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ABSTRACT 

The characterization of the tensile behavior of cementitious materials has been a long-

standing research topic and a general consensus on how to accomplish this task has not yet 

been reached. Many standardized tests are available but each with different test set-up and 

prescriptions on the definition of measured and derived parameters, including toughness, 

elastic properties and strength. This paper discusses a number of test procedures for selected 

material properties including tension and flexure. A comparative experimental study was 

carried out using two distinct fiber reinforced cementitious composites with strain hardening 

and strain softening behavior. Digital Image Correlation was utilized in the experimental 

program to detect and quantify the formation of cracks. Results show that the different test 

methodologies valuate specific aspects of material performance. The outcome of these 

evaluation procedures is compared and critically analyzed. 
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INTRODUCTION 

The description of testing and characterization procedures for fiber reinforced cementitious 

composites (FRCC) in the recent publication of the fib Model Code 2010 [1] emphasizes the 

significance of defining suitable material parameters, including the post-peak tensile behavior 

of FRCC, to be utilized in the design of structural members. Dimensioning and verifying the 

load capacity of any structural element made with randomly distributed fibers, with or 

without traditional reinforcement, requires the determination of equivalent elastic post-

cracking strengths of the FRCC material. There are many standard methods available to 

derive the post-cracking response of FRCC. Among several tests for characterizing FRCC in 

tension, it is possible to distinguish three main test categories, characterized by different set-

up and stress fields generated: 

• Uni-axial tension tests, with a prescribed single crack or possible multiple cracking; 

• Flexural beam tests, performed on notched or un-notched prisms, under three or four-

point loading; 

• Flexural plate tests (square panel with continuous support or round panel with 3 point 

supports); 

In the first group of test methods, the single-crack notched [2] coupon test and the dog-bone 

test [3,4] are intended to determine the local and global tensile behavior of a FRCC material 

with special emphasis on strain-hardening materials. In the second group of tests, among 

many different beam types and loading configurations, the most common are the three or 

four-point bending test, with or without notch. The notched three-point bending test 

according to EN 14651 [5] and the un-notched four-point bending test according to ASTM 

C1609 [6] and DAfStb [7] are the most often utilized. In the third group of tests, the round 

determinate panel (RDP) according to ASTM C1550 [8] was developed especially to 

measure the energy absorption, utilized in sprayed fiber reinforced concrete applications. A 
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recent publication suggests expanding the utilization of the RDP test to a mechanical 

characterization of the material [9], implementing set-up through closed-loop control and 

crack width measurements. 

To evaluate advantages, disadvantages and specific features of different test methodologies, 

experimental tests on two FRCC materials were conducted including two tensile tests, two 

types of beam tests and a round panel test. Furthermore, in the case of ASTM C 1609 beams 

and ASTM C 1550 round panels, the influence of alternative specimen geometries was also 

considered to investigate any influence of specimen size and slenderness on the results of the 

material characterization. 

The consistency and reliability of the test results were evaluated in terms of scatter of the test 

results, stress disturbance (compared to the stress filed according to beam theory) due to 

concentrated load and notch, influence of fiber orientation, fiber type, fiber properties as well 

as specimen size. 

The objective of this paper is to investigate the suitability of the main types of test methods to 

accurately characterize FRCC materials in tension, including not only common tension 

softening materials, but also materials with a hardening response. Furthermore, the usefulness 

of the obtained results with respect to structural design is evaluated. 

 
 

MATERIAL DESCRIPTIONS AND EXPERIMENTAL METHODS 

The two types of materials used in this investigation were a steel fiber reinforced concrete 

(SFRC) with a softening behavior in tension and a representative strain hardening material 

known as Engineered Cementitious Composite (ECC). In addition to the standardized test 

methods above mentioned, a digital image correlation (DIC) technique was used in the 

experimental program to continuously measure specimen deformations and to detect and 
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quantify the formation of cracks. The test methods are divided in three categories including 

1) uniaxial tensile tests, 2) flexural beam tests, and 3) flexural plate tests. 

 

Materials 

The strain hardening ECC was reinforced with 2 % by volume polyvinyl alcohol (PVA) 

fibers, equivalent to 26 kg/m3. The ECC matrix consisted of 856 kg/m3 fly ash, 428 kg/m3 

cement, 320 l/m3 water, 150 kg/m3 sand (max. grain size 0.18 mm), 150 kg/m3 quartz powder 

and chemical admixtures. The tension-softening material was a SFRC consisting of 300 

kg/m3 cement, 792 kg/m3 sand (0-4 mm), 308 kg/m3 aggregate (4-8 mm), 703 kg/m3 

aggregate (8-16 mm), 145 l/m3 water, chemical admixtures and 55 kg/m3 steel fibers (Dramix 

3D 45/50) (0.7% by volume). The specimens were demolded 24 to 48 hours after casting and 

were wet cured at 18± 2ºC. The specimens were covered with wet burlap and plastic sheets 

during curing for 28 days prior to testing. Table 1 lists the properties of fibers adopted. 

 

Table 1. Properties of fibers 
Material 
name 

Fiber type ∅, µm L, mm L/∅ ft, MPa E, GPa Tensile 
strain 
capacity, % 

PVA-ECC PVA 40 8 200 1560 40 6.5 
SFRC Steel, Hooked-

end 
1050 50 45 1115 210 - 

 

Compressive strength and secant modulus of elasticity were obtained using standard 

compression cylinders with a diameter of 100 mm and height of 200 mm. Six specimens of 

each material were loaded to failure in compression with a loading rate of 6.28 kN/s. The 

average compressive strength was 47.5 MPa, and 57.1 MPa for ECC and SFRC, respectively. 

The average secant elastic modulus in compression was 18.0 GPa in ECC and 34.5 GPa in 

SFRC. 
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Deformation measurements 

A DIC system was used to measure deformations of the front surface of the specimens in the 

region of interest. Deformations of selected specimens were additionally verified by an 

arrangement of LVDTs positioned on the back and on the sides of the specimens. 

A digital single-lens reflex camera (24 and 36 megapixel) with a 60 mm macro lens for two 

dimensional measurements was utilized to provide quantitative and qualitative information on 

the surface deformations of the specimen. Details of the measurement regions are illustrated 

in the figures below for each test separately. Digital images were recorded at specific 

intervals as described below for each test. A commercially available DIC software called 

Aramis [10] was used to process the images taken during the loading procedure, providing 

full field deformation measurements of the surface of the specimen, as shown in Figure 1.  

 

Figure 1. Illustration of crack deformations: (a) illustration from DIC software; (b) schematic 

definition of opening 

 

The loading state in each image is correlated by synchronizing the time on the loading 

machine and that in the image file. In order to achieve adequate contrast in the gray-scale of 

individual objects, black and white spray paint was used to apply a stochastic spackle pattern 

on the specimen surface.  
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The photogrammetry system tracks movements of small areas (called facets) of the specimen 

surface corresponding to 15 by 15 pixel square areas; the step of the facets defined in the 

testing program was 13 pixels. For the most precise measurements, the optimal size of the 

gray-scale dots should be around 1/3 to 1/2 of a facets size. Additional details on the DIC 

technique and equipment are available elsewhere [10,11]. 

 

Uni-axial Tensile Tests 

Typically for cementitious materials the tensile strength of concrete is given as a percentage 

of compressive strength; alternatively, the tensile strength can be determined through split 

cylinder test (e.g., ASTM C496 [12], EN 12390-6 [13]). While the split cylinder test provides 

sufficient information for brittle cementitious materials, where post-cracking tensile strength 

is negligible compared to the cracking strength, significant post-cracking strength gain and 

deformations are evident in ECC and in tension hardening composites, making the split 

cylinder test unsuitable and therefore requiring new test methods.  

 

Single-crack notched coupon test 

The basic tensile material property for FRCC can be measured from a single crack. To isolate 

a single crack and to avoid multiple cracking, an alternative test method for tension softening 

as well as strain hardening FRC was developed by Pereira et.al. [2], where the formation of a 

single, localized crack was consistently verified and a relationship between applied tensile 

load and crack opening was established.  

The tensile stress-crack opening response of ECC was determined using notched coupon 

specimens with a representative cross section of 8 mm × 30 mm. The size of the notched 

coupon specimen and the test setup are shown in Figure 2 and Table 2. The notch reduced the 

tested area of specimen by 60% to generate a single crack in the specimen even for a strain 
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hardening material. Deformation controlled tensile tests (0.3 mm/min loading rate) were 

conducted using clip-gauges to measure the opening of the predefined single crack at notch. 

The deformation was applied to the specimen through hydraulic grips providing fixed support 

at both ends of the specimen [2 and 14]. The specimen geometry used in these investigations 

was specifically designed for materials with small maximum aggregate size (0.18 mm) and 

'flexible' fibers (i.e., PVA, polypropylene and polyacrylnitrile).  

The tensile stress-crack opening response of SFRC was determined using notched cube (150 

mm in size) specimen with a representative notched cross section of 100 mm × 100 mm 

(Table 2, Figure 3). The notch reduced the tested area of specimen by 55% to generate a 

single tensile crack in the specimen. Cross-head displacement controlled tensile tests were 

performed with a loading rate of 0.05 mm/min up to cross-head displacement of 2 mm and 

subsequently the loading speed was raised to 0.5 mm/min. The crack opening was measured 

using two clip-gauges across the notch on opposite sides. The test setup and a configuration 

of the specimen was design to apply the deformations to the specimen near the notch area by 

rigid steel frame (Figure 3). The size of the specimen is comparable to standard compression 

cube size and the cross section of standard flexural beams (150mm x 150mm). It is 

significantly bigger than the size of the specimen utilized for ECC, due to the higher 

aggregate size and, in general, longer fibers adopted in classical SFRC. 

 

Table 2. Properties of tensile specimens 
Material Test type # of 

specim
ens 

Total 
length 
(H), mm 

Total 
width 
(B), mm 

Total 
thickness 
(T), mm 

Width  
(b), 
mm 

Thickn
ess (t), 
mm 

Notch 
thickness 
(f), mm 

Length 
 (h), 
mm 

Weight
, kg 

ECC Single cr. 10 100 - 120 50 12-16 30 8 0.25 -  ≤0.2 
SFRC Single cr. 7 150 150 150 100 100 2.0 - 8.2 
ECC DB 4 510 75 22 50 22 - 200 1.3 
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Figure 2. Single-crack notched coupon test of ECC: (a) specimen geometry; (b) test setup; 

(c) specimen after testing 

 

Figure 3. Single-crack notched coupon test of SFRC: (a) specimen geometry; (b) test setup. 
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Dogbone test 

As ECC can have multiple cracking, the single crack behavior does not provide a complete 

characterization of the material response in uniaxial tension. It is also necessary to determine 

the strain capacity, crack spacing, and the average, minimum and maximum crack widths at 

increasing strain levels. 

To experimentally determine the tensile stress-strain responses of ECC, dogbone specimens 

with a representative cross section of 22 mm (t) × 50 mm (b) and with a representative length 

h of 210 mm were used (Figure 4). Similar to the single crack notched coupon test, the 

deformation was applied to the specimen through hydraulic grips providing fixed support to 

both specimen ends. Deformation controlled tensile tests (0.5 mm/min loading rate) were 

conducted with linear variable differential transducers (LVDTs) physically measuring the 

tensile deformations in the specimen. A DIC system was also adopted for measuring crack 

formations at one second interval. 

 

  

Figure 4. Tensile dogbone test: (a) specimen geometry; (b) test setup 
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Beam tests 

Notched three-point bending beam 

The notched three-point bending test (3PBT) is a standard test method for FRCC described in 

the fib Model Code [1] (based on EN 14651 [5]) in RILEM Technical Committee guidelines 

(RILEM TC-162 TDF [15]) as well as in the Japan Concrete Institute (JCI-S-002-2003 [16]). 

For this study, 3PBTs for both materials were conducted according to EN 14651 [5]. 

Moreover, for ECC, considering the significantly lower maximum aggregate size, one 

additional geometry was selected to investigate any possible scale effect. In doing so, the 

typical geometry for the bending test for mortar [17] was adopted (40 x 40 x 160 mm). The 

geometry of the specimens is shown in Figure 5 and the size and the material of the beams 

are listed in Table 3. 

Deformation controlled tests were performed with a loading rate of 0.05 mm/min up to a net 

deflection of 1.2 mm; beyond this point the loading rate was increased to 0.2 mm/min. The 

crack mouth opening displacement (CMOD) was measured using a clip gauge and mid-span 

deflections using LVDTs. The load and deflection measurements were captured with a 

frequency of 10 Hz. DIC measurements were taken from one surface of the specimen at 4 

second intervals.  

 

Table 3. Properties of beam specimens 
Name Material Test 

type 
# of 
speci
mens 

Span (L), 
mm 

Dist. to 
load point 
(a), mm 

Height 
(h), mm 

Width 
(b), mm 

Notch 
depth, 
mm 

Weig
ht, kg 

Slender
ness 
(a/h) 

3P-ECC-40 ECC 3PB 2 160 60 40 40 8 0.5 3/2 
3P-ECC-150 ECC 3PB 5 500 250 150 150 25 26.2 5/3 
3P-SFRC-150 SFRC 3PB 3 500 250 150 150 25 32.8 5/3 
4P-ECC-50 ECC 4PB 3 450 150 50 150 - 8.7 3 
4P-ECC-75 ECC 4PB 3 450 150 75 150 - 10.5 2 
4P-ECC-150 ECC 4PB 5 450 150 150 150 - 26.2 1 
4P-SFRC-150 SFRC 4PB 6 450 150 150 150 - 32.8 1 
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Figure 5. Notched 3PBT: (a) specimen geometry; (b) test setup with measuring devices. 

 

Four-point bending 

Several standards (ASTM C1609 [6], DAfStb [7], DBV - Guide to Good Practice [18], JCI-

S-003-2007 [19]) require four-point bending test (4PBT) to characterize FRCC. While 

ASTM C1609 and JCI-S-003-007 use beams where b=h=a (Figure 6), DAfStb and DBV - 

Guide to Good Practice use specimens where a>b;h (b=h=150 mm, but a=L/3=200 mm). 

Some standards allow the use of various sized beams, which should be selected as a function 

of fiber length (ASTM C1609). Other standards allow using a particular specimen geometry, 

but set limits to fiber type and properties used in the FRCC (JCI-S-003-2007). In this study, 

tests according to ASTM C1609 [6] (4P-ECC-150 and 4P-SFRC-150 as in Table 3) of ECC 

and SFRC were conducted. Additional geometries of ECC beams were investigated with 

reduced heights of 50 and 75 mm. The specific geometries of the specimens used in this 

study are reported in Table 3. 

The deformation controlled flexural test was performed with a loading rate of 0.05 mm/min 

up to a net mid-span deflection of 0.5 mm, and subsequently the loading speed was slowly 

raised up to 0.25 mm/min. The load and LVDT measured deflections were captured with a 

frequency of 10 Hz, while DIC measurements were taken from one surface of the specimen at 

four second intervals. 
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Figure 6. 4PBT: (a) specimen geometry; (b) test setup with measuring devices. 

 

Round determinate panel 

The round determinate panel (RDP) test described in ASTM C1550-10 [8] as a standard test 

method of FRCC is an externally statically determinate system with a predictable and 

quantifiable crack pattern (three-line crack pattern can be analytically predicted according to 

[20,21 and 22]). The experimental program in this study included tests on specimens made 

according to ASTM C1550-10 as well as smaller panels recently proposed by Minelli and 

Plizzari [9]. The test-setup of the RDP is shown in Figure 7 and the geometry in Table 4 

Table 4. Properties of RDPs 
Name Material Test 

type 
# of 
specime
ns 

Radius 
(R), mm 

Radius 
of 
supports 
(r), mm 

Height 
(h), mm 

Weight, 
kg 

Slendern
ess (r/h) 

P-ECC-60 PVA-FRCC Panel 3 300 275 60 32.9 ~4.6 
P-ECC-75 PVA-FRCC Panel 5 400 375 75 73.1 5 
P-SFRC-75 SFRC Panel 6 400 375 75 91.6 5 
 
The RDP tests were conducted under a deformation controlled procedure with loading rates 

of 3.0±1.0 mm/min. The load and deformation measurements were captured at a frequency of 

10 Hz, while DIC measurements were taken from the cracked surface of the panel facing 

away from the load at ten second intervals. As the DIC measurements utilized are only 

capturing 2-dimensional deformations, only in-plane crack formation and crack widths were 

detected and measured by DIC. Specimen deflections at the center point of the panel were 
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measured by a LVDT. Moreover, to prevent damage to the camera, specimens were tested 

upside-down and the camera was positioned above the specimen.  

 

Figure 7. RDP: (a) specimen geometry (top view); (b) test setup (side view) 

 

RESULTS AND DISCUSSION   

Direct tension 

Single-crack notched coupon 

The obtained tensile stress - crack opening relationship for ECC is plotted in Figure 8. The 

average first cracking strength was 2.9 MPa and ultimate tensile strength was 4.1 MPa. The 

first cracking strength was defined as a local peak or as an abrupt change in stiffness. 

 

Figure 8. Tensile stress-crack opening relationships: (a) of ECC and (b) of SFRC  
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The first cracking strength of ECC is smaller (2.5 – 3.4 MPa) than the maximum stress that 

fibers can bridge across the crack (3.4 – 4.4 MPa). As the first cracking strength is lower than 

the ultimate stress that the fibers can carry over the crack, the multiple cracking and strain 

hardening behaviors under uni-axial tension in the un-notched ECC material can occur [2, 

23]. The ultimate stress that the fibers can carry over the crack can correspond to the smallest 

value of the sum of pullout strength of all fibers in the cross section or fiber rupture strength, 

depending on the actual material. 

The cracking strength of SFRC was between 1.8 and 2.5 MPa and no distinct second peak in 

uni-axial tension was observed. Maximum post-cracking strengths varied widely from 0.9 to 

2.0 MPa, likely due to the variation in number of fibers bridging the failure plane (23 to 42). 

The immediate crack opening was approximately 0.2 mm for all SFRC specimens. 

For all test types discussed in this paper a fiber pull–out crack failure mechanism was noticed 

in all SFRC specimens whereas a fiber – rupture of ECC specimens was reported. In the 

single crack notched specimen the location of the crack is predefined. This does not allow the 

crack to form in the naturally weakest cross-section. Therefore, this predefined crack might 

result in a higher measured tensile cracking strength compared to the un-notched sample with 

constant cross section. However, this influences only the cracking strength but would not 

affect the measured post-cracking stress transfer.  

 

Dogbone 

Typical tensile stress-strain relationship for ECC is plotted in Figure 9.  The average first 

cracking strength taken from six test specimens was 3.3 MPa and the average ultimate tensile 

strength was 4.1 MPa at 2% - 3% of strain. On the second vertical axis, crack widths 

measured on one specimen of the series are plotted. During the strain hardening stage 

additional deformations result in growth of existing cracks and in formation of new cracks. 
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At 2.8% strain level no additional crack formed (stabilized crack stage). This value is quite 

high compared to classical FRCC. Any further deformation resulted only from widening of 

existing cracks. Crack localization and subsequent failure occurred when the stress in the 

specimen reached the maximal bridging strength at the weakest cracked section. 

Both tensile test methods provide significant insight for the characterization of ECC. The 

single crack notched coupon test provides qualitative basic information about the tensile 

stress - crack opening response. Moreover, it also indicates whether the material is strain 

hardening or softening in tension – if the first cracking strength is lower than the peak 

bridging strength, the material should have strain hardening behavior in uni-axial tension. 

The dogbone test characterizes the overall strain capacity, crack distribution and ductility. For 

tension softening cementitious composites, the single crack coupon and dogbone tests will 

show similar information as failure in tension softening materials by definition occurs at a 

single crack location. 

 
Figure 9. Tensile properties of ECC 

 

Flexural beam 

Notched three-point bending test.  

Figure 10 (a - c) presents load versus CMOD curves of SFRC and ECC beams with various 

dimensions. The secondary vertical axis of these diagrams provides the residual flexural 
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stress calculated as material would be in elastic stage (called also as equivalent elastic 

flexural stress), σeq,el, which was derived using the following relationship: 

𝜎𝜎𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒 =
3𝑃𝑃𝑃𝑃

2𝑏𝑏(ℎ − ℎ𝑛𝑛)2
 

where: 

P – applied load; 

L –beam span; 

b – beam width; 

h – beam height; 

hn – notch depth. 

Moreover, average residual flexural tensile strength values (𝑓𝑓𝑅𝑅,𝑗𝑗  (𝑗𝑗 = 1 … 4)), determined 

according to EN 14651 [5] at CMOD of 0.5 mm, 1.5 mm, 2.5 mm and 3.5 mm respectively, 

and the residual flexural tensile strength at peak load (𝑓𝑓𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝 ) are shown for all tested samples 

in Figure 10(a-c). 

The residual tensile stresses are defined as follows: 

²2
3

,
sp

j
jR bh

lP
f =    

where:          

fR,j is the is the residual flexural tensile strength corresponding to CMOD=CMODj; 

Pj -  load corresponding to CMODj (see Figure 10); 

hsp - distance between the notch tip and the top of the specimen (ℎ𝑠𝑠𝑝𝑝 = ℎ − ℎ𝑛𝑛 = 125 𝑚𝑚𝑚𝑚). 

Figure 10 (a) and (b) illustrates results for ECC beams 40 mm and 150 mm high, respectively. 

Independent of the specimen dimension, the ECC material is found to have a deflection 

hardening response, with average peak loads approximately 2 times larger than first cracking 

load. Comparing the results obtained from the standard beam size and the smallest beam size, 
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the maximum residual strength measured in the smallest specimen (3P-ECC-40) is 12.2 MPa, 

or 1.5 times greater than the standard sized beam (3P-ECC-150, 8.0 MPa). 

Figure 10 (c) shows two of the three tested SFRC beams, which experienced a light 

deflection softening behavior with a first cracking load slightly higher (~6%) than the second 

peak due to fiber bridging action.  The remaining samples, on the contrary, showed a 

deflection hardening response with the second peak approximately 8% higher than the first 

peak. On average, this test method indicates that the SFRC material investigated had 

approximately a constant (approaching plastic) response, which was neither strictly hardening 

nor strictly softening in the observed range of CMOD.  

Figure 10 (d) reports the average residual flexural stresses versus CMOD normalized by the 

CMOD at peak load for ECC specimens 150 and 40 mm high.  The shapes of the curves for 

both ECC beams are similar including the descending branch; however, the smallest 

specimen (3P-ECC-40) transferred higher equivalent elastic stress at all CMOD values. The 

higher stresses in smaller beams can be attributed to size effect in tension, to an increased 

impact of the wall effect, causing preferential orientation of fibers in the smaller specimens, 

and, last but not least, to the higher strain gradient experienced by shallower elements for the 

same top or bottom strain, which leads to a higher sectional redistribution of stresses. 

Figure 11 (a) and (b) show typical crack patterns for the ECC beams at peak load from DIC 

measurements. The images indicate that multiple cracking occurs in ECC before the peak 

load, regardless of beam dimension and of the cross-sectional reduction at the notch (i.e., 

point of maximum moment).  Cracking can be observed on both sides of the notch, indicating 

that additional deformation occurs beyond notch opening. Therefore, as multiple cracks form, 

not all deformations are captured by a CMOD gauge located at the notch as specified in the 

standard.  



18 
 

Peak load in the SFRC beams typically resulted in a single crack at the notch location (Figure 

11 (c)). Additional cracks, as shown in Figure 11 (d) are reported at CMOD=1 mm. Although, 

Figure 8 (c) indicates that the investigated SFRC was not clearly a deflection hardening 

material, a multiple cracking response was observed at peak load in Figure 11 (d).  Therefore, 

for both materials herein considered (ECC and SFRC), a notched 3PBT, where only load and 

CMOD are measured, does not provide a comprehensive representation of the material 

properties.  

Generally speaking, in the case of typical SFRC, the notch could be detrimental in case of 

materials exhibiting a plastic or strain-hardening behavior. On the contrary, in typical strain-

softening SFRC, this unwanted multiple-cracking phenomenon at the notch would not be 

established, leading to a more consistent and reliable testing procedure. 

 

Figure 10. Load – CMOD relationships of three-point bending beams: (a) 3P-ECC-4150; (b) 

3P-ECC-40; and (c) 3P-SFRC-150; (d) comparison between 3P-ECC-40 and 3P-ECC-150 
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Figure 11. Crack distribution of FRCC beams under three-point bending: a) 3P-ECC-40 at 

peak, b) 3P-ECC-150 at peak, c) 3P-SFRC-150 at peak and d) 3P-SFRC-150 at CMOD of 1 

mm 

 

As a general observation, in a 3PBT configuration, both strain and stress fields are much 

more complicated than those assumed in corresponding standards. The point load and the 

notch at the same cross section provides stress concentration and the weakened cross section 

is disturbed with a stress field far from being in accordance with the beam theory. High shear 

stresses, vertical normal stresses (σy) related to the vertical load and a relatively strong 

disturbance due to the notch (both at the mid-span) develop. As a result, the material 

characteristics obtained by notched 3PBTs are not fully representative, especially when more 

than one single crack develops. This fact entirely excludes strain hardening materials from 

being evaluated by the notched 3PBT. Furthermore, this study presents indications that 

nominally tension softening materials, such as SFRC, are also experiencing unexpected 

disturbances due to the presence of the notch. In conclusion, the notched 3PBT does not 

characterize the flexural response of the material as is suggested in the standard since the 
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notched mid-span section behaves as a so-called “disturbed region” (D-region), far from 

being subjected to a flexure-dominant stress field according to Bernoulli beam theory (“B-

region”) [24].  

 

Four-point bending 

Figure 12 shows load-deflection curves of 4PBTs for ECC beams of varying dimension and 

SFRC. The secondary vertical axis provides the residual flexural stress (σeq,el), calculated by: 

𝜎𝜎𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒 =
𝑃𝑃𝑃𝑃
𝑏𝑏ℎ2

 

Where: 

P – applied load; 

L – beam span; 

b – beam width; 

h – beam height; 

The plotted values shown in the diagram 𝑓𝑓𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝, 𝑓𝑓600𝐷𝐷  and 𝑓𝑓150𝐷𝐷  are average residual strength 

values determined according to ASTM C1609 [6] at peak load, net deflection of L/600 (0.75 

mm) and L/150 (3 mm) respectively. 

Figure 12 (a, b and c) presents the results of ECC beams with 50, 75 and 150 mm beam 

height, respectively. While all ECC beams had similar average peak strength (between 8.60 

MPa and 9.35 MPa), beams with reduced height (4P-ECC-50/150 and 4P-ECC-75/150) had 

higher deflections at similar equivalent elastic flexural stress. The increased slenderness of 

shallowest members determined a decrease in the stiffness and, in addition, a significant 

enhancement of the ductility. 

Figure 12 (c) and (d) show results of ECC and SFRC beams respectively, with geometries 

according to ASTM C1609. Peak strength of ECC (8.50 MPa) is almost twice as high as that 

of SFRC (4.45 MPa), whereas the residual strength at a mid-span deflection of L/150 (or 3 



21 
 

mm) is similar for both materials (2.70 MPa for ECC and 2.95 MPa for SFRC). This 

indicates that even though ECC can resist a higher maximum load, the post-peak behavior of 

SFRC is more stable (i.e., with increasing deflection, the decay in flexural strength is more 

gradual in SFRC). This is certainly due to the differences in the interfacial properties between 

fibers and cementitious matrix, to the different aggregate size and to the fiber properties. In 

fact, short fibers (8 mm PVA fibers) are able to resist and activate the bridging action for 

small values of crack opening. On the contrary, 50 mm long steel fibers start working at 

higher level of crack widths but are able to effectively bridge cracks for rather high values of 

crack width (up to 3 mm). From a material design point of view, this suggests that the 

utilization of PVA fibers would provide high performance under service conditions (SLS), 

whereas a structure would more benefit from long steel fibers at the ultimate limit states 

(ULS). This also leads to a potential combined utilization of the two types of fibers, by 

suitably design a proper mix composition that could enhance this hybrid fiber system. 

Figure 13 (a) and (b) show typical peak load crack patterns in ECC beams 50 and 75 mm 

high. Beam 4P-ECC-50 in Figure 11(a) has a classical (i.e., Bernoulli) flexural behavior with 

well distributed flexural cracks with a regular crack spacing of approximately 13 mm over the 

constant moment region. The same evidence was found for sample 4P-ECC-75 (Figure 

11(b)), showing an average crack spacing of approximately 20 mm.  In contrast, for the ECC 

beam 150 mm high (4P-ECC-150), cracking was irregular with many cracks located in the 

linear moment region, characterized by a typical mixed shear-flexure crack pattern. This fact 

is certainly due to the different slenderness of samples. 

Figure 13 (d) shows a typical SFRC beam with a single main crack in the constant moment 

region at peak load. Smaller secondary cracks were observed, however, before the peak load, 

in the majority of the tested SFRC beams, even outside the middle third of beam, with a 

maximum crack width of 0.03 mm. 
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Figure 12. Load – mid-span deflection relationships of four-point bending beams 

 

  

Figure 13. Typical crack patterns at peak load: (a) 4P-ECC-50; (b) 4P-ECC -75; (c) 4P-ECC 

-150 and (d) SFRC beam  
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Although, the constant moment region of the four-point bending beam theoretically allows 

for the formation of multiple cracking of deflection hardening materials, cracks often 

occurred outside of this region for the ECC beams. In this case, cracks are influenced also by 

shear. The influence on shear stresses on flexural performance was significant for the beams 

having a depth equal to 1/3 of the span (4P-ECC-150), as several cracks appeared outside the 

flexural span. Moreover, cracks were more concentrated in the region under the two loading 

points and were inclined (see Figure 13 (c)) with a typical mixed shear-flexure crack pattern. 

In contrast, the ECC beams with reduced thickness (i.e. more slender) were found to have a 

regular multiple crack pattern in the constant moment region with minor additional cracks 

forming outside the constant moment region. 

In case of failure occurring outside the constant moment region, the corresponding test results 

cannot be used according to the procedure described in ASTM C 1609. Based on the general 

experience at the Technical University of Denmark, failure cracks form outside the constant 

moment region in more than 25% of the ASTM beam made by ECC. To reduce the influence 

of shear stresses, a slenderer beam geometry (i.e., reduced beam height, increased span length, 

or both) is recommended. As ECC is typically envisaged to be used in relatively slender 

structures with thicknesses of 50-75 mm, the ASTM beam test with reduced thickness would 

be preferable.  

 

Round determinate panel  

Figure 14 (a,b) presents the load-center point deflection responses for ECC classical round 

determinant panels (RDP) according to ASTM C1550 [8] and according to the smaller 

geometry suggested in [9]. To determine peak strength of the RDP, the corresponding 

moment for the centrally applied peak load should be determined. The flexural peak strength, 

𝑓𝑓𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝, using elastic theory can be determined as follows: 
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𝑓𝑓𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝 =
2𝑟𝑟𝑃𝑃𝑝𝑝
√3𝑅𝑅ℎ2

 

where: 

𝑃𝑃𝑝𝑝 – peak load; 

r – radius of supports; 

R – radius of panel; 

h – panel height; 

Regardless of the dimensions of the panel (standard or modified), similar deflection 

hardening responses of ECC were observed with the conventional ASTM C1550 RDP 

providing slightly higher peak strength and corresponding deflection compared to the smaller 

RDP. The calculated average peak strength of ECC panels was 8.5 and 8.1 MPa for the 

conventional and modified panel geometry, respectively. 

Figure 14(c) presents the load-center point deflection responses of SFRC ASTM C1550 [8] 

panels, showing a deflection softening response similar to that of 4PBTs with SFRC (Figure 

12).  The peak strength of the SFRC panel was 5.4 MPa, which is 1.5 times lower than the 

peak strength of the corresponding ECC panel. However, as already previously noticed in the 

other test typologies, in SFRC panels more gradual decay in strength than in ECC for 

increasing deformation can be clearly observed.  

Figure 14 (d) presents the specific work versus normalized deflection (with respect to the 

panel radius) for all RDPs. The Specific work was calculated using the following 

relationship: 

𝑊𝑊� =
1

3𝑅𝑅ℎ
� 𝑃𝑃𝑃𝑃𝑃𝑃
𝛥𝛥

0
 

Where: 

𝑊𝑊�  – specific work; 

Δ – center-point deflection; 



25 
 

P – point load; 

R – panel radius; 

h – panel height. 

From Figure 12 (d) it emerges that the panel size does not significantly influence the basic 

behavior of ECC as the shape of specific work versus normalized deflection curves is very 

similar. As the studied ECC was able to carry higher loads than the SFRC used in this study, 

the energy absorbed is higher for ECC to reach the same deflections. ASTM C1550 requires 

determination of energy absorption at the center point deflection values of 5, 10, 20 and 40 

mm. 

Testing of the ECC panels was stopped when the post-peak load was <4 kN, at a center-point 

deflections in the range of 22 to 32 mm. The maximum obtained energy for the standard ECC 

RDP (P-ECC-75) was 737 J (specific work, 𝑊𝑊�  = 8.2 kJ/m2). The SFRC panels collapsed at a 

deflection well beyond 40 mm, with an average energy absorbed (at 40 mm deflection) of 

585 J (specific work, 𝑊𝑊�  = 6.5 kJ/m2). 

This further confirms that ECC works better for small and well distributed cracks. Therefore, 

the 40 mm request of ASTM C1550 [8] is in contrast with the nature of the material, which 

provides much more energy absorption for low levels of displacement. 

DIC measurements of ECC specimens tested according to ASTM C 1550 [8] are presented in 

Figure 15(a, b and c). The occurrence of first crack in the specimen is difficult to capture as 

multiple cracks form at nearly the same time (Figure 15 (a)). The initial cracks are 

approximately along the three yield lines starting from the load-point and developing towards 

the direction of the mid-span between neighboring point-supports (Figure 7 and Figure 15 a). 

Additional deflection causes new cracks to form and the existing cracks to widen (Figure 15 

b). At the peak load (Figure 15(c)) almost all cracks have formed and a circular fan-shaped 

yield pattern can be observed. In the post peak deformation regime typically three localized 
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cracks develop from the load-point towards the direction of the mid-span between 

neighboring point-supports. 

The DIC results in the case of SFRC panels are presented in Figure 15(d – e). Similar to ECC, 

the first crack in the specimen was not possible to univocally capture as a number of small 

cracks formed at nearly the same time (Figure 15(d)). Once the peak load was reached, three 

main cracks can be observed in the direction of the predicted yield lines; however, multiple 

smaller cracks are present as well (Figure 15(e)). After the peak load, no new cracks form and 

the existing significantly widen. 

The formation of multiple cracking in SFRC panels investigated in this study differs from the 

experimental results on strictly tension softening materials obtained by Minelli and Plizzari 

[9], who tested panels of SFRC containing 25-30 kg/m3 of macro steel fibers (Vf = 0.32-

0.38%), which is approximately half the fiber volume fraction described in this paper. The 

increased steel fiber volume fraction may explain the differing material response as fewer 

fibers bridging a crack results in a reduced load transfer across a crack and, consequently, the 

possibility that multiple cracking can occur is strongly reduced.  

Furthermore, the multiple cracking, in sufficiently tough SFRC, was already noticed in both 

beam test typologies previously reported. 
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Figure 14. Load – deflection curves of RDPs. 

 

 
Figure 15. Crack patterns of typical round panels specimen: P-ECC-75 (a) (b) (c); P-SFRC-

75 (d) (e) (f).  
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A RDP test, such as ASTM C 1550, provides an alternative test method that accounts for both 

the material property of multiple cracking (if the material has a hardening characteristic) and 

the structural property of forming multiple (three) yield lines. In some cases, results obtained 

by the RDP test have lower variability due to its increased fracture area compared to beam 

tests [9]. However, results of the RDP test are difficult to interpret and more refined 

analytical techniques have to be adopted to implement them in structural design [25]. 

 

Variability of test results within each test series 

Coefficients of variation, which describe the variability of test results, are presented in Table 

5  for all test results. In the case of ECC, for all test methods the coefficient of variation is 

relatively constant. The SFRC test results did not show a higher variability compared to ECC, 

except in the 4PBTs. 3PBTs of SFRC evidenced very repeatable results with rather low 

scatter, in contrast to what was found by Minelli and Plizzari [9]. The different observations 

can be explained by the fact that in the previous study, strain softening materials with a 

relatively low content of fibers were studied (Vf=0.3%), whereas the SFRC material in this 

study has Vf=0.7%. The increased fiber content yielded a more uniform fiber distribution in 

both RDP and beam specimens. 

Therefore, no considerable reductions in variability were observed for results of RDPs 

compared to the beam tests for the materials investigated here. As a result, the RDP test, 

which was suggested to be effective for strain softening materials to significantly reduce the 

variability [9], is found to be not very convenient for the materials herein considered, as it is 

harder to perform using standard laboratory facilities and the results are less straight forward 

to interpret.  
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Table 5. Overview of statistical evaluation of test results  
 Coefficient of variation (standard deviation/average value) 
Three-point bending 
 Peak load Deflection at 

peak load 
Load at 
CMOD=0.5 
mm 

Load at 
CMOD=1.5 
mm 

Load at 
CMOD=2.5 
mm 

Load at 
CMOD=3.5 
mm 

3P-ECC-40 0.02 0.15 0.06 0.03 0.20 0.06 
3P-ECC-150 0.16 0.24 0.14 0.16 0.20 0.29 
3P-SFRC-150 0.05 0.02 0.04 0.03 0.02 0.03 
Four-point bending 
 Peak load Deflection at 

peak load 
Load at 
Δ=L/600 
(0.75 mm) 

Load at 
Δ=L/300 
(1.5 mm) 

Load at 
Δ=L/150 
(3.0 mm) 

Load at 
Δ=L/100 
(4.5 mm) 

4P-ECC-50 0.04 0.24 0.05 0.05 0.01 0.01 
4P-ECC-75 0.08 0.23 0.05 0.06 0.08 0.38* 
4P-ECC-150 0.10 0.18 0.07 0.10 0.33* 0.10 
4P-SFRC-150 0.04 0.28 0.20 0.20 0.21 0.19 
Round determinate panel  
 Peak load Deflection at 

peak load 
Energy 
absorbed at 
Δ=R/80 

Energy 
absorbed at 
Δ=R/40 

Energy 
absorbed at 
Δ=R/20 

Energy 
absorbed at 
Δ=R/10 

P-ECC-60 0.06 0.20 0.17 0.11 0.16 - 
P-ECC-75 0.12 0.28 0.18 0.15 0.19 - 
P-SFRC-75 0.05 0.11 0.08 0.09 0.11 0.14 

*- after one of the specimens has failed 

 

Comparison among standards 

Comparing the load versus displacement/deflection results of these test methods indicates 

that FRCC materials can be classified differently depending on the test method used in the 

assessment. Table 6 shows that all test methods confirm that the investigated ECC material 

had a deflection hardening response, whereas, with regard to the SFRC material herein 

presented, various responses were found: deflection softening for ASTM C1609 and ASTM 

C1550 and almost perfectly plastic response according to EN 1465. 
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Table 6. Comparison of standard test methods 

Test method 

ECC SFRC 

Classification 
Peak strength 
𝑓𝑓𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝 
MPa 

Classification 
Peak strength 
𝑓𝑓𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝 
MPa 

Three-point bending 
(EN 14651) 

Deflection 
hardening 7.8 

Almost 
perfectly 
plastic 

4.9 

Four-point bending 
(ASTM C1609) 

Deflection 
hardening 8.5 Deflection 

softening 4.4 

RDP 
(ASTM C1550) 

Deflection 
hardening 8.5 Deflection 

softening 5.4 

 

There is evidence that test results may significantly vary significantly due to a number of 

reasons, including details of the specimen preparation and casting method (fiber distribution 

and orientation) and the amount of friction to rotation and translation in the supports 

(especially for high deformation values) [26]. If the supports cannot freely rotate or 

accommodate a horizontal displacement, axial compressive stresses will be imposed on the 

cross-section of the beam, affecting the flexural behavior and the load-deformation response 

of the specimens. Other studies have shown that even careful control of specimen preparation 

cannot prevent non-uniform fiber distribution in the critical section between different 

specimens especially in softening materials with low volume fraction of fibers [9], resulting 

in a high variability of results. However, this study with higher fiber contents was able to 

obtain very consistent results also in beam tests. 

It should be emphasized that the ability of the material to form multiple cracking under 

tensile loading is a property related to the fiber bridging stress-crack opening behavior. While 

this material property can be assessed by specific tensile tests as described in this paper, it 

naturally affects the behavior of the material in bending and will influence the results of 

flexural tests such as the beam or the plate test, which consequently will also experience 

multiple crack formation in flexure.  
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Figure 16. Summary of tensile tests 
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Figure 17. Summary of standardized test methods 

 

The comparison of the results of 3PBT according to EN 14651 [5], 4PBT according to ASTM 

C1609 [6] and RDP tests according to ASTM C1550 [8] are summarized in Table 6. For 

strain hardening materials such as ECC, the lowest peak strength is determined 3PBT (7.8 

MPa) while the 4PBT and RDP tests showed almost identical results (8.5 MPa). This 

suggests that the 3PBT underestimates the properties of the ECC material in flexure as the 

crack formation in the notched beam is influenced not only by bending stresses but also by 
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shear. For tension softening SFRC, the highest peak strength is determined by the RDP test 

(5.4 MPa) while the peak strength obtained from 3 and 4PBTs were 4.9 MPa and 4.4 MPa 

respectively. 

Test procedures and the applicability of tensile and flexure test methods described in this 

paper are summarized in Figure 16 and Figure 17. The figures emphasize the test details, 

including test procedures, expression of results and the field of applicability; positive and 

critical aspects found; and limitations of each method. In particular, potential field application 

of the tensile test methods in Figure 16 is limited by the complicated test procedures and the 

need to customize the specimen geometry based on the fiber and aggregate dimensions. 

 

CONCLUSIONS 

Various test methods based on beams and plates in flexure were investigated in this study to 

assess their potential for determining the tensile properties of strain hardening and tension 

softening materials.  

Based on the experimental results and discussion above, the following conclusions are drawn: 

• While the tensile test methods provide the most straightforward analysis of test results, 

these methods have several explicit limitations that do not allow a broad application. 

The tensile tests are difficult to perform in standard concrete laboratories and require 

customization of specimen geometry based on the fiber and aggregate dimensions in 

the mixture design.  

• The 3PBT with a notched beam specimen is not suitable for strain hardening materials 

as well as for some tension softening materials as diffuse cracking forms around the 

region of the notch as a result of disturbed stress regions (flexure and shear). This is 

primarily due to notch and loading point at mid-span. Moreover, the generated stress 
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field is significantly disturbed on the whole sample and far from being flexure-

dominant. 

• The 4PBT more realistically characterize the material, especially when the specimen 

geometry is slenderer. However, in commonly used 4PBTs the slenderness ratio a/h 

equals 1 and, therefore, the results are highly influenced by shear stresses. The authors 

recommend increasing the slenderness ratio a/h to 2 or higher to avoid this issue.  

• A RDP test forces multiple crack lines to form. The plate specimen can be considered 

a slender bending specimen, where cracking is induced predominantly by bending 

stresses and not by shear stresses.  

This study shows no significant reduction in variability of test results by using RDP 

test instead of 3 or 4PBT. Moreover, a RDP is almost three times heavier than that of 

a classical beam and the results of the RDP test are, at the moment, more difficult to 

interpret and use in structural design.  

• In specifying the test method for characterization of the FRCC material, the specimen 

geometry shall be comparable to that of the actual structure: in particular, the 

thickness of the test specimen should be similar to that of the actual application, to 

promote similar fiber orientation and distribution. For materials designed to exhibit 

multiple cracking in the constant moment sections, this material performance property 

should be captured by the test.  

As a general conclusion, envisaging future research, it can be certainly stated that to 

comply with previously mentioned requirements, to reduce the variability of test results 

and to minimize the influence of shear on the test results, a modified 4PBT could be 

developed that uses slender and wider beams (to increase the fracture area). Increasing the 

slenderness of the test specimen would ensure flexure-dominant state of stress. While this 

test setup would be suitable for any type of FRCC material, the optimal dimensions of the 
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beam should be assigned as a function of fiber dimensions and type, maximum aggregate 

size and the structural application for which the material will be used.  
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