologies are similar, yet rare 181 

or inexistent in the current Danish market. Vehicle characteristics such as battery specifications45, 182 
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externalities and real-world fuel consumption42, fuel-cell inventories46, utility factors47 and specificities 183 

regarding ICVs48 were collected from scientific literature and governmental reports. These specific data 184 

needs are illustrated in Figure 1, and are fully documented in SI Methods.  185 

At each time step defined by the dynamic perspective, a new average vehicle model specific to each 186 

technology is introduced, thus creating evolving models over the assessed time period (see Figure 1). The 187 

characteristics of the new vehicle models vary from the base-models: vehicle weight, fuel consumption and 188 

battery weight (when applicable) are assumed to decrease over time, with selected reduction rates. The 189 

vehicle and battery lifetimes are assumed to stay constant over the time scope and are thus modeled similarly 190 

to the LCI processes used in Ecoinvent v.3.1, i.e. 150,000 km for vehicles and 100,000 km for batteries.39 191 

For Copenhagen, based on data availability, a time step of five years was selected, so three models in total 192 

were developed for each of the five technologies (i.e. for 2016-2020, 2021-2025 and 2026-2030), with 193 

reduction rates of 1.2%/year for the vehicle weight, 2.5%/year for the fuel consumption and 1.25%/year for 194 

the electricity consumption23,49. An exception lies in the FCEVs, which only had one model for the 15 years 195 

because of their current lack of maturity. At the end of life, the vehicles are entirely recycled as defined by 196 

default for passenger cars in the consequential database of Ecoinvent42. Due to lack of data, the evolution of 197 

materials for car manufacturing over time was disregarded although these materials are likely to evolve 198 

through the years to become lighter and have different lifetimes and properties50. Future studies may explore 199 

how to consistently include these prospective aspects in the vehicle system modeling. 200 

Charging infrastructures. Some EVs (e.g. BEVs or PHEVs) require specific charging 201 

infrastructures, which are in general not available yet in cities at large scale. If an increasing deployment of 202 

these technologies is made, more and more charging infrastructures will be installed within the considered 203 

time frame, which is taken into account in the framework. In the case study, the chargers were separated in 204 

three types: home chargers, fast public chargers and normal public chargers51. We made the assumption that 205 

owners of EVs living in private housing will install a home charger. Fast public chargers are not essential, 206 

but substantially increase the convenience of owning a BEVs since it allows the owner to drive a bigger 207 

distance than the driving range in its travels; their implementation therefore depends on the willingness of 208 

the city. With regard to normal public chargers, different methods have been used in previous studies to 209 

estimate their requirements for EV deployment51–55. Primarily, local scenario that have been developed for 210 
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the zone under study by transportation specialists or urban developers should be investigated. If such an 211 

assessment does not exist, they can use the general methodology developed in this paper and described in SI 212 

Method (section 2.4.2. Method 3). For Copenhagen, a methodology specifically developed for the situation 213 

of Denmark in the case of an increasing deployment of BEVs in the whole country was selected: it defined 214 

the number of chargers required per city based on the actual urban density of each zone for a comfortable use 215 

of EVs.54 216 

Fuel and electricity systems. The study being consequential, marginal production technologies were 217 

required for the different energy processes56. A mix of long-term marginal technologies is typically 218 

recommended along with explorative scenarios57,58. Because our time scope begins in 2016 and only goes 219 

until 2030, the electricity mix used in this article could better be qualified as a “medium-term” marginal mix. 220 

We recognize that the medium-term marginal mix of fuels may change over the considered time scope. 221 

Including this evolution by anticipating it based on national and international targets and forecasting 222 

scenarios increase the representativeness of the model. In the case of Denmark from 2016 to 2030, the 223 

evolution of the medium-term marginal electricity production mix was modeled by taking the Ecoinvent 224 

process and adapting it by extrapolating the goals that the Danish government and the European Union have 225 

established for 2020 and 203059–61. Denmark has established a target have a fossils-free electricity mix by 226 

203559. The electricity grid mix was thus modeled to evolve from a currently coal-driven production to a 227 

wind-driven production in 2030, with approximately 15% of fossil fuels. Owing to the use of a medium-term 228 

marginal mix and with no guarantee that the deployment of EVs will be accompanied with an increase in 229 

electricity demand over 2016-2030 (due to other potentially-compensatory factors such as energy efficiency 230 

gains, change in transportation patterns like car sharing, storage from renewable sources, etc.), we have 231 

retained a share of coal in the medium-term mix. The modeling of the electricity medium-term marginal is an 232 

important source of uncertainties, which has been assessed through a sensitivity analysis. Background 233 

processes, e.g. fossil fuels and hydrogen supply, were modeled using the default marginal processes from the 234 

Ecoinvent database. Albeit deemed of little influence on the results of this study, inconsistencies associated 235 

with the lack to temporal variations in the background processes should be investigated in future studies. 236 

Further details about the system modeling are provided in Supporting Methods.  237 
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2.5. Life cycle impact assessment 238 

Life cycle impact assessment (LCIA) is an LCA methodological phase translating pollutant 239 

emissions and resource consumptions into potential impacts on ecosystems, human health, and natural 240 

resources. In the current study, it was performed using ILCD 2011 methodology at midpoint level (v.1.07), 241 

which has been recommended as best LCIA practice for Europe by the EU Commission 12,62.  242 

Fifteen impact categories were considered, including climate change, stratospheric ozone depletion, 243 

toxic impacts on human health from released chemicals (termed as “human toxicity” in the following; 244 

differentiated between cancer effects and non-cancer effects), toxic impacts on freshwater ecosystems from 245 

released chemicals (termed as “ecotoxicity” in the following), particulate matter formation, ionizing 246 

radiation impact on human health, acidification, photochemical ozone formation, eutrophication 247 

(differentiated between impacts on freshwater, marine and terrestrial ecosystems), land use, water resource 248 

depletion and mineral, fossil and renewable resource depletion62. 249 

3. Application of the framework to the vehicle-based LCA 250 

The vehicle-based LCA is based on the functional unit of different vehicles driving of 1 km in 2016 251 

or in 2030 as a comparison basis (see Section 2.2). Results for the environmental performances of the five 252 

powertrain technologies in 2016 and 2030 are fully documented in the SI (Tables S1 and S2). 253 

3.1. Overall trends 254 

In 2016, the ranking of the different technologies is strongly dependent on the impact category, with 255 

ICV performing worst for 5 impact categories while performing best for 6 impact categories (out of the 15 256 

midpoint impact indicators) – see Figure S1. BEVs and REEVs have the lowest impact results in 5 and 4 257 

other impact categories, respectively. This shows that, considering current technologies in 2016, several 258 

environmental trade-offs can be observed between the different technologies. 259 

In 2030, FCEVs have the lowest environmental impacts in 9 categories, and the worst in only one 260 

(stratospheric ozone depletion), even though that technology is still immature (see Section 2.4). These high 261 

impacts in stratospheric ozone depletion stem from the fuel cells production, and more precisely to the 262 

tetrafluoroethylene production, which is associated with important emissions of required trichloromethane. 263 
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FCEVs thus have potential to reduce environmental impacts of the transport sector by 2030. However, this 264 

affirmation must be regarded with caution because of the lack of maturity of that technology and thus the 265 

limited information currently available to describe it compared to the other powertrains. With regard to the 266 

other technologies, impacts generally decrease from 2016 to 2030 regardless of the impact category.  267 

 268 

3.2. Influence of electricity requirements for EVs and grid mix composition 269 

 270 

Figure 2: Comparison of the five technologies of vehicle in 2016 and 2030 based on the driving of 1 km in a 271 
passenger car for the selected impact categories climate change (a), mineral, fossil & renewable resource 272 
depletion (b), and human toxicity (non-cancer effects) (c). Results are differentiated by process contribution 273 
and indexed on the impact scores obtained for internal combustion engine vehicles in 2016 (set to 100%). 274 
Results for the remaining impact categories are available in Figures S2-S16. 275 

 276 

ICVs are generally regarded as large GHG emitters and hence important contributors to climate 277 

change5. Because of potentially highly-impacting electricity grid mixes (e.g. grid mixes with high share of 278 

coal), alternative technologies may also be associated with large impacts on climate change. For 279 

Copenhagen, as illustrated in Figure 2a, the climate change impacts for BEVs are thus found slightly higher 280 

than that for ICVs in 2016 (i.e. 292 and 261 g-CO2eq/km respectively) and slightly lower in 2030 (i.e. 202 281 

and 210 g-CO2eq/km respectively). This finding is in contrast with most studies that have compared ICVs 282 

and BEVs. As illustrated in Figure 3, previous studies19,63,64 found that climate change impacts of BEVs 283 

decreased from 21% to 41% and estimated that by 2030 it could be reduced by up to 65%19. 284 
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These discrepancies can be explained by 2 main parameters: (i) the electricity grid mix, and (2) the 285 

electricity requirements of EVs. Huo et al.65 reported that the climate change impacts per kilometer varied by 286 

up to 200% depending on the electricity mix. In Denmark, in 2016, approximately 55% of the marginal 287 

electricity was generated from coal, thus partly explaining the observed differences with previous studies, 288 

which looked at more renewable mixes.  289 

In addition, the relative poor environmental performance of BEV may be explained by the nature of 290 

the EV fleet in Copenhagen, which is currently largely composed of high standing vehicles that are 291 

considerably more powerful and heavier than the average ICV and thus intrinsically consume more fuel. This 292 

extra fuel demand is further increased because of the weather conditions in Denmark. Unlike ICVs, which 293 

can divert some of the heat loss from the combustion to the heating of the vehicles, EVs require additional 294 

electricity demand when heating is required. Denmark having a relatively cold climate, a larger amount of 295 

electricity is therefore used for heating the vehicle than it is in southern countries, on which previous studies 296 

have focused (e.g. Spain42). These findings demonstrate the importance that the electricity grid composition 297 

and the location of the city (climatic conditions) can have on the environmental impact results, with possible 298 

change in the ranking of ICVs and BEVs depending on the local specificities.  299 

On the other hand, ICVs have impacts on human health that are not taken into account with this 300 

LCIA method. The largest climate change impacts for ICVs stem from exhaust emissions, whereas for 301 

BEVs, electricity production is the main driver. Thus, ICVs contribute to air pollution while the vehicle is 302 

used, predominantly within cities. In contrast, electricity production is typically located away from urbanized 303 

areas, and thus has less impact on human health, leading to a geographical burden-shifting of impacts. The 304 

LCIA method used here do not take these geographical differences into account. Therefore, the health impact 305 

of ICVs might be underestimated (or the health impact of BEVs overestimated). 306 

3.3. Other EV powertrain technologies than BEV 307 

Comparing our results to previous studies is challenging because of the few studies retrieved on 308 

other powertrains than ICVs and BEVs, particularly REEVs and FCEVs. Additionally, their results vary 309 

considerably depending on, e.g., hydrogen production means.66–68 In general, previously-reported impacts 310 

scores are higher than those in the current study (see Figure 3). Bauer et al.19 studied a FCEV in the year 311 

2030 and compared different hydrogen production paths, and reported climate change impacts varying from 312 
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the same to approximately 3 times higher than those in the present study. Hydrogen production thus 313 

contributes in average to 75% of the total impacts in Bauer et al.19, while in the current study, which 314 

considers the Ecoinvent process that mainly relies on natural gas reforming for producing hydrogen69, it 315 

corresponds to less than 25%.  316 

However, it should be noted that the current study was conducted using a consequential modeling 317 

framework, whereas most of the previous studies considered in Figure 3 used an attributional modeling 318 

framework (excluding Tagliaferri et al.70). The attributional approach focuses on accounting for the used 319 

resources and emissions that can be assigned to a system life cycle taken in isolation, while the consequential 320 

approach also addresses the consequences that the system implementation may cause to the rest of the 321 

economy, i.e. other systems13,71. Therefore, the results displayed in Figure 3 should be regarded with caution, 322 

as some discrepancies may be explained by modeling differences, e.g. modeling of multi-functional 323 

processes.  324 

 325 

Figure 3: Characterized results for climate change for the different technologies of vehicles found in the 326 
current study (grey bars) and in other literature sources (white bars). Huo et al. (2015)65, Bauer et al. (2015)19 327 
and Bartolozzi et al. (2013)66 studied different scenarios of electricity, fuel and hydrogen production: 328 
therefore the bars represent the mean scores while the whiskers indicate the minimum and maximum scores 329 
obtained. 330 

3.4. Contribution of the vehicle life cycle stages 331 

The same distribution of impacts between life cycle stages is observed between 2016 and 2030 (see 332 

Figures S17-S25). Manufacturing and use of the vehicles are the two main contributors to environmental 333 
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impacts with important variations in the total contributions across impact categories. Contributions up to 334 

90% of the final score are found for some impact categories, e.g. acidification potential for ICVs and climate 335 

change for BEVs. The impacts of the vehicle manufacturing stage mainly stem from steel and copper mining 336 

activities for human toxicity, freshwater eutrophication, water depletion and resource depletion as well as 337 

from the use of palladium in the catalytic converters of vehicles having an internal combustion engine for 338 

particulate matter and acidification impact categories. Important contributions of the end-of-life of ICVs to 339 

the total environmental burden are observed for acidification and freshwater ecotoxicity due to the 340 

dismantling of the internal combustion engine, which is associated with emissions of heavy metals (from 341 

processing of metal parts) and ammonia/NOx (from use of solvents).  342 

Figure 2 and Figures S2-S16 highlight the risk of burden-shifting that may occur when a switch 343 

across different powertrain technologies occurs in the future, with the source of the impacts primarily located 344 

in either the use stage or the manufacturing stage, depending on the impact category. For example, while the 345 

production of fuels and the use stage (incl. electricity generation for EVs) are responsible for more than 60-346 

70% of the climate change scores for ICV, HEV and BEV, human toxicity impacts and resource depletion 347 

are dominated by the manufacturing processes that account for more than 90% for these three technologies 348 

(Figure 2a, 2b and 2c). For all types of vehicles, the processes contributing the most to human toxicity 349 

impacts are the sulfidic tailings for non-cancer effects and the landfilling of steel from the glider for cancer 350 

effects. However, to reduce most impacts of the new EV technologies, the environmental performances of 351 

the electricity grid mixes and the electricity efficiency for the operation of the car are the most important 352 

when addressing BEVs, while car manufacturing is the most important impact stage with respect to FCEV 353 

and REEV.  354 

In contrast with the results for climate change, BEVs are found to have the lowest resource depletion 355 

impacts due to the battery, i.e. -5.09 mg-Sb-eq/km in 2016 and 2.38 mg-Sb-eq/km in 2030 (cf. Figure 2b). 356 

The study being consequential, negative scores are explained by avoided burdens associated with avoided 357 

production of virgin materials. The avoided production of pure cobalt due to recycling is found to account 358 

for 97% of the battery positive contribution to resource depletion for BEVs in 2016. However, the feasibility 359 

of such an efficient disposal plan is debatable because an increasing demand for BEVs will increase the 360 

demand of lithium and cobalt drastically and in a shorter time than the battery lifetime, thus exceeding the 361 
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capacity of available recycled materials. Such a perspective was not included in the current study although it 362 

should be investigated in future works. Likewise, the acidification results of the partially to totally electrified 363 

vehicles are much lower than the ones from ICVs because of the negative impact scores from the vehicle 364 

part. For the EVs it stems from the recycling of the electronic scraps and the resulting recovery of valuable 365 

metals like rhodium, thus saving acidic processing of virgin materials (see Figure S9), while the ICVs’ 366 

acidification score is primarily caused by the mining of the Palladium for the combustion engine.   367 

 368 

4. Application of framework to fleet-based LCA 369 

Building on the comparisons of the vehicle system, the application of the framework to assess the 370 

environmental performances of fleet-based scenarios is illustrated below with the case of Copenhagen and its 371 

four considered EV deployment scenarios (see Section 2.3). 372 

4.1. Analysis of the cumulative impacts over the 15 years 373 

The assessment enables to compute cumulative impacts over the considered time period, which can 374 

provide insights into potential long-term benefits. For Copenhagen, Table S3 and S4 show the differences 375 

and the ranking of the scenarios for the 15 categories assessed over the 15 years. No scenario appears better 376 

than the others for all impact categories, and the ranking of the four scenarios therefore varies depending on 377 

the impact category considered. Benchmarking against the business as usual scenario for Copenhagen, i.e. 378 

B100, the largest environmental gains are obtained for FCEV++, which decrease acidification impacts by 379 

71% and all the other impacts by 2-39%, except for toxic impacts (increase by 7-43%), water resource 380 

depletion (+38%) and freshwater eutrophication (+58%). 381 

These results are however associated with uncertainties as the modeling of FCEVs does not include 382 

the hydrogen supply infrastructure, i.e. the transport and the distribution of H2. The overall contribution of 383 

such infrastructure to the total environmental impacts was found to be negligible for other powertrain 384 

technologies (see Figure S26), hence this assumption is believed to be acceptable. As another source of 385 

uncertainties, the data used to model the FCEV in the period 2026-2030 rely on lab-scale or small 386 

pilot/commercial scale data, which do not have the same level of maturity as the other analyzed technologies. 387 
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Increases in the manufacturing and disposal process efficiencies when developing FCEV technologies at full 388 

commercial scale may therefore be expected, thus leading to lower impacts72. The observed results combined 389 

with such prospects therefore suggest that FCEVs are an environmentally-promising EV technology and may 390 

indicate overall better performances of the FCEV++ scenario over other assessed scenarios. Further conduct 391 

of similar LCA studies to other cities with different settings are needed to assess whether this tendency is 392 

generic or only applicable to specific situations due to influence of local parameters, e.g. grid mixes, 393 

transport needs, etc.  394 

4.2. Annual evolution of the impacts 395 

In addition to a cumulative assessment, the fleet-based results can also enable to show annual 396 

evolution of the impacts. Figure 4 illustrates the annual evolution of the four modeled scenarios in the 15 397 

impact categories for Copenhagen. It demonstrates that the ranking of the four scenarios is not only 398 

dependent on the impact categories (see Section 4.1) but also changes over time (curves crossing each other 399 

in Figure 4). These changes have the same trends for BEV++ and B10, always having the same ranking with 400 

B100, whereas FCEV++ presents different tendencies because of the bigger difference of powertrain 401 

distribution over the years (Figure S27). For instance, when looking at photochemical ozone formation, 402 

BEV++ and B10 have higher impacts than B100 over the whole period considered, while FCEV++ presents 403 

lower scores from 2024. 404 

In the year 2030, FCEV++ only have higher impact scores in two categories (ozone depletion and 405 

water resource depletion), whereas it has the lowest score for 9 categories, including climate change. Some 406 

impact categories are observed to increase over time, such as human toxicity and freshwater eutrophication, 407 

while others decrease, e.g. climate change and acidification (see Figure 4). This demonstrates that 408 

environmental burden-shifting may be expected through the deployment of EVs in Copenhagen in the period 409 

2016-2030, to which stakeholders should pay attention. From Figure 4, human toxicity (up to 150% increase 410 

in 2030 compared to 2016), water depletion (100% increase), freshwater ecotoxicity (50% increase) and 411 

eutrophication (200% increase) are the impact categories, which stakeholders thus need to tackle along with 412 

their development and implementation of the EV technologies. 413 

A founding hypothesis of these scenarios is that the current city transportation model (e.g. driver’s 414 

habits, average distance driven per inhabitant per day, preference regarding the mean of transportation, etc.) 415 
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will not change until 2030. However, new tendencies regarding mobility such as car sharing or ride-hailing 416 

applications are emerging and might change the city mobility as we know it today. This could change the 417 

results found in this study and present a more environmental friendly solution, as it may tend to reduce the 418 

use of individual vehicles.  419 

 420 

421 
Figure 4: Evolution of the annual environmental impact scores for the four considered scenarios B10, B100, 422 
BEV++ and FCEV++ for the 15 impact categories (results indexed on the impact scores in 2016, which are 423 
the same in all scenarios). Slight breaks in the curves in 2020 and 2025 are caused by discontinuous changes 424 
in the technologies’ characteristics (see section 2.4). Note that the scale is the same for all the categories but 425 
human toxicity (non-cancer effects), acidification and freshwater eutrophication (lowest row of graphs). 426 

4.3. Importance of infrastructures and vehicles types 427 

At the fleet level, infrastructures were found to have an overall negligible impact, with contributions 428 

below 3% of the scenario total scores over the 15 years, regardless of the impact category and scenario 429 

(Figures S26 and S27). This score cannot be directly compared to previous literature because it refers to the 430 

whole fleet. However, Lucas et al.73 reported an impact of charging infrastructures of 8-12% of the energy 431 

demand and climate change impacts per kilometer driven by BEVs, which is in line with what is found in 432 
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this study when the scope is adapted. These findings indicate that although the impacts of infrastructure is 433 

noticeable on a per-kilometer basis, it is negligible when considering the entire system compared to the 434 

impacts from vehicles.  435 

With regard to vehicle types, scenarios B10, BEV++ and B100 show similar trends for nearly all 436 

impacts, with major contributions from the vehicle manufacturing and the vehicle use stage (fuel combustion 437 

or electricity production). The relative balancing between the two is strongly impact-specific (Figure S26). In 438 

contrast, in the FCEV++ scenario, the vehicle manufacture becomes a more important driver of impacts, with 439 

contributions higher than those in B10 and B100 for 10 out of 15 impact categories. For example, for human 440 

toxicity (non-cancer), the contribution of the vehicle manufacturing stage in FCEV++ is almost twice the 441 

contribution in B100. This trend in FCEV++ is largely influenced by the dominant proportion of FCEVs in 442 

the fleet (ca. 50%). Considering these results, the implementation of such a scenario should therefore be 443 

accompanied with a strong focus to reduce the environmental impacts from the manufacture of FCEVs, 444 

which is the primary cause for the burden-shifting observed in Figure 4 (e.g. fuel cell production; see Section 445 

4.2). 446 

The importance of electricity production varies across impact categories. The electricity grid mix is a 447 

key driver of impacts for climate change and eutrophication impact categories, whereas it has a minor impact 448 

for the remaining impact categories (see Section 3.2). The electricity production impacts associated with 449 

BEVs and HEVs largely decrease between 2016 and 2030 for all impact categories except resource depletion 450 

(see Figure 2 and S2-S16). This is mainly explained by a “cleaner” electricity generation, which switches 451 

from 50%:33% of coal:wind in 2016 to 16%:55% in 2030, thus reducing the overall environmental impact. 452 

The scarce resources used in the construction of wind turbines result in an increase of the resource depletion 453 

impacts between 2016 and 2030, but the share of electricity production in BEVs’ resource depletion impacts 454 

is so low that it has no influence (Figure 2b). Therefore, the use of EVs may bring particularly large 455 

environmental benefits in countries that have low carbon electricity mixes such as Norway, which is 456 

producing over 95% of its electricity via hydropower74. It is however worth noting that the effects of the 457 

introduction of EVs on the electricity mix are not assessed in details in this study and they might alter the 458 

composition and efficiency of the electricity grid, thus resulting in possibly different environmental impact 459 

profiles. Investigation of the influence of such feedback mechanisms is an area for future research.  460 

Page 19 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



20 

4.4. Robustness of the assessment relatively to its inputs 461 

To ensure reliability in the support provided to stakeholders, the robustness of their assessments 462 

should be tested by performing uncertainty and sensitivity analyses.12,13 The two largest uncertainty sources 463 

can be expected to stem from the modeling of the dynamic perspective that can be divided in two types: (1) 464 

the system modeling, i.e. how the temporal dimensions are addressed by making parameters vary or assumed 465 

fixed; and (2) the input data for the model, also requiring temporal variation. 466 

In the current study, a sensitivity analysis on several input parameters was thus conducted to 467 

evaluate the robustness or stability of the environmental impacts of the systems. The tested parameters 468 

included (i) the average size of BEVs, (ii) the fuel consumption reduction rate for ICVs, BEVs, HEVs and 469 

REEVs, and (iii) the composition of the electricity mix. As documented in Tables S5-S7 and Figures S28-470 

S30, none of these parameters led to a significant influence on the results, thus suggesting a high level of 471 

robustness in the findings of the study. For example, after changing the proportion of large BEVs to only 472 

10%, the results changed by less than 2%.  473 

To test the validity of the assumptions regarding the charging infrastructures, different modeling 474 

approaches were additionally tested (see details in SI Methods). The results showed that even when the total 475 

number of required charging stations increases by up to 200%, the contribution of the infrastructures to the 476 

impacts remains below 5%. Thus, the choice of the infrastructure method has very little influence on the 477 

results although it should be noted that the different types of charging infrastructures are not assumed to 478 

change from 2016 to 2030. New ways of charging cars may be found and implemented, thus altering the 479 

contribution of infrastructure to the total environmental impact.  480 

5. Recommendations and outlook for urban transport assessment  481 

The LCA framework demonstrated in this study enables consistent and comprehensive vehicle-based 482 

and fleet-based LCA. The framework highlights the importance for including in the assessment multiple 483 

types of powertrains as a reflection of future potential markets, and not just limiting its scope to ICVs and 484 

BEVs. 485 
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Several methodological learnings can be highlighted. With respect to the fleet perspective, the case 486 

study of Copenhagen revealed the need for including in the assessment multiple types of powertrains as a 487 

reflection of future potential markets, and not just limiting its scope to ICVs and BEVs as several previous 488 

studies have done. In addition, it demonstrates the necessity of considering all relevant environmental impact 489 

categories in order to identify potential environmental burden-shifting. To move these conclusions to a 490 

foresight perspective, the inclusion of technological improvements in the construction of the assessment 491 

model and the change in the main characteristics of the vehicles and support systems (e.g. electric grid mix) 492 

over time should be considered. We therefore believe that our framework and methodological approach can 493 

be reproduced to other case studies and cities, while fine-tuning some of its components. In future LCA 494 

studies, we recommend LCA practitioners to rely on the learnings from the proof-of-concept of Copenhagen, 495 

where data needs and hotspots have been highlighted.  496 

The results of our LCA study on Copenhagen also enabled us to identify key recommendations to 497 

transport system stakeholders. With our current modeling, BEVs were not found to be effective in reducing 498 

environmental impacts in Denmark. Denmark's cold climate requires significant heating of the vehicle 499 

interior, which, for ICVs, is provided by the heat loss of the internal combustion engines but implies extra 500 

energy consumption in the case of EVs because of the lower heat generation of the electric motor. The 501 

current luxury status of BEVs in Denmark also leads to the modeling of large, heavy vehicles which are 502 

associated with higher electricity consumption than average size vehicles. In addition, the Danish electricity 503 

grid consumes a large share of coal, thus leading to relatively high environmental impacts in the use stage 504 

compared to ICVs. The use of BEVs in other locations, e.g. southern countries, with electricity generation 505 

that utilizes high shares of renewables, is likely to reduce significantly these environmental impacts, and thus 506 

render BEV a more attractive technology. 507 

In all scenarios, charging infrastructures were found to have a negligible impact on the results, which 508 

suggest that urban transport planning should target more the vehicles and the supply of the fuel or electricity 509 

to reduce environmental impacts. In addition, although limited to the case of Copenhagen, the scenario 510 

FCEV++, presenting a disruptive technological breakthrough in favor of FCEV, was overall found to be the 511 

most attractive of the scenarios. Because of the current immaturity of the fuel-cell technology, a transition 512 

technology to rapidly move away from fossil fuels is needed. In this context, REEVs seemed to act as an 513 
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environmentally-promising technology. Both technologies, which have been largely under-investigated in 514 

past LCA studies, should therefore be further assessed in future studies, accounting for the aforementioned 515 

recommendations. In a wider perspective, the observation of environmental burden-shifting in all scenarios 516 

also call for systematically associating the conduct of full life cycle assessment to transport planning to avoid 517 

that relevant environmental impact increase while targeted impacts are being decreased. 518 

 519 

Supporting Information. Contains Supplementary Figures S1-S30 (comparison of the final scores of the 520 

vehicles in 2016 and 2030, component contribution in the 15 impact categories, stage contribution for the 5 521 

vehicles in 2016 and 2030, stage contribution in the scenarios, powertrain contribution in the scenarios, 522 

sensitivity analysis), Supplementary Tables S1-S7 (characterized results for the vehicles and the scenarios, 523 

differences between scenarios and sensitivity analysis) and Supplementary Methods (calculations details of 524 

the construction of the model, including characteristics of the vehicles and definition of the scenarios). 525 
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