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Abstract

We present a stochastic greybox model of a BioDenitro WWTP that can be used for short time horizon Model Predictive Control.
The model is based on a simplified ASM1 model and takes model uncertainty into account. It estimates unmeasured state variables
in the system, e.g. the inlet concentration or the sensor measurements in case of temporary sensor faults. This improves control
performance without adding additional or redundant sensors. We fitted the parameters of the model to actual plant data and
demonstrate the state estimation capabilities with this data set. The model now runs online at a WWTP in Denmark.
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1. Introduction

Automation and advanced control methods are some of the
key tools to improve the performance of existing Waste Water
Treatment Plants (WWTPs) [1]. New online control methods
improve nutrient recovery, carbon neutrality, or energy neutral
plants [2, 3, 4].

The control strategies can be evaluated by using the avail-
able simulation models based on the family of Activated Sludge
Models (ASM) [5, 6], i.e. the Benchmark Simulation Model
(BSM) [7]. The ASM models are great tools for simulation and
provide a detailed description of the biological processes. How-
ever, this level of detail is not well suited for Model Predictive
Control (MPC). As mentioned in [1], current MPCs in WWTP
utilize ”significantly simple“ models. When focusing on alter-
nating plants, that are widely applied in Danish WWTPs, sim-
ple linear models of WWTPs were developed by [8, 9] includ-
ing several heuristic model based control strategies [10, 11, 12,
13, 14, 15]. [16] also developed several models and control
strategies for a pilot scale implementation of an alternating pro-
cess, where [17] specifically focused on the BioDenitro pro-
cess. [18] investigated a nonlinear observer for an alternating
process. [19, 20, 21, 16] provide great summaries of other liter-
ature that deals with control and modeling of alternating plants.

Important obstacles on the road to widespread usage of MPC
are data quality and measurements encumbered with uncertainty
[1]. Although several approaches for data validation are avail-
able in literature [22, 23, 24, 25], their full-scale utilization in
combination with MPC is still limited [26]. Focus for allow-
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ing the practical implementation of complex MPC approaches
in WWTPs are therefore

1. handling of uncertainty
2. fault-tolerant control of sensor failures
3. parameter estimation
4. forecasting of inlet flows and concentrations
5. numerical computational times

These points can be addressed by stochastic greybox models
that combine simple and fast model structures with data assim-
ilation routines, e.g. in the form of an extended Kalman fil-
ter. [27, 28] showed the first applications of greybox models in
the 1990s, who applied parameter estimation of reduced ASM1
models on alternating plants with the aim of process predic-
tion and control. [27] concludes that greybox models of the
wastewater processes performs significantly better than tradi-
tional blackbox models like ARMAX models.

The aim of this paper is to present a stochastic greybox
model for Model Predictive Control of a WWTP that also ac-
counts for uncertainty. The model is based on a simplification
of the ASM1 model for a control horizon of 24 hours since
this short time horizon is the most important for control. The
model continuously adapts to the slower time-varying effects
of the process described in the ASM1. The proposed model is
formulated as a continous-discrete time state space model and
is capable of estimating unmeasured variables in the system.
This improves control performance without adding additional
sensors.

This paper is organized as follows. Section 2.1 reduces
the original ASM1 model to a practical greybox model. Sec-
tion 3 describes the framework for estimating stochastic grey-
box model parameters using maximum likelihood estimation
and the Extended Kalman Filter for state estimation. Section 4
describes our case study and the treatment process. The case



study applies the greybox model and state estimation to real
plant data. Finally, Section 5 provides conclusions.

2. Model of the activated sludge process

Since one of the most promising fields for MPC in WWTP
is energy optimization, we focus our model on nitrogen re-
moval. This removal processs requires aeration of wastewa-
ter, which is the most energy demanding process in treatment
plants. Among the available models for modelling processes
in WWTPs [5], we selected the ASM1 model [29], since the
additional processes included in the later ASM models (e.g.
P removal) are not relevant for our purpose. The ASM1 and
its expansions [6] serve as great tools for detailed simulation
studies of activated sludge processes, and are widely used for
benchmarking control strategies [7].
However, the full model (see section 6) is not well-suited for
practical online process control purposes in WWTPs. Partly
due to the large amount of parameters entering its nonlinear
model equations that change over different time scales, and
partly because online sensors for measuring all variables in the
model are simply not technologically available, too costly, or
too difficult to maintain in practice. So all parameters can not
be identified by statistical methods and the currently available
measurements [28]. Fortunately, the most important parame-
ters in the processes can be identified in reduced versions of
the ASM. Ammonium NH4, nitrate NO3 and phosphate PO4
(which is not included in ASM1) can be measured online and
combined with stochastic greybox models to provide a suffi-
cient model for control and short term prediction.

2.1. Reduced greybox model of BioDenitro process

Based on the assumptions made in Section 6.2, the equa-
tions for simulating removal of nitrogen in WWTP can be re-
duced to the following :

Ṡ NH = −kO
NHρO − kNO

NHρNO − kNH
NHρNH (1a)

Ṡ NO = −kNO
NOρNO + kNH

NOρNH (1b)

Ṡ O = −kO
OρO − kNO

O ρNO (1c)
(1d)

Where the reactions rates are

ρO =
S O2

KO2,OHO + S O2

(2a)

ρNO =
S O2

KO2,OHO + S O2

S NOx

KNOx,OHO + S NOx

(2b)

ρNH =
S O2

KO2,ANO + S O2

S NHX

KNHX ,ANO + S NHX

(2c)

This simplified model utilizes the half-saturation constants
K, which can be compared to physical values from literature,

while a range of newly introduced constants k cannot be trans-
late to physically interpretable parameters but can still be calcu-
tated by using the equations listed in 6.2. The simplified model
has only three state variables (which can be measured online):
oxygen S O2 , nitrate and nitrite S NO, and ammonia S NH concen-
trations.
The dynamics of the dissolved oxygen S O2 are very fast and of-
ten a local control loop regulates the oxygen concentration to a
setpoint. [30, 31, 32, 33] model this control loop by including
KLa in the S O2 equation. We assume a PID controller follows a
setpoint and controls S O2 directly. This reduces the model (1)
to only two states.

If we insert typical ASM1 values for all these parameters
we see that kNH

NH and kNH
NO are much bigger than the other terms

and dominate the equations. Consequently, we end up with

Ṡ NH = −kNH
NHρNH (3a)

Ṡ NO = kNH
NOρNH (3b)

ρNH =
S O2

KO2,ANO + S O2

S NHX

KNHX ,ANO + S NHX

(3c)

We use this reduced model for estimation in the remaining
part of the paper.

2.2. Adding transport flows

The nitrogen removal process takes place in a tank reactor
with constant volume V , which is assumed to be a Continu-
ously Stirred Tank Reactor (CSTR). Under these common as-
sumptions the mass balance for S j with process reaction rate ρ j

is

Ṡ j =
Q
V

(S in
j − S j) + ρ j (4)

With no reaction, ρ j = 0, and constant flow Q this is simply
a first order low pass filter smoothing the inlet concentration.
The time constant or hydraulic retention time of the tank is τ =
V
Q . Obviously, a higher flow yields a faster response towards
a steady state where S j = S in

j . For a given treatment process
the transport flows can be added to each state variable in the
reduced ASM1 model (3).

3. Stochastic greybox model likelihood parameter estima-
tion

The developed dynamical model (3) of the activated sludge
process is time-varying and nonlinear. We wish to estimate the
model parameters online from data and evaluate the model un-
certainty, so we can use it for prediction and control. The model
fits the general model structure for continuous-discrete stochas-
tic state space models, i.e. a model of the state variables in con-
tinuous time and discrete time samples measurements of some
of the states.

dxt = f (xt, ut, t, θ) dt + σ(ut, t, θ) dωt (5a)
yk = h(xk, uk, tk, θ) + ek (5b)
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where t ∈ R is time and k ∈ Z is the discrete time index of
the sampled time instants tk spaced with sampling period Ts.
xt ∈ Rn contains the n state variables, ut ∈ Rm is the m input
variables, yk ∈ Rl is the l output variables while θ ∈ Rp contains
the p model parameters to be estimated. f (·) ∈ Rn, σ(·) ∈ Rn×n,
and h(·) ∈ Rl are nonlinear functions. When these functions
are linear (5) reduce to linear state space models. ωt is an n-
dimensional standard Wiener process and ek is an l-dimensional
white noise process with ek ∈ N(0, S (uk, tk, θ)) characterizing
the measurement noise.

Given a model structure and a set of N + 1 measurements
YN = [yN , yN−1, . . . , y1, y0] we wish to find the parameters θ
that maximizes the likelihood function

L(θ,YN) = p(YN |θ) = p(y0|θ)
N∏

k=1

p(yk |Yk−1, θ) (6)

p(yk |Yk−1, θ) is a conditional density denoting the probability
of observing yk given the previous observation setYk−1 and pa-
rameters θ. For sufficiently fast sampled measurements we ap-
proximate this conditional density with a Gaussian distribution
such that

p (yk |Yk−1, θ) =
exp

(
− 1

2 ε
T
k R−1

k|k−1εk

)
√
|Rk|k−1|

√
2πl

(7)

where

εk = yk − ŷk|k−1 (8a)
ŷk|k−1 = E[yk |Yk−1, θ] (8b)
Rk|k−1 = V[yk |Yk−1, θ] (8c)

defines the output residual ε and estimated mean output ŷ with
covariance R. A Kalman filter provides exactly these estimates
for Gaussian noise densities, even for nonlinear models in the
extended linearizing version the Extended Kalman Filter (EKF)
[34].

If we assume the initial probability density p(y0|θ) to be
known and put (7) into the likelihood function (6), then we can
find a set of parameters θ̂ that maximizes the likelihood function
by solving the following nonlinear optimization problem

maximize
θ̂∈Θ

log[L(θ̂,YN |x0)] (9)

Including the logarithm decomposes the likelihood function into
sums instead of products that is easier to handle when solving
the optimization problem. We assume each parameter to take
values within predefined bounds with equal probability, so the
parameters are constrained to the set Θ. The problem can also
be extended to maximum a posteriori (MAP) estimation, where
instead of giving simple parameter bounds, a prior probabil-
ity density function limits the parameter value. This is useful if
some prior knowledge about the probability density is available.

3.1. Software
We use R and the package CTSM-R1 [35, 36, 37] to model

and estimate the parameters using Maximum Likelihood Esti-

1www.ctsm.info

mation. CTSM-R solves the optimization problem (9) and pro-
vides estimates of the parameters and their uncertainty. It also
includes outlier detection, handles irregular sampling and can
combine multiple independent data sets into the same estima-
tion procedure. Finally, the implemented Extended Kalman
Filter estimates any missing observations caused by calibrating
sensors or communication faults.

4. Case study: Kolding WWTP

Kolding WWTP in Denmark runs a BioDenitroTM process
with a treatment capacity of 125,000 PE and a load of 75,000
PE. We use data from this plant as a case study for validating
our greybox model and running the state estimation. We wish
to estimate the NH4 concentration in both tanks. Estimating un-
measured states accurately leads to better control performance
without adding costly additional sensors.

4.1. BioDenitro operation

The BioDenitro process involves two hydraulically connected
tank reactors that are operated with equal loading in counter
phase. The continuous influent wastewater is divided between
the reactors while the operating conditions alternates between
aerobic or anoxic conditions. The influent primarily flows to
the anoxic reactor to utilize its organic carbon content for den-
itrification. The reactor role is toggled as soon as the NH4 and
NO3 concentrations in the anoxic reactor reach a set point or
if a process time limit is exceeded. Each reactor is equipped
with actuators for aeration and propellers for mixing. The Bio-
Denitro process approaches a batch process, because the phases
are short relative to the hydraulic retention time and the inlet
wastewater volume is small compared to the total tank volume.
Figure 2 shows the operation cycle of a typical BioDenitro plant
with indication of flow patterns and phases. A RBC strategy
that changes the cycle lengths depending on online measure-
ments [38] is the commercially available control system STAR
for the BioDenitro process developed by Krüger A/S. After its
development in the early 1990s [39, 40, 41] approximately 400
plants primarily in Denmark run the BioDenitro process (or
BioDenipho if Phosphorus is treated as well). The process is
very flexible and can adapt to different waste water composi-
tions. The periodically higher concentrations yields faster re-
action times and the continuous alternating excitation of the
dynamics makes it easier to estimate the process rates through
mathematical system identification. However, the phase con-
trol design is quite complex where nitrification and denitrifi-
cation are performed sequentially in a semi-batch manner by
cyclically switching flow and aeration pattern.

Kolding WWTP has four aeration tanks, i.e. two BioDen-
itro tank sets, equipped with two O2 sensors each. Figure 1
shows the plant layout from above. Figure 2 shows the flow
directions and sensors in one BioDenitro tank set at Kolding.
All possible flow combinations and aeration on/off patterns are
described in [39]. At Kolding only one tank, i.e. the master
tank A, has a NH4 and a NO3 sensor, and in this case study
we estimate the NH4 in tank B. Estimating the concentration in
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tank B will increase the control performance in terms of better
effluent quality and lower power consumption without an ex-
pensive physical sensor. As the two tanks sets are disconnected
and only one tank set have NH4 and NO3 sensors we can not
estimate the concentrations in the second tank set. So the other
tank set simply copy the control action from tank A and B in an
open loop manner.

Figure 1: Kolding WWTP with two BioDenitro lines including four aeration
tanks.

ANH4
NO3

O2

B O2

Q

Figure 2: BioDenitro aeration tank pair and flow directions. The weir at the
input and at the output have two possible flow directions, while the middle
connection allows a flow between the tanks. Only tank A has an NH4 and an
NO3 sensor.

4.2. Data

We have measurements of NH4, NO3, O2 and flows between
the tanks from Kolding WWTP. In total we use a 48 hour data
set for the greybox model estimation. The sensors sample every
5 min while the process control system samples every 2 min. So
the individual sensor measurements are collected multiple times
and repeated in the data either two or three times. Consequently,
to pick out the actual observations, we excluded all points as
missing observations when their finite difference was very low,
ideally zero. CTSM-R easily handles these missing observations
and non-equidistant samples.

The sensors also calibrate automatically 3-4 times per day
leaving the control with no measurements up to 1 hour.

For the given data set we time shifted the observations 8
samples to account for sensor and actuation delays. The de-
lay might vary over time and can be included in the model or
estimated independently.

4.3. Reduced greybox model of BioDenitro process

We build a model of the NH4 concetrations in tank A and B
using (3). We assume that the incoming waste water contains
no NO3 or O2 such that S in

NO = 0 and S in
O = 0.

Ṡ A
NH = θ1Q

[
S in

NHwi + S B
NHw̃i − S A

NH

]
−

θ2
S A

NH

KA
NH + S A

NH

S A
O

KA
O + S A

O

(10a)

Ṡ B
NH = θ3Q

[
S in

NHw̃i + S A
NHwi − S B

NH

]
−

θ4
S B

NH

KB
NH + S B

NH

S B
O

KB
O + S B

O

(10b)

The states are x = [S A
NH , S

B
NH]T with inputs u = [wi, S O,Q, S in

NH]T .
The parameters θ contain the tank volume and we have the un-
known parameters: θ = (θ1, θ2, θ3, θ4,KA

O,K
B
O,K

A
NH ,K

B
NH , σ3).

wi is a binary variable equal to 1 when the inlet weir is open
to tank A and 0 for tank B. w̃i is the boolean inverse of wi. Q
is the inlet flow that we assume is also equal to the outlet flow.
We neglect the very short time periods where a tank has neither
inlet or outlet. S in

NH is the NH4 concentration in the inlet.

4.4. Estimating unmeasured NH4 concentrations

Unlike the inlet flow input, the other important part of the
waste water load, namely the NH4 inlet concentration, is not
measured. We know that this concentration follows the inlet
flow with a diurnal profile. We estimate it using the EKF and
the greybox model by writing the model equations (10) as a set
of stochastic differential equations on the form (5). In order
to estimate the inlet concentration we add S in

NH as a third state
driven by noise such that

dS in
NH = 0 dt + σ3dω3, σ3 > 0. (11)

This is a random walk model for S in
NH that allows S in

NH to vary in
a flexible manner. Any model discrepancies will be transferred
to this state and might disrupt the physical interpretation of the
concentration. Since the NH4 concentration in tank B, S B

NH , is
also not measured, we also get an estimate of this concentration.

Figure 3 shows the model fit on the estimation data set. The
one-step ahead predictions fit the data very well with low resid-
uals. All missing observations and unmeasured states are esti-
mated by the EKF. As expected the NH4 concentration in tank
B is similar to tank A but time-shifted due to the alternating pat-
tern. The diurnal pattern of the NH4 inlet concentration is also
clearly evident but not completely smooth. This is mainly due
to the sensor placement and practical non-ideal mixing condi-
tions. Also the NH4 concentrations are controlled to low values
due to the treatment process, so consequently we see only short
periods of mixing where the load goes towards the higher NH4
inlet concentration.

The parameter estimation for 48 hours of data using CTSMR

took around 10 seconds on a laptop but is running online on a
server every 2 minutes as part of the plant control software.
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Figure 3: Estimated one-step predictions of NH4 concentrations in both tanks
and the inlet. The dotted line in the upper plot is the intermittent aeration pat-
tern.
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Fig. 3. Estimated one-step predictions of NH4 concentra-
tions in both tanks and the inlet. The dotted line in
the upper plot is the intermittent aeration pattern.

Table 1. Parameter estimates

Parameter Value Std.

SANH,0 2.29e+00 6.99e-02

SBNH,0 5.35e-01 1.25e+00

SinNH,0 9.66e+00 2.96e+00

KA
NH 3.49e-01 9.06e-02

KB
NH 1.44e+00 9.26e-01

KA
OA 1.79e-01 8.39e-02

KB
OA 1.74e+00 1.17e+00

σMsNH 3.78e-04 3.21e-04
σA 3.38e-02 2.37e-03
σB 7.09e-07 2.25e-05
σNHin 2.07e-01 7.82e-02
θ1 5.96e-02 2.05e-02
θ2 7.32e-02 7.16e-03
θ3 6.39e-02 1.52e-02
θ4 9.34e-01 8.09e-01

on a server every 2 minutes as part of the plant control
software.

5. CONCLUSION

The method provides a greybox model for the process
which describes the uncertainty, and state estimation
which are critical for Model Predictive Control purposes.
We built a stochastic greybox model of a BioDenitro
process aiming for a time horizon below 24 hours. An
R-package, CTSMR, estimates the model parameters us-

ing maximum likelihood optimization and the Extended
Kalman FIlter. If run repeatedly, e.g. in moving 48 hours
windows, the algorithm adaptively fits the model parame-
ters to the current operating conditions and fills in missing
sensor measurements. This is particular important in the
frequent and long periods where the sensors are calibrating
and not providing measurements to the control system.
Since we estimate missing observations, the inlet load,
and the concentrations in the sensorless tank, we could
obtain a more accurate control performance. The model is
an important piece in predicting the process and applying
Model Predictive Control.
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The method provides a greybox model for the process which
describes the uncertainty, and state estimation which are criti-
cal for Model Predictive Control purposes. We built a stochas-
tic greybox model of a BioDenitro process aiming for a time
horizon below 24 hours. An R-package, CTSMR, estimates the
model parameters using maximum likelihood optimization and
the Extended Kalman FIlter. If run repeatedly, e.g. in moving
48 hours windows, the algorithm adaptively fits the model pa-
rameters to the current operating conditions and fills in missing
sensor measurements. This is particular important in the fre-
quent and long periods where the sensors are calibrating and
not providing measurements to the control system. Since we
estimate missing observations, the inlet load, and the concen-
trations in the sensorless tank, we could obtain a more accurate
control performance. The model is an important piece in pre-
dicting the process and applying Model Predictive Control.
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6. Appendix

In the following sections we firstly introduce the ASM1
model and then we simplify it based on several assumption
that are met when looking at predictive control and probabilistic
forecasting up to 24 hours ahead.

6.1. Activated Sludge Model no. 1 (ASM1)

For practical purposes, the ASM models are commonly pre-
sented by using the Gujer matrix representation (see Table 1),
where the state variable are presented in columns, while pro-
cesses are in the rows. The mass balance for the modelled sys-
tem is simply calculated as

Input − Output + Reaction − Accumulation (12)

The reaction rate ri [gm−3d−1] for each i-th state variable is
then calculated as

ri =
∑

j

νi jρ j (13)

where νi j are the stoichiometric coefficients and ρ j are the
rates for the j-th process. By using this framework, the ASM1
model can be described by 9 variables and 8 processes (see Ta-
ble 1).
The biological processes are described by using the Monod ki-
netics, which in practice operates as continuous concentration-
dependent switching functions for the different process rates,
mainly to distinguish between aerobic (S O2 > 0) and anoxic
(S O = 0, S NOx > 0) conditions.

6.1.1. ASM1 differential equations
Baed on the tables provided in the previous section, we can

write up the set of first order ordinary differential equations de-
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Table 2: List of state variables for ASM1 (from [6])
State Variable Units Description

S B gCODm−3 Readily biodegradable substrate
XU gCODm−3 Slowly biodegradable substrate

XOHO gCODm−3 Ordinary heterotrophic organisms
XANO gCODm−3 Autotrophic nitryfing organisms
S O2 gCODm−3 Oxygen (negative COD)

S NOx gNm−3 Nitrate and nitrite nitrogen
S NHX gNm−3 Ammonium plus ammonia nitrogen

S NB,org gNm−3 Soluble biodegradable organic nitrogen
XNB,org gNm−3 Particulate biodegradable organic nitrogen

Table 3: List of stoichiometric parameters for ASM1 (from [6])
Parameter Units Description

fBio X − Fraction of biomass yielding particulate products
iN Bio gN(gCOD)−1 Mass N / Mass COD in biomass

iN Bio,E gN(gCOD)−1 Mass N / Mass COD in products from biomass
YANO gXANO(gN)−1 Autotrophic yield
YOHO gXOHO(gN)−1 Heterotrophic yield

Table 4: List of kinetic parameters for ASM1 (from [6])
Parameter Units Description

bANO d−1 Decay coefficient for autotrophic biomass
bOHO d−1 Decay coefficient for heterotrophic biomass
Khyd g slowly biodeg. COD

·(g cell COD)−1
Half-saturation coeff. for hydrolysis
of slowly biodegradable substrate

KNHx,ANO gNOxm−3 Ammonium and ammonia half-saturation coeff. for of autotrophs
KNOx,OHO gNOxm−3 Nitrate and nitrite half-saturation coeff. for of heterotrophic
KO2,ANO gO2m−3 Oxygen half-saturation coeff. for of autotrophic biomass
KO2,OHO gO2m−3 Oxygen half-saturation coeff. for of heterotrophic biomass

KS B gCODm−3 Half-saturation coeff. for heterotrophic biomass
ηµ,OHO - Correction factor for anoxic growth of heterotrophs
ηhyd - Correction factor for hydrolysis under anoxic conditions

µ̂ANO,max d−1 Autotrophic nitryifiers growth rate
µ̂OHO,max d−1 Heterotrophic growth rate

qam m3COD(gd−1) Ammonification rate
qhyd g slowly biodeg. COD

·(g cell COD d)−1
Hydrolysis rate

scribing the ASM1 dynamics

Ṡ NH = −iXB (ρ1 + ρ2)−(
iXB +

1
YA

)
ρ3 + kaS NDXB,H (14a)

Ṡ NO = −
1 − YH

2.68YH
ρ2 +

1
YA
ρ3 (14b)

Ṡ O = −
1 − YH

YH
ρ1 −

4.57 − YA

YA
ρ3 (14c)

Ṡ S = ρ7 −
1

YH
(ρ1 + ρ2) (14d)

ẊS = (1 − fp)(bH XB,H + bAXB,A) − ρ7 (14e)
ẊB,H = ρ1 + ρ2 − bH XB,H (14f)
ẊB,A = ρ3 − bAXB,A (14g)
Ṡ ND = ρ8 − kaS NDXB,H (14h)
ẊND = (iXB − fpiXP)(bH XB,H + bAXB,A) − ρ8 (14i)

The four remaining original ASM1 variables S I , XI , XP, and
S ALK do not affect any other state variables in (14) and were
left out. [29] provides details about all the variables and param-
eters and these will not be repeated here. The state variables are
influenced by the nonlinear process rates

ρ1 = µ̂H
S S

KS + S S

S O

KO,H + S O
XB,H (15a)

ρ2 = µ̂H
S S

KS + S S

KO,H

KO,H + S O

S NO

KNO + S NO
ηgXB,H (15b)

ρ3 = µ̂A
S NH

KNH + S NH

S O

KO,A + S O
XB,A (15c)

ρ7 = kh
XS /XB,H

KX + XS /XB,H

(
S O

KO,H + S O
+

ηh
KO,H

KO,H + S O

S NO

KNO + S NO

)
XB,H (15d)

ρ8 = ρ7 (XND/XS ) (15e)

The Monod-expressions serve as continuous concentration-dependent
switching functions for the different process rates. Mainly to
distinguish between aerobic (S O > 0) and anoxic (S O = 0,
S NO > 0) conditions. If the variable in the Monod-expression
is rarely in the nonlinear switching region, i.e. near the half-
saturation constant K, the Monod-expression can be approxi-
mated by a binary signal.

6.2. Short time horizon ASM1 assumptions
The Monod kinetics operate as switching functions, and if

the variable in the Monod-expression is rarely in the nonlinear
switching region, i.e. near the half-saturation constant K, then
the Monod-expression can be approximated by a binary signal.

A great number of variables in the ASM1 change very little
on a daily basis. [42, 43] manually estimate and tune the pa-
rameters while [43, 44] use a linear model. In this paper, we
aim to build a model that is accurate on an hourly timescale in
dry weather operation and we assume that

XOHO ' 0 XANO ' 0 S B ' 0 XU ' 0
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i.e., we assume that the biomass (XOHO and XANO ) could be re-
placed by simple functions of measured SS concentration. This
slowly varying parameter could be added to model longer term
prediction or rain weather operation.
The substrate (S B and XU) can be lumped into ones state vari-
able, assuming that measurements of chemical oxygen demand
COD cannot distinguish between soluble and particulate com-
ponents, i.e. COD is measured as total concentration and then
subdivided into the two components by assuming a fraction f .
The two variables accounting for substrate can therefore be ex-
pressed as

S B = fS B CODtotCODtot XU = fXU CODtotCODtot

We further assume that there is no ammonium production
from organic bound nitrogen. Consequently,

S NB,org ' 0.

This eliminates XNB,org as well, leaving only the three most im-
portant and often measured state variables S NHx , S NOx , and S O2 .
Most control-oriented models contain only these three states
[45, 46, 47, 48, 49], some also S B [50, 51].
The model complexity reduces significantly when the slowly
varying states are assumed locally constant and is routinely
done for real-time control-oriented ASP models [52, 53]. The
reduced model is then only valid for shorter prediction hori-
zons. However, if the model parameters are re-calibrated fre-
quently the model will adapt to the slowly changing processes.
We re-calibrate the model by estimating all parameters and states
using the latest measurement window.

Based on these assumptions, the ASM1 model (Table 1) be-
comes a model with only three variables and three removal pro-
cesses (Table 5)

where we can define new constants related to the original
ASM1 parameters:

kO
NH = iOHOkNHx

kNH = µ̂OHO,max

(
S B

KS B + S B

)
XOHO

kNO
NH = iOHOkNO

kNO = ηµ,OHOkNH

kNH
NH =

(
iOHO +

1
YANO

)
kO

kO = µ̂ANO,maxXANO

kNO
NO =

1 − YOJO

2.68YOHO
kNO

kO
O =

1 − YOHO

YOHO
kNH

kNH
NO =

1
YANO

kO

kNO
O =

4.57 − YANO

YANO
kO
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