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Abstract 

The production of Active Pharmaceutical Ingredients (APIs) is conducted primarily in batch 

processes. This manufacturing approach is reinforced by a patent-driven business model and 

the need to minimize the process development times for newly patented drugs. However, the 

regulatory and business environments are now changing. The increasing costs of drug 

development, combined with the strict regulations and the competition from generic 

manufacturers, have pushed pharmaceutical companies to seek cheaper and more sustainable 

production methods. 

Transition from batch to Continuous Pharmaceutical Manufacturing (CPM) could lead to 

significant reductions in the production costs and an improved consistency of the product 

quality. As a result, development of such processes has received a significant interest in the 

past decade. To be able to compete in a patent-driven industry with relatively small annual 

production rates, CPM should be conducted in versatile units that offer short process 

development times and can be used for production of different compounds.  

This PhD project deals with the development of novel crystallizer configurations and 

process design methods oriented to the crystallization of APIs with strict requirements for the 

control of crystal size and shape. The project includes the development of methods for the 

early assessment of crystal quality and the evaluation of techniques for improved control of 

crystallization kinetics in continuous systems.  

In the first block of the PhD, a two-stage continuous Mixed Suspension Mixed Product 

Removal (MSMPR) crystallization setup was designed for the production of an API presenting 

elongated crystals. A step by step characterization was applied based on image analysis of the 

crystallization magma, from which the effects of process conditions on crystal size and shape 

were evaluated. Crystal breakage was found to be highly selective for a single crystal plane, 

leading to a significant broadening of the crystal shape distribution. This behavior was 

consistent with the observations in full-scale batch production, where the crystallization 

product is subject to significant mechanical stress in downstream processing. The attainable 

regions for the MSMPR cascade were obtained through a population balance model that is 

based on the real crystal dimensions obtained from image analysis. Finally, the crystallizer was 

optimized for a crystal dimension that is consistent through a moderate degree of crystal 

breakage during downstream processing. 

 



 

The second block of the PhD involves a fundamental study of the effect of gas dispersion on 

crystal nucleation kinetics. It is frequently stated in the literature that the presence of an inert 

gas in a crystallizer can have an impact on crystallization kinetics, either via an improved mass 

transfer in the crystallizing suspension or by promoting heterogeneous nucleation. These 

statements are supported by a variety of studies in batch mode. However, the mechanisms are 

not yet fully understood. In this thesis, the effect of injecting a saturated gas on batch 

crystallization kinetics has been evaluated from experimental induction times. Combining 

induction time statistics with a detection method based on sample turbidity, the average time 

for crystal formation is separated from a detection delay that is a function of the rates of 

secondary nucleation and crystal growth. Results show a consistent 5-fold reduction in the 

detection delay for two model systems, and an effect on primary nucleation that is sensitive to 

the gas injection rate and the studied solute. These results indicate that the induction time 

reductions frequently reported in the literature could actually be a consequence of a faster 

crystallization rate after the first nuclei is formed. The mechanism behind these observations is 

presumably related to a significant improvement in the mixing pattern and intensity. 

A novel continuous crystallizer design based on self-induced gas dispersion is presented 

and evaluated in the last block of the PhD. The objective was to evaluate if gas dispersion 

could be used to generate smaller crystals in an MSMPR crystallizer, as well as to further 

develop the understanding of the effect of a moving gas on secondary nucleation and crystal 

growth. The effect of gas dispersion on crystallization yield and crystal size distribution has 

been evaluated for a configuration that would be expected in an implemented process, and for 

operating conditions that are already optimized for the generation of small crystals. Results 

show that, in contrast with the observations in batch crystallizers, the effect of gas dispersion 

in a well-mixed MSMPR crystallizer is very limited. Further studies on the effect of impeller 

speed revealed that crystallization kinetics are not sensitive to variations in the mixing 

intensity for conditions that meet the requirements for homogeneous three-phase mixing. 

Results from this study further support the hypothesis that a moving gas phase is an 

alternative to promote different mixing conditions and demonstrate the limited applicability of 

this technique in a continuous MSMPR crystallizer. 

 



Dansk resume  

Produktionen af aktive farmaceutiske ingredienser (API'er) udføres primært i 

batchprocesser. Denne fremstillingsmetode styrkes af en patentdrevet forretningsmodel og 

behovet for at minimere procesudviklingstiderne for nyligt patenterede lægemidler. Dog er de 

lovgivningsmæssige og erhvervsmæssige miljøer ved at ændre sig nu. Stigende omkostninger 

ved lægemiddeludvikling kombineret med strenge regler og konkurrencen fra generiske 

producenter har presset lægemiddelvirksomhederne til at søge billigere og mere bæredygtige 

produktionsmetoder. 

Overgang fra batch til kontinuerlig farmaceutisk produktion kan føre til betydelige 

reduktioner i produktionsomkostningerne og mere pålidelig produktkvalitet. Som følge heraf 

har udviklingen af sådanne processer haft en betydelig interesse i det seneste årti. For at være i 

stand til at konkurrere i en patentdrevet industri med relativt små årlige 

produktionshastigheder, bør kontinuerlig produktion udføres i alsidige enheder, der tilbyder 

korte procesudviklingstider og kan bruges til produktion af forskellige medicinale produkter. 

Dette ph.d.-projekt beskæftiger sig med udvikling af nye krystallisatorkonfigurationer og 

procesdesignmetoder med hensyn til krystallisering af aktive farmaceutiske ingredienser med 

strenge krav til styring af krystalstørrelse og form. Projektet omfatter udvikling af metoder til 

tidlig vurdering af krystalkvalitet og evaluering af teknikker til forbedret kontrol af 

krystalliseringskinetik i kontinuerlige systemer. 

I den første blok af ph.d.-studiet blev en to-trin kontinuerlig blandet suspension og 

blandet produkt fjernelse (MSMPR) -krystallisation designet til fremstilling af en API, der 

producere aflange krystaller. En trinvis karakteriseringsmetode blev anvendt baseret på 

billedanalyse af krystallisationsmagma, hvorfra virkningerne af procesbetingelser på 

krystalstørrelse og form blev evalueret. Krystalbrydning viste sig at være yderst selektiv til et 

enkelt krystalplan, hvilket førte til en betydelig udvidelse af krystalformfordelingen. Denne 

adfærd var i overensstemmelse med observationerne i fuldskala batchproduktion, hvor 

krystalliseringsproduktet er underlagt væsentlig mekanisk belastning ved downstream 

behandling. De opnå regioner for MSMPR-kaskaden blev opnå gennem en 

populationsbalancemodel, der er baseret på de reelle krystaldimensioner opnå ved 

billedanalyse. Endelig blev krystallisatoren optimeret til en krystaldimension, som er 

konsekvent gennem en moderat grad af krystal brydning under downstream behandling. 

 



 

Den anden blok af ph.d.-studiet indebærer en grundlæggende undersøgelse af effekten af 

gasdispersion på kimdannelse kinetik. Det fremgår ofte af litteraturen, at tilstedeværelsen af en 

inert gas i en krystallisator kan påvirke krystallisationskinetikken enten via en forbedret 

masseoverførsel i krystalliseringssuspensionen eller ved at fremme heterogen kimdannelse. 

Disse udsagn understøttes af en række undersøgelser i batch mode. Imidlertid er 

mekanismerne endnu ikke fuldt ud forstået. I denne afhandling er effekten af at injicere en 

mættet gas på batchkrystallisationskinetik blevet evalueret fra eksperimentelle 

induktionstider. Ved at kombinere induktionstidsstatistikker med en detekteringsmetode 

baseret på prøvesturbiditet, adskilles den gennemsnitlige tid for krystaldannelse fra en 

detekteringsforsinkelse, som er en funktion af hastigheden af sekundær kimdannelse og 

krystalvækst. Resultaterne viser en konsekvent 5-ganges reduktion i detekteringsforsinkelsen 

for to modelsystemer og en virkning på primær kimdannelse, som er følsom over for 

gasinjektionshastigheden og det undersøgte opløste stof. Disse resultater viser, at 

induktionstidsreduktioner, der ofte rapporteres i litteraturen, rent faktisk kunne være en 

konsekvens af en hurtigere krystallisationshastighed, efter at de første kerner er dannet. 

Mekanismen bag disse observationer er formodentlig relateret til en signifikant forbedring i 

blandemønsteret og intensiteten. 

Et nyt kontinuerligt krystallisationsdesign baseret på selvinduceret gasdispersion 

præsenteres og evalueres i den sidste blok af ph.d.-projektet. Målet er at vurdere, om 

gasdispersion kan anvendes til at frembringe små krystaller i en MSMPR-krystallisator samt at 

udvikle forståelsen af effekten af en bevægende gas på sekundær kimdannelse og krystalvækst. 

Virkningen af gasdispersion på krystallisationsudbytte og krystalstørrelsesfordeling er blevet 

evalueret for en konfiguration, der ville forventes i en implementeret proces og for 

driftsbetingelser, som allerede er optimeret til dannelse af små krystaller. Resultater viser, at i 

modsætning til observationerne i batchkrystallisatorer er virkningen af gasdispersion i en 

velblandet MSMPR-krystallisator meget begrænset. Yderligere undersøgelser af effekten af 

blandingshastigheden afslører, at krystallisationskinetikken ikke er følsom over for variationer 

i blandingsintensiteten for betingelser, som opfylder kravene til homogen trefase-blanding. 

Resultater fra denne undersøgelse understøtter endvidere hypotesen om, at en strømmene 

gasfase er et alternativ til at fremme forskellige blandingsbetingelser og demonstrere den 

begrænsede anvendelighed af denne teknik i en kontinuerlig MSMPR-krystallisator. 
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1 Chapter 3  Introduction 

In a pharmaceutical drug, the Active Pharmaceutical Ingredient (API) is the substance that 

holds the medical function. These products are subject to strict requirements from health 

authorities to ensure that the given drug will be stable and deliver the appropriate systemic 

effects. The solid state properties of an API will have a major impact on its dissolution rate 

and, consequently, on the extent and duration of the medicine’s effect. In this context, 

crystallization is one of the most common unit operations in pharmaceutical production, 

responsible for delivering crystalline APIs within the required solid state quality. 

In a context where drug development is becoming increasingly expensive and the 

competition from generic manufacturers keeps increasing, research-based pharmaceutical 

companies have turned focus to cheaper, more sustainable production methods. In this area, 

continuous pharmaceutical production has received a significant interest during the past 

decade. To get the full benefit from continuous production and at the same time fit in a 

patent-driven industry where short development times are a priority, continuous 

pharmaceutical processes have to be simple and utilize flexible equipment. 

Continuous stirred tank crystallizers, normally falling in the Mixed Suspension Mixed 

Product Removal (MSMPR) crystallizer formalism, are arguably the most common choice for 

continuous pharmaceutical crystallization. Their capacity for handling concentrated 

suspensions and long residence times, combined with the simplicity of process development, is 

only obstructed by the product and process constraints that limit the attainable product 

quality. Especially when small crystals are required, simply changing the process conditions is 

often not sufficient, and dealing with large supersaturations tends to be infeasible.  

In addition to the equipment limitations for the generation of small crystals, traditional 

methods for MSMPR process development are based on crystal size determination techniques 

that give poor information on the crystal shape. Especially for elongated particles that tend to 

break in downstream processing, the crystal size distribution as assessed during the 

crystallization process will be heavily different than that at the formulation product. Thus, 

there is a need for the development of novel characterization approaches that simultaneously 
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account for the size and shape of the crystals, not only for fragile crystals, but also for those 

compounds that exhibit different crystal habits during crystallization process development. 

1.1 Objectives 

This project has been conducted in close cooperation between the Technical University of 

Denmark and the pharmaceutical company H. Lundbeck A/S. It has been structured to be 

academically relevant and satisfy the industrial needs for the development of a given 

continuous process. The project works around Melitracen hydrochloride, a relevant compound 

from Lundbeck’s production that not only exhibits a challenging crystal habit, but it is also 

subject to strict requirements for the generation of small crystals. The objectives of this PhD 

project have been summarized below: 

▪ Provide a proof-of-concept for the continuous crystallization of Melitracen 

hydrochloride, including an assessment of the crystallizer configuration and the 

optimal set of operating conditions. 

▪ Investigate the application of novel approaches for the characterization of MSMPR 

crystallizers, allowing for a simultaneous assessment of crystal size and shape during 

process development. 

▪ Investigate into novel methods for crystal size distribution control in MSMPR 

crystallizers, with special focus on the generation of small crystals at lower 

supersaturations. 

1.2 Hypotheses 

To address the aforementioned objectives, this thesis has been divided in two main blocks. 

The first block involves the application of image analysis for the characterization of MSMPR 

crystallizers. Despite similar methods have been used before, a step-by-step characterization 

using modern methods for MSMPR process development is yet to be applied. This 

characterization can either be conducted entirely by image analysis or by correlating in situ 

Focused Beam Reflectance Measurements (FBRM) to the real crystal dimensions. 

The second block of the PhD study investigates the effect of gas dispersion on 

crystallization kinetics, particularly for the promotion of nucleation rates. Most of the methods 

to obtain small crystals in MSMPR crystallizers are based on promoting nucleation in a local, 

high energy point. Normally employing milling or ultrasonication, the considerable 

mechanical stress applied to that point promotes crystal breakage and secondary nucleation. 

Despite these techniques are effective for obtaining small crystals, they usually come with 

additional concerns for energy dissipation, safety and product quality. 
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The impact of system fluid dynamics on secondary nucleation is already well-known. 

Variations in the impeller type, speed and even on the vessel configuration lead to different 

kinetics and thus variations in the crystal size distribution. While contact secondary 

nucleation relies on a minimum impact energy, it is clear that methods based on milling and 

ultrasonication surpass this energy to the point of inducing variations in crystal shape and, in 

some cases, structure. In this thesis, it is hypothesized that gas dispersion could induce 

variations in the flow pattern inside the crystallizer, thus promoting crystal collisions and 

secondary nucleation without the need for unreasonably high supersaturations. In contrast 

with methods that are based on a local, high energy point, gas dispersion would be 

significantly gentler, more scalable, versatile, and affect the entire active crystallization 

volume. Thus, instead of having extremely high nucleation rates at a single point, this method 

would give a smaller, but widespread promotion of the rate of crystal formation. Alternatively, 

the presence of the gas-liquid interphase or the perturbations from gas injection could 

promote heterogeneous nucleation in the crystallizer. This hypothesis is supported by previous 

studies that reported significant reductions in crystallization induction times in batch 

crystallization. However, because the formation of a primary nucleus with gassing has never 

been observed directly, it is yet to be known if the smaller induction times are a result of a 

higher rate of primary nucleation or a faster crystallization rate after the first nucleus is 

formed. An insight into the mechanism could thus give critical information for the design of 

novel crystallization configurations. 

1.3 Structure of this thesis 

The rest of this thesis has been divided into 6 chapters. The contents of each chapter are 

summarized below:  

▪ Chapter 2 is a critical literature review describing the background for this project. 

The relevant theory for the understanding of this thesis is provided, together with 

practical examples that support the motivation for the research and show the 

limitations of the state-of-the-art. 

▪ Chapter 3 includes the preliminary studies conducted to select an appropriate 

solvent and crystal size determination technique for the Melitracen hydrochloride 

case. Although most of the contents are oriented to industrial process development, 

the chapter ends with an experimental demonstration of the limitations of FBRM that 

support a need for the development of novel characterization strategies.  

▪ Chapter 4 provides a proof-of-concept for the crystallization of Melitracen HCl 

employing quantitative image analysis. A two-stage MSMPR crystallization cascade 

was characterized using quantitative image analysis, from which the source and 
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extent of crystal breakage were evaluated. Mathematical modelling of the MSMPR 

cascade allowed assessing the optimal number of stages and crystallization conditions 

to obtain crystals with a similar size than those currently used in formulation. 

▪ Chapter 5 describes a fundamental study on the effect of a flowing gas on nucleation 

kinetics. Induction time statistics were applied to separate the time for formation of 

the first nucleus from a detection delay related to the rate of crystallization after the 

first nucleation event. This study demonstrates not only that the rate of crystallization 

can be promoted with a flowing gas, but also that this promotion occurs beyond 

primary nucleation. This behavior was observed for two model systems at conditions 

where crystallization kinetics could be promoted by mixing. 

▪ Chapter 6 includes the design of a novel, flexible MSMPR crystallizer that utilizes the 

impeller rotation to disperse gas from the headspace into the crystallization magma. 

The effects of gas dispersion studied in Chapter 5 were evaluated for a crystallizer 

design that is already optimized to generate small crystals. Results showed that, for 

the mixing intensities that allow for three-phase mixing, the rate of crystallization 

cannot be significantly promoted by gas dispersion or mixing. 

▪ Chapter 7 summarizes the academic and industrial conclusions from this thesis, and 

describes a set of suggestions for future work. 

  

 

 

 



 

2 Chapter 2   Background 

This chapter is aimed to locate the reader in the field of this thesis, providing the necessary 

knowledge to understand the motivation for the research as well as the achievements and 

limitations of the state-of-the-art. A more specific literature review will be provided in the 

introduction of the manuscript chapters. 

2.1 Continuous pharmaceutical manufacturing 

2.1.1 The patent-driven pharmaceutical industry 

The pharmaceutical market is dominated by the competition between research-based 

companies and generic manufacturers. The main competitive edge of the first has traditionally 

been innovation in drug development. However, discovery and development of new drug 

compounds is an expensive process, where high drug failure rates contribute significantly to 

the total R&D costs. As it was estimated by the Tufts Center for the Study of Drug 

Development in 2016, the capitalized pre-approval costs of drug development per approved 

drug is currently at the order of 2.588 billion USD with an estimated clinical success rate of 

11.83%.1 

The elevated costs of drug development are barely compensated with the discovery of a 

new entity. A patent application for a promising drug candidate is normally filed early on in 

the process, while the development of a new drug typically takes 10-15 years.2 Consequently, 

about half of the patent life is spent before the product can be launched. Moreover, due to the 

intense competition from generic manufacturers, it is possible for the original manufacturer to 

lose up to 90% of their market share within a year after the patent expires.3 Considering the 

significant costs of drug development and the relatively short patent protection times, a rapid 

process development is of utmost importance to maximize the time between product release 

and patent expiration.  
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2.1.2 Transition to continuous production 

Pharmaceutical production is traditionally conducted in batch mode. This approach comes 

from the need for a simple and rapid process development and is further supported by the low 

annual production rates in this industry. The campaign-based production relies on equipment 

flexibility and requires significant expertise in logistics and production management. The use 

of multipurpose facilities combines well with the patent-driven approach to this industry, 

where new products are constantly developed and require a rapid release to the market. 

However, with an increased pressure for cost reduction and the drive to increase sustainability, 

pharmaceutical companies are looking towards novel production methods that provide with 

increased productivity, waste reduction and increased control over product quality. 

One of the main driving factors for the transition to continuous manufacturing is the 

increasing drug development costs relative to the success of drug discovery. Figure 2.1 shows 

the yearly amount of approved New Molecular Entities (NME) and New Biological Entities 

(NBE), related to the estimated total expenditures in drug development in the U.S. for the past 

53 years.  

 

Figure 2.1 New compound approvals and pharmaceutical R&D expenditures (adjusted for inflation) in 

the United States from 1963 to 2016. The trend line is a 3-year moving average for NME/NBE approvals.1 

[Provided by and used with permission from the Tufts Center for the Study of Drug Development, Tufts 

University School of Medicine, USA] 

While the investments in R&D have increased considerably since the 1980s, the rate of 

drug discovery has become stagnant. The increased costs of drug development are partially 

responsible for the merging and failure of a large number of companies invested in drug 

innovation,4 and led to a sharp decline in the annual growth rate of the larger pharmaceutical 

manufacturers.5 This trend encouraged pharmaceutical companies to seek a reduction in the 
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manufacturing costs, which typically represent 30% of the total costs in an average 

pharmaceutical company.6,7 In this context, transition to continuous production is seen as one 

of the most promising solutions.8 

On top of the increased drug development costs, the strengthened environmental policies 

reinforce the need for novel production methods with improved waste management and 

safety. In 2005, a Pharmaceutical Roundtable was established by the American Chemical 

Society (ACS), the Green Chemistry Institute (GCI) and several global pharmaceutical 

companies. The objective was to encourage the integration of green chemistry and engineering 

into the pharmaceutical industry. Few years after, the Roundtable released a list of key green 

engineering research areas as a result of brainstorming and prioritization exercises.7 The use of 

continuous processing topped the list, followed by bioprocesses and improved separation and 

reaction technologies.  

Because of the intense demands for consistent product quality, the licensing authorities 

are also supporting the implementation of continuous processes combined with in-line quality 

assurance through the application of Process Analytical Technology (PAT) tools.9–11 Batch 

processes are still poorly understood and the current manufacturing approach is characterized 

by a lack of robustness in product quality. Because of the large amounts that are manufactured 

in a single campaign, a defective batch can lead to a sudden drug shortage and a significant 

revenue loss for the pharmaceutical company.12–14  

Continuous processes enable the use of smaller and safer equipment, in-line monitoring of 

process conditions and real-time product release with consistent quality. In addition, the 

amount of waste is reduced as recycle streams are handled more efficiently.3,8,15,16 In contrast 

with the production of bulk chemicals, continuous pharmaceutical synthesis can usually be 

attained using tank reactors at the 10 liter scale or in a set of microreactors in parallel.16–18 This 

is an enormous advantage over the scale-up limitations of batch processes, since the process 

development could be conducted directly in full-scale units or simplified by numbering-up 

instead of scaling-up.18,19 Furthermore, smaller units generally facilitate the attainment of 

homogeneous reaction conditions as well as an excellent control over reaction temperature, 

being a great benefit for handling highly exothermic reactions that would otherwise be 

impossible in batch mode.18,20 

Continuous pharmaceutical manufacturing has raised a considerable interest from both 

academic institutions and industrial manufacturers in the past decade. This led to significant 

advances in the development of small continuous units that culminated with the development 

of end-to-end continuous pharmaceutical manufacturing systems. In 2013, the Novartis-MIT 

Center for Continuous Manufacturing presented the first example of an end-to-end integrated 

continuous manufacturing plant for the API aliskiren hemifumarate, demonstrating a 
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reduction in processing time from 300 h in batch manufacturing to a process residence time of 

47 h in continuous mode.21 More recently, a compact, reconfigurable continuous system based 

on flexible modules was presented for the end-to-end manufacture of a wide variety of 

pharmaceuticals.22 Although it is not the intention to replace continuous manufacturing with 

this system, it is a potential solution to unexpected disease outbreaks and the aforementioned 

drug shortages in batch production, and it puts in practice the first plug-and-play solution for 

continuous pharmaceutical manufacturing.  

2.2 API quality from a solid state perspective 

The International Conference on Harmonization of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH) defines quality as “The suitability of 

either a drug substance or drug product for its intended use. This term includes such attributes 

as the identity, strength, and purity”.23 When it comes to APIs, quality can be partially assessed 

from their crystal size, shape, form and purity.23,24 Some of these properties will have a direct 

impact in the product compressibility, melting point and bulk density, which will in turn 

impact the powder manufacturability. From a medical perspective, the solid state properties 

will affect the drug’s bioavailability and stability. 

The bioavailability is defined as the proportion of the drug that is absorbed and available 

to produce systemic effects.25 Several parameters including drug dosage are based on a given 

bioavailability that must be ensured through API production and formulation. A tablet that is 

administered orally needs to go through a disintegration process followed by API dissolution 

before the drug is absorbed into the bloodstream. While disintegration can be assisted by the 

use of excipients, API dissolution is highly dependent on its crystal structure and crystal size 

distribution (CSD). The plasma concentration profile will result from the kinetic competition 

between drug absorption and its elimination. This concept has been illustrated in Figure 2.2. 

The effectiveness of a drug is related to a therapeutic range, defining the plasma drug 

concentrations that should be attained through control of the absorption kinetics. Some drugs 

will be administered for a fast onset of action, while others will be tailored to a more delayed 

but prolonged effect.26 The Minimum Effective Concentration (MEC) defines the lower end of 

the therapeutic range, below which the drug concentration is not sufficient to produce a 

therapeutic effect. The Minimum Toxic Concentration (MTC) falls at the upper end of the 

therapeutic range and defines the concentration value above which the drug reached its 

toxicity level.27 Since the drug dosage is based on a predefined bioavailability that depends on 

the dissolution rate of the API, the administration of an API with the wrong crystal structure 

or crystal size distribution could pose a serious threat for the health of the patient.  
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Figure 2.2 Mechanisms of drug absorption from oral administration, and the impact of 

dissolution/absorption kinetics on the plasma drug concentration profile. 

Similarly, the stability of a drug depends on the crystal structure of the API, which is not 

necessarily administered in the most stable form. Some drugs with poor water solubility are 

administered in metastable crystal forms or even as amorphous solids to enhance their 

dissolution rate.28,29 In other cases, obtaining the most stable polymorph might not be efficient 

for a crystallization process. Since recrystallization of the formulated API could lead to a 

complete change in the physical properties and bioavailability, ensuring polymorphic purity is 

of utmost importance for the formulated drug. 

2.3 Practical aspects of crystallization kinetics 

Despite the availability of alternative particle technologies for the control of bioavailability 

and drug stability,28 crystallization is a necessary unit operation that defines most of the solid 

state properties of the active ingredient. Crystallization process development starts with 

knowledge on the different mechanisms that induce crystal formation and is based on a deep 

understanding on how the kinetics of nucleation and crystal growth impact the quality of the 

crystallized product.  
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Crystallization from solution can be thought as a two-step process, starting from the 

formation of a new crystal (nucleation) and followed by the growth of the crystal to larger 

sizes.30 In this section, a short overview of nucleation and growth kinetics will be given from a 

perspective of crystal quality control. 

2.3.1 Nucleation 

Nucleation is the commencement of a new phase, and thus it plays a decisive role in 

determining the crystal form and size distribution.31 There are two major distinctions for the 

classification of nucleation mechanisms: primary and secondary nucleation.  

2.3.1.1 Primary nucleation 

Primary nucleation occurs without the assistance of solute crystals, and thus it is the 

mechanism that starts crystallization in unseeded solutions. A primary nucleus can either be 

formed from the bulk solution (homogeneous nucleation) or facilitated by a foreign surface 

(heterogeneous nucleation). The main difference between the two relies on the activation 

energy for crystal formation. The presence of an external surface provides with a significant 

reduction in the activation energy. Consequently, heterogeneous nucleation is the 

predominant mechanism in unseeded solutions, to the point that homogeneous nucleation 

rarely occurs in practice.30 The fundamental mechanisms of crystal formation in a molecular 

level have been a discussed topic for several years, although they fall out of the scope of this 

thesis. More information can be found elsewhere.32–35 

From a kinetic perspective, the formation of a primary nucleus is a stochastic process that 

depends on the composition of the supersaturated solution as well as on temperature, 

supersaturation degree and the concentration and nature of the provided external surfaces.35–39 

Primary nucleation can also be triggered by perturbations in the supersaturated solution, 

including those from mixing or physical manipulation of the sample.40–42 Because of its 

stochastic nature, and since new crystals can only be detected after they have grown to a 

certain size, the study of primary nucleation has always been a challenge.31,43 However, given 

the appropriate statistical tools, studies on primary nucleation are an excellent method to 

study the effect of process conditions and external surfaces on crystal formation.  

2.3.1.2 Secondary nucleation 

Secondary nucleation occurs with the assistance of solute crystals, and thus it is heavily 

dependent on the suspension fluid dynamics. Early studies demonstrated that the rate of 

secondary nucleation is a function of the frequency and intensity of collisions on the parent 

crystals.44–48 Even though the mechanism is not yet fully understood, the hypotheses can be 
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englobed in two categories depending on whether the nuclei come from the parent crystal or 

from the surrounding solution.30  

The concept of a fluidized layer of supersaturated solution near the parent crystal was 

introduced by Powers in 1963.49 It was hypothesized that a layer of semiordered clusters of 

solute molecules surrounding the crystal, rather than the crystal itself, could be a source of 

secondary nuclei. A later study by Clontz and McCabe demonstrated that low energy crystal 

contact was able to trigger nucleation from a growing crystal. The frequency of nucleation was 

dependent on contact force and supersaturation. Different studies have been conducted to 

elucidate the mechanism since then, many supporting that secondary nucleation is purely a 

consequence of microattrition.48,50–53 In a recent study, Cui and Myerson realized that most of 

the studies where secondary nucleation had been detected without visible damage in the 

parent crystal used relatively small contact forces. In their study,54 they took advantage of the 

unique polymorphism behavior of glycine to investigate further on the source of secondary 

nuclei. Applying different contact forces to a γ-glycine crystal (most thermodynamically stable 

form), they found that contact forces below 2 N would only produce crystals of α-glycine. As 

the contact force was increased, crystals of both polymorphs were formed. Since fragments of 

the parent crystal would still retain the same crystal structure, it was concluded that the 

formed α-glycine crystals came from the solution phase as a result of the applied contact force. 

A secondary mechanism based on mild contacts has an important implication for crystal 

size distribution control in stirred tanks, as variations in the system fluid dynamics can easily 

lead to a variations in the nucleation rate. Because secondary nucleation relies on contact, the 

secondary nucleation rate depends on solids concentration, crystal size, supersaturation and 

stirring speed in the crystallizer.55 Consequently, nucleation rate equations for stirred tank 

crystallizers usually involve terms for suspension density and impeller speed in addition to the 

supersaturation and temperature dependencies.56  

In a stirred tank, the dominant mechanism depends on the supersaturation level and the 

energy required for secondary nucleation.56 This has been illustrated in Figure 2.3.  
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Figure 2.3 Nucleation mechanisms in a stirred tank based on supersaturation level, including Power’s 

concept of a reservoir layer near the crystal surface.49,56 

Because of yield requirements, practical constraints and the desire for fouling prevention, 

stirred crystallizers tend to operate at the lower end of supersaturation. Thus, most of the 

methods for size distribution control based on nucleation enhancement operate by increasing 

the rates of secondary nucleation or by triggering primary nucleation in a local point. More 

information on these methods will be provided in Section 2.6. 

2.3.2 Crystal growth 

Crystal growth occurs from the addition of solute molecules from the supersaturated 

solution to the surface of a crystal. Since the crystal grows in different directions 

simultaneously, there is no single definition for the crystal growth rate. This phenomenon can 

be studied as the linear growth velocity of a certain crystal face, as the overall gain in crystal 

mass, or as the variation on a characteristic dimension related to the crystal volume or surface 

area (e.g. equivalent sphere diameter). 

The growth of a crystal consists of an initial diffusion step followed by a surface reaction 

step.56 Especially for static systems and poorly mixed crystallizers, the growth rate can be 

dominated by transport phenomena rather than by surface incorporation. In those cases, 

increased agitation intensities lead to a faster rate of crystal growth. When a growth cluster 

reaches the surface of a crystal, it must shed its layer of solvent and bond with that surface. 

Because of the larger surface for the stabilization of the incoming cluster, growth tends to 

occur at crystal defects and kinks. At high supersaturations, crystal growth can occur after 

formation of two-dimensional nuclei at the surface of the crystal. Thus, the crystal growth rate 

is dominated by the generation of steps in the flat crystal faces, either by dislocation or by 2D 
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nucleation. More information on the crystal growth theories and mechanisms can be found 

elsewhere.39,57,58 

One of the important quality attributes of crystalline products is their crystal habit, as it 

will impact not only the further downstream process but also the dissolution rate of the solid 

phase. The external appearance of a crystal is a function of its internal structure and the 

conditions at which the crystals are grown, including composition of the liquid phase and the 

rate of crystal growth.30,57 Crystals with the same structure have shown completely different 

crystal habits depending on the growth conditions, and thus the validation of a consistent 

crystal habit is an important part in the development of crystallization processes.59–62 

Two additional phenomena have to be considered in the design of crystallization 

processes: size-dependent crystal growth and growth rate dispersion. In a suspension, small 

crystals have a higher effective solubility than the larger ones. This is a consequence of the 

system trying to reduce its Gibbs free energy by minimizing the total contact area between the 

crystalline phase and the surrounding solution.30 This behavior is responsible of additional 

phenomena including Ostwald ripening, by which smaller particles tend to dissolve and larger 

particles tend to grow in suspension, even when this suspension is at thermodynamic 

equilibrium. In a growing suspension, the smaller crystals will have a lower effective 

supersaturation and, thus, their growth rate will be smaller. However, this mechanism is likely 

to be significant only for crystals at the sub-micron range.30 Alternatively, size-dependent 

growth can be a consequence of the larger crystals having a higher frequency of dislocations 

because of their larger area, thus increasing their effective growth rate.30 Size-dependent 

growth is often confused with growth rate dispersion,63 by which crystals with the same size on 

the same suspension grow at different rates. This could be a consequence of crystals growing at 

different constant rates, or of the growth rate of individual crystals varying with time.30,64 

When crystal growth is investigated for large crystal populations, these mechanisms will lead 

to a broadening of the crystal size distribution. Their impact on continuous crystallization will 

be further discussed in the next section. 
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2.4 The Mixed Suspension Mixed Product Removal (MSMPR) 

crystallizer 

2.4.1 Introduction 

Because of the equipment flexibility and their capacity for handling concentrated 

suspensions and long residence times, continuous crystallization is often conducted in stirred 

tank reactors (CSTR). These crystallizers follow the Mixed Suspension Mixed Product Removal 

(MSMPR) formalism, by which the active crystallization volume is perfectly mixed and the 

properties of the product suspension are the same as those in the crystallizer.56 Modelling of 

MSMPR crystallizers is usually simplified with the assumptions of negligible crystal breakage, 

negligible agglomeration and uniform crystal shape factor throughout the crystallizer magma. 

Following these assumptions, the crystal size distribution is a direct function of crystallization 

kinetics and it can be modelled on the basis of a single crystal dimension. In this type of 

system, the population balance can be reduced to eq 2.1. Details on the derivation can be 

found elsewhere.56 

 
𝑉
𝑑(𝐺𝑛)

𝑑𝐿
= 𝑄𝑖𝑛𝑖 − 𝑄𝑛 (2.1) 

Where V represents the active crystallization volume, G is the rate of crystal growth for the 

characteristic dimension L, Q is the flow rate through the crystallizer and n is the crystal 

population. The index i indicates which properties correspond to the crystallizer feed. 

For systems presenting size-independent crystal growth without growth rate dispersion 

(i.e. following McCabe’s ΔL law65), the population balance can be integrated analytically. In a 

single stage MSMPR crystallizer with clear feed, the integrated population balance equation 

takes the form of eq 2.2.56 

 
𝑛(𝐿) = 𝑛0 𝑒𝑥𝑝 (

−𝐿

𝐺𝜏
) =

𝐵

𝐺
𝑒𝑥𝑝 (

−𝐿

𝐺𝜏
) (2.2) 

Where the residence time τ expressed as Q/V, B is the nucleation rate, G is the linear 

growth rate in the characteristic dimension and n0 represents the population of embryo-sized 

crystals used as boundary condition for the integration. 

As expressed in eq 2.2, the crystal population distribution is a direct function of the rates 

of crystallization and the residence time in the crystallizer. The crystal population will define 

the steady state suspension density (MT) from the third moment of the distribution, the 
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density of the crystalline phase ρ and a volumetric shape factor kv that relates the characteristic 

dimension to the volume of a crystal. 

 
𝑀𝑇 = 𝑘𝑣𝜌∫ 𝐿3𝑛(𝐿)𝑑𝐿

∞

0

 (2.3) 

Since the rate at which solute is lost from the solution phase is equal to the rate at which 

mass is gained by the crystalline phase, the supersaturation σ can be expressed as a function of 

the crystallizer suspension density, accounting for the mass balance in the crystallizer: 

 
𝜎 =

𝐶0 −𝑀𝑇 − 𝐶𝑠𝑎𝑡(𝑇)

𝐶𝑠𝑎𝑡(𝑇)
 (2.4) 

Where C0 is the feed concentration and Csat(T) is the solubility at the crystallization 

temperature T. 

For a constant feed concentration, temperature and residence time, the steady state is 

dominated by an internal feedback between crystallization kinetics and the crystal size 

distribution. The way this feedback interacts with process development has been expressed for 

a hypothetical system in Figure 2.4, assuming that crystallization kinetics follow semi-

empirical power-law equations and that crystallization is conducted by cooling at constant 

agitation intensity. A more generalized version can be found elsewhere.56  

 

Figure 2.4 Internal feedback between crystallization kinetics and crystal size distribution in a 

hypothetical cooling MSMPR crystallizer at steady state.  
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Note that the impact that process conditions have on the steady state crystal size 

distribution is determined by the solute-solvent system (solubility Csat(T); kinetic parameters 

kb0, Eb, j, b, kg0, Eg, g; and solid phase properties ρc and kv), which dictates the extent of 

crystallization and the attainable crystal sizes. For instance, similar orders of nucleation and 

crystal growth could lead to a mean crystal size that is independent of residence time, thus 

limiting the capacity of production engineers to control the obtained crystal sizes.56 

Furthermore, selective promotion of one of the two rates (e.g. by ultrasonication) will result on 

a higher mass deposition and thus a lower operating supersaturation. The resulting smaller 

driving force from supersaturation will inhibit part of this kinetic enhancement, especially 

when the mass deposition rate is heavily dependent on supersaturation (high b or g). For the 

same reason, extending the crystallizer residence time usually leads to a smaller mass 

deposition rate. After a certain point, considerable prolongations of the residence time have a 

negligible improvement on the steady state yield (see ref.66 for an example). 

From a process development perspective, the use of mathematical models for optimization 

of MSMPR crystallizers provides a considerable advantage over an entirely experimental 

assessment of the optimal crystallization conditions. Especially when the properties of the 

crystallization magma will depend on several process conditions, experimental screening is 

time consuming and costly. For this reason, MSMPR crystallizers are normally optimized 

through prediction models based on semi-empirical kinetic rate equations and the appropriate 

population and mass balance.  

Selection of a population model, as well as the determination of the kinetic rate equations, 

requires experimental data on the phenomena occurring in the crystallizer (e.g. size-

dependent growth, agglomeration, breakage) and the effect of process conditions on 

crystallization kinetics. The former can be first assessed qualitatively from images of the 

crystallization product, and later quantitatively from the experimental populations (nexp), 

calculated from eq 2.5. 

 
𝑛𝑒𝑥𝑝(𝐿) =

𝑣𝑜𝑙(𝐿)𝑀𝑇
𝜌𝑘𝑣𝐿

3∆𝐿
 (2.5) 

Where vol(L) is the volume fraction of crystals with characteristic size L, and ΔL is the 

channel size of the discrete CSD. 

If the experimental data follows the assumptions for an ideal MSMPR crystallizer, the 

experimental population (eq. 2.5) will have the shape of eq. 2.2. Thus, when the population is 

expressed in the logarithmic form versus crystal size, it will yield a linear plot. One of the most 

common deviations from an ideal MSMPR crystallizer presents a strong upward curvature in 

the logarithmic population density plot. Even though this behavior can be a consequence of 
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other phenomena,30 it is commonly attributed to size-dependent crystal growth.63 Usually, this 

behavior is either neglected by fitting the effective nucleation rates (linear extrapolation)67 or 

modelled with semi-empirical expressions.68–72  

With the appropriate design of experiments, the kinetic rate equations in Figure 2.4 can be 

fitted based on the steady state crystal size distribution of approximately 10 runs to steady 

state by solving a nonlinear estimation problem.73,74 These models have also been extended to 

consider the effect of process conditions on impurity incorporation through the estimation of 

additional parameters.75–78 Once the kinetic rate equations have been estimated, prediction 

models based on crystallization kinetics and the population and mass balances can be used for 

the assessment of attainable crystal sizes,74,79,80 optimization of start-up,81 and determination 

of the optimal number of stages and operating conditions to control crystal purity, 

polymorphism and size distribution.66,74,75,77,82,83 The rapid methods for determination of 

crystallization rate equations and their extended applicability for process development and 

control make MSMPR crystallization an excellent choice for a pharmaceutical crystallization 

process. Nevertheless, it is important to note that the fitted rate equations are based on the 

method for measuring crystal size distribution, for which the crystal growth rate is related to 

how the measuring technique “sees” crystal size. Thus, these models predict the crystal size 

distribution based on the same methods that were used for the acquisition of the experimental 

CSDs. 

2.4.2 Size characterization methods in MSMPR process development 

In recent years, size characterization methods have evolved significantly from the use of 

sieving or coulter counters in crystallization.84 A large number of techniques are currently 

available for the measurement of crystal size distributions.85,86 This section includes a critical 

review of the two most common methods applied in MSMPR process development: in-line 

Focused Beam Reflectance Measurements (FBRM) and off-line laser diffraction.  

FBRM is a probe-based instrument that is inserted into the crystallizer for in situ 

determination of a chord length distribution (CLD). The instrument uses a rotating 

monochromatic laser beam directed to the crystallization magma. As the focused beam scans 

across the particle system, individual particles and structures will backscatter the laser beam to 

the detector. These distinct pulses of backscattered light are detected, counted, and the 

duration of each pulse is multiplied by the scan speed to calculate the distance across each 

particle (chord length). The probe can scan through thousands of particles per second, thus 

delivering chord length distributions in real time.87  

Being an in-line method capable to quickly deliver reproducible size distribution data 

makes FBRM a preferred option as a PAT tool with great potential for crystallization feedback 
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control. Nevertheless, FBRM loses reliability when significantly different process conditions 

are employed (e.g. during experimental screening in process development). Beyond the 

measurement sensitivity to probe position and focal point, it has been shown that the 

measured chord length distribution depends on the sample mixing intensity and in some cases 

on solids concentration.88–91 Furthermore, despite the extensive development of correlations 

and models between chord length distributions and crystal size distribution,88,92–97 these are 

situational and mostly based on spherical particles. Because the measured chords belong to 

different crystal dimensions, the chord length distributions can appear broader for elongated 

particles, even after square-weighting. This complicates the assessment of the MSMPR 

assumptions from population functions based on chord length distributions. 

It is now common in MSMPR process development to use FBRM to determine the onset of 

steady state and then measure the crystal size distributions with laser diffraction for the 

estimation of kinetic parameters. Laser diffraction is highly reproducible and provides a crystal 

size distribution that is commonly used for validation of crystal quality in the final product.86 

Despite this method being very reliable for spherical crystals and ideal systems, the assessment 

of crystal size distributions is limited when the crystal shape varies during process 

development. If the optimal operating conditions are assessed from laser diffraction data, 

adjusting the process conditions to produce crystals within the required specifications is only 

valid when crystal breakage in downstream processing is negligible. In those cases, laser 

diffraction has to be supplemented by imaging techniques and downstream breakage models. 

2.4.3 Limits of attainable crystal sizes 

In cooling MSMPR crystallizers, the crystal size distribution is commonly controlled 

through variations in the crystallization temperature, feed concentration, impeller speed and 

residence time. When reactive or anti-solvent crystallization are employed, the number of 

theoretical degrees of freedom increases as the solvent composition and reactant surplus can 

be adjusted to expand the attainable crystal sizes. However, in practice, MSMPR crystallizers 

are heavily limited for crystal size distribution control. The optimization is subject to various 

constraints related to equipment limitations, industrial requirements and product 

specifications.  

The use of attainable regions of crystal sizes is probably the most illustrative method to 

demonstrate the limitations of MSMPR crystallizers when realistic operating constraints are 

applied. In this area, Vetter et al. presented a detailed methodology for the determination of 

attainable crystal sizes based on known crystallization kinetics.79,80 Applying this methodology 

to three case studies including cooling and anti-solvent crystallization, they showed that the 

attainable crystal sizes can be easily expanded to larger sizes by increasing the number of 
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MSMPR stages and the total residence time. However, the minimum attainable crystal sizes 

were independent of these parameters as they were a main function of supersaturation and 

residence time constraints.  

Generating small crystals relies on the use of high supersaturations that, for most systems, 

promote nucleation kinetics over crystal growth. Nevertheless, the operating supersaturations 

on a real system will certainly be limited by fouling at the crystallizer and by process yield 

requirements. Furthermore, product limitations including the attained crystal habit, structure, 

defect formation, impurity incorporation and prevention of oiling out will affect the maximum 

attainable supersaturation.57,62,98 The consequence of defining a maximum supersaturation in 

the system was investigated by Vetter et al. and it is displayed in Figure 2.5.80  

 

Figure 2.5 Effect of a maximum supersaturation constraint on the attainable crystal sizes during cooling 

crystallization of paracetamol in a three stage MSMPR cascade. Si represents the maximum steady state 

supersaturation ratio for any of the crystallizers in the cascade.80 [From T. Vetter et al., “Regions of 

attainable particle sizes in continuous and batch crystallization processes”, Chemical Engineering Science 

106 (2014), 167-180. Used with permission from Elsevier. ©2013 Elsevier] 

Note that, when a constraint for realistic supersaturations is applied to the prediction of 

attainable regions, only the smaller end of the attainable region suffers. These limitations can 

hardly be compensated by adding crystallization stages. In these situations, alternative 

methods for the generation of small crystals are required, either by choosing a different 

crystallization strategy or through mechanical size reduction. 
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Power et al. later expanded on this concept by introducing two more constraints: energy 

balance and operating volume. The first constraint is related to the setup heat transfer 

capacity. Indeed, attaining high supersaturations is limited by the capacity of the system to 

provide the required temperature drop at low residence times. In their experimental setup, the 

desired crystallization temperature (5 °C) was never achieved because of the high feed 

temperatures (40 °C) and the low residence time (13 min). The second constraint defines a 

minimum operating volume for the crystallizers to prevent vortex formation. The effect of 

both constraints on the attainable crystal sizes is illustrated in Figure 2.6. 

 

Figure 2.6 Effect of energy balance and operating volume constraints on the attainable crystal sizes 

during cooling crystallization of paracetamol in a two stage MSMPR cascade.74 [From G. Power et al., 

“Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal 

crystallizer”, Chemical Engineering Science 133 (2015), 125-139. Used with permission from Elsevier. 

©2015 Elsevier] 

Overall, when generation of small crystals relies entirely on the use of high 

supersaturations, process and product constraints will define the lower limit of attainable 

crystal sizes in an MSMPR cascade. When the required crystal sizes cannot be met in the 

crystallization process, the manufacturer has to rely on post-crystallization powder processing 

that can influence the critical attributes of the crystalline API.28,99,100  
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2.5 Recent developments towards process imaging in crystallization 

As it was described in Sections 2.4.1 and 2.4.2, crystallization process development is 

currently simplified to the use of unidimensional models for crystal size distribution and a 

qualitative assessment of the crystal shape variations. Despite the accuracy of current methods 

for the prediction of the crystal size distribution based on laser diffraction or FBRM, 

information on the three-dimensional shape of the crystals is critical for process development. 

Especially when the shape of the crystals varies during process development and downstream 

processing, these techniques become unreliable. Hence, several research groups have started 

implementing imaging techniques in their work.  

Although similar instruments are commercially available,101,102 Mettler Toledo’s Particle 

Vision Measurement (PVM) probe is probably the most common instrument for in situ image 

analysis in crystallization. This instrument has been employed to detect polymorphic 

transitions,103–105 to characterize crystal shape during crystallization process development,70,106–

111 to detect the onset of nucleation,112 and to monitor induced shape transitions during 

crystallization.113  

Alternative to the use of probes, images of the crystallization magma can be taken from 

outside the crystallizer through an observation window or circulating part of the magma in an 

integrated flow-through cell. In 2005, Calderon De Anda et al. presented an on-line image 

acquisition system using a high-speed camera connected to an observation window.114 The 

system was later applied in the batch crystallization of L-glutamic acid, including the 

determination of the crystal growth rates in different dimensions.115,116 The same group has 

recently presented a similar system, employing two high-speed cameras for the reconstruction 

of the 3D crystal shape from 2D images.117–119 In parallel to this work, Eggers et al. designed an 

off-line flow-through cell with an external camera for real time process imaging. The method 

was tested with elongated carbon fiber particles120 and later applied to the crystallizations of 

ascorbic acid121 and paracetamol.61 Further improvements to this equipment involved the 

addition of mirrors for the analysis of the 3D crystal shape122 and their later replacement by a 

second camera.123 In contrast with probe-based instruments, external high-speed cameras 

provide with a non-invasive method for image acquisition that could be advantageous for 

image acquisition from tubular crystallizers or systems where a probe would be blinded by 

encrustation. Such instruments have been extensively applied to measure crystallization 

kinetics and detect the onset of fouling in oscillatory baffled crystallizers.124–127 

Despite the recent developments on imaging methods, the use of quantitative image 

analysis in crystallization process development is rarely seen. Images taken on-line present 

several challenges for the analysis due to variations in background intensity, overlapping 

crystals, random orientation and a varying distance with respect to the lens.101,128,129 The use of 
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these instruments is thus limited by the availability of more advanced image acquisition 

methods and, mainly, because of the lack of appropriate software to determine individual 

crystal dimensions from images including overlapping crystals and random orientations. In 

this area, improvement of traditional algorithms for image segmentation and feature detection 

is receiving a significant interest.118,119,130,131 

Even though many algorithms are tested with manual image analysis,123,132,133 the use of 

manual analysis in process development is very limited because of the large amount of 

particles required to obtain accurate results. Masuda, Iinoya and Gotoh estimated the amount 

of measurements required for the accurate determination of the mean mass diameter from a 

lognormal distribution.134,135 With a relative error of 5%, and depending on the geometric 

standard deviation, the required number of measurements varied between 585 and 60,811. The 

amount of measurements was severely reduced to 37 – 3,801 for a relative error of 20%. 

Despite these demanding requirements, sampling sizes between 200 and 2,000 crystals have 

been previously employed to analyze crystal shapes, correlate different analysis methods, and 

identify trends during crystallization process development.60,97,113,136–142 Especially when manual 

analysis is employed for mass-based distributions, the variations during the experiment must 

be high enough to compensate for the poor accuracy of this approach. 

2.6 Novel continuous crystallization configurations to generate 

small crystals 

Because several drugs present poor water solubility, the development of novel crystallizer 

configurations for generation of small crystals has received considerable attention during the 

last decade. Several configurations involve the use of tubular crystallizers combined with a 

seeding step, where seeds are generated using high supersaturations in a high intensity 

mixer,106,143–145 by ultrasonication146–149 and even through the use of directed contact secondary 

nucleation on a parent crystal.150,151 However, most configurations based on plug flow 

crystallizers lack the flexibility of MSMPR crystallizers and present issues with solids 

classification and fouling.127,129,152,153 

Recent advances are directed towards production of small crystals using modified MSMPR 

units. Due to secondary nucleation being the predominant mechanism in these crystallizers, 

most methods employ mechanical stress for nucleation control. A direct method that has been 

widely used to reduce crystal size is the integration of wet milling into the crystallization 

process.100 Recently, Yang et al. investigated the effect of wet mill location on the steady state 

chord length distribution in MSMPR crystallization, showing that the mill can be used both for 

downstream size reduction and for upstream seed generation.154,155 In 2017, Acevedo et al. 

applied population balance models to an MSMPR crystallizer with an integrated wet milling 
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unit, finding that the in situ wet mill has a contribution both as a nuclei generator and for 

crystal breakage.156 On a similar area, Igarashi et al. used a high speed agitator for the 

generation of small crystals of glycine and L-alanine in a small MSMPR-type crystallizer.157 

Despite the obtained crystal sizes were of the order of 10 μm, it is important to note that they 

had to employ an agitation speed of 24,000 rpm in a 0.9 mL crystallizer. 

Ultrasonication has also been employed as a method to produce small crystals in an 

MSMPR crystallizer, displaying significant size reductions in crystal size even when compared 

to micronization or high shear wet milling.158 During continuous crystallization of adipic acid, 

the application of power ultrasound reduced the steady state crystal size by almost an order of 

magnitude.159 Nevertheless, the actual contribution to nucleation is hard to elucidate as a 

considerable size reduction was a consequence of the effect of ultrasonication in preventing 

agglomeration. 

2.7 The impact of gas dispersion in batch crystallization kinetics 

For many decades, ultrasonication has been used to induce nucleation and generate small 

crystals during research studies and in industrial production, with available academic studies 

dating back to the 1920s.160 Nevertheless, there is still no consensus on the mechanisms by 

which ultrasonication could impact nucleation.161 A number of hypotheses have been 

formulated in this regard, including the effects of collapsing cavitation bubbles on both 

primary and secondary nucleation, and even crystal fragmentation.162–165  

One of these theories implies that the cavitation bubbles induced by ultrasonication act as 

heterogeneous nucleation centers. In 2009, Wohlgemuth et al. reported a study where this 

hypothesis was tested by dispersing the gas phase in a supersaturated solution and measuring 

the width of the metastable zone during batch crystallization.166 The study was done for 

dodecanedioic acid in several solvents, and showed a consistent reduction in the metastable 

zone width that was independent of the gassing period and the saturation of the gas phase. A 

year after, they released a similar study comparing the effects of gassing with ultrasound to 

induce crystal formation during batch crystallization of adipic acid, where both methods 

showed a similar behavior.167 Since then, Wohlgemuth and co-workers have applied this 

technique to induce nucleation and control the crystal size distribution in batch 

crystallizers.168–171 In 2014, Ceyhan et al. evaluated the effect of the gas composition on the 

reduction of induction times during batch crystallization, claiming that the type of gas also has 

an impact on the extent of these reductions.172 Finally, Matsumoto and co-workers reported an 

effect of nitrogen minute-bubbles on the nucleation rate and polymorphism of glycine during 

antisolvent crystallization in water-ethanol.173 
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 Overall, the number of studies involving the application of gas to induce nucleation is 

very limited. However, if gas dispersion had an impact on the nucleation rate during MSMPR 

crystallization, the method would likely be cheaper, more scalable and more versatile than the 

application of ultrasound. To this end, it is necessary to investigate (1) if gassing has an impact 

on secondary nucleation and (2) if this impact can be seen in an MSMPR crystallizer that is 

already optimized to generate small crystals. 

2.8 Conclusions 

Because of the strong pressure from generic manufacturers and the increased costs of drug 

development, the pharmaceutical industry is turning focus towards continuous production in 

an attempt to reduce costs and improve product quality. In this area, crystallization is an 

important tool for the definition of crystal quality attributes like crystal size, habit, structure 

and purity. Continuous MSMPR crystallizers are arguably the most common choice for process 

development, which would meet the strict requirements for equipment flexibility and rapid 

process development. However, current development methods based on unidimensional 

shape-dependent crystal size distributions are very limited for the study of fragile compounds 

and for systems where the crystal shape depends on the process conditions. Furthermore, 

process and product requirements limit the maximum attainable supersaturation in MSMPR 

crystallizers, and thus the achievable crystal sizes. In the field of process development and 

control, recent advances in process imaging will soon support the simultaneous study of 

crystal size and shape. However, a proof of concept with modern methods of MSMPR process 

development is still missing. To generate small crystals in MSMPR crystallizers, novel 

configurations make use of ultrasonication and milling, which inflict a considerable 

mechanical stress on the crystals and have a direct impact on crystal shape. Following the 

reported effect of gas dispersion for promotion of nucleation rates in batch crystallization, this 

method has potential to become a cheaper and gentle alternative to the generation of small 

crystals in continuous systems. 

 



 

3 
Chapter 3   The Melitracen hydrochloride           

case study 

This chapter is meant to close the gap between the requirements for an academic study and 

the objectives for process development in Lundbeck. It includes a brief description of the case 

study, followed by a set of preliminary studies that led to the selection of a crystallization 

approach, solvent, and a strategy for monitoring the crystal size distribution.  

3.1 Abstract 

Melitracen hydrochloride is a tricyclic antidepressant currently manufactured by 

Lundbeck. The main challenges for crystallization of this compound are the elongated, varying 

crystal habit and the requirements for a small crystal size. In the first part of this chapter, the 

optimal crystallization solvent has been selected based on a solubility screening and 

accounting for GMP requirements, availability in Lundbeck and the versatility for use in this 

study and later process development. Ethanol was found to be the best candidate based on the 

aforementioned requirements and the considerable experience during batch production. The 

second part of the chapter involves the selection of an optimization approach for continuous 

MSMPR crystallization of this compound. The effects of crystal aspect ratio and suspension 

density on the in situ chord length distributions from FBRM were investigated experimentally, 

revealing that despite the chord length distribution is barely sensitive to the observed 

variations in aspect ratio, it is heavily dependent on suspension density. Consequently, an 

optimization approach based on image analysis was selected to obtain simultaneous 

information on crystal size and shape during the early steps of process development. 
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3.2 Introduction to the case study 

The chosen model compound for this study is Melitracen Hydrochloride. This compound 

was provided in a purified form from full-scale production in Lundbeck and it was considered 

appropriate because of its challenging crystal habit and the formulation demands for small 

crystal sizes. The molecular structure is shown in Figure 3.1. 

 

Figure 3.1 Chemical structure of Melitracen hydrochloride. 

Melitracen is a tricyclic antidepressant (TCA), well known for being one of the two active 

ingredients in Deanxit®. While this drug is not marketed in several western countries, it is one 

of the most frequently used antidepressants in China.174 Due to its high market share, there is a 

desire for cost reduction through the transition to a continuous production mode.  

3.2.1 Challenges for the crystallization process 

Being an API, Melitracen HCl is subject to strict formulation requirements for a certain 

crystal morphology, purity and size distribution. However, only crystal shape and size 

distribution are a challenge for the crystallization process investigated in this work. Despite 

this compound has been manufactured for several years, Melitracen HCl has never displayed 

polymorphism during full-scale production in Lundbeck. Furthermore, adequate crystal purity 

is facilitated through the use of an already purified stream as the crystallization feed. Several 

steps are already included in the synthesis of Melitracen that limit the accumulation of 

impurities prior to the crystallization process. Even in the currently implemented process, 

crystallization of Melitracen HCl is employed as a means of obtaining crystals within the 

required size specifications. These specifications are summarized in Table 3.1.   
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Table 3.1 Specifications for the crystal size distribution during formulation of Melitracen HCl, provided 

as percentiles of the cumulative volumetric distribution as measured by HELOS laser diffraction. 

Percentile Crystal size (HELOS Laser diffraction) 

X10 2 – 8 μm 

X50 7 – 25 μm 

X95 20 – 80 μm 

 

The lack of experience with polymorphism and the mild requirements for purification in 

the crystallization process make this compound an ideal choice for a study focused on crystal 

shape and size distribution control. 

3.2.2 Strategy for continuous process development 

In the batch process, Melitracen HCl is isolated by precipitation of a solution of Melitracen 

in ethanol using HCl gas. A similar strategy was planned at the beginning of the project, where 

the precipitation of Melitracen with HCl would be studied in a continuous system. However, 

there were several concerns related to the compatibility with laboratory equipment and the 

variation introduced during the recovery of Melitracen base from the crystallized Melitracen 

HCl. As raw material, it was most expedient to isolate Melitracen HCl powder from full-scale 

production at Lundbeck, and the attempts at recovering Melitracen base in solid form or in 

solution led to a considerable waste of the expensive API and significant impurity 

incorporation in the crystallization feed stream. Due to the complications with isolating the 

free base in a purified form, it was expected that the use of a precipitation approach would not 

only introduce additional uncertainties to the academic study, but also variations in the 

impurity profile of the raw material between different phases of the PhD project. The project 

was thus simplified by using cooling crystallization instead.  

In further steps towards the implementation of this process, crystallization will be 

conducted in a lab-scale flow setup where the synthesis steps are connected to the MSMPR 

crystallizer. The two streams containing solutions of Melitracen and HCl can either be merged 

outside or inside the crystallizer. The first approach, despite requiring the use of higher 

temperatures to maintain Melitracen HCl in solution, will be equivalent to the crystallization 

process investigated in this project. Assuming that the association between Melitracen and 

HCl is not a rate limiting factor and that the feed streams are properly integrated in the 

crystallizer, the second approach should produce similar results without requiring heat traced 

feed streams and without being limited by the API solubility on the maximum attainable yield.  
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3.3 Solvent selection 

3.3.1 Introduction 

One of the legal limitations in pharmaceutical production is that, once a production 

method has been validated by the relevant authorities, modifications in the manufacturing 

approach usually require a significant investment in revalidating and in some cases 

reregistration of the process. For this reason, even though some of the choices made in process 

development may not be optimal, they are kept throughout production to avoid additional 

costs. Transition to continuous crystallization gives a chance to reconsider the choices made 

for the design of the current batch process, one of them being the crystallization solvent. 

The crystallization solvent plays a major role in the quality of the crystallized material. 

Critical crystal properties including habit and polymorphism can be affected by the choice of 

solvent.59,175,176 Furthermore, the solvent can have a significant impact on the rates of 

crystallization, and thus on the obtainable crystal sizes.177 Unfortunately, selection of the 

optimal solvent for crystallization is a time consuming process that would require a significant 

number of crystallization experiments. Solvent selection in this project was simplified to the 

following considerations: 

▪ Good Manufacturing Practice (GMP) guidelines. 

▪ Solvent availability in Lundbeck (process integration). 

▪ API solubility and attainable step yields. 

▪ Physical properties of the solvent. 

▪ Prior knowledge from full-scale production. 

3.3.2 Selecting a list of candidates 

Considering that Melitracen HCl is to be sold as an API, there is a heavy restriction for 

residual solvent contents in the formulation product. The European Medicines Agency (EMA) 

classified the common solvents in pharmaceutical production in three categories, listed in the 

ICH guideline Q3C (R6) on impurities and residual solvent contents:178 

▪ Class 1: The list includes known or suspected human carcinogens, and 

environmental hazards. These solvents should be avoided in the production of 

drugs and excipients unless their use can be justified in a risk-benefit assessment. 

▪ Class 2: Solvents associated with a less severe toxicity, including non-genotoxic 

animal carcinogens or possible causative agents of other irreversible toxicity, fall 



The Melitracen hydrochloride case study 29 

 

into this list. The use of these solvents should be limited in the later stages of 

production of drugs and excipients, but they can be present in the formulated 

product with residual amounts significantly higher than class 1 solvents. 

▪ Class 3: Solvents in this class have a low toxic potential. The list includes no solvent 

known as a human health hazard at levels normally accepted in pharmaceuticals. 

Residual amounts of these solvents below 50 mg per day would be acceptable 

without justification. 

The complete list of solvents can be found elsewhere.178 For crystallization of Melitracen 

HCl, the first selection was conducted for those solvents that could be recycled to other lines 

in Lundbeck’s production and belong to class 2 or class 3. Then, the list was further reduced to 

those solvents for which hydrogen chloride solutions are commercially available. The resulting 

candidates are the class 2 solvent methanol and the class 3 solvents ethanol, isopropanol 

and 1-butanol. 

3.3.3 Solubility screening 

Having reduced the list of possible solvents to four candidates, a solubility screening was 

conducted to determine the most appropriate solvent for crystallization, accounting for the 

solubility of both Melitracen HCl and the free base Melitracen.  

3.3.3.1 Materials 

Melitracen Hydrochloride (≥99.8% purity) was obtained from H. Lundbeck A/S. Methanol 

(≥99.8% purity), isopropanol (≥99.5% purity) and 1-butanol (≥99% purity) were purchased 

from Sigma-Aldrich. Absolute ethanol (≥99.8% purity) was purchased from VWR Chemicals. 

An ammonium hydroxide solution (28.0-30.0% NH3 basis) was purchased from Sigma-Aldrich 

and used to recover Melitracen base. 

3.3.3.2 Melitracen hydrochloride solubility 

The solubility of Melitracen HCl in the four solvent candidates was assessed by gravimetric 

analysis. The objective was to obtain a rough estimation of the API’s solubility curve to assess 

the maximum attainable yields for a given solvent, crystallization temperature and magma 

density. The measurements were conducted for different temperatures but without repetitions. 

The solubility line would be more accurately determined for further process development in 

the most appropriate solvent. 

To measure the API solubility, 4 mL vials containing a suspension of Melitracen HCl on 

each solvent were placed in a thermomixer (Ditabis Cooling ThermoMixer MKR 13) and left 
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agitated (800 rpm) at constant temperature for at least 20 h. Then, the equilibrium 

suspensions were filtered through a 0.45 μm syringe filter and the liquid phase was saved for 

gravimetric analysis. This procedure was repeated at 5 different temperatures (10, 20, 30, 40, 

50 °C). Finally, approximately 0.5 g of each liquid solution were dried at 130 °C in an oven. The 

API solubility was approximated from the dry matter content assuming that the amount of 

non-volatile impurities and the HCl loss during drying are negligible. The resulting solubility 

curves are reported in Figure 3.2. 

 

Figure 3.2 Solubility curves for Melitracen HCl in the four solvent candidates, expressed as dry matter 

content in the saturated solution. (a) API solubility in methanol and ethanol. (b) API solubility in 

ethanol, isopropanol and 1-butanol.  

The four solvents presented significantly different solubilities, with methanol presenting 

both the highest absolute values and the largest absolute variation with temperature. In 

relative terms, ethanol presents the largest variation with temperature, with a 357% increase in 

solubility from 10 to 50 °C. Isopropanol gave the lowest API solubilities of the four solvents, 

and would be a good candidate for precipitation when high step yields are desired. These 

results were sufficient to discard methanol as a solvent candidate, as an API concentration 

higher than 20% in the mother liquor would always lead to low step yields and significant 

product losses even if solvent recycle is employed. 

3.3.3.3 Melitracen base solubility 

Despite the work in this thesis will be conducted for cooling crystallization, it is important 

that the selected solvent is able to dissolve high concentrations of both Melitracen base and 

HCl so that the isothermal precipitation of this compound can be evaluated in future work. To 
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this end, the solubility of Melitracen base was investigated to demonstrate that the four 

solvents can solubilize this compound at a reasonable temperature. 

 Melitracen base was first isolated in solid form by precipitation from a 200 mL saturated 

aqueous solution of Melitracen HCl. The addition of 2-3 drops of a 28-30% ammonium 

hydroxide solution was sufficient to trigger the precipitation of Melitracen base as a yellow, 

amorphous solid that rapidly agglomerated to form a single piece. Vacuum filtration of the 

precipitated base could not be achieved because the product quickly blocked the filter. 

Instead, the product was removed from a spatula and washed with demineralized water. Then, 

it was dried for 24 h in a desiccator. Pictures of the raw material and the obtained product are 

supplied in Figure 3.3. 

 

Figure 3.3 (A) Melitracen HCl powder provided as raw material from Lundbeck’s production. (B) 

Melitracen base isolated by precipitation with ammonium hydroxide.  

Note that, because of the expected incorporation of water and ammonium chloride into 

the amorphous solid, only a rough estimation of this compound’s solubility can be obtained. It 

is expected that traces of water will reduce the solubility of Melitracen during the 

measurement. 

Saturated solutions of Melitracen base in ethanol, isopropanol and 1-butanol were 

prepared at 50 °C using the same method used for Melitracen HCl (Section 3.2.2.2). The 

solubility in methanol was not investigated due to the previously found high solubilities for the 

API. To separate Melitracen base from the non-volatile impurities that could be incorporated 

in the sample, and to verify that the isolated solid was Melitracen base, the analysis was 

conducted using HPLC instead of gravimetric analysis. The HPLC samples were analyzed using 

a Hitachi LaChrom Elite system equipped with a Phenomenex Gemini® 10 cm x 4.6 mm x 3 μm 

C18 110 Å silica column and a L-2455 diode array detector (Hitachi). The concentration of 
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Melitracen base was determined at 230 nm. Details on the HPLC method are provided in 

Appendix A. 

The obtained API solubilities were 910, 840 and 770 g/L in ethanol, isopropanol and 1-

butanol, respectively. These results demonstrate that the solubility of Melitracen base is 

approximately an order of magnitude higher than the API solubility in the three remaining 

solvent candidates. Thus, obtaining a clear feed solution containing the precipitating agent is 

not a concern for the use of precipitation in the implemented process. 

3.3.4 Solvent choice 

To facilitate the final choice of solvent, the results obtained from the solubility screening 

have been summarized in Table 3.2 together with other relevant solvent properties.  

Table 3.2 Summary of relevant properties for solvent selection. The values come from either the 

literature or the experimental work described in this section. 

 Solvent 

 Ethanol Isopropanol 1-butanol 

Solvent class (ICH Q3C)178 3 3 3 

Melitracen HCl solubility 
(wt. %) 

4.1 (20 °C) 
13.3 (50 °C) 

0.6 (20 °C) 
2.2 (50 °C) 

1.6 (20 °C) 
4.9 (50 °C) 

Melitracen solubility (g/L) 910 (50 °C)  840 (50 °C) 770 (50 °C) 

Boiling point, 1 bar (°C)179 78.2 °C 82.2 °C 117.6 °C 

Viscosity (mPa s)179 1.07 (25 °C) 2.04 (25 °C) 2.54 (25 °C) 

Prior crystallization 
experience 

Full-scale (batch) None None 

 

For a given solvent, the maximum attainable step yield in crystallization will be a function 

of the product suspension density and the API solubility in the mother liquor. Following the 

mass balance for the crystallization process, the maximum magma density MT will be a 

function of the feed concentration C0 and the API solubility at the filtration temperature T: 

 𝑀𝑇 = 𝐶0 − 𝐶𝑠𝑎𝑡(𝑇) (3.1) 
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The maximum step yield can be expressed as a direct function of the maximum suspension 

density and the end stage solubility: 

 
𝑌𝑖𝑒𝑙𝑑 =

𝐶0 − 𝐶𝑠𝑎𝑡(𝑇)

𝐶0
=

𝑀𝑇
𝐶𝑠𝑎𝑡(𝑇) + 𝑀𝑇

 (3.2) 

In the implemented process, it would be desired to conduct the filtration of the magma at 

room temperature to avoid the costs and complexity of preventing dissolution/crystallization 

during filtration. Consequently, the API concentration in the mother liquor has been taken as 

the solubility at 20 °C.  

The limits for the crystallizer’s suspension density are both system and scale dependent. 

Steady state magma densities below 15 wt. % are commonly reported for pharmaceutical 

MSMPR crystallization in the laboratory scale.70,74,77,180,181 When the MSMPR crystallizer is 

connected to a continuous filter, handling high suspension densities becomes even more 

complicated.182 These values fall below what would be expected in batch production, and they 

presumably come from the challenges of handling solids in a small scale flow setup as well as 

the requirement for longer residence times to minimize high supersaturations and fouling. 

From the three solvent candidates, only ethanol has the potential to give suspension densities 

above 10 wt. % in cooling crystallization. Using a precipitation approach instead, and assuming 

a maximum magma density of 20%, the maximum crystallization step yields at 20 °C would be 

83% for ethanol, 97% for isopropanol and 93% for 1-butanol. The three step yields are 

reasonable considering that the overall yield can be improved by recycling the mother liquor. 

With a suspension density of 10% and using cooling crystallization in ethanol, the maximum 

step yield would be 71%.  

Even though ethanol is the best solvent candidate for cooling crystallization, it is unclear if 

isopropanol would be a better solvent to precipitate Melitracen with an HCl solution. Based on 

yield alone, the low solubility of Melitracen HCl in isopropanol allows for almost total recovery 

of the solute in crystalline form, even without mother liquor recycle. However, it is important 

not to disregard that the API is crystallized from an already purified stream. Therefore, most of 

the mother liquor can be recycled after filtration while limiting the accumulation of impurities 

in the recycle loop, significantly increasing the overall yield of the downstream process. The 

solvent’s boiling point and viscosity should also be included in the consideration. From a 

process perspective, a lower boiling point facilitates the solvent recovery by distillation, and 

lower viscosities are preferred for mixing and fluid transport. In this regard, despite the boiling 

points of ethanol and isopropanol are very similar, the lower viscosity of ethanol makes it a 

preferred solvent. Finally, one of the most important aspects in the consideration is the prior 

experience with the solvent. From batch production, it is known that crystallization of 

Melitracen HCl with ethanol is capable of giving crystals within the strict size specifications, 
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and this solute-solvent system has not presented issues with polymorphism. Furthermore, 

there is considerable experience on how to properly separate the crystallization magma. 

Considering that the step yield can be increased by other means, and that crystallization with 

ethanol is sufficient for both cooling crystallization and precipitation, it was decided that the 

small yield advantage of isopropanol was not sufficient to justify the change in crystallization 

solvent.  

In conclusion, ethanol will be used as the solvent in this thesis. This solvent provides with 

a significant step yield in cooling crystallization and with reasonable solubilities of Melitracen 

base (910 g/L at 50 °C) and HCl (38.1 wt. % at 32 °C)183 for the later use of precipitation. 

3.4 Limitations of FBRM for process development 

3.4.1 Introduction 

Focused Beam Reflectance Measurement (FBRM) probes are a powerful tool for the in-line 

determination of variations in the crystal size distribution. For this reason, they are used 

extensively to understand crystallization processes. In MSMPR crystallizers, FBRM is 

commonly used to detect the onset of steady state and, in some cases, for population balance 

models.73,77,155,184 Even though the chord length distribution can be extracted in situ, there are 

some concerns as to the limitations for the accurate determination of crystal size distributions 

from chord length distributions. The chord length distribution given by FBRM is just a 

fingerprint of the crystal size distribution that depends not only on the size and shape of the 

crystals, but also on how the sample is presented.89,185,186  

So far, there is no generally applicable model for the determination of crystal size 

distributions from chord length distributions., although partial solutions involve the use of 

empirical correlations or splitting the chord length distribution into different sections that are 

more representative of specific crystal dimensions.94,186,187 For example, Leyssens et al. 

exploited the high aspect ratios in needle shaped crystals to detect crystal growth in different 

dimensions using FBRM.109 Indeed, when the crystal size distribution is narrow and there is an 

order of magnitude of difference between the two largest crystal dimensions, one can assume 

that the counts belonging to the long end of the distribution are mainly influenced by the 

needle length, while those at the lower end give information on the crystal width. 

Crystallization of Melitracen hydrochloride from ethanol solutions typically gives crystals 

with an elongated, brick-like crystal habit. This shape was consistent throughout the 

observations in full-scale batch production and for the first experiments with cooling 

crystallization in the laboratory scale. However, one of the first observations during the project 
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was that, despite sharing the same crystal structure, the crystals obtained in the laboratory had 

a significantly larger aspect ratio than those provided from full-scale production. Regardless of 

the source, it was clear that variations in the crystal shape could be encountered during the 

development of the continuous process, either from different crystallization conditions or from 

crystal breakage.  

Another concern for this compound was related to the applicability of FBRM for the direct 

comparison of experiments at different suspension densities. In 1999, Barrett and Glennon 

studied the effect of suspension density on the chord length distributions of spherical Alkaline 

Frit, and reported a negligible effect of suspension density on the normalized chord length 

distributions (concentrations below 3.5 wt. %).91 Three years later, Heath et al. reported an 

effect of suspension density on the chord length distribution of aluminum particles, even for 

concentrations below 1 w/v %.89 However, the same study reported a negligible effect on 

calcite particles, even at suspension densities at the order of 20 w/v %. Both samples had a low 

aspect ratio. In a later study with spherical PVC particles, Yu and Erickson reported an effect of 

solid concentration on the measured chord length distributions. The effect was seen for solid 

concentrations between 0.1 and 17 w/v %.186 Seeing the conflicting results in previous studies, it 

was deemed necessary to quantify the effect of suspension density on the chord length 

distributions measured for Melitracen HCl crystals. 

This section includes an experimental evaluation of the limitations of in situ FBRM for 

crystal size distribution control in the Melitracen HCl case study. The experimental work was 

aimed to answer (1) if the chord length distribution would be affected by variations in crystal 

shape and (2) if the obtained chord length distributions at different solid concentrations were 

directly comparable. The final goal was to assess the difficulty of developing correlations 

between FBRM and the real crystal dimensions and to investigate if this instrument could be 

used for MSMPR characterization and modelling.  

3.4.2 Experimental section 

3.4.2.1 Source of the crystal samples 

Melitracen HCl samples with two different aspect ratios were chosen to investigate the 

FBRM sensitivity to the crystal shape and solids concentration. The formulation product with a 

small aspect ratio was obtained from full-scale production in H. Lundbeck A/S (HPLC purity 

≥99.8%). Crystals with a larger aspect ratio were obtained from a representative MSMPR 

experiment described in this thesis. The choice was based on the similarity of crystal width 

with that of the batch product. Details on the experimental setup and methodology are 

described in Chapter 6, experiment A1.1. The steady state was attained for a crystallization 

temperature of 10 °C, after which the system was allowed to reach room temperature and 
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thermodynamic equilibrium. The suspension was collected after 24 h. An approximated solids 

concentration of 7 w/v % was estimated based on the total Melitracen HCl content in the 

suspension (HPLC, following the methods in Appendix A) and the API solubility at room 

temperature.  

3.4.2.2 Methodology 

A saturated solution of Melitracen HCl in ethanol was prepared at room temperature so 

that it could be used as a dilution medium. First, a 500 mL suspension containing an excess of 

solids was left agitated in a closed flask for 20 hours. The suspension was first filtered through 

an in situ sintered metal filter (pore size: 10 μm, IDEX Health and Science), and further filtered 

through a 0.45 μm syringe filter. 

Samples from the batch product were prepared in a beaker at room temperature by 

suspending a known amount of the solid product in the saturated solution. The total 

suspension volume was kept at 45 mL for all the samples. To avoid crystal breakage during 

filtration and drying, the samples from MSMPR crystals were prepared by dilution of the 7 w/v 

% suspension instead of isolating the powder beforehand. The studied concentrations were 

approximately 1.5, 3, 7 and 10 w/v % for the full-scale batch product, and 1.5, 3 and 7 w/v % for 

the MSMPR product. 

The FBRM measurements were conducted using a G400 probe (Mettler Toledo), 

measuring the primary distribution from 1 to 1000 μm. The probe was inserted in the 

magnetically agitated beakers and fixed in a stand. To obtain comparable chord length 

distributions, all the samples used the same type of magnet and the FBRM probe was kept at 

constant position throughout the measurements. The minimum agitation intensity for 

homogeneous mixing was determined at the highest solids concentration by increasing the 

impeller speed until the chord length distribution remained stable. All the measurements were 

conducted at the same agitation intensity.  

Microscope pictures were taken for each of the samples using a Nikon Eclipse ME600 

optical microscope equipped with an HD camera (Leica MC120) and the Leica Application 

Suite software (ver. 4.5). To investigate if the chord length distribution is related to the crystal 

dimensions, two representative pictures of each sample were manually analyzed with the help 

of the image processing software ImageJ (ver. 1.6.0), from which the 2D particle dimensions 

(width and length) were obtained for each of the crystals in the picture. In total, 644 crystals 

were analyzed from the batch product (4 samples, 8 pictures) and 408 crystals were analyzed 

from the MSMPR product (3 samples, 6 pictures). The analysis should provide a rough 

estimation of the mean crystal width and length for both samples. 
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3.4.3 Chord length distributions for different aspect ratios 

Using a representative chord length distribution and the results from image analysis, the 

effect of crystal aspect ratio on the chord length distribution was studied in the first place. A 

sample of the obtained optical microscopy pictures is reported in Figure 3.4.  

 

Figure 3.4 Optical microscopy pictures of the suspended product used for the FBRM measurements. (A) 

Crystals from full-scale batch production in Lundbeck. (B) Crystals from lab-scale MSMPR 

crystallization.  

Note that, despite both samples present a similar crystal width, the crystal length of the 

product obtained from MSMPR crystallization is significantly larger. This is expressed 

quantitatively from the results of image analysis. As it can be seen from Figure 3.5, while the 

crystal width distributions fall around the same region for both samples, the crystal length 

distribution for the MSMPR crystals is displaced towards larger values. Comparing the typical 

crystal lengths with the widths, the difference between the two visible dimensions in the 2D 

crystal projection is approximately an order of magnitude. 

Interestingly, while one of the samples presented a substantially larger aspect ratio, the 

square weighted distribution was not affected by the length of the crystals. These results 

support that, as it would be expected due to the low probability of the laser beam crossing the 

crystal length, most of the FBRM counts correspond to corners and smaller crystal dimensions. 

It is expected that obtaining a distribution representative of crystal length would require the 

application of an unreasonably high weight to the raw distribution. Thus, based on the results 

from this section, it is reasonable to assume that small variations in the aspect ratio will not 

have a significant effect on the chord length distribution for constant crystal width and height. 
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Figure 3.5 Crystal size distributions as measured by FBRM (chord length) and image analysis (IA, crystal 

size). The chord length distributions were measured for the samples containing 7 w/v. % solids 

concentration, and averaged over 60 measurements. The reported crystal size distributions from image 

analysis correspond to the number based distributions for crystal width and crystal length. (a) Crystals 

from full-scale batch production in Lundbeck. (b) Crystals from lab-scale MSMPR crystallization. 

3.4.4 Effect of suspension density on the measured chord length 

distribution 

The normalized chord length distributions for short and long aspect ratios and different 

suspension densities are reported in Figure 3.6. A common trend for the two aspect ratios is 

that larger suspension densities lead to a narrow unweighted distribution and, for most 

samples, a reduction in the square weighted mean size. Similar results were obtained in the 

previously discussed studies. Both studies by Heath et al. and by Yu and Erickson reported a 

drop in the square weighted mean size with an increase in solids concentration.89,186 It is 

expected that, when the unweighted distribution narrows, only the reduction in count 

frequency at the higher end of the distribution will have a significant impact on the square 

weighted form. In other words, because the square weighted distribution is mainly defined by 

the higher end of the unweighted distribution, a lower frequency in both ends of the raw 

distribution can be seen as a reduction in the square-weighted mean crystal size. The observed 

narrowing at high suspension densities could be a consequence of several factors. It is expected 

that high suspension densities will increase the amount of overlapped crystals, thus decreasing 

the probability that a large chord is measured. Furthermore, as it was also stated by Yu and 

Erickson, suspension density can affect the laser penetration depth and beam broadening.186 

The latter can also impact the chord length distribution in the opposite way, where high 

suspension densities would limit the measurement to those particles that are closest to the 

probe and thus lead to a higher measured chord length.92   
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Figure 3.6 Chord length distributions obtained from FBRM analysis of the samples containing different 

suspension densities. Each distribution is the average of 60 measurements. (a) Unweighted chord length 

distribution of the batch crystals. (b) Square weighted chord length distribution of the batch crystals. (c) 

Unweighted chord length distribution of the MSMPR crystals. (d) Square weighted chord length 

distribution of the MSMPR crystals. 

Due to the significant dependence of the chord length distribution with suspension 

density, it was decided not to employ FBRM for modelling of crystallization kinetics in an 

MSMPR crystallizer. Especially for the study at different feed concentrations and for multiple 

stages, the results would be hardly comparable due to the simultaneous variation of crystal 

shape and suspension density between experiments. Nevertheless, this is still a robust 

technique for measuring variations in the crystal size distribution in situ. In this thesis, FBRM 

will be used to detect the onset of steady state as well as to detect variations in crystal size 

distribution during those experiments where the suspension density does not vary 

significantly. 
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3.5 Optimization approach involving image analysis 

For a new compound with limited kinetic information, defining the optimal number of 

crystallization stages and the operating conditions is complicated without proper screening of 

the crystallization process. In MSMPR crystallizers, this screening is normally oriented to 

obtaining a set of kinetic equations that allow for the modelling of the crystallization process. 

By using the rate equations in combination with the population and mass balance, one can 

assess the attainable regions for crystal size, the optimal number of stages to meet a certain 

objective, and the best operating conditions according to product and process 

requirements.66,74,80,188 To this end, even though it is advantageous to obtain crystallization 

kinetics based on a technique that can be used in situ, it is best to optimize the crystallizer 

based on a method that gives substantial information on crystal quality. 

Two size characterization approaches were considered for process development: laser 

diffraction and imaging techniques. Despite the first is the approved method for quality 

control, laser diffraction is sensitive to variations in the crystal shape. This is a concern when 

the obtained product does not share the aspect ratio of the formulation product. Moreover, 

elongated crystals with aspect ratios at the order of 1:10 are likely to break during downstream 

processing and tablet formulation. Thus, despite laser diffraction is the preferred method for 

quality control, the predicted size distributions from MSMPR modelling are not necessarily 

representative of the formulation product. 

To further investigate the source of the different aspect ratio, and to obtain a crystal size 

distribution that can be used to predict the quality of the formulation product, it was decided 

to optimize the MSMPR crystallizer based on image analysis. This method, despite being 

tedious, would provide relevant information on the 3D shape of the crystals. Were the crystals 

breaking in the downstream process, only the variation in aspect ratio would have to be 

studied to predict the 3D crystal size distribution of the formulated product. 

Note that, due to the lack of a reliable in-line method for quantitative image analysis in 

crystallization,185 these methods will only be used for process development. Once the optimal 

crystallization conditions have been defined, process monitoring and feedback control in the 

implemented unit can still be conducted using more practical PAT methods. 
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3.6 Conclusions 

This chapter presents an overview of the compound selected for this study, including 

preliminary knowledge from full-scale production and the requirements and challenges for the 

transition to continuous crystallization. The first step in process development was to 

reconsider the solvent choice for this compound. After a preliminary selection based on GMP 

and production requirements, a solubility screening was conducted for the remaining solvent 

candidates. Despite isopropanol was the solvent that presented the lowest API solubility and 

thus the highest attainable step yields, the difference in solubility does not compensate the 

advantages of ethanol in terms of prior experience and versatility. Considering that the 

impurity incorporation into the crystallization stream is minimal and that the crystallization 

yield can be increased from solvent recycle, ethanol was kept as the crystallization solvent in 

the continuous process. 

An evaluation of the effect of crystal shape and suspension density on the measured chord 

length distributions revealed that in situ FBRM was inadequate to approximate crystal size 

distributions during process development. The different crystal aspect ratios between the full-

scale formulation product and the crystals obtained in lab-scale made quantitative image 

analysis a preferred choice, as the crystal size and shape could be investigated simultaneously. 





 

4 
Chapter 4   Characterization of a MSMPR cascade 

by image analysis 

This chapter has been written in a manuscript format. A modified version will be submitted to 

the peer-reviewed journal Crystal Growth & Design. The authors to be included in the 

contribution are Gerard Capellades, Parth U. Joshi, Kim Dam-Johansen, Michael J. Mealy, Troels 

V. Christensen and Søren Kiil.  

4.1 Abstract 

This chapter demonstrates how quantitative image analysis can assist in the 

characterization of MSMPR crystallizers and the proper selection of mathematical models for 

the early assessment of crystal quality. An active pharmaceutical ingredient presenting an 

elongated crystal habit has been crystallized in a two stage continuous MSMPR crystallization 

platform. As it occurs in full-scale batch production, the API crystals tend to break in the 

largest dimension during downstream processing. Using image analysis of the crystallization 

magma, the sources of crystal breakage in the MSMPR cascade have been identified and the 

impact on crystal habit has been evaluated quantitatively. The kinetic rate equations for 

nucleation and crystal growth have been determined based on crystal width in a model that 

simplifies the need for control of crystal breakage. The obtained mathematical model predicts 

a crystal size distribution that is consistent through a moderate degree of crystal breakage 

during downstream processing. 
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4.2 Introduction 

In recent years, transition from batch to continuous production has received a significant 

interest in the pharmaceutical industry. Due to the increasing costs of drug development and 

the competition from generic manufacturers, extensive research has been conducted for the 

development of continuous processes for the cost effective manufacturing of pharmaceuticals 

with consistent quality.3,12,19 

Crystallization plays an important role in pharmaceutical production, both as a 

purification method and as a tool to produce crystals of APIs with the right size, habit and 

crystal structure.31 MSMPR crystallizers are arguably the most common choice of system for 

continuous pharmaceutical crystallization. Normally in the form of stirred tanks and 

analogous to a CSTR reactor, these crystallizers are simple, versatile, and suitable for the in-

line assessment of product quality. In contrast with plug flow crystallizers, MSMPR 

crystallizers are preferred for handling the concentrated suspensions and for the long 

residence times that are characteristic of crystallization processes. 

 Previous work demonstrated the applicability of MSMPR crystallizers for continuous 

production of well-known small molecule pharmaceuticals including cyclosporine,66,78,189 

deferasirox,76 aliskiren hemifumarate77 and acetaminophen,70,74 among others. The 

development focus depends on the actual demands for the crystallization process, and it 

becomes particularly challenging for compounds showing polymorphism and complex 

impurity compositions in the feed stream.83,184,190 In the field of crystal size distribution control, 

a common approach is to use semi-empirical rate equations combined with the mass and 

population balance in the crystallizer to predict the resulting yield and size distribution from a 

given set of process conditions. Such models offer a significant advantage for the assessment of 

the attainable crystal sizes and facilitate the selection of an optimal number of stages for the 

crystallization system.74,80 

Size characterization techniques are typically based on laser diffraction, sieve fractions or 

chord length distributions. These techniques, despite being sensitive to the shape of the 

crystals, offer a size distribution that is based on a single characteristic dimension (equivalent 

sphere diameter, sieve size, chord length) and thus provide little to no information on the 

crystal shape. In recent years, a number of methods have been developed for process imaging 

that have potential for simultaneous in-line control of the crystal size and shape during 

crystallization.102,129 Probe-based instruments like Mettler Toledo’s Particle Vision and 

Measurement (PVM) system are frequently used for the qualitative evaluation of crystal shapes 

during crystallization.70,103–111,113 Furthermore, the development of alternative non-invasive 

methods is often reported. These methods involve external high-speed cameras that are either 
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directed to a measurement window in the crystallizer114,117–119 or to an external sampling 

loop.120,122,123 

Image analysis allows for the application of morphological population balances to 

crystallization. Tracking size distributions in multiple dimensions can provide several 

advantages for the characterization of crystallization processes, not only for the application of 

multidimensional crystal size prediction models, but also for the detection of phenomena like 

agglomeration, crystal breakage, growth rate dispersion or transitions in crystal shape.62,191 

Despite the advantages of image analysis for characterization of crystallization processes and 

their increasing use in batch crystallization, optimization of an MSMPR crystallizer is rarely 

conducted for crystal size distributions based on quantitative image analysis, an only few 

examples can be found in the literature.60,192,193 In this work, an MSMPR crystallization cascade 

has been characterized by analyzing the 2D projection of the steady state crystallization 

magma. Image analysis has been used to evaluate the effect of process conditions on the 

crystal size and aspect ratio of elongated plate crystals. In addition, the source and extent of 

crystal breakage in the cascade have been identified, and the attainable particle sizes in the 

crystallizer have been obtained based on a crystal dimension that is consistent throughout 

downstream processing. 

4.2.1 Motivation and hypothesis 

Elongated crystals, typically in the shape of needles or plates, are very common in 

pharmaceutical production, with products like salicylic acid, acetaminophen or aliskiren 

hemifumarate often presenting this type of crystal habit.61,77,137 These crystals are some of the 

hardest to characterize since most of the size determination techniques assume spherical 

particles. Furthermore, elongated crystals tend to be fragile in their largest dimension, and it is 

not uncommon that the shape of the crystallization product differs significantly from that at 

the formulation step. Figure 4.1 shows a typical approach for in-line size distribution control in 

a two stage continuous MSMPR process, and a hypothesis on how the crystal shape will evolve 

during crystallization and downstream processing. This hypothesis is based on the system 

behavior in full-scale batch production and will be later verified in this work. 

The crystal size distribution can be expressed in at least as many ways as the number of 

dimensions defining the crystal habit. Assuming that the crystals are perfect plates, we can 

distinguish between crystal length, width and height in order of decreasing size. Systems that 

exhibit preferential breakage in a single plane have a peculiarity: ideally, only the volumetric 

size distribution on the perpendicular dimension will be affected by breakage, as the total mass 

related to each of the other crystal dimensions is retained during crystal fracture. This 

hypothesis assumes that crystal breakage occurs in a plane that is completely perpendicular to 
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the largest dimension, and neglects the formation of fines during the fracture. Thus, it works 

best for systems with high aspect ratios and a limited degree of crystal breakage. 

 

Figure 4.1 Hypothetical crystal breakage during suspension transfer and downstream processing of 

elongated plate crystals. Quality Assurance (QA) is expected to occur at the end of the crystallization 

process, providing feedback for CSD control in the MSMPR cascade. 

For systems following this behavior, the mathematical modelling of the MSMPR 

crystallizer can be simplified by use of a crystal shape that is only dependent on the 

crystallization rate, which can be obtained from image analysis of those experiments with 

negligible crystal breakage. This distribution permits the determination of a population 

function that is independent of crystal breakage, thus allowing the independent evaluation of 

mechanisms like size-dependent growth or growth rate dispersion. Then, a crystal size 

prediction model can be developed for those dimensions that are consistent through 

downstream processing. The formulation 3D crystal size distribution can be approximated 

from the predicted dimension and the distribution of aspect ratios obtained after downstream 

processing, thus simplifying the extensive breakage modelling in downstream processing.  

4.3 Materials and methods 

4.3.1 Materials  

Melitracen hydrochloride (≥99.8% purity) was obtained in powder form from full-scale 

batch production in H. Lundbeck A/S. Absolute ethanol (≥99.8% purity) was purchased from 

VWR Chemicals and used as a solvent for the process. Acetone (≥99.5% purity) purchased 

from VWR Chemicals was used to wash the crystals after filtration. 
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4.3.2 Experimental setup  

A schematic diagram of the continuous crystallization setup is depicted in Figure 4.2. The 

setup consists of three vessels connected with programmable peristaltic pumps (P1: 

LongerPump BT100-1F; P2/P3: LongerPump WT600-1F), and it can operate both for single 

stage and two stage continuous crystallization. P1 continuously delivers the feed solution to 

the first MSMPR crystallizer at a flow rate between 1.8 and 7.3 mL/min, depending on the 

residence time. To prevent crystallization in the feed tubing, the stream was heat traced to 60 

°C using heat tape and a temperature control unit (Lund & Sørensen).  

 

Figure 4.2 Schematic diagram of the two stage MSMPR crystallization setup. 

Two jacketed round-bottom reactors with mechanical stirring and an operating volume of 

220 mL were used as MSMPR crystallizers. The crystallization magma was mechanically 

agitated using a three-blade ringed propeller (45 mm, stainless steel, Heidolph Instruments) 

working at 400 rpm. Due to the nature of the crystallization system, the impellers were coated 

with a thermoplastic fluoropolymer (Accofal 2G54, Accoat) to prevent fouling and corrosion 

during extended operation times. Both crystallizers were constructed with the same 

components, and they operated at the same volume and agitation speed. 

Following a common approach for the operation of lab-scale MSMPR crystallizers, 

suspension transfer was conducted in semi-continuous mode to achieve isokinetic withdrawal 

of the crystallization magma.70,78,181 P2 and P3 were programmed to operate intermittently, 

removing 5% of the suspension volume every 5% of a residence time. First, the pump removes 
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part of the crystallization volume until the liquid level reaches the end of the dip pipe. Then, it 

pumps air for another 5 seconds to rinse the stream from any remaining suspension. This 

intermittent withdrawal system was used to minimize classification in the removed magma by 

applying a high intermittent flow instead of a constant, lower flow rate. For a maximum 

suspension density of 100 g/L and an FBRM square weighted mean chord length between 40 

and 60 μm, a flow rate of 1850 mL/min and a tubing internal diameter of 6.4 mm were 

sufficient to prevent both classification and plugging during suspension transfer.  

To be able to operate for extended periods of time and to minimize the amount of feed 

solution required for an experiment, the crystallization magma was returned to the feed vessel 

so that the product could be re-dissolved and reused as feed.74 For a feed temperature of 60 °C, 

it required only a few seconds for the magma to completely dissolve. The heat tracing in the 

feed pipe ensures that any remaining fines were dissolved before reaching the first crystallizer. 

4.3.3 Determination of the solubility curve  

To obtain accurate solubility data that can be used for the mathematical model, the 

solubility curve was determined again using triplicate samples and the HPLC method in 

Appendix A, instead of using the approximated gravimetric determination from Chapter 3. A 

220 mL suspension containing 125 g/L of API was prepared in the MSMPR crystallizer at room 

temperature. After crash cooling to 5 °C, the suspension was maintained under agitation for 2.5 

h. Then, triplicate 4 mL samples of the suspension were filtered through a 0.45 μm sterile 

syringe filter and the liquid phase was kept for HPLC analysis. To verify that the system was at 

equilibrium, samples were removed in 10 min intervals and the concentrations were compared. 

Further solubility points were obtained applying heating intervals of 5 °C to the same 

suspension. After each objective temperature was reached, the suspension was kept agitated 

for 90 min prior to the removal of triplicate samples. A total of 7 solubility points were 

obtained within the range of 5 to 35 °C. 

4.3.4 Operation of the MSMPR cascade 

The continuous crystallization experiments were conducted in the setup described in 

Figure 4.2. To start an experiment, the feed vessel and the crystallizers were filled with a 

saturated suspension containing the target concentration of API. Then, the temperatures of 

each vessel were adjusted to the experimental conditions. The pumps were started as soon as 

the temperatures stabilized. P1 was set to pump at full speed for the first 10 s of operation to 

equilibrate the temperature throughout the feed stream and prevent clogging during start-up. 

Then, the calibration of the flow rate was validated using a 5 mL graduated cylinder. 
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The evolution to steady state was tracked in-line using an FBRM ParticleTrack G400 probe 

from Mettler Toledo. To obtain relevant chord length distribution data, the probe window was 

cleaned every residence time to remove encrustation. The onset of steady state was determined 

from FBRM data and later verified by HPLC determination of the system concentrations. 

The steady state was sustained for at least four consecutive residence times before the 

experiment was stopped. At each residence time, 4 mL samples were removed from the feed 

solution and the crystallization mother liquor. The mother liquor samples were obtained by 

filtration of a magma sample through a 0.45 μm syringe filter. 

At the end of the experiment, the feed flow rate was measured again and compared with 

the value at the start of the experiment. Encrustation in the feed pipes could lead to a decay on 

the flow rate. Thus, this verification ensures that the residence time was not altered during the 

experiment. The acceptance criterion was a deviation equal to or lower than 0.1 mL/min. After 

measuring the feed flow rate, three samples of the crystallization magma were collected at 

three different positions in the crystallizer (top, middle, and bottom). The steady state 

classification in the MSMPR unit was determined from the difference between the API 

concentration in the collected samples and that in the feed vessel. Finally, the crystallization 

magma was filtered using a vacuum system and the crystals were washed with cold acetone. 

Although no issues with polymorphism have been previously experienced for this compound 

in batch production, samples from four relevant experiments were analyzed using X-ray 

powder diffraction (XRPD) to verify that the crystal structure remained consistent throughout 

this work. The results are reported in Appendix B. 

4.3.5 Off-line analytical techniques  

The solubility, feed, mother liquor and magma samples were analyzed using HPLC. The 

HPLC system (Hitachi LaChrom Elite) was equipped with a Phenomenex Gemini® 10 cm x 4.6 

mm x 3 μm C18 110 Å silica column and a L-2455 diode array detector (Hitachi). The API 

concentration was determined at 230 nm (see Appendix A for methods). XRPD patterns of the 

filtered crystals were obtained for 2θ between 5° and 40° using a Bruker D8 Advance 

diffractometer. Finally, SEM analysis was conducted to determine the 3D shape of the crystals 

employing a FEI Quanta 200 electron microscope. The SEM samples were pre-coated with a 5-

10 nm gold layer. 

4.3.6 Image analysis 

A simple off-line sampling method for the accurate imaging of the crystallization magma 

has been developed in this work. It was decided to aim for a labor intensive yet reliable 

method to determine the crystal size distributions. A major limitation for in-situ image 
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analysis is the ability to provide quantitative results at high solid concentrations. In addition, 

determination of the 2D or 3D crystal shape from pictures obtained with an in-line camera is 

complicated. The observed crystal size is a function of the crystal orientation as well as their 

distance to the focal point. Since variations in the steady state crystal size distribution from 

MSMPR crystallization can sometimes be very small, an off-line method where the crystals fall 

flat in the same plane was employed. 

The method consists of diluting a sample of the crystallization magma with a saturated 

solution of the solute and then measuring the crystal dimensions in a closed system. To 

prepare the saturated solution, Melitracen HCl powder was suspended in ethanol a day 

beforehand and left agitated at room temperature during the experiment. Before sampling, the 

suspension was filtered using two 0.45 μm syringe filters in series, collecting the liquid phase 

in an open petri dish (approximated capacity: 20 mL). The petri dish was completely filled to 

minimize the amount of air trapped in the sample. Then, a few drops of the crystallization 

magma were added to the clear saturated solution and the petri dish was sealed. A picture of 

the sampling system is shown in Figure 4.3. 

 

Figure 4.3 Sample cell for the microscope analysis, containing a sample of the crystallization magma 

diluted in a saturated solution of the API. The larger petri dish is placed to contain accidental spills. 

This sampling approach has multiple advantages. First, the saturated API solution dilutes 

the sample, thereby bringing the supersaturation in the magma down to a negligible value. 

This limits crystal growth during off-line analysis. In addition, diluting the sample in the 

saturated solution greatly reduces the suspension density, allowing for an easier identification 

of each crystal in the picture and reducing the amount of overlapping crystals. Using a closed 

petri dish minimizes solvent evaporation, which would otherwise promote crystal growth. 

Lastly, analyzing a suspended sample facilitates the even distribution of the fragile crystals by 

gentle shaking. 

The samples were analyzed using a Nikon Eclipse ME600 optical microscope equipped 

with an HD camera (Leica MC120) and the Leica Application Suite software (ver. 4.5). To verify 
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the stability of the crystal size distribution during the off-line sampling, pictures were taken at 

the same position immediately after sample preparation and 5 minutes later to detect 

dissolution and crystal growth. Figure 4.4 shows an example of two pictures taken for this 

verification method. After the sample stability was verified, the petri dish was screened to 

obtain representative pictures of the crystallization magma. 

 

Figure 4.4 Off-line optical microscopy pictures of the crystallizer magma, taken at the same position in 

the petri dish. The pictures are taken 5 minutes apart to study the stability of the off-line samples. The 

second picture contains more crystals as the suspension takes 2-3 minutes to settle completely. 

Note that this off-line sampling method is not as practical as the state of the art in-line 

process imaging, from which magma pictures can be obtained in real time using a non-invasive 

instrument. The main disadvantage of the method described here is that it is limited to process 

design, and off-line sampling is not a practical approach for crystal shape control in the full-

scale process. However, with the recent advancements in the development of algorithms for 

the accurate determination of crystal size and shape from on-line process imaging, this process 

will likely be automated soon.118–120,130  

Image analysis was conducted manually using the image processing software ImageJ (ver. 

1.6.0). The measurements originated from several pictures obtained at four different residence 

times in the steady state crystallizer. An approximated sample number of 700 crystals was 

chosen based on the relative variations in the mean crystal dimensions over sample number 

compared to the crystal size variations between crystallization experiments. The relative 

variations in the mean size with the sampling number are provided in Appendix B, and 

consequences of the measurement uncertainty will be discussed later in Section 4.5. During 

the measurement, all the complete crystals in a given picture must be analyzed before the next 

picture is studied. This is done by dividing the image into 12 segments of equal size and 

analyzing all the crystals in each region.  This approach minimizes the operator error during 

sample analysis, as it becomes more difficult to overlook the smaller crystals.  
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4.4 Experimental results 

4.4.1 Solubility curve 

The obtained solubility curve for Melitracen HCl in ethanol is reported in Figure 4.5. The 

solubility of the system has an exponential temperature dependency for temperatures between 

5 and 35 °C. The fitted exponential expression will be used to determine supersaturations in 

both the experimental data and the mathematical model. 

 

Figure 4.5 Solubility curve for Melitracen hydrochloride in ethanol. The error bars show the standard 

deviation between the triplicate HPLC samples. These are placed at the side of each point for clarity. 

4.4.2 Evolution to steady state and reproducibility 

As a first step to assess the reliability of the MSMPR data, three MSMPR experiments were 

conducted in single stage aiming for the same process conditions. A summary of the steady 

state conditions for each repetition is provided in Table 4.1. 

Following a similar approach to the one presented by Hou et al.,70 the system 

reproducibility was assessed for different starting suspensions. R1 started from an equilibrium 

suspension using crystals from the full-scale batch process. R2 started from the steady state 

suspension from R1, which was left to reach equilibrium before the experiment. At the end of 

R2, 30 mL of the feed solution were pumped into the steady state magma and the crystals were 

allowed to grow overnight. The agitation intensity was kept at 150 rpm to minimize crystal 

breakage. The resulting suspension was used as the starting point in R3. As it will be discussed 

from the SEM and microscopy analysis, the full-scale batch and MSMPR crystals present 
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significantly different crystal habits. Thus, the reproducibility has been studied for starting 

suspensions including different shapes and starting crystal sizes. 

Table 4.1 Steady state conditions for the three repetitions in single stage MSMPR crystallization. The 

concentration values include the mean ± standard deviation of the four replicates at steady state. 

Experiment C0 (g/L) T (°C) τ (min) Cml (g/L) σa Yield (%)b 

R1 122.0 ± 3.4 10 60 33.7 ± 2.0 0.46 72.4 

R2 127.2 ± 3.0 10 60 34.2 ± 0.6 0.49 73.1 

R3 128.4 ± 0.6 10 60 33.6 ± 0.1 0.46 73.8 

aThe supersaturation σ is calculated as (Cml-Csat(T))/Csat(T), for which a value of 0 corresponds to the 

thermodynamic equilibrium.  
bThe step yield is calculated as 100(C0-Cml)/C0. 

As it can be seen from Table 4.1, the three repetitions gave similar mother liquor 

concentrations and yields. The standard deviation of each concentration value is a function of 

the concentration fluctuations at steady state. These are at a similar order than the variations 

in the steady state mother liquor concentration for different repetitions. Furthermore, the feed 

concentrations tend to give a higher deviation than the crystallizer mother liquor, presumably 

because of the higher dilution factor that these samples require for HPLC analysis.  

The steady state consistency is further verified with the FBRM data from the three 

repetitions and reported in Figure 4.6.  

 

Figure 4.6 Evolution of the FBRM counts and square weighted mean chord length throughout the three 

repetitions. 
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As it has been seen for other systems, the experiment starts with a washout phase lasting 

for 1-2 residence times, when the initial suspension is removed at a faster rate than new 

crystals are generated.74 This is seen as a drop in the total number of counts and, for this 

system, as an increase of the mean chord length due to the growth of the seed crystals. The 

washout phase leads to an increase in the system supersaturation that eventually triggers 

system response. Then, the total number of counts increases and the mean size is reduced due 

to the increased nucleation rate. The system reaches a pseudo steady state after 4 residence 

times. However, the chord length distribution does not stabilize until residence time 8-9. This 

behavior was consistent throughout all the experiments in this work. Considering the small 

extent of the fluctuations, it could be caused by a high dependency of the nucleation rate on 

supersaturation. Such dependency would lead to a high nucleation at the end of the washout 

phase, dropping the supersaturation below the steady state value and leading to a second 

washout. As it will be reported in Section 4.5, this system has a nucleation rate order for 

supersaturation of 2.60, which is on the high end for cooling MSMPR crystallization.194 

However, these values are far below what would be expected for high-order cycling, which 

explains why the system eventually stabilizes.30,56 To ensure consistent concentration and size 

distribution data, HPLC and microscope sampling were conducted after residence time 9. 

4.4.3 Continuous crystallization experiments 

A set of continuous crystallization experiments were conducted to serve as a basis for the 

characterization of the MSMPR cascade. For the experimental design, a constant temperature 

of 10 °C was selected at the final crystallization step. The objective in the implemented process 

will be to obtain a crystallization magma that is saturated at room temperature to limit 

variations in the crystal size distribution and fouling in the transfer pipes connecting to the 

filtration process. Lower temperatures were not explored in this work because of this 

constraint. The experimental conditions and steady state concentrations are summarized in 

Table 4.2. 

The effects of feed concentration and residence time on crystallization kinetics were 

investigated first in single stage (E1-5). Then, the experiments were extended to investigate the 

effects of performing part of the separation at a higher temperature (E6-9, stage 1). Note that, 

in contrast with varying solely the feed concentration, variations in temperature lead to 

significant changes in both the temperature dependent rate constants and the crystallizer’s 

suspension density. This combined effect does not allow to isolate the effect of suspension 

density unless the feed concentration is varied in separate experiments. 
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Table 4.2 Steady state results for the continuous crystallization experiments. Those experiments 

containing two columns were conducted in two stage crystallization, showing data for stage 1 (S1) and 

stage 2 (S2). The concentration values include the mean ± standard deviation of the four replicates at 

steady state. 

Exp. C0 (g/L) 
MSMPR 

stage 
T (°C) τ (min) Cml (g/L) σ Yield (%) 

E1 130.2 ± 1.2 S1 10 60 34.3 ± 0.1 0.49 73.6 

E2 127.9 ± 0.9 S1 10 90 33.0 ± 0.3 0.43 74.2 

E3 125.8 ± 1.3 S1 10 120 30.3 ± 0.2 0.32 75.9 

E4 90.4 ± 0.9 S1 10 60 32.1 ± 0.4 0.40 64.4 

E5 60.2 ± 1.5 S1 10 60 31.8 ± 0.1 0.38 47.1 

E6 127.5 ± 0.4 S1 20 30 44.8 ± 0.7 0.29 64.9 

S2 10 30 28.6 ± 0.3 0.24 77.6 

E7 127.0 ± 1.0 S1 20 60 43.3 ± 0.3 0.25 65.9 

S2 10 60 27.7 ± 0.6 0.20 78.1 

E8 127.7 ± 2.2 S1 30 30 66.6 ± 0.9 0.27 47.8 

S2 10 30 32.7 ± 0.7 0.42 74.4 

E9 125.9 ± 1.2 S1 30 60 62.6 ± 1.0 0.20 50.3 

S2 10 60 30.2 ± 0.7 0.31 76.0 

 

The multistage crystallization experiments (E6 to E9) were designed to have the same total 

residence time as experiments E1 and E3. This allows for a direct comparison of the effect of 

number of stages and first stage temperature on crystallization yield. As it was recently 

reported by Li et al.,66 increasing the number of stages is a practical method to attain higher 

yields for a constant residence time and final stage temperature. Working with multiple stages 

allows part of the crystallization process to be conducted at a higher temperature, which 

typically results in faster crystallization rates. The temperature of the first stage plays an 

important role in the extent of this promotion.189  
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Note that, for the same feed concentration and total residence time, the highest product 

recoveries were obtained when the first stage operates at 20 °C (E6 and E7), while a first stage 

temperature of 30 °C (E8 and E9) does not offer a significant advantage against single stage 

crystallization (E1 and E3) from a yield perspective. This behavior shows that higher 

temperatures in the first stage do not necessarily lead to a higher productivity. Although 

kinetics are expected to be faster at 30 °C, increasing the crystallization temperature reduces 

the attainable step yield in the first stage. This means that most of the solute recovery is left for 

the second stage that is subject to slower kinetics. Furthermore, the faster kinetics in the first 

stage lead to lower steady state supersaturations. For the same residence time, the crystallizers 

operating at 30 °C have the lowest supersaturation observed in the first crystallization stage. 

From a yield perspective, operating this close to equilibrium is not efficient in an intermediate 

stage as it lowers the overall productivity of the crystallization process.   

The fraction between the API concentration in the crystallization magma and that at the 

feed vessel was used to investigate the steady state classification. The values for each 

experiment are presented in Figure 4.7. From all the experiments in this work, only one of the 

MSMPR crystallizers presented a higher API concentration in the MSMPR than in the feed 

vessel. Considering that the observed deviations never exceeded 5%, and that the classification 

levels seem to be independent of the residence time and suspension density, it is reasonable to 

assume that the deviations come from the experimental error in sampling suspensions and 

that MSMPR crystallizer is operating close to ideal mixing. 

 

Figure 4.7 Steady state classification values for each continuous crystallization experiment, expressed as 

the fraction between the API concentration in the magma and that in the feed. Experiments named as 

EX.Y correspond to the run EX on stage Y. The error bars correspond to the standard deviation from 

HPLC analysis accounting for error propagation. 
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4.4.4 Crystal habit of the full-scale batch and MSMPR crystals 

Figure 4.8 shows SEM pictures of the crystals obtained from lab-scale MSMPR 

crystallization (E8) and the crystals used in formulation in the full-scale batch process.  

 

Figure 4.8 SEM pictures displaying the 3D shape of the API samples collected from the MSMPR process, 

compared to those supplied from full-scale batch production. Note that the two pictures have a different 

scale bar. 

Crystal habit is a main function of the internal structure of the crystals and the 

crystallization conditions. These conditions include the choice of solvent, the presence of 

impurities and the rate of crystal growth.30 Furthermore, mechanical stress causing crystal 

breakage and attrition can have a significant impact on the final shape of the crystals. 

Both processes produce crystals with a plate morphology and a similar relation between 

the crystal height and width. However, the full-scale batch product exhibits a significantly 

shorter crystal length. In contrast with the product from MSMPR crystallization, the batch 

product was likely subject to substantial mechanical stress in downstream processing. The 

different crystal habit could be explained as a consequence of crystal breakage occurring 

during downstream processing in full-scale production. However, this hypothesis cannot be 

verified without a proper study of the effect of crystallization kinetics on crystal habit. Even 

though both processes use the same solvent and start from a purified solution, the nature of 

the batch process and the supersaturation profile are completely different. The source of the 

different morphology will later be investigated from the effect of process conditions on crystal 

habit and from the behavior of the system upon crystal breakage. 
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4.4.5 Effect of process conditions on crystal habit 

Crystals present multiple crystallographic planes. In this work, we have simplified the 

crystal morphology to three characteristic dimensions: width, length and height, the latter 

being the shortest dimension that is hidden in the 2D projection. For the shape analysis, it is 

assumed that the crystals fall flat in the sample, displaying their two largest dimensions. This is 

promoted by using a sample presentation method that dilutes the crystallization magma and 

by the significant difference in surface area between planes in elongated crystals. 

Figure 4.9 shows the steady state crystal shape distribution of the first stage MSMPR 

magma during four runs at variable supersaturations and temperatures. The objective behind 

the analysis is to detect variations in crystal shape caused by the different conditions of crystal 

growth. As it was verified during the later analysis of the population balance, experiment E3 

and E8 had, respectively, the smallest and largest crystal growth rate in the first MSMPR stage. 

Populations in the second crystallization stage were left out of this analysis, as they are 

susceptible to crystal breakage during suspension transfer. Results in Figure 4.9 demonstrate 

that, in this range of operating conditions, the rates of crystal growth for crystal width and 

crystal length are proportional regardless of the process temperature and supersaturation. 

 

Figure 4.9 Crystal shape distribution, expressed as the ratio between crystal width and crystal length, 

for the 2D projection of the steady state magma in different runs. The experimental conditions cover the 

range of supersaturations from 0.27 to 0.49 and temperatures from 10 °C to 30 °C. 

Note that the crystal shape distribution for run E3 appears wider than the rest. Different 

mechanisms, including breakage, size-dependent growth and growth rate dispersion in one 

dimension, could cause a broadening of the crystal shape distribution. These mechanisms can 

be investigated from the size dependence of the crystal shape and from the population balance 

in the MSMPR crystallizer. However, the first step is determining if the broadening is 
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consistent throughout the different crystal sizes. This can be studied from a shape vs length 

diagram as shown in Figure 4.10.  

 

Figure 4.10 Crystal shape diagrams for E1 and E3, containing approximately 700 crystals each. The 

diagrams have been divided in three regions (A, B, C) to facilitate the discussion.  

Inspection of Figure 4.9 reveals that over 95% of the crystals fall in region C (width/length 

< 0.2) for most of the experiments. For a system with negligible breakage where the growth 

rates in each dimension have a linear dependency, the mean aspect ratio should remain 

constant regardless of crystal size. As it can be seen from Figure 4.10, the distribution 

broadening from Figure 4.9 occurs preferentially at the lower crystal lengths (region A). Runs 

E1 and E3 were conducted at the same feed concentration and temperature but at different 

residence times. It can be inferred from region C in Figure 4.10 that a longer residence time 

leads to an increase in the length of the crystals in the magma. However, longer crystals and 

extended holding times are more susceptible to crystal fracture. The increased population in 

region A is presumably a consequence of breakage, leading to the appearance of crystal 

fragments with a short length and a square-like 2D projection. 

The appearance of these fragments would be accompanied by a broadening of the crystal 

shape distribution, as those crystals that break near the edges will still retain a crystal shape 

within a reasonable value. However, this broadening is very small in this system due to the 

limited extent of crystal breakage. From the samples obtained in the first stage, the magma in 

E3 presents the worst case scenario for this phenomenon. 
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4.4.6 Crystal breakage in multistage crystallization 

To investigate the impact of suspension transfer and second stage crystallization on crystal 

breakage, samples of the crystallization magma were collected at three different locations: at 

the first MSMPR stage, at the outlet of the pump transferring the magma between crystallizers 

(P3), and at the second MSMPR stage. Experiment E7 was selected for this purpose, as it gave 

the highest suspension density in the first stage crystallizer. In Figure 4.11, a sample of the 

optical microscopy images of the three points are displayed, accompanied by the shape 

diagrams of each sample. To facilitate the discussion, the same has been done for the full-scale 

batch product that is used as a starting suspension in the MSMPR crystallizer. 

Note that the largest difference in crystal shape occurs at the pump transferring the 

suspension from MSMPR 1 to MSMPR 2. Suspension transfer takes less than 5 seconds, and 

thus it may be assumed that the extent of crystallization is negligible during product removal. 

The observed variations are solely related to crystal breakage during pumping.  

Interestingly, the crystal shape distribution is retained in the second crystallizer. The 

experiment yielded a solute recovery of 78.0%, with the first 65.9% being recovered in the first 

crystallizer. Similar to other systems, the second MSMPR unit has a small impact on the crystal 

size distribution.66,74 This is because most of the solute mass is recovered in the first stage. The 

second stage receives a suspension as feed, and the large amount of crystals provide an 

extended area for solute deposition. Furthermore, the second stage operates at lower 

temperatures and reduced supersaturations, which limit the overall kinetics of crystallization. 

The shape diagram presented in Figure 4.11 does not show a constant, size-independent 

shape for the formulation product. As suspected from the SEM images in Figure 4.8 and 

supported by the observed breakage in P3, the API crystals are highly sensitive to crystal 

breakage in process equipment. Considering the similarity between the crystallization magma 

at the outlet of P3 and that of the full-scale batch product, and since crystal breakage appears 

to be heavily dependent on crystal length, it may be assumed that the different crystal shape 

comes from crystal breakage during downstream processing. Regardless of the source, tablet 

formulation will certainly lead to API crystal breakage. Thus, there is no point in designing a 

gentle treatment from an industrial perspective. 
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Figure 4.11 Tracking crystal breakage with optical microscopy. An example of a magma picture is placed 

side by side with the 2D shape diagrams for 700 crystals (multiple pictures) at three sampling points in 

the MSMPR cascade and for the commercial batch product. This figure, read from top to bottom, 

follows the hypothesis described in Figure 4.1. 
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As discussed in Section 4.2.1, unless crystal breakage occurs at the plane perpendicular to 

the characteristic dimension, the volumetric crystal size distribution will remain unchanged. 

The smaller volume of the broken crystal is compensated by the birth of a new crystal, a 

‘fragment’ of the original, that maintains the same size for all the crystal dimensions but one. 

The total volume from the two fragments will still remain the same. The volumetric crystal size 

distributions of run E7 based on crystal width and crystal length have been reported in Figure 

4.12, together with the quantitative shape distributions corresponding to the diagrams in 

Figure 4.11. Note that the accuracy of the size distributions in Figure 4.12 is heavily limited by 

the small sampling number, and thus care should be taken while assessing the information. 

However, the observed 35% reduction in the mean crystal length is significantly higher than 

the previously studied measurement reproducibility (see Appendix B), and it is further 

supported by the significant shape variations observed in Figure 4.11. The obtained 

distributions support that crystal breakage affects the volumetric crystal length distribution 

while the effect on the width distribution is not detectable.  

 
Figure 4.12 2D crystal size (a) and shape (b) distributions at different locations of the steady state 

system in experiment E7. 

The consistency of one of the size distributions with crystal breakage provides a significant 

advantage for the early assessment of crystal quality. Contrary to the crystal size distributions 

from laser diffraction, the crystal width distribution is expected to remain consistent through 

downstream production, as it is not based on projected area but on crystal dimensions that are 

not sensitive to breakage. In addition, since crystals tend to break on their smallest plane, the 

second largest dimension (typically defining filterability) is not affected. Thus, focusing on 

these size distributions simplifies the development of the crystallization process and the later 

modelling of the downstream unit operations. 
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4.5 Optimization for a relevant crystal dimension 

4.5.1 Selection of a mathematical model 

Using a common approach for MSMPR crystallizers, the crystallization rate equations have 

been determined by fitting a mathematical model that simultaneously solves the population 

balance and the mass balance for each crystallizer.  

Determination of multiple crystal dimensions enables the application of multidimensional 

population models to predict crystal size and shape. As demonstrated by quantitative image 

analysis, the crystal shape is independent of the crystal growth rate in the MSMPR crystallizer, 

and only crystal breakage induces significant changes in the 2D projection of the magma. 

Given that most of the crystal breakage occurs in the pumps and that this phenomenon is 

hardly avoidable during downstream processing and formulation, a unidimensional population 

model based on crystal width is sufficient for this system. The model will be using a shape 

factor that assumes negligible crystal breakage. Since the obtained populations assume that 

the crystals never broke in the first place, this approach allows for the independent evaluation 

of size-dependent growth from the logarithmic population density plot. 

The use of population models based on a non-fragile dimension has limitations. If the 

extent of crystal breakage was significantly higher, the increased amount of dislocations in the 

broken crystal plane would lead to a faster growth rate in the perpendicular dimension. In 

addition, even though the increase in surface area upon needle/plate breakage is relatively 

small, extensive fracture will cause a significant increase in the available surface area for crystal 

growth. Consequently, the second MSMPR would exhibit lower supersaturations and affect the 

rates of crystal growth in the other crystal dimensions. Finally, the crystals do not necessarily 

have to break on the same dimension, or following a straight plane. High degrees of crystal 

breakage could affect more than one dimension or produce an excessive amount of fines. This 

approach has been valid for the system studied here, but further consideration would be 

required for each case. 

4.5.2 Population and mass balances for the MSMPR cascade 

The unidimensional population balance of a steady state MSMPR crystallizer with 

negligible agglomeration and breakage in the characteristic dimension was described by 

Randolph and Larson as in eq 4.1.56 

 𝑑(𝐺𝑛𝑖)

𝑑𝐿
+
𝑛𝑖 − 𝑛𝑖−1

𝜏
= 0 (4.1) 
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When the system follows McCabe’s ΔL law, the crystal growth rate is not a function of 

crystal size. The population balance in eq 4.1 can then be integrated for both crystallizers, 

using the boundary condition n(0) = n0 and considering that the first crystallizer is not seeded:  

 
𝑛1(𝐿) = 𝑛1

0𝑒𝑥𝑝 (
−𝐿

𝐺1𝜏1
) (4.2) 

 
𝑛2(𝐿) = 𝑛2

0 𝑒𝑥𝑝 (
−𝐿

𝐺2𝜏2
) + 𝑛1

0 [
𝐺1𝜏1

𝐺1𝜏1 − 𝐺2𝜏2
] [𝑒𝑥𝑝 (

−𝐿

𝐺1𝜏1
) − 𝑒𝑥𝑝 (

−𝐿

𝐺2𝜏2
)] (4.3) 

Equations 4.2 and 4.3 define the population balance in the first and second crystallizer, 

respectively. n0 is the population of zero-sized nuclei and it can be calculated from the rates of 

nucleation and crystal growth: 

 
𝑛𝑖
0 =

𝐵𝑖
𝐺𝑖

 (4.4) 

The suspension density for each crystallizer can be obtained from the third moment of the 

population balance, the density of the solid phase ρ and a volumetric shape factor kv, assuming 

that the crystal shape is independent of crystallization conditions. 

 
𝑀𝑇 = 𝑘𝑣𝜌∫ 𝐿3𝑛𝑑𝐿

∞

0

 (4.5) 

The mass balance for the API in each crystallizer can be written as  

 𝐶0 = 𝐶𝑚𝑙 +𝑀𝑇 (4.6) 

Finally, the rates of nucleation and crystal growth can be expressed from semi-empirical 

equations, where the mass balance in eq 4.6 can be incorporated to express supersaturation as 

a function of suspension density and feed concentration: 

 
𝐵 = 𝑘𝑏0𝑒𝑥𝑝 (

−𝐸𝑏
𝑅𝑇
)𝑀𝑇

𝑗 (
𝐶0 −𝑀𝑇 − 𝐶𝑠𝑎𝑡(𝑇)

𝐶𝑠𝑎𝑡(𝑇)
)
𝑏

 (4.7) 

 
𝐺 = 𝑘𝑔0𝑒𝑥𝑝 (

−𝐸𝑔

𝑅𝑇
) (
𝐶0 −𝑀𝑇 − 𝐶𝑠𝑎𝑡(𝑇)

𝐶𝑠𝑎𝑡(𝑇)
)
𝑔

 (4.8) 

Equations 4.2, 4.5, 4.7 and 4.8 will have a single solution that satisfies both the mass 

balance and the population balance in the first crystallizer. For a given feed concentration, 

crystallization temperature and residence time, this system of equations was solved using the 

MATLAB function lsqnonlin to find the values of B, G, MT and n in the first MSMPR stage. 
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Then, eqs 4.3, 4.5, 4.7 and 4.8 were solved in the same way to find the relevant conditions in 

the second stage. 

4.5.3 Determination of the kinetic rate equations 

Prediction of the steady state population requires knowledge on the crystallization rate 

equations, the density of the solid phase and the shape factor of the crystals. The rates of 

nucleation and crystal growth as described in eqs 4.9 and 4.10 are based on seven parameters 

that can be obtained by fitting the prediction model to the experimental population 

distributions. 

The bulk density of the API was determined by measuring the volume increase in a 

graduated cylinder after suspending 20.29 g of the crystalline product in 60 mL of a saturated 

solution of Melitracen HCl in ethanol. Before the measurement, the suspension was agitated 

using magnetic stirring to ensure that the crystals are properly dispersed and the air had been 

removed from the sample. The obtained density for the solid API was 1280 kg/m3.  

The volumetric shape factor based on crystal width was established from image analysis of 

the crystallization magma. A mean aspect ratio between crystal length and width of 0.89 was 

determined from the mode of the crystal shape distributions of the experiments in single stage 

crystallization. Based on SEM observations, the crystal height was assumed to be proportional 

to the crystal width for all the studied conditions. Assuming that the height is a third of the 

crystal width, the kv value was calculated from the ratio between crystal dimensions: 

 𝑙 =
𝑤

0.089
        ℎ =

𝑤

3
 (4.9) 

 
𝑉𝑐 = 𝑘𝑣𝐿

3 = 𝑙ℎ𝑤 
𝐿=𝑤
⇒   𝑘𝑣 =

1

0.089 ∙ 3
= 3.74  (4.10) 

For a given shape factor and solid density, the experimental population distribution can be 

obtained using eq 4.11. 

 
𝑛𝑒𝑥𝑝(𝑤) =

𝑣𝑜𝑙(𝑤)𝑀𝑇,𝑒𝑥𝑝
𝜌𝑘𝑣𝑤

3∆𝑤
 (4.11) 

The obtained population distributions follow the trend displayed in Figure 4.13. The linear 

nature of the logarithmic population density plot demonstrates that the system follows 

McCabe’s ΔL law, and thus that the selected size-independent growth model is appropriate for 

this system. Note that crystal widths smaller than 2.5 μm deviate from the linear trend 

presenting lower populations. This behavior is presumably related to the limitations of image 
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analysis. Crystals of this size are too thin to be detected and analyzed at the used microscope 

magnification, and thus a smaller amount is detected during image analysis. Since the 

volumetric mean widths in this work are at the order of 20 to 40 μm, and crystals below 2.5 

μm never accounted for more than 0.3% of the suspension mass, this limitation should not 

have a significant impact on the accuracy of the model. 

 

Figure 4.13 Logarithmic population density plot for run E1, including a linear fit for the size range from 

3 to 40 μm. 

The fluctuations observed for the larger sizes in the population density plot are a 

consequence of the analysis method. In this work, 700 crystals were sufficient to detect 

variations in the crystal size distribution and to obtain a mean size with reasonable accuracy. 

However, this sample number does not allow to obtain a smooth distribution at the larger 

crystal sizes, where a single channel can include less than 5 crystals. Those crystals, despite 

being a small amount, constitute a large fraction of the suspension mass because of their size. 

Based on the number of crystals that are present in the larger bins, a smooth distribution 

would require a sample number 1-2 orders of magnitude higher. This is not practical for 

manual image analysis, but could easily be achieved with an appropriate algorithm. 

Fluctuations in the volumetric size distribution, as observed in Figure 4.12, produce a scatter in 

the population density plot and increase the uncertainty of the determined experimental 

kinetics. To limit the impact of this scatter, the effective rates of nucleation and crystal growth 

were fitted for populations between 3 and 40 μm. 

The kinetic parameters based on crystal width were obtained using the MATLAB function 

lsqnonlin. Based on an initial guess for the parameter vector θ = [kbo, Eb, j, b, kg0, Eg, g], the best 

fit of kinetic parameters is obtained by solving the least squares minimization problem: 
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𝑚𝑖𝑛
𝜃
 𝐹 = ∑ ∑ [ln (𝑛𝑒𝑥𝑝(𝑤)) − ln (𝑛(𝑤))]

2

40 𝜇𝑚

𝑤=3 𝜇𝑚𝐸1−9

 (4.12) 

To account for the typically small supersaturations in the second crystallization stage, the 

population data from the 13 crystallizers in E1 to E9 (including both stages) were used for 

parameter estimation. The obtained kinetic parameters for the best fit to eq 4.12 are 

summarized in Table 4.3.  

Table 4.3 Fitted kinetic parameters for MSMPR crystallization of Melitracen HCl from ethanol. 

Parameter Value Units 

kb0 4.79 ∙ 1022 m-3s-1 

Eb 73.0 kJ/mol 

j 0.56 - 

b 2.60 - 

kg0 13.1 m/s 

Eg 52.5 kJ/mol 

g 0.87 - 

 

The activation energies for nucleation and crystal growth are in a similar order of 

magnitude with those found for MSMPR crystallization of other organic compounds,73,74,83,189 

and show the significant temperature dependency of the rates of crystallization. The relative 

kinetic order i=b/g has a value of 3, indicating that for the same suspension density shorter 

holding times lead to a significant reduction in the crystal size.56 This is consistent with our 

experimental observations. Furthermore, as expressed by the values of b and j, nucleation is 

highly supersaturation dependent and receives a small impact from suspension density.  

4.5.4 Model verification 

The quality of the data fitting and accuracy of the prediction model are verified in two 

different ways. First, the model predicted rates of nucleation, crystal growth and suspension 

densities are compared to the values obtained experimentally. The experimental kinetics are 

calculated from the best fit to eqs 4.2 and 4.3, incorporating the mass balance into the 



68 Chapter 4 

 

calculation by means of eq 4.5. The comparison between experimental and fitted kinetics is 

displayed in Figure 4.14. 

 

Figure 4.14 Correlation between the observed and predicted kinetics. The values correspond to the 13 

crystallizers in 9 runs, including both single stage and multistage crystallization. 

The fitted rate equations offer a very good prediction for the suspension density and 

growth rate in the crystallizers. However, the steady state nucleation rates are poorly predicted 

by these parameters. The observed deviations are a consequence of multiple factors. It is 

important to clarify that the plots in Figure 4.14 display the combined experimental error and 

the fitting error. Since the experimental populations are determined from the volumetric size 

distribution, any scatter in this distribution caused by the relatively small sampling size will 

inevitably change the observed system kinetics. This problem is aggravated in multistage 

crystallization, where kinetics in the second stage depend on the fitted values for stage 1. In 

addition, since the experimental kinetics are forced to comply with the mass balance, 

deviations in the slope of the logarithmic distribution will cause uncertainties in the growth 

rate that will propagate to the calculated nucleation rate.  

To quantify the extent that these uncertainties will have on the quality of prediction, an 

experimental verification is conducted in multistage crystallization. Given that the objective of 

the model is to predict yields and crystal size distributions, the experimental verification 

approach will provide an indication of the impact of the estimation errors on crystallization 

outcomes without including the error propagation in the calculation of experimental kinetics. 

For the verification experiment, crystallization temperature and residence time were varied 

simultaneously, using different conditions than those used in the experiments for data fitting. 

The experimental conditions and predicted suspension densities are summarized in Table 4.4. 
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Table 4.4 Steady state conditions of the verification experiment and prediction error. 

C0 (g/L) 
MSMPR 

stage 
T (°C) τ (min) Yieldobs (%)b Yieldpred (%)b Error (%) 

129.5 ± 0.2 S1 25 40 56.7 ± 0.4 57.6 1.6 

S2 10 40 76.0 ± 0.6 78.1 2.7 

At the verification conditions, the model overestimates the steady state yield in both 

crystallizers. Considering that the error in the first unit propagates to the second stage, the 

estimation error is approximately 1.5% on each crystallizer. Slightly lower estimation errors 

were obtained by Power et al. in two stage MSMPR crystallization of benzoic acid.74 Regarding 

crystal size distribution, the model offers a good prediction for this experiment as it is shown 

in Figure 4.15.  

 

Figure 4.15 Comparison between the observed and predicted crystal width distributions for the 

verification experiment. (a) MSMPR stage 1. (b) MSMPR stage 2. 

4.5.5 Attainable regions of crystal width 

The fitted kinetic rate equations were used together with the prediction model to assess 

the limitations for crystal width distribution control in the investigated setup. The mass based 

mean crystal width is defined as the fraction between the fourth moment and the third 

moment of the population distribution:56 

 
  𝑤4,3 =

∫ 𝑤4𝑛𝑑𝑤
∞

0

∫ 𝑤3𝑛𝑑𝑤
∞

0

 (4.13) 
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Then, an optimization problem was formulated to find the attainable regions of mass 

based mean crystal width for single stage and two stage MSMPR crystallization. 

Single stage: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝐶0, 𝑇, 𝜏𝑡𝑜𝑡

  𝑤4,3 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

10 °𝐶 ≤ 𝑇 ≤ 30 °𝐶 

𝜎 ≤ 0.6 

𝑀𝑇 ≤ 100𝑔/𝐿 

𝐶𝑠𝑎𝑡,15 °𝐶 ≤ 𝐶𝑚𝑙 ≤ 𝐶𝑠𝑎𝑡,20 °𝐶 

𝑌𝑖𝑒𝑙𝑑 ≥ 65% 

Two stages: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝐶0, 𝑇1, 𝑇2, 𝜏1, 𝜏2

  𝑤4,3 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

10 °𝐶 ≤ 𝑇𝑖 ≤ 30 °𝐶 

𝜎𝑖 ≤ 0.6 

𝑀𝑇,𝑖 ≤ 100𝑔/𝐿 

𝐶𝑠𝑎𝑡,15 °𝐶 ≤ 𝐶𝑚𝑙,2 ≤ 𝐶𝑠𝑎𝑡,20 °𝐶 

𝑌𝑖𝑒𝑙𝑑 ≥ 65% 

𝜏𝑡𝑜𝑡 = 𝜏1 + 𝜏2 

0.25𝜏2 ≤ 𝜏1 ≤ 4𝜏2 

𝑇2 ≤ 𝑇1 (4.14) 

Most of the optimization constraints are shared between the two configurations, as they 

are related to the system limitations and the expected operation of an implemented process. 

The constraints on temperature, supersaturation and suspension density are based on the 

limitations of the kinetic parameters (fitted for values within this range) and the lab-scale 

experience for this system. At this scale and from previous experience with the system, higher 

supersaturations lead to fouling at the impeller and higher suspension densities promoted 

frequent clogging of the product removal stream. These constraints could be varied on a 

higher scale or for a different setup, provided that the system can successfully sustain the 

steady state at these conditions. To obtain a crystallization magma that is not subject to 

significant CSD variations in the transfer lines, the mother liquor concentration at the end of 

the crystallization process is set to have a saturation temperature between 15 and 20 °C. 

Furthermore, the step yield of the crystallization process must be higher than 65% to obtain an 

efficient separation. For the two stage configuration, the residence times are constrained so 

that none of the crystallizers will be more than four times larger than the other. In addition, a 

temperature constraint is set so that the second crystallizer is never operating at a higher 

temperature than the first stage.  

The optimization algorithm is solved using the MATLAB function fmincon. This function 

finds the set of conditions that minimize the value of w4,3 based on a given initial guess.  

Especially for two stage crystallization, where the function has 5 input parameters and a large 

number of constraints, the obtained minimum is highly sensitive to the initial guess. To verify 
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that the function has found the absolute minimum, 10,000 Monte Carlo simulations were 

conducted with random values for the input parameters. In those simulations, the feed 

concentration was limited between 80 and 135 g/L, the temperatures between 10 and 30 °C, 

and the total residence time between 60 and 120 min. Those simulations that did not 

accomplish the process constraints were discarded. The attainable regions and the results from 

this verification are plotted together in Figure 4.16. 

  

Figure 4.16 (a) Attainable regions for crystal width in the single stage and two stage MSMPR setup. (b) 

Comparison with the Monte Carlo simulation results. 

The obtained attainable regions for the two stage system show a good agreement with the 

Monte Carlo simulations, indicating that the obtained attainable regions are close to the 

absolute minimum/maximum size for these constraints. As expected due to the increased 

degrees of freedom, two stage crystallization offers a much better control of the crystal size for 

this compound. The attainable regions have a similar shape to what has been seen previously, 

becoming narrow with shorter residence times until the minimum and maximum sizes 

eventually converge.80 This convergence point was not reached for the two stage system as 

total residence times below 60 min were not investigated. The conditions for minimum and 

maximum attainable widths are reported in Table 4.5. 

Table 4.5 Conditions for minimum and maximum attainable crystal widths in two stage MSMPR 

crystallization. These limits are subject to the constraints in the optimization problem. 

w4,3 (µm) C0 (g/L) T1 (°C) τ1 (min) T2 (°C) τ2 (min) Yield (%)a 

Min: 18.4 99.7 18 15 10 45 65 

Max: 39.0 130.0 30 94 10 26 73 

aThe yield is calculated as 100(C0-Cml)/C0. 
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Due to the dependence of crystallization kinetics on temperature and the preferential 

increase of the nucleation rate at high supersaturations, the largest crystal sizes are obtained 

by keeping the first stage temperature at 30 °C and using long residence times in the first step. 

This approach ensures that the first stage operates at low supersaturations promoted by the 

faster kinetics and the longer holding times. To obtain smaller crystal sizes, the temperatures 

and residence times in both stages are adjusted so that the highest supersaturation (0.6, 

according to the constraints) is maintained in each crystallizer. Similar conditions were 

obtained for the minimum and maximum observed crystal widths using Monte Carlo 

simulations. 

Image analysis from the formulation crystals supplied from full-scale batch production 

gave a mass based mean crystal width of 19.5 µm. Based on this value, single stage 

crystallization will hardly produce crystals of similar size unless the process constraints are 

significantly softened. Consequently, crystallization in two MSMPR stages is the most suitable. 

However, the process will likely have to operate at very high supersaturations and low yields. A 

proper study of the fouling limits for the full-scale unit would be required before selecting a set 

of process conditions. It is likely that the system will operate with a first crystallization unit 

exhibiting a short residence time and a temperature close to 20 °C. The second unit will have a 

size approximately 3 times larger, with an operating temperature close to 10 °C. Based on the 

production rates for the conditions of minimum size in lab-scale, the full-scale crystallization 

system would require an approximate total volume of 20 L (5 + 15 L) to produce 10 tons of API 

in 300 days of operation. 

4.6 Conclusions 

A two stage continuous MSMPR crystallization system was characterized using 

quantitative image analysis of the crystallization magma. The effect of process conditions on 

crystal shape was studied from variations in the crystal aspect ratio with the steady state 

supersaturation and temperature. After demonstrating that the crystal shape does not vary 

with process conditions or crystal size, the effect of residence time and number of stages on 

crystal breakage was quantified. It was found that crystal breakage occurs mainly in the pump 

transferring the suspension between crystallizers, and that it leads to a similar shape 

distribution as that found in the full-scale batch product that is subject to mechanical stress in 

downstream production. A mathematical model was developed for the prediction of crystal 

widths in single stage and two stage crystallization, for which the rate equations for nucleation 

and growth based on this dimension were determined. The predicted crystal width is resistant 

to a moderate extent of crystal breakage as demonstrated from analysis of the full-scale batch 

and MSMPR product. 



 

5 
Chapter 5   Effect of gas dispersion on nucleation 

rates 

This chapter has been written in a manuscript format. A modified version has been published 

in the peer-reviewed journal Crystal Growth & Design as:  

Capellades, G.; Kiil, S.; Dam-Johansen, K.; Mealy, M. J.; Christensen, T. V. & Myerson, A. S.  

Crystal growth & design 17, 3287-3294 (2017). DOI: 10.1021/acs.cgd.7b00267 

5.1 Abstract 

From disruption of the supersaturated solution to improved mass transfer in the 

crystallizing suspension, the introduction of a moving gas phase in a crystallizer could lead to 

improved rates of nucleation and crystal growth. In this work, saturated air has been injected 

to batch crystallizers to study the effects on formation of the first crystal and subsequent 

turbidity build-up. To account for the typically large sample-to-sample variation, nucleation 

rates were evaluated for a large number of replicates using probability distributions of 

induction times. The slope and the intercept of the distributions were studied independently, 

allowing the simultaneous determination of the mean induction time and a certain detection 

delay related to the rate of crystal growth after formation of the first nucleus. Injecting 

saturated air in aqueous glycine solutions, the average detection delay was reduced from 69 

min to 13 min, and the mean induction time decreased from 128 min to 36 min. The effect on 

aqueous solutions of L-arginine was less apparent, with a detection delay reduction from 15 

min to 3 min, and no significant changes on the rate of primary nucleation. These results 

demonstrate the potential of this technique for reduction in nucleation induction time and 

improved mass deposition rates in crystallization operations. 
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5.2 Introduction 

Crystallization is an important separation technique that is extensively used in the 

chemical, food and pharmaceutical industries. Especially in pharmaceutical production, the 

crystallized solids are subject to strict quality requirements regarding crystal purity, 

polymorphism and size distribution.100 Nucleation plays a fundamental role when defining 

these quality attributes. Thus, an important part of the recent crystallization research is aimed 

at achieving a better understanding of this phenomenon.31  

Transition to the crystalline phase starts with the formation of the first nucleus in a 

supersaturated solution. This event is stochastic and based on a certain probability that is 

related to the primary nucleation rate.36–38 Several factors can affect the probability of 

observing a primary nucleation event in a crystallizer, mainly: sample volume, supersaturation, 

temperature, mixing and the presence of impurities.38,39 Once the first nucleus is formed, 

solute crystals are present in the system and secondary nucleation can occur. Systems with 

crystals present have the advantage of producing additional nuclei through secondary 

nucleation thus increasing the mass deposition rate due to the higher surface area present in 

the crystalline phase. Secondary nucleation is highly dependent on agitation and becomes the 

predominant nucleation mechanism at low supersaturations.39 For the operation of industrial 

crystallizers, understanding the rates of nucleation and crystal growth is critical to obtain a 

product with the right size and form.100,129 A method to selectively enhance one of the two 

rates can therefore lead to significant advantages in process control.  

The use of probabilistic methods to investigate nucleation kinetics dates back from more 

than 60 years. Some of the first studies were based on solidification in small droplets, using 

supercooled mercury, tin and water.195–197 In recent work, probability distributions of induction 

times have been applied for the evaluation of new methods for control of nucleation rates and 

polymorphism by using polymer surfaces or gels.198–201 The extended use of primary nucleation 

studies led to the development of novel equipment employing microfluidics to accommodate a 

large number of replicates in a single experiment.202–204 

Dispersion of a saturated gas in the active crystallization volume has been postulated to 

enhance primary nucleation through different mechanisms. Bubble flow and collapse cause a 

mechanical disruption in the supersaturated solution that could have a similar effect to that 

seen with the application of mixing. In addition, it is frequently stated that the gas-liquid 

interphase could promote nucleation by acting as a heterogeneous nucleation site.166,170,172,205,206 

In systems limited by mass transfer, mixing induced by the flowing gas would enhance the rate 

of crystallization at constant supersaturation. When solute crystals are present, perturbations 

in the flow direction would promote the contact frequency between crystals and enhance the 

rate of secondary nucleation. These mechanisms would be the most interesting for industrial 
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crystallization, as they would allow gas recirculation without pre-treatment. Alternatively, cold 

unsaturated gas could be used as a means to induce local supersaturation changes by solvent 

evaporation and heat transfer. 

Previous studies have dealt with the application of gassing to induce nucleation in batch 

crystallizers.166,167,170,172 However, due to the complexity of the system and the various ways that 

gassing could influence primary nucleation, the mechanism is not yet fully understood.  

In this study, a probabilistic approach based on induction times has been applied to 

crystallization under air injection. The statistical significance of kinetic changes caused by the 

application of gas is evaluated taking into account the existing variation between induction 

time measurements. The experiments are carried out under continuous saturated air injection 

and carefully designed to minimize the impact of heat transfer, evaporation or gas expansion 

on supersaturation of the metastable solutions. Combining the use of probability distributions 

and a detection method based on sample turbidity allowed decoupling the average time for 

crystal formation from the time required to achieve a certain solution turbidity. Thus, this 

study deals with the effect that the presence of a flowing gas would have on (1) the time for 

formation of the first crystal and (2) turbidity build-up after the first nucleation event.  

5.3 Experimental section 

5.3.1 Materials 

Glycine (≥99.5% purity) was purchased from Alfa Aesar, Haverhill, USA. L-arginine (≥98% 

purity) was purchased from Sigma-Aldrich, St. Louis, USA. Deionized water was used as the 

solvent for both compounds. For the experiments involving gas injection, compressed air from 

the laboratory general supply was selected as the gas phase. 

5.3.2 Experimental setup 

A schematic of the experimental setup for the air injection experiments is illustrated in 

Figure 5.1. The air feed is mixed with steam in a boiler and passed through two condensers to 

remove the excess water. A temperature/relative humidity data logger (Sper Scientific, 

Scottsdale, USA) is connected to the end of the second condenser to monitor the air 

properties. Based on the logged data, the heat supplied to the boiler and the temperature of 

the cooling water are manually adjusted to keep the air saturation with solvent above 95% at 

25 °C. The saturated air is distributed to 16 parallel crystallizers through a set of manifolds, and 

the flow rate at each of the streams is adjusted with an independent needle valve. Air injection 

is conducted through PEEK™ tubing (Upchurch Scientific®; ID: 0.75 mm, OD: 1/16”), immersed 
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27 mm from the top of the vial cap. To prevent leaks in the setup and cooling from air 

expansion, the pressure of the injected air is measured with a manometer and kept below the 

lower detection limit (0.34 barg). Accordingly, air cooling from Joule-Thomson expansion is 

maintained under 0.08 °C.207 A Crystal16® multiple reactor setup (Avantium Research & 

Technology) is used to control the temperature and agitation rate in the crystallizers. The 

crystallizers are cylindrical vials with a maximum capacity of 2 ml and 10 mm internal 

diameter. Sample mixing is obtained through magnetic stirring with PTFE agitation bars 

(cylindrical, 8 mm x 3 mm). During the induction time measurements, the nucleation event is 

detected by the Crystal16® unit as a drop in light transmission through each sample. 

 

Figure 5.1 Schematic diagram of the experimental setup for the induction time measurements with 

saturated air injection. 

5.3.3 Sample preparation and Crystal16® program 

60 g stock suspensions are prepared with different weight fractions of the corresponding 

solute and demineralized water. These suspensions are dissolved at 60 – 70 °C before the clear 

solution is pipetted to the sample vials. A sample volume of 1.40 ml is selected for the 

experiments throughout this work. 

To ensure that the induction time measurements start from a crystal free solution, the unit 

is programmed to pre-heat the samples to at least 10 °C above their saturation temperature for 

30 minutes. The samples are then quenched (3 minutes) and the induction times are measured 

at 25 °C with a studied time frame of 300 minutes for glycine and 150 minutes for L-arginine. 
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5.3.4 Induction time measurements at variable supersaturations 

A first set of induction time measurements was conducted to quantify the effect of 

supersaturation on nucleation and growth kinetics. These experiments have three functions: 

(1) to demonstrate that the induction times follow a Poisson distribution for the studied range 

of kinetics, (2) to determine a supersaturation ratio for the experiments with air injection, and 

(3) to study the sensitivity of each solute to concentration changes that could arise from 

solvent evaporation. The measurements were conducted at 300 rpm and in the absence of 

injection tubing. The studied supersaturation ratios are 0.20, 0.23, 0.26, 0.31, 0.42 for 

glycine208 and 0.23, 0.29, 0.35, 0.46, 0.58 for L-arginine.209 Here, the supersaturation ratio is 

defined as σ = (C-Csat(25 °C))/ Csat(25 °C), where C is the solute weight fraction at the stock 

solution and Csat(25 °C) is the solute weight fraction at the saturated solution at 25 °C. 

5.3.5 Crystallization under continuous air injection 

A series of induction time measurements were conducted using the setup illustrated in 

Figure 5.1. These experiments were performed with different air flow rates while keeping a 

constant supersaturation and mixing (300 rpm) in the samples. Reference measurements were 

conducted without air injection while using the same tubing and immersion.  

The temperature of the samples was kept at 25 °C throughout the induction time 

measurements to prevent condensation and significant cooling in the manifold system. The 

supersaturation ratios for the aqueous glycine and L-arginine solutions were maintained at 

0.20 and 0.23, respectively. These values were carefully selected so that at least 50% of the 

samples crystallize within the measurement time frame, giving enough points for data 

treatment, and to ensure that the detection delays are large enough to study changes in the 

rate of turbidity build-up. Lower supersaturations were avoided as the attainable turbidities 

were not high enough for a clear detection. 

The temperature of the samples at the pre-heating step was maintained at 50 °C for all the 

samples. To minimize solvent evaporation during this step, the air flow was disconnected until 

two minutes before crash cooling. The air flow rate was then visually adjusted for each of the 

streams and the system was videotaped for its later quantification.  

At the end of the experiments, the weight loss was measured for each of the samples to 

quantify the effect of solvent evaporation on supersaturation. Then, the crystallized samples 

were filtered together and washed with demineralized water. To identify possible changes in 

the crystallized polymorphs, X-Ray Powder Diffraction (XRPD) patterns of the filtered crystals 

were obtained for 2θ between 5 ̊and 40 ̊using an X’PertPro PanAnalytical diffractometer.  
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5.3.6 Effect of increased mixing on primary nucleation 

As an approach to study the mechanism behind the system behavior with air injection, 

induction time measurements were conducted at constant supersaturation with mixing 

intensities of 500 and 700 rpm. These measurements provide with a quantitative indication on 

the sensitivity of the system to changes in the mixing conditions. The experiments were 

performed in the absence of injection tubing. 

5.3.7 Theoretical basis and data treatment  

In this work, the observed effects on crystallization kinetics have been evaluated on the 

basis of probability distributions of induction times. For an unseeded system, the time elapsed 

between the achievement of a constant supersaturation ratio until formation of the first 

nucleus has been defined as the induction time. The first nucleation event does not occur at a 

fixed point in time but it is based on a certain probability, which is a function of the primary 

nucleation rate and the sample volume. For a system with constant volume, changes in the 

rate of primary nucleation can be studied from the slope of a Poisson distribution containing 

the induction time measurements for a large number of replicates.196  

In practice, the nucleation event is not observed until the crystals have grown to be 

detectable. Different detection methods can lead to significant variations in the observed 

induction times. For methods based on microscope observations, the formed nucleus has to 

grow to a certain size before the nucleation event is confirmed. When detection is based on 

turbidity measurements, a certain extent of crystallization will be required through primary 

nucleation, secondary nucleation and crystal growth. For agitated systems at low 

supersaturation, secondary nucleation and crystal growth tend to be the dominant 

mechanisms for turbidity build-up. This mechanism is illustrated in Figure 5.2 and further 

evaluated in Section 5.5. 

 

Figure 5.2 Illustration of the steps from achievement of a constant supersaturation to nucleation 

detection from sample turbidity. 
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For the same detection instrument and using systems with sufficient agitation, the 

minimum detectable turbidity will have a fixed value. Thus, variations in the rates of crystal 

growth and secondary nucleation can be studied from variations in the observed detection 

delay. 

In this work, the induction time measurements were converted into a probability 

distribution by use of eq 5.1. 

 
𝑃(𝑡) =

𝜉′(𝑡)

𝜉
 (5.1) 

where ξ'(t) is the number of samples that nucleated before time t, and ξ is the total amount 

of replicates at the studied conditions. 

For a system following a Poisson distribution, the probability P(t) of detecting crystals at 

time t can be related to the mean induction time τind as:37,210 

 
𝑃(𝑡) = 1 − 𝑒𝑥𝑝 (−

𝑡

𝜏𝑖𝑛𝑑
) (5.2) 

Equation 5.2 is valid as long as the detection delay is sufficiently small compared to the 

mean induction time. Especially for slow growing compounds or for detection methods based 

on sample turbidity, the probability distributions tend to be shifted in the time axis. Previous 

work accounted for this shift by defining the time for appearance of the nucleus as the time at 

which nucleation is detected minus the detection delay.204,211 Equation 5.2 has been modified 

in a similar way: 

 
𝑃(𝑡) = 1 − 𝑒𝑥𝑝 (−

𝑡 − 𝑡𝑑
𝜏𝑖𝑛𝑑

) (5.3) 

where td is the average detection delay at the experimental conditions. The values of τind 

and td were obtained from linear regression using the logarithmic form of eq 5.3. 
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5.4 Results 

5.4.1 Supersaturation effect on crystallization kinetics 

In the first set of experiments, induction times were measured at different 

supersaturations for the aqueous solutions of the two model compounds. The obtained 

probability distributions and the fitted kinetics are reported in Figure 5.3 and Table 5.1, 

respectively. 

 

Figure 5.3 Cumulative probability distributions of induction times for aqueous solutions of glycine (a) 

and L-arginine (c) at different supersaturations. Each point represents the observed induction time of an 

independent crystallization experiment. (b) and (d) are the logarithmic forms of the probability 

distributions displayed in (a) and (c), respectively. The solid lines are the theoretical distributions based 

on the fit to eq 5.3. Sample volume: 1.40 ml. Mixing: 300 rpm. Temperature: 25 °C. 

The observed induction times follow a Poisson distribution throughout the experiment 

time frame, giving a good fit (r2 > 0.98) to the logarithmic form of eq 5.3. As expected, higher 

supersaturations lead to shorter induction times. The increased rate of primary nucleation is 

graphically observed from the slope of the distributions and quantified as drop in the mean 
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induction time. The mean detection delay is graphically observed from the intercept of the 

plots with the time axis. Higher supersaturations lead to faster rates of nucleation and crystal 

growth, effectively lowering the time required to achieve the minimum detectable turbidity.  

Table 5.1 Fitted mean induction times (τind) and detection delays (td) for different suprersaturation 

ratios (σ), including 95% confidence intervals from linear regression. 

 σ (25 °C) τind (min) td (min) r2 

Glycine 0.20 305 ± 12 51 ± 7 0.987 

 0.23 111 ± 3 28 ± 3 0.991 

 0.26 103 ± 3 5 ± 3 0.986 

 0.31 25 ± 1 1 ± 1 0.987 

 0.42 10 ± 0 -1 ± 1 0.966 

L-arginine 0.23 111 ± 4 11 ± 4 0.980 

 0.29 64 ± 2 9 ± 2 0.987 

 0.35 37 ± 1 7 ± 1 0.986 

 0.46 31 ± 1 1 ± 1 0.983 

 0.58 14 ± 0 0 ± 1 0.982 

 

5.4.2 Crystallization with continuous air injection  

Induction times were measured on samples with constant supersaturation and mixing, 

using the setup illustrated in Figure 5.1 and a continuous feed of saturated air. The air flow 

rates at the different experiments were determined in bubbles/min from the recorded video 

files of 40 random replicates. Using the outer diameter of the injection tubing as a reference, 

the mean bubble size was determined to be 2.1 mm. Then, the flow rate was converted from 

bubbles/min to μl/min assuming that the bubbles have a consistent size and a spherical shape. 

None of the samples presented foaming during the experiments with air injection. 

The obtained XRPD data for the filtered crystals can be found in Appendix C. Throughout 

the experiments in this block, both compounds crystallized in the same form regardless of the 

air flow rate. These forms are α-glycine and L-arginine dihydrate. For the experiments with 

glycine-water and air injection at 650 μl/min, traces of γ-glycine were found in one of the 
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measurements. This is the most stable form thermodynamically, but it is rarely obtained at a 

neutral pH.212 The probability of obtaining γ-glycine is very small at these conditions, but 

nucleation of this form is still possible. Since crystallization of γ-glycine was not reproducible, 

the observation was attributed to this existing low probability.  

The observed induction times are reported in Figure 5.4. These results show that air 

injection had a positive effect on primary nucleation for glycine solutions, giving a 4-fold 

decrease in the mean induction time for an air flow rate of 1200 μl/min. The effect on primary 

nucleation is directly related to the flow rate and subject to a minimum value. The smallest 

studied flow rate (200 μl/min) showed no detectable differences in the induction times. 

 

Figure 5.4 Cumulative probability distributions of induction times for aqueous solutions of glycine (a) 

and L-arginine (c) at different air flow rates. Each point represents the observed induction time of an 

independent crystallization experiment. (b) and (d) are the logarithmic forms of the probability 

distributions displayed in (a) and (c), respectively. The solid lines are the theoretical distributions based 

on the fit to eq 5.3. The distributions for L-arginine at air flow rates of 1500 – 2100 μl/min exhibit a 

sudden slope change at time = 15 min, indicating the appearance of a second regime with a lower 

frequency of nucleation. Sample volume: 1.40 ml. Mixing: 300 rpm. Temperature: 25 °C. 

Supersaturation: 0.20 (glycine) and 0.23 (L-arginine). 
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Aqueous solutions of L-arginine show a different behavior with the injection of air. For this 

compound, an air flow rate of 1100 μl/min reduced the detection delay while maintaining a 

constant induction time. This behavior indicates that, despite the primary nucleation rate is 

independent of air injection at these conditions, the rates of secondary nucleation and crystal 

growth are still enhanced.  

Flow rates at or above 1500 μl/min gave distributions with two different regimes separated 

by a sudden slope change at t = 15 min. The appearance of a second regime would be expected 

if a fraction of the samples had a significantly different primary nucleation rate. In the previous 

set of experiments (Figure 5.3), similar distribution slopes were obtained with a single regime 

by increasing the supersaturation of the samples. Thus, this behavior is exclusive for the 

experiments with air injection. 

Multiple nucleation rates have been previously attributed to variations in the 

concentration of active sites between replicates, coming from different distributions of 

impurities or differentiated surface properties in the solids present in the samples.201,213,214 In 

this work, variations in the amount of nucleation sites were prevented by using the same tubes 

for all the experiments as well as preparing samples from the same stock solution. XRPD data 

also shows that both regimes gave the same crystal form of L-arginine. Thus, crystallization of 

multiple polymorphs has been discarded to explain the appearance of a second regime. 

The multiple regime behavior was accompanied by the observation of crystals at the 

injection point of some samples 5 - 10 min after quenching (see Figure 5.5).  

 

Figure 5.5 L-arginine crystal blocking the air injection point a few minutes after crash cooling. 

This phenomenon was only observed at the start of the experiments and for flow rates 

above 1200 μl/min. It could be explained as consequence of crystal formation during the pre-

heating step. Before crash cooling, saturated air is being injected at 25 °C to the 

undersaturated solution at 50 °C. When the air flow rate is high enough, local evaporation 
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combined with cooling could lead to the formation of small crystals at the tube tip. These 

crystals would then grow as the bulk solution becomes supersaturated.  

Formation of crystals during the pre-heating step would be able to explain the multiple 

regime behavior of the distributions. Neither the formation of crystals at the tube tip nor the 

multiple regime were observed at flow rates below 1500 µl/min, presumably because heat 

transfer and evaporation rate are not sufficient to maintain a local supersaturation during the 

pre-heating step. To account for this phenomenon, the average induction times were 

determined only from the slope of the second regime. Assuming that the source of the first 

crystal does not significantly affect the rate of turbidity build-up, the average detection delay 

could be obtained from linear regression of the observed induction times within the first 15 

min. Note that the accuracy of these calculations is severely lowered. The impact of 

temperature variations between sample cells and surface variations in the tubing was 

previously included in the reference samples. However, when data fitting is separated in two 

time frames, the samples with the lower temperatures and higher surface irregularities in the 

tubing are more likely to fall within the first slope, affecting the slope of the second half of the 

distribution. The experimental results obtained with this method should therefore lead to 

conclusions only if the observed induction times show a strong deviation from the reference 

values. The fitted induction times and detection delays are summarized in Table 5.2. 

Table 5.2 Fitted mean induction times (τind) and detection delays (td) for the experiments with air 

injection, including 95% confidence intervals from linear regression. 

 
Flow rate 
(μl/min) 

Weight loss 
(%) 

τind (min) td (min) r2 a 

Glycine 0 0.15 ± 0.08 128 ± 5 69 ± 7 0.976 

 195 ± 56 0.16 ± 0.10 149 ± 4 42 ± 4 0.991 

 651 ± 89 0.25 ± 0.11 67 ± 2 11 ± 3 0.981 

 1237 ± 182 0.51 ± 0.23 36 ± 1 13 ± 2 0.977 

L-arginine 0 0.22 ± 0.12 78 ± 3 15 ± 2 0.986 

 1110 ± 150 0.34 ± 0.13 72 ± 2 0 ± 2 0.987 

 1544 ± 287 0.37 ± 0.17 88 ± 5 3 ± 1 0.974 - 0.973 

 2111 ± 397 0.43 ± 0.18 97 ± 11 3 ± 0 0.975 - 0.956 

aMultiple r2 values come from linear regression on the first and the second regime, respectively. 
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A common trend for both compounds is a significant reduction in the detection delay with 

air injection. Interestingly, the detection delay stops decreasing after a certain flow rate. The 

minimum detection delay was not observed for the experiments at variable supersaturation 

(Figure 5.3), where induction times and detection delays always decreased together. 

The impact of air injection on solvent evaporation is calculated from the difference 

between the weight loss at the end of the experiment and that of the reference samples. By 

pre-saturating the air at the solution temperature, the average weight loss from solvent 

evaporation is kept below 0.36% in glycine solutions. Note that the weight loss is measured 

after 5 hours of gassing. However, 75% of the samples with this weight loss crystallized within 

the first hour. The amount of solvent evaporated at the point of nucleation is thus negligible. 

Based on the observed weight losses, it is safe to assume that the effect of air injection on 

glycine solutions goes beyond solvent evaporation.  

5.4.3 The impact of mixing on induction times  

To achieve a better understanding on the sensitivity of the system to changes in the 

mixing intensity, induction time measurements were conducted at constant supersaturation 

with agitation rates of 500 rpm and 700 rpm. Results are summarized in Figure 5.6 and Table 

5.3. 

Table 5.3 Fitted mean induction times (τind) and detection delays (td) for different mixing intensities, 

including 95% confidence intervals from linear regression. 

 Mixer speed 
(rpm) 

τ (min) td (min) r2 

Glycine 300 305 ± 12 51 ± 7 0.987 

 500 142 ± 4 43 ± 4 0.991 

 700 132 ± 4 38 ± 5 0.986 

L-arginine 300 111 ± 4 11 ± 4 0.980 

 500 64 ± 4 5 ± 3 0.987 

 700 51 ± 1 7 ± 1 0.986 
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Figure 5.6 Cumulative probability distributions of induction times for aqueous solutions of glycine (a) 

and L-arginine (b) at constant supersaturation and different mixing intensities. Each point represents 

the observed induction time of an independent crystallization experiment. (b) and (d) are the 

logarithmic forms of the probability distributions displayed in (a) and (c), respectively. The solid lines 

are the theoretical distributions based on the fit to eq 5.3. Sample volume: 1.40 ml. Temperature: 25 °C. 

Glycine supersaturation: 0.20. L-arginine supersaturation: 0.23. 

Mixing can enhance the rate of primary nucleation by promoting contact between solute 

molecules in solution, thus increasing the probability that a cluster with critical size is formed. 

However, it does not always have a positive effect. Previous work has shown that certain 

mixing intensities can lead to destabilization and breakage of the solute clusters.40,41 Our  

results show that increasing the impeller speed from 300 rpm to 500 rpm produced a 2-fold 

decrease in the induction time for both compounds, but the effect of a higher mixing intensity 

(700 rpm) was barely noticeable. The investigated mixing intensities belong to the transitional 

mixing regime with impeller Reynolds numbers between 300 and 900. Thus, the observed 

change in behavior from 500 rpm to 700 rpm is not a consequence of a change in the mixing 

regime. 
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5.5 Discussion 

5.5.1 Effect of gas injection on primary nucleation 

Results with aqueous glycine solutions show a 4-fold reduction in the mean induction 

time with the injection of saturated air. As supported by the large number of replicates and the 

measured weight losses, this effect goes beyond sample-to-sample variability and solvent 

evaporation. Enhancement of the primary nucleation rate was dependent on the air flow rate, 

and showed no detectable changes at 200 μl/min. The underlying mechanism is presumably 

related to the perturbation of the supersaturated solution, which would be giving the required 

energy input for nucleation. This perturbation increases with the air flow rate and it would 

explain the observed correlation between induction times and injection flow rates. Results for 

L-arginine indicate that the mechanism goes beyond the increased mixing intensity. Despite 

both compounds were equally sensitive to increased stirring speeds, L-arginine showed no 

correlation between the air flow rate and the mean induction time. Were the effect of gas 

injection explained solely through the additional mixing intensity, both compounds would 

have shown a similar behavior to the application of air. The effect is thus related to changes in 

the mixing pattern or local perturbations from bubble collapse. 

Alternatively, cluster stabilization at the gas-liquid interphase could have reduced the 

activation energy for nucleation if the air bubbles were acting as a heterogeneous nucleation 

site. The total gas-liquid interphase area increases with the flow rate, thus reducing the mean 

induction time. Since the effect was only observed for one of the two compounds, this 

mechanism could be sensitive to the system composition. 

5.5.2 Mechanism for turbidity build-up 

After formation of the first nuclei, the time required for achieving a certain turbidity 

depends on the combined rates of primary nucleation, secondary nucleation and crystal 

growth. The contribution of primary nucleation can be studied from the average induction 

times. Taking the experiments with glycine and an air injection of 650 μl/min as an example, 

the value of τ indicates that a primary crystal is formed, on average, every 67 minutes. 

However, the mean detection delay for this experiment is 11 minutes. Considering the much 

lower value of the detection delay and the fact that building a detectable turbidity requires a 

large amount of crystals, it is assumed that primary nucleation has a negligible contribution on 

turbidity after the first crystal is formed. In most of our samples, turbidity is expected to 

originate from a chain of crystal growth and secondary nucleation events. From the small rates 

of primary nucleation, this chain could have originated from a single crystal. This single 

nucleus mechanism was experimentally demonstrated in a similar system by Kadam et al.215  
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5.5.3 Effect of gas injection on crystal growth and secondary nucleation 

Results from this work demonstrate that air injection is capable of producing a significant 

drop in the detection delay after the first nucleation event. This behavior was consistent for 

the two model systems and, in both cases, it is higher than the one observed for increased 

mixing intensities. In contrast with a faster impeller speed, the effect of gas flow in secondary 

nucleation could be explained by a change in the mixing direction. The stirring bar provides 

radial mixing in the sample. With higher agitation speeds, the formed crystals are expected to 

follow the liquid stream and collide mostly with the impeller and the vial walls. For the 

experiments with air injection, the upward air flow introduces axial mixing and thus 

perturbations in the mixing pattern. These perturbations become more important at higher 

gas flow rates, as they would increase the collision frequency between crystals and promote 

secondary nucleation. Higher liquid velocities are also expected after bubble collapse, which 

would promote collisions between nearby crystals.  

In addition, were the growth rate in the system limited by diffusion, the improved mass 

transfer would have a positive effect on crystal growth. Bigger crystals not only contribute to a 

higher turbidity, but they are also more prone to sedimentation, thus increasing the contact 

frequency with the impeller and the rate of secondary nucleation.  

The observed detection delays stop decreasing after a certain flow rate. This minimum 

detection delay was not observed for the experiments at variable supersaturation, where a 

reduction in the mean induction time was always paired with a drop in detection delay. The 

observed minimum on the detection delay is a consequence of a rate limiting factor. This 

factor is presumably crystal growth limited by surface incorporation, which would not be 

affected by the flowing gas in the system. The high detection delays observed for the glycine 

samples would be supported by the typically slow growth kinetics of this compound, especially 

at low supersaturations.216 Alternatively, the effect of gas injection on secondary nucleation 

could be highly sensitive to the suspension density in the system. When the crystals are 

originated from a single primary nucleation event, the effect of air flow on crystal collision will 

be negligible until a sufficient amount of crystals is present in the samples.  
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5.6 Conclusions 

As an approach for a better understanding of the effect of a flowing gas on nucleation and 

growth kinetics, we have evaluated the effect of continuously injecting saturated air on the 

observed induction times for two model compounds. Results were analyzed on the basis of 

probability distributions with independent determination of the mean induction time and 

detection delay. We have shown that gas injection can have a positive effect on primary 

nucleation that is dependent on the gas flow rate. Comparing the effects of gas injection with 

the compound sensitivities to increased agitation rates, it is presumed that the effect goes 

beyond higher agitation intensities in the sample. Perturbations from the bubble flow and 

collapse or the presence of the gas-liquid interphase would have had an effect on the primary 

nucleation rate.  

The detection delay dropped with air injection for the two model compounds, indicating 

that this technique has an effect on the rates of secondary nucleation or diffusion limited 

crystal growth. A minimum detection delay is observed for both compounds, indicating the 

presence of a rate limiting factor in turbidity build-up. This factor is presumably crystal growth 

limited by surface incorporation. 
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Chapter 6   Continuous MSMPR crystallization with 

gas dispersion 

This chapter has been written in a manuscript format. A modified version will be submitted to 

the peer-reviewed journal Organic Process Research and Development. The authors to be 

included in the contribution are Gerard Capellades, Alessandro Duso, Kim Dam-Johansen, 

Michael J. Mealy, Troels V. Christensen and Søren Kiil.  

6.1 Abstract 

Dispersion of a saturated gas in a supersaturated solution has been previously reported to 

promote nucleation rates during batch crystallization, leading to the exploration of this 

technique as a cost-effective method to control crystal size distributions. Despite the 

mechanisms are still unknown, it has been hypothesized that the presence of a flowing gas 

could promote variations in the flow pattern inside the crystallizer, leading to improved mass 

transfer and higher rates of secondary nucleation through an increased number of crystal 

collisions. In this work, we have constructed a lab-scale MSMPR crystallizer with self-induced 

gas dispersion to investigate the applicability of this technique in continuous crystallization. 

The effect of different gas hold-ups has been evaluated at high supersaturations and for two 

different suspension densities. Results show a very limited variation in the overall mass 

deposition rate, and reductions in the crystal size not exceeding 5 μm for the highest 

investigated gas hold-up (12%). Studying the effect of impeller speed under the same 

conditions, we found that an increased mixing intensity has a similar impact as gas dispersion, 

with a crystal size reduction of 4 μm when the impeller speed was increased from 800 to 950 

rpm. These results suggest that the gas dispersion technique is limited to systems where 

crystallization kinetics can be significantly affected by mixing, and demonstrate a limited 

applicability for crystal size distribution control in continuous MSMPR crystallizers.  
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6.2 Introduction 

Understanding crystallization kinetics, particularly the nucleation rate, gives a significant 

advantage for the control of product properties like crystal structure or crystal size 

distribution. These properties are especially important for pharmaceutical processes where 

APIs are subject to strict quality requirements. To achieve an adequate bioavailability, and 

because a large fraction of new APIs have poor water solubility, the design of pharmaceutical 

crystallization processes is often tailored to the production of very small crystals with a narrow 

crystal size distribution.181 Generation of small crystals is particularly challenging as they 

usually require the use of high supersaturations that lead to a poor control of the nucleation 

process and fouling in the industrial equipment.  

Different techniques have been integrated in pharmaceutical crystallization with the aim 

of reducing crystal size, the most common being milling and the application of power 

ultrasound to promote nucleation rates.99,147,148,154,155,158,161 However, these techniques do not 

come without limitations. The use of mechanical stress for size reduction of API crystals 

frequently leads to significantly higher separation costs and variations in crystal shape. 

Furthermore, these energy intensive methods are hardly applicable with heat sensitive 

compounds, flammable solvents, and for those systems where a side reaction can be triggered, 

and their use implies an additional concern for heat dissipation.148,149 Sonocrystallization has 

an additional scalability problem since the ultrasonication power decreases heavily with the 

distance from the ultrasound source.164,165 Alternative methods to produce small crystals in 

flow crystallization involve the generation of a local high supersaturation by means of anti-

solvent addition or by combination of a hot saturated stream with a colder stream.106,145,217 

These additions are usually conducted in an impinging jet or static mixer that acts as a seed 

generator at the beginning of the crystallization process.  

Previous work studied the impact of gas dispersion on batch crystallization, reporting a 

significant reduction in the crystallization induction times and applicability for crystal size 

distribution control for different compounds and scales.166,168–170,172 Wohlgemuth et al. studied 

the impact of gassing and power ultrasound on induction times and crystal size distributions 

in adipic acid crystallization, for which both techniques showed a similar crystallization 

behavior.167 Since then, the work on gassing crystallization has increased significantly. 

In Chapter 5, induction time statistics were applied to separate the rate of primary 

nucleation from the time required for the system to achieve a certain turbidity.42 It was found 

that the shorter induction times could be a consequence of a faster rate of crystallization after 

the first nucleation event, when the impact of primary nucleation becomes significantly 

smaller. The presence of a flowing and collapsing gas offered a new perturbation and a 

significant mixing improvement in batch crystallizers with a transitional mixing regime (Re ≈ 
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300). In this work, we evaluated if this technique could be applicable in a well-mixed 

continuous crystallizer with impeller Reynolds numbers at the order of 12,000. 

From an industrial perspective, the deliberate dispersion of gas in a crystallizer appears 

counterintuitive. Especially when the entrained gas is in the form of very small bubbles, 

mechanisms like flotation or gas inclusion in the crystalline phase can significantly impact the 

product quality and the complexity of the crystallization process.218 However, it is important 

not to disregard the effect of fluid dynamics on crystallization, particularly on secondary 

nucleation and crystal growth. In contrast with a faster impeller speed, gas dispersion 

promotes mass transfer without inducing crystal breakage or vortex formation. In systems 

where the crystal growth rate is limited by mass transfer, gas dispersion becomes a simple 

alternative to enhance crystallization kinetics that is gentle with the crystalline phase and does 

not necessarily require an additional separation step. Furthermore, a chaotic mixing 

environment caused by the presence of a flowing gas could promote crystal-to-crystal 

collisions and secondary nucleation. In contrast to other methods for generating small crystals, 

the nucleation rate enhancement could be done at constant supersaturations and it would be 

easily scalable. The gas can be captured from the crystallizer headspace by means of a hollow 

shaft mixer, and thus the method does not have the high operation costs of ultrasonication or 

milling. 

Continuous MSMPR crystallizers are subject to strict mixing requirements for the 

achievement of a perfectly mixed suspension and negligible classification in the product 

removal. In turn, operating with a well-mixed homogeneous system allows for the direct 

application of in situ characterization techniques to monitor the product quality.110,108 Their 

simplicity and ability for handling concentrated suspensions makes MSMPR crystallizers the 

preferred choice for continuous pharmaceutical crystallization. However, this type of 

crystallizer operates at constant conditions that are constrained by several process and system 

requirements. Consequently, MSMPR crystallizers are more limited for crystal size distribution 

control compared to batch or plug flow crystallizers. To significantly expand the attainable 

region of crystal sizes, one must vary the crystallization method or rely on the use of several 

crystallization stages.80  

This study had two main objectives: (1) to assess if gas dispersion is a valid alternative for 

crystal size distribution control in continuous MSMPR crystallizers, and (2) to further develop 

the understanding of the effect of a moving gas phase on crystallization kinetics. To this end, a 

first set of experiments was designed so that the effect of gas hold-up on crystallization yield 

and crystal size distribution could be assessed at a constant impeller speed. Results from these 

experiments were later compared to the effect of varying the impeller speed to investigate if 

there is a relationship between the effect of gas dispersion and that of a higher mixing 

intensity.  



94 Chapter 6 

 

6.3 Experimental section 

6.3.1 Materials 

Melitracen hydrochloride (≥99.8% purity) was obtained in powder form from H. Lundbeck 

A/S. Absolute ethanol (≥99.8% purity) purchased from VWR Chemicals was used as a solvent 

for the process. The solubility data for this solute-solvent system is reported in Section 4.4.1. 

House nitrogen supplies were used to provide the gas phase. 

6.3.2 Continuous crystallization setup 

The experimental work was conducted using a coupled dissolver-crystallizer configuration 

as depicted in Figure 6.1. The dissolver and the MSMPR crystallizer were jacketed reactors with 

operating volumes of 1000 and 900 mL (excluding gas phase), respectively. 

 

Figure 6.1 Schematic diagram of the setup for continuous MSMPR crystallization with gas dispersion. 

An undersaturated feed was kept at 60 °C in the dissolver during operation. P1 was a 

peristaltic pump (LongerPump BT100-1F) that continuously delivered the feed to the MSMPR 

crystallizer. The feed stream was heat traced to 60 °C using a temperature control unit (Lund 
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& Sørensen) to prevent crystallization in the tubing. Product removal was achieved using a 

programmable peristaltic pump (P2, LongerPump WT600-1F). An intermittent withdrawal 

approach was used to minimize classification in the product removal stream, by which 5% of 

the crystallization magma is removed every 5% of a residence time.78 This was achieved by 

means of a dip pipe that defines the operating volume of the crystallizer. For each withdrawal 

step, P2 was programmed to work at full speed (1850 mL/min) and remove a total volume of 

150 mL. From this volume, only 45 mL correspond to the crystallization magma above the dip 

pipe. The excess pumping was conducted so that the product removal stream remains free of 

suspension between consecutive withdrawals. 

The MSMPR crystallizer was connected to an external supply of nitrogen saturated with 

ethanol. The nitrogen source was first passed through a 0.5 μm particulate filter to prevent the 

introduction of solid impurities to the MSMPR crystallizer. Then, the gas could be separated in 

up to three streams, leading to the bottom of the crystallizer and the headspace of each vessel. 

The latter were present to provide an inert environment before the experiments, but they were 

not active during operation as they would prevent the saturation of the crystallizer headspace. 

To minimize solvent evaporation during gas injection, the nitrogen feed connecting to the 

bottom of the MSMPR crystallizer was passed through two gas traps in series, containing 250 

and 100 mL of absolute ethanol at room temperature. During the experiments, the total 

pressure drop in the nitrogen line was kept below 0.8 bar to prevent significant cooling from 

Joule-Thomson expansion. The gas saturation and its effect on the crystallizer concentration 

have been studied experimentally and the results are reported in Appendix D. 

6.3.3 Crystallizer design and three phase mixing 

A 1000 mL jacketed filter reactor (Ace Glass Incorporated) was used as the MSMPR 

crystallizer. The vessel had a diameter of 100 mm and was equipped with four 8 mm baffles 

located 2 mm away from the crystallizer wall. The equipment was designed to operate in three 

different modes: (1) without gas dispersion, (2) with self-induced gas entrainment by means of 

a hollow shaft mixer, and (3) with self-induced entrainment and a bottom gas feed that is 

passed through a 500 μm stainless steel mesh. To isolate the effect of gas hold-up from 

variations in mechanical mixing, the three modes of operation shared the same impeller 

system and agitation speed. The baffles and impellers were designed and constructed in house 

using stainless steel AISI 316. The different components are shown in Figure 6.2. 
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Figure 6.2 Designed impellers for the three phase MSMPR crystallizer. (a) Setup components. (b) 

Mounted mixer and baffles. The arrows indicate the gas flow and impeller rotation. (c) Close-up of the 

connection between the hollow shaft and the gas entrainment impeller. When the pieces are connected 

(b), the gas entrainment impeller is located around the dispersion chamber. 

The impeller setup was divided in four components to facilitate dismantling and cleaning 

in case crystallization occurs in the hollow shaft, and to allow for the testing of different 

impeller combinations. To connect the different components, the shaft pieces can be screwed 

together trapping the impellers in the narrow shaft regions.  

Induced gas dispersion was achieved through a hollow 40 mm four blade radial flow 

impeller. The design of the impeller was inspired by the commercially available impellers from 

Parr Instrument. By creating a hollow path between the crystallizer headspace and the back of 
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the impeller blades, the pressure drop generated at the back of the blades during agitation acts 

as the driving force to capture the gas from the crystallizer headspace and disperse it into the 

liquid phase.219 In this type of gas dispersion, the internal gas circulation is subject to a 

minimum rotation speed and the circulation rate is a function of the agitation intensity.220,221 

The minimum impeller speed for self-induced gas entrainment in this work was 650 rpm, 

corresponding to an approximated impeller Reynolds number of 10,000 in absolute ethanol. 

However, an agitation speed of 800 rpm was selected for the experiments (Re ≈ 12,000) as it 

provides the maximum gas hold-up with negligible vortex formation. In the experiments 

without gas dispersion, the hollow shaft was slid inside silicon tubing so that the gas inlet was 

tightly sealed.  

The second impeller was a solid pitched blade turbine (40 mm, 4 blades, 60°), located at 

the bottom end of the shaft. Its main functions are to prevent solids classification at the 

bottom of the vessel and to assist in the dispersion of the bottom gas feed. Furthermore, the 

downward pumping facilitates the dispersion of gas to the bottom of the crystallizer, allowing 

for homogenous gas dispersion even when the gas is captured by the first impeller. 

6.3.4 Methodology for the continuous crystallization experiments 

The experiments in this work were conducted in the setup described in Figure 6.1. In all 

the investigated conditions, the crystallization temperature was kept at 10 °C and the 

crystallization volume at 900 mL excluding the gas phase. Since varying the impeller speed or 

the gas hold-up leads to a different suspension height for the same operating volume, the 

position of the dip pipe for product removal was adjusted at the beginning of each experiment. 

This ensured that the residence time in the crystallizer remained constant between 

experiments. 

The experiments started from a saturated suspension containing the same concentration 

in both vessels. After the feed was dissolved at 60 °C and the crystallizer reached a 

temperature of 10 °C, the pumps were started at full speed for 5-10 seconds so that the inner 

part of the feed tubing was preheated. Then, the feed flow rate was calibrated with a 25 mL 

graduated cylinder. Evolution to steady state was tracked using an FBRM G400 probe (Mettler 

Toledo) that monitors variations in the crystal size distribution. Since the presence of the gas 

phase and the different mixing intensities can influence the FBRM measurement, the chord 

length distribution was measured off-line with a 45 mL magma sample in a magnetically 

agitated beaker. The beaker, sample size, agitation intensity and probe position were 

maintained constant during the experiments to obtain comparable chord length distributions. 

At the working temperature and supersaturation, the mother liquor concentration was close to 

the saturation point at room temperature (Csat(20 °C)= 34.7 g/L) and thus the FBRM readings 
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were stable for few minutes during the off-line reading. The off-line magma sample was 

returned to the dissolver after the measurement. 

At steady state, 4 mL HPLC samples were removed from the feed and the crystallizer 

mother liquor and filtered through a 0.45 µm syringe filter. Furthermore, a magma sample was 

analyzed with optical microscopy to detect variations in crystal shape. The sampling method 

was described in detail in Section 4.3.6. All the steady state samples were taken four times at 

consecutive residence times and the results were averaged for the data analysis. 

At the end of the experiment, the consistency of the feed flow rate was verified with a 25 

mL graduated cylinder and the steady state classification was quantified by removing a 4 mL 

HPLC sample from three different positions in the crystallizer (top, between the two impellers, 

and below the second impeller). The acceptance criterion for variations in the feed flow rate 

was a deviation equal or lower than 0.5 mL/min (2.5 and 3.3 % variation for residence times of 

60 and 45 min, respectively). Results from the classification check are provided in Appendix D. 

The HPLC samples were analyzed using a Hitachi LaChrom Elite system equipped with a 

Phenomenex Gemini® 10 cm x 4.6 mm x 3 μm C18 110 Å silica column and a L-2455 diode array 

detector (Hitachi), with detection at 230 nm (see Appendix A for the methods).   

6.4 Results and discussion 

6.4.1 Consistency of the steady state and sampling accuracy 

One of the main complications in the experimental work was to attain an identical feed 

concentration between experiments, as the extensive off-line sampling led to small variations 

in the dissolver concentration after several hours of operation. Such variations could lead to 

misleading conclusions, and thus their impact on the steady state conditions was quantified 

first. Three experiments were conducted at the same target conditions, during which the feed 

concentration varied from 97 to 100 g/L. The steady state conditions are reported in Table 6.1. 

The steady state was reproducible with a standard deviation amongst the mother liquor 

concentrations of 0.3 g/L (0.7% of the mean value). The standard deviation amongst the three 

suspension densities is 1.6 g/L (2.4% of the mean value), and 0.7% (1.1% of the mean value) for 

the crystallization step yield. These uncertainties include not only the sampling and 

experimental error, but also the error propagation from the calculations. Variations in the 

steady state caused by the dispersion of gas will be evaluated considering that these are the 

minimum uncertainties in the experimental determination of the steady state conditions. 
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Table 6.1 Steady state conditions for the three repetitions of experiment A1. The experiments were 

conducted at 10 °C with a residence time of 45 min. The measured values include the mean ± standard 

deviation of the four replicate samples of the same experiment at steady state, accounting for error 

propagation in the calculations. 

Experiment C0 (g/L) s (rpm) Gas Cml (g/L) MT (g/L)a Yield (%)b 

A1.1 97.5 ± 1.5 800 No 35.6 ± 0.3 64.4 ± 1.8 63.5 ± 1.9 

A1.2 97.2 ± 1.8 800 No 36.1 ± 0.4 64.4 ± 1.7 62.9 ± 2.2 

A1.3 100.1 ± 1.8 800 No 35.7 ± 0.2 67.1 ± 0.6 64.3 ± 2.2 

aThe crystallizer’s suspension density is calculated as C0-Cml. 
bThe step yield is calculated as 100(C0-Cml)/C0. 

Especially when the crystal size distribution analysis is conducted off-line, experimental 

error during sampling combined with fluctuations in CSD during the experiment was a 

concern for the reproducibility of the results. Figure 6.3 shows the obtained square weighted 

chord length distributions for different steady state measurements of the same experiment and 

for three independent experiments. These distributions were chosen for this study as they are 

usually compared to a volumetric crystal size distribution during MSMPR analysis.76,77,83,184,189 

 

Figure 6.3 (a) Steady state square weighted chord length distribution for different residence times 

during run A1.3, and (b) comparison between the steady state values on the three repetitions at the same 

conditions. The latter distributions were obtained from the average over four consecutive residence 

times at steady state. 
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Variations in the chord length distribution are negligible in both cases, demonstrating that 

the sampling method is reproducible and that the steady state is consistent through small 

deviations in the feed concentration. The square weighted mean chord length presented a 

standard deviation of 0.3 μm (0.7% of the mean value) between the triplicate experiments. 

6.4.2 Extent of gas dispersion 

Two different gas hold-ups were investigated in this work. Their values were approximated 

based on the increase in suspension height upon gassing and the vessel diameter. With an 

agitation speed of 800 rpm, self-induced gas entrainment provided an approximated gas hold-

up of 4% in the crystallizer. The hold-up was increased to 12% with the injection of saturated 

nitrogen (2.5 L/min) from the bottom of the crystallizer. Compared to other systems with gas 

entrainment, the obtained hold-up for self-induced entrainment is fairly low, supporting the 

need for bottom injection to extend the conditions of this study.222 The homogeneity of gas 

dispersion was assessed visually using an undersaturated solution containing 15 g/L of 

Melitracen HCl in ethanol at 10 °C. Figure 6.4 shows a picture of the liquid-gas mixture with 

12% hold-up. No apparent difference on bubble size was observed between the two hold-ups. 

 

Figure 6.4 Gas dispersion in the MSMPR crystallizer. The picture was taken on an undersaturated API 

solution at 10 °C. Agitation speed: 800 rpm. Flow rate (bottom injection): 2.5 L/min. 
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6.4.3 Continuous crystallization with gas entrainment 

The effect of a flowing gas on MSMPR crystallization was evaluated at two different 

suspension densities (appr. 65 g/L and 15 g/L) adjusted from the feed concentration. The 

objective was to separate the effects on secondary nucleation from those on primary 

nucleation and crystal growth. If the flowing gas was able to enhance crystal collisions and 

secondary nucleation, the extent of this effect would be a function of the suspension density in 

the crystallizer. To be able to compare the results at both suspension densities, the residence 

times were adjusted so that a similar steady state supersaturation was obtained in the 

experiments. The supersaturation value was adjusted experimentally so that it had the highest 

value that does not result in fouling during the experiment time frame. The steady state 

supersaturations, calculated as (Cml-Csat(T))/ Csat(T), were in the range of 0.5 – 0.6 for a feed 

concentration of 100 g/L and 0.4 – 0.5 for a feed concentration of 50 g/L.  Furthermore, the 

crystallization temperature was maintained at 10 °C to limit the rate of crystal growth and to 

minimize solvent evaporation. At the studied conditions, the crystal size is already close to the 

minimum value that can be achieved in the MSMPR crystallizer without fouling. Thus, the 

industrial applicability of gas dispersion can be directly compared to the best case scenario for 

generating small crystals in the single stage MSMPR crystallizer. A summary of the 

experimental conditions is provided in Table 6.2.  

Table 6.2 Summary of the experimental conditions for the continuous crystallization experiments with 

gas dispersion. All the experiments were conducted with an operating volume (excluding gas phase) of 

900 mL. The measured feed concentration values include the mean ± standard deviation of the four 

replicates at steady state. 

Experiment C0 (g/L) T (°C) τ (min) s (rpm) Gas hold-up (%) 

A1.3 100.1 ± 1.8 10 45 800 0 

A2 100.6 ± 1.6 10 45 800 4 

A3 101.8 ± 0.6 10 45 800 12 

A4 52.5 ± 1.0 10 60 800 0 

A5 49.5 ± 1.4 10 60 800 4 

A6 50.2 ± 0.6 10 60 800 12 

    For most of the experimental runs, the dispersion of gas did not produce complications 

in terms of classification or steady state stability. The system reached steady state within 7-9 

residence times regardless of the gas hold-up, and the steady state was successfully maintained 
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for at least four residence times before the experiments were stopped. An exception was 

experiment A6 which was operated for 13 hours (13 residence times) and it did not reach steady 

state. Examination of the top of the crystallization vessel at the end of the experiment showed 

a large fouling ring near the suspension-headspace border. This phenomenon was much less 

apparent in experiment A5, and practically non-existent in experiment A3. Presumably, foam 

formation at the top of the vessel provided a region with poor mixing that facilitated the 

growth of a fouling layer at the top of the vessel. Even though the foam layer occupied a very 

small height in the crystallization magma (1-2 mm), the use of intermittent withdrawal 

expanded the area of the vessel wall that is covered by the moving foam layer. The negligible 

impact in runs A2-3 could be explained by the shorter experiment duration and the higher 

solids concentration that helps to minimize both foam formation and regions with high 

supersaturation in the crystallizer. Pictures of the crystallization vessel at the end of runs A3, 

A5 and A6 are shown in Figure 6.5. 

 

Figure 6.5 Crust formation at the top of the MSMPR crystallizer. Left: end of experiment A3  Middle: 

end of experiment A5. Right: end of the first attempt at experiment A6. None of the other experiments 

in this work presented this phenomenon. 

Since the extent of crust formation precluded the attainment of steady state in run A6, this 

experiment was repeated and the encrustation was manually removed every 30 minutes during 

start-up. The evolution to steady state for the first and second attempt at run A6, tracked with 

FBRM, is plotted together in Figure 6.6. 
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Figure 6.6 Evolution of the FBRM counts and square weighted mean chord length throughout the two 

attempts at run A6. Encrustation at the top of the crystallizer was periodically removed in the second 

attempt. 

As it can be seen from Figure 6.6, removing the formed crust from the top of the vessel 

was an effective method to stabilize the MSMPR crystallizer during start-up. However, note 

that the accuracy of the experimental results is lower, as the user interaction can affect both 

the observed yield and crystal size distribution, especially when the solute suspension density 

is already small. 

Other than the observed crust formation at low suspension densities, the presence of the 

flowing gas did not have a significant effect on the steady state classification nor on the 

representative product removal. This was verified using separate experiments described in 

Appendix D. 

A sample of the microscope pictures taken for the crystallization magma is provided in 

Figure 6.7. Despite the high operating supersaturations, none of the experiments with gas 

dispersion presented detectable inclusions of gas bubbles in the crystal lattice. Furthermore, 

the crystal shape was consistent regardless of the operating conditions, and none of the 

experiments presented significant crystal breakage.  
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Figure 6.7 Microscope pictures of the crystallization magma from runs A1.3 (top left), A3 (top right), A4 

(bottom left) and the second attempt at A6 (bottom right). 

For a constant feed concentration, temperature and residence time, studying variations in 

the steady state mother liquor concentration is the most direct approach to detect variations in 

the overall rate of crystallization. In this work, this approach has been preferred over the study 

of crystal populations due to the small variations in yield and size distribution between 

experiments. Calculating the crystal populations is subject to error propagation from the 

experimental feed concentration, mother liquor concentration and crystal size distribution. 

The uncertainties are especially significant when a variation of 2-3 g/L in the feed 

concentration between experiments can trigger a similar variation in the steady state 

suspension density. As it is expected due to the significant dependence of the mass deposition 

rate with supersaturation, and further validated with the results in Table 6.1, the mother liquor 

concentration is a much more stable parameter than the suspension density through small 

fluctuations in the feed concentration. The steady state mother liquor concentrations have 

been plotted together with the saturation concentration in Figure 6.8.  
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Figure 6.8 Effect of gas hold-up on the steady state mother liquor concentration in the MSMPR 

crystallizer. The error bars are calculated from the standard deviations between four consecutive 

samples at steady state. 

From the results in Figure 6.8, only the dispersion of gas at low feed concentrations (A5, 

A6) produced a detectable drop in the steady state mother liquor concentration. This variation 

would suggest a kinetic enhancement triggered by gas dispersion. However, due to the 

observed degree of fouling at the top of the vessel, it is complicated to assess if the dispersion 

of gas had an effect on crystallization yield beyond the experimental reproducibility. Even if 

the encrustation is limited by manual removal, its formation and growth will contribute to a 

higher solute mass deposition in the crystallizer.  

If gas dispersion had an enhancing effect on primary nucleation or crystal growth, this 

effect would be consistent regardless of suspension density, especially when all the 

experiments share the same temperature and a similar supersaturation. Moreover, an effect on 

secondary nucleation would be more significant for the experiments at high feed concentration 

due to the significant dependence of this phenomenon with suspension density. Based on the 

results from experiments A1 to A3, gas dispersion has no observable impact on crystallization 

for the studied system. Thus, it is likely that the observed reductions for experiments A4 to A6 

come from fouling and not from a kinetic enhancement from the gas phase. 

The limited effect of gas dispersion is supported by the observed chord length 

distributions at steady state. As it can be observed from Figure 6.9, a gas hold-up of 4% in 

experiment A2 gave the same crystal size distribution as operating without gas dispersion (exp. 

A1.3). A size reduction of 5 μm was observed for a gas hold-up of 12% (A3). Such reduction is 

significantly higher than the experiment reproducibility reported in Figure 6.3, and it could 

have been caused by a promotion of secondary nucleation. This experiment also exhibited the 

lowest mother liquor concentration at the studied feed concentration. Even though the value 
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is marginally, yet statistically higher than the experiment reproducibility, a smaller effect in 

the mother liquor concentration would be expected due to the slower growth rate at lower 

supersaturations. The small increase in crystal size and the broadening of the chord length 

distribution for experiments A4 to A6 is to be expected, as those crystals that fall from the 

fouling layer will have a longer effective residence time and thus a larger size. 

 

Figure 6.9 Effect of gas hold-up on the steady state chord length distribution in the crystallization 

magma. (a) Experiments at high suspension densities (A1 to A3). (b) Experiments at low suspension 

densities (A4 to A6). 

Based on the significant amount of work that reports an effect of gas dispersion in batch 

crystallization, the limited effect of this technique in MSMPR crystallization was surprising. It 

is important to note that, in contrast to batch crystallizers, a continuous MSMPR crystallizer 

operating at steady state exhibits a constant supersaturation and suspension density. The 

steady state is maintained by the internal feedback between crystallization kinetics and the 

crystal size distribution, and supersaturation plays an important role defining these 

parameters. When a phenomenon produces a small enhancement in crystallization kinetics, it 

triggers a reduction in the mother liquor concentration. This produces a drop in 

supersaturation that limits the net kinetic enhancement. This kind of behavior is common in 

continuous MSMPR crystallization and it is aggravated when the system operates close to 

equilibrium. Consequently, a significant change in other process parameters like the residence 

time or feed concentration often leads to small variations in the steady state mother liquor 

concentration.70,74,184 In this work we have operated at high supersaturations that should 

minimize this issue. However, there is a possibility that the effects of gas dispersion are too 

small to produce a variation in the steady state far beyond the experimental error in the 

determination of the steady state conditions.  
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Alternatively, the limited effect observed in this work could be related to the mixing 

conditions in the MSMPR crystallizer. It is expected that the upward-flowing gas will generate 

additional mixing in the magma. Nevertheless, the increased mixing intensity does not 

necessarily lead to a significant increase in the number of crystal impacts. Prior studies on 

crystal-impeller impact frequencies reported a direct dependency between the probability of 

collision and the local Stokes number.223 Smaller particles tend to follow the fluid streamlines 

rather than the sedimentation inertia. Thus, especially when the crystal size distribution is 

narrow, perturbing these fluid streamlines does not necessarily lead to a higher crystal-crystal 

collision frequency.  

Finally, it is possible that despite the high operating supersaturations, the collision energy 

is not high enough to cause secondary nucleation. The probability of generating secondary 

nuclei from a crystal collision depends on the contact force applied to the parent crystal.45,46,48 

If the collisions promoted by the gas phase do not have enough intensity, or if secondary 

nucleation relies on impeller-crystal collisions for this system, it is expected that the gas phase 

will have a negligible effect compared to a higher impeller speed.  

The limited effect of gas dispersion due to the suspension mixing behavior would be 

supported by the results in Chapter 4, where the kinetic rate equations fitted for a smaller 

MSMPR crystallizer gave a nucleation rate order for suspension density of 0.56. Even though 

variations in crystallization kinetics can occur upon crystallizer scale-up, secondary nucleation 

dominated by crystal-crystal collisions typically leads to a second order dependency for the 

suspension density.56  

6.4.4 Continuous crystallization at variable agitation speeds 

To further investigate the mechanisms behind the observed behavior, the effect of varying 

the mixing intensity through different impeller speeds was investigated in the same setup. An 

impeller speed of 650 rpm (Re ≈ 10,000 in ethanol) was selected at the lower end, as this was 

the minimum agitation speed that would induce gas entrainment. Even though these 

experiments were conducted without gas entrainment, lower impeller speeds were not 

investigated as the objective was to conduct the evaluation in a mixing region that would allow 

for gas dispersion as an alternative. The maximum investigated impeller speed was 950 rpm 

(Re ≈ 14,000 in ethanol) above which significant vortex formation started to occur. The 

experimental conditions are summarized in Table 6.3. 
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Table 6.3 Summary of the experimental conditions for the continuous crystallization experiments at 

different agitation intensities. All the experiments were conducted with an operating volume of 900 mL. 

The measured feed concentration values include the mean ± standard deviation of the four replicates at 

steady state. 

Experiment C0 (g/L) T (°C) τ (min) s (rpm) Gas hold-up (%) 

A7 98.2 ± 0.8 10 45 650 0 

A8 98.3 ± 1.6 10 45 950 0 

A9 50.9 ± 0.4 10 60 650 0 

A10 50.4 ± 0.3 10 60 950 0 

 

The steady state mother liquor concentrations are plotted together in Figure 6.10. To 

facilitate the analysis, the results from experiments A1.3 and A4 (800 rpm and no gas 

dispersion) are included in the plot.  

 

Figure 6.10 Effect of impeller speed on the steady state mother liquor concentration in the MSMPR 

crystallizer. The error bars are calculated from the standard deviations between four consecutive 

samples at steady state. 

The similarity between the mother liquor concentrations indicates that there is no 

significant variation in the mass deposition rate caused by a higher impeller speed. These 

results demonstrate that, at the mixing conditions that would allow for gas dispersion in this 

system, crystallization kinetics cannot be further promoted by mixing. 

The steady state chord length distributions for different mixing intensities are reported in 

Figure 6.11. As expected from the negligible variations in the mother liquor concentration, the 
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crystal size distribution is not subject to significant changes despite the variations in mixing. A 

4 μm reduction in the mean chord length was observed at the higher suspension density when 

the impeller speed was increased from 800 to 950 rpm. The size reduction would suggest a 

promotion of the secondary nucleation rate or the presence of crystal breakage. However, no 

significant variations in the crystal shape distribution were observed upon the analysis of 

approximately 700 crystals from the optical microscopy pictures of the crystallization magma 

(reported in Appendix D). An increased effect in crystal breakage was discarded based on this 

analysis. Note that the distribution obtained at 650 rpm is very similar to the one obtained at 

950 rpm. Considering that the chord length distribution is unaltered at the lower suspension 

densities, it is unlikely that diffusion-limited crystal growth would be a consequence of the 

increased crystal size between 650 rpm and 800 rpm. From the small extent of the observed 

variations, it is likely that the observed variations are a consequence of experimental error. 

 

Figure 6.11 Effect of impeller speed on the steady state chord length distribution in the crystallization 

magma. (a) Experiments at high suspension densities (A1.3, A7, A8). (b) Experiments at low suspension 

densities (A4, A9, A10). 

Increasing the stirrer speed would be expected to promote the secondary nucleation 

through an increased number of crystal collisions with the impellers, vessel walls, baffles and 

other crystals.223,224 Furthermore, were the crystal growth rate limited by diffusion, an 

increased mixing intensity would lead to a faster rate of crystal growth. Even though these 

effects, a negligible impact of mixing on crystallization kinetics has been previously reported in 

stirred tanks.225,226 

The fact that higher mixing intensities did not lead to a significant reduction in the steady 

state mother liquor concentration supports that crystallization kinetics are not limited by 

diffusion, and that the rate of nucleation cannot be further promoted by mixing. Considering 
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the high impeller velocity, it is unlikely that the energy provided by collisions with the impeller 

is not sufficient to generate secondary nuclei. Thus, the negligible effect of mixing is likely a 

consequence of a fixed collision frequency between the crystals and other solids in the 

crystallizer. The already high fluid velocities in the crystallizer, combined with the small 

crystal sizes, facilitate that the crystals follow the fluid streamlines instead of colliding with the 

impeller or each other.  

From the point of view of continuous pharmaceutical crystallization, results from this 

work have different implications. First and foremost, despite its applicability to induce 

nucleation in batch crystallization, gas dispersion is not an efficient tool for reduction of 

crystal sizes in a well-mixed continuous MSMPR crystallizer. The homogeneous dispersion of a 

gas phase requires high agitation intensities, and when the aim is to generate small crystals, 

the other conditions in the MSMPR crystallizer are already adjusted for a small crystal size. 

Even though these results are for just one system, it is likely that other systems will face the 

same problem as they would operate with high mixing intensities and small crystal sizes, for 

which the promotion of crystal collisions is limited by the tendency of the crystals to follow the 

fluid streamlines. Furthermore, continuous crystallization systems in pharmaceutical 

production usually deal with significantly smaller suspension densities than batch processes, 

thus making the promotion of crystal collisions more difficult. Since the observed tendency for 

foam formation and fouling becomes an additional concern for the implemented process, the 

effect of gas dispersion should have been significantly higher to compensate for the added 

complexity. 

6.5 Conclusions 

This chapter was aimed at the assessment of the industrial applicability of gas dispersion 

for crystal size distribution control in continuous MSMPR crystallizers. To this end, the effect 

of a moving gas phase on crystallization yield and crystal size distribution was investigated at 

high supersaturations and two different suspension densities. The crystallizer was designed to 

promote the formation of small crystals and to comply with the heavy demands of three phase 

mixing. Results from this work show that gas dispersion does not have an appreciable effect in 

the steady state conditions. Further investigation on the effects of mixing intensity revealed 

that, due to the mixing requirements in the crystallizer and the initially small crystal sizes, 

crystallization kinetics cannot be further promoted by mixing. In contrast to previous 

observations in batch crystallization, results in this work show that the effectiveness of the gas 

dispersion technique depends on the system sensitivity towards changes in the crystallizer 

fluid dynamics, thus supporting that the mechanism for kinetic enhancement by means of 

gassing is related to variations in the crystallizer mixing intensity. 



 

7 Chapter 7   Concluding remarks 

The work described in this thesis is the result of three years of research towards the 

development of novel MSMPR crystallizer configurations with improved control over the 

crystal size and shape. This chapter summarizes the main achievements of this thesis, 

accounting for the project objectives described in Chapter 1. The open challenges and 

suggestions for future work are described at the end of the chapter. 

7.1 Conclusions 

This project has been structured to be academically relevant yet at the same time provide a 

proof-of-concept for continuous crystallization of Melitracen hydrochloride. This thesis starts 

with a critical review of the current state-of-the-art methods for MSMPR process development 

and the novel configurations for generating small crystals. Current methods for MSMPR 

process development rarely account for variations in crystal shape quantitatively. Especially for 

compounds exhibiting different crystal habits during process development, kinetics 

determined from a chord length distribution or the projected area are not necessarily reliable 

for the early assessment of an optimal set of crystallization conditions. In this area, recent 

advances towards in situ quantitative image analysis will soon provide a solution, although 

their application has been mostly focused on batch production. Furthermore, although the use 

of MSMPR cascades provides with a significant improvement for crystal size distribution 

control, generation of small crystals is limited by product and process constraints. As an 

alternative to the use of milling or ultrasonication, gas dispersion was considered because of its 

simplicity and the reported effect in reducing the induction times during batch crystallization. 

The project continued with an experimental assessment of the optimal crystallization 

solvent and the limitations of FBRM as a characterization technique for process development 

in the Melitracen HCl case study. The latter revealed that, as supported by other studies, the 

solids concentration has a major impact on the measured chord length distributions. Although 

this technique is still preferred for in situ quality assessment, it is hardly adequate for process 

development when different suspension densities are employed.  
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The aforementioned limitations of FBRM measurements, combined with the observed 

variations in crystal shape during the early stages of MSMPR process development, led to a 

process development method based entirely on quantitative image analysis. In contrast with 

methods that measure the crystal size distribution from projected area, the simultaneous 

characterization of crystal size and shape revealed that this compound is sensitive to crystal 

breakage in process equipment, and that only the largest dimension is significantly affected by 

this breakage. Studying the effects of crystallization kinetics on crystal habit for conditions 

where breakage is negligible, it was found that the shape is consistent throughout the studied 

range of process conditions. Thus, a unidimensional population model was applied based on 

the crystal dimension that is not sensitive to breakage, from which the absence of size 

dependent growth and growth rate dispersion was confirmed. Finally, the application of 

realistic process constraints to a prediction model revealed that (1) the attainable regions for 

crystal width distribution control in the MSMPR cascade are very small, and (2) that 

generating crystals of equivalent size to those currently produced in the batch process would 

require two crystallization stages and supersaturations close to the fouling limit. These results 

supported the investigation of novel methods to expand the attainable crystal sizes in MSMPR 

crystallizers towards smaller crystals. 

A fundamental study on the effect of air injection on induction times demonstrated that 

dispersing a saturated gas in a saturated solution has the potential to promote crystallization 

rates. In contrast with similar studies, it was found that the reduced induction times are not 

necessarily related to a higher rate of primary nucleation, but they could be caused by a faster 

crystallization rate after the first nucleus is formed. By separating the frequency of primary 

nucleation from the detection delay related to the rate of turbidity build-up after formation of 

the first nucleus, a consistent 5-fold reduction in the detection delay was obtained for two 

model compounds. Studying the effect of stirring speed revealed that both systems were 

sensitive to variations in crystallization kinetics caused by mixing. Thus, the observed 

promotion could be related to either an increase in the secondary nucleation rate or the 

enhancement of a diffusion-limited crystal growth. 

Considering the previously obtained results, gas dispersion was investigated as a potential 

solution to the generation of small crystals in the Melitracen hydrochloride case. A novel 

MSMPR crystallizer employing self-induced gas dispersion was designed with the expected 

configuration for an implemented system. The assessment was conducted at two gas hold-ups 

for conditions that were already optimized for the generation of small crystals. It was found 

that, in contrast with the observations in batch crystallizers, gas dispersion was not able to 

affect crystallization kinetics to a point that this technique would be industrially applicable. 

The reason is presumably related to the mixing intensities that allow for three-phase 

dispersion. In contrast with batch crystallizers, MSMPR crystallizers have strong requirements 
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for homogeneous mixing. Especially when the crystals are already small, high mixing 

intensities do not necessarily lead to an increased collision frequency. It is likely that at those 

conditions that are already optimized for the generation of small crystals, gas dispersion is no 

longer efficient. This hypothesis was further supported by an investigation of the effect of 

mixing on crystallization kinetics, which did not show a significant impact on crystallization 

kinetics at the same conditions. 

7.2 Suggestions for future work 

▪ Continuous crystallization of Melitracen HCl. From this work, it is already known that 

similar crystals to those currently applied in formulation can be obtained with two-

stage MSMPR crystallization, following the conditions described in Table 4.5. It would 

be necessary to evaluate the consistency of these results by connecting the MSMPR 

cascade to a lab-scale synthesis, where the nature of the impurities would be different. 

This configuration would also allow for the application of a precipitation approach, by 

which Melitracen base could be mixed with an HCl solution in the first MSMPR stage. 

If the product quality was negatively affected by this approach, it would be necessary to 

pre-heat the feed stream to 60 °C and join the two streams before the first MSMPR 

crystallizer, thus applying the cooling crystallization approach used in this project. 

▪ Process imaging for MSMPR characterization. Results from this thesis demonstrate the 

significant advantage of quantitative image analysis for MSMPR process development. 

Although the time for manual image analysis was significantly shorter than that for the 

MSMPR experiments, manual analysis is tedious and leads to a poor accuracy because 

of the small sampling numbers. The application of algorithms for automated analysis 

would be the first step towards a more practical process development approach. Due to 

the current limitations of in situ imaging techniques, it is suggested to still employ the 

sampling method developed in this thesis, as it is simple and provides with an optimal 

sample presentation for the analysis. From a quality assessment point of view, FBRM 

can still be used in the implemented process for feedback control. 

▪ Fundamental effect of gas dispersion on nucleation rates. Although this thesis suggests 

that the effect of gas dispersion is just a consequence of a different mixing pattern in 

the crystallizer, the effect of the gas-liquid interphase on nucleation could be verified 

with induction time measurements in a static system. The study could employ slugs of 

air and supersaturated solution in a tubular system, where the gas-liquid interphase is 

constant regardless of the slug size. By controlling the slug size, the surface area to 

volume ratio can thus be controlled and the effect on the primary nucleation rate 

quantified with induction time statistics. 
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Appendix A – Methods for HPLC analysis 

This section provides with a short instruction manual on how to determine the concentration 

of Melitracen HCl through HPLC analysis. Note that the HPLC method has been designed for 

the rapid determination of Melitracen concentrations from purified Melitracen HCl – ethanol 

solutions. The presence of additional impurities would require a more complex approach. 

A.1 Equipment 

Pump: Hitachi L-2130. 

Autosampler: Hitachi L-2200. 

Column oven: Hitachi L-2300. 

Column: Gemini 3 μm C18 110 Å, 100 x 4.6 mm ID (Phenomenex). 

Detector: Hitachi Diode Array Detector (DAD) L-2455. 

A.2 Preparation of the mobile phase 

Amounts for buffer preparation (50 mM ammonium formate), in a 1 liter bottle: 

1. Ammonium formate – 3.15 g. 

2. Water (Demineralized, miliq) – 1000 ml. 

3. Adjust to pH = 9.0 with an aqueous ammonium hydroxide solution. 

Mobile phase: 10% buffer, 90% Acetonitrile. 

1. To prepare 1.8 liters of mobile phase, pour 1620 ml of acetonitrile and 180 ml of 

buffer in a blue cap flask. Shake vigorously. 

2. Place the flask in the ultrasound bath for 30 min and under a fume extractor. Leave 

the cap open. This step is conducted to degas the mobile phase. 

3. Without further mixing the mobile phase, connect it to the HPLC (line B) through 

the provided in-line filter. 
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A.3 Sample preparation 

1. Heat the sample in a thermomixer (see temperatures in Table A.1) and leave it agitated 

(800 rpm) until full dissolution. 

2. While the samples are being heated up, pipette the corresponding ethanol volumes to 

the dilution vials and cap them. Always use a 200 μl pipette for the samples and the 

1000 μl pipette for the ethanol. 

3. Remove the sample from the thermomixer and conduct the two dilutions using the 

amounts specified in Table A.1. 

Table A.1 Dilution procedures for the most common sample concentrations in this work.  

Expected 
concentration (g/L) 

Dissolution 
temperature (°C)a 

Dilution 1 (μL) Dilution 2 (μL) 
Dilution 

factor 
Sample Ethanol Sample Ethanol 

20 – 40 40 200 800 200 800 1/25 

40 – 70 50 200 800 100 900 1/50 

70 – 130 60 100 900 100 900 1/100 

aThe dissolution temperature is kept approximately 10 °C above the API solubility, as determined in this 

work. 

4. Prepare the HPLC samples by pipetting 100 μl of the previously diluted samples to 900 

μl of mobile phase. This final dilution is conducted in a 1.5 mL HPLC vial. 

A.4 HPLC method 

Mobile phase flow rate: 0.8 mL/min. 

Time: 5 min. 

Temperature: 40 °C. 

Inj. volume: 20 μL. 

Detection: 230 nm. 

The typical retention time for Melitracen is 2.37 min. The analysis should lead to a 

chromatogram similar to Figure A.1. 
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Figure A.1 Typical chromatogram from HPLC analysis of a Melitracen HCl – ethanol solution, 

corresponding to the maximum studied concentration (2.0 g/L before the last dilution). 

A.5 Preparation of standards 

1. Dry appr. 2 g Melitracen HCl in the oven at 110°C for at least 20 hours. 

2. Using the dried crystals, prepare 6 standards with the concentrations stated in Table 

A.2. The dilutions are conducted in a volumetric flask using absolute ethanol as a 

solvent. 

3. Prepare the HPLC samples by pipetting 100 μl of the standard solution to 900 μl of 

mobile phase. This dilution is conducted in a 1.5 mL HPLC vial. 

4. Store the standards in closed 20 mL vials (dated). They should be kept in the fridge 

and replaced at least once every 2 months, or when a significant change in absorbance 

is observed. The calibration line should be repeated every time a new mobile phase is 

prepared. 
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Table A.2 Standard concentrations and amounts for preparation. 

Concentration 
(g/L) 

Amount to 
weight (g) 

Standard volume 
(mL) 

0.4 0.0400 100 

0.7 0.0700 100 

1.0 0.1000 100 

1.3 0.1300 100 

1.6 0.0800 50 

2.0 0.1000 50 

 

These standard concentrations typically yield a nonlinear calibration line as shown in 

Figure A.2. This shape was consistent throughout the project and is likely a consequence of the 

high concentrations in the injected sample. Lower concentrations were not employed as the 

dilution factors to obtain a linear plot were unreasonably high. 

 

Figure A.2 Typical calibration curve for the determination of Melitracen HCl concentrations from HPLC 

analysis. The values are plotted including the standards’ dilution with mobile phase. 
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B.1 Effect of the number of measured crystals on the size 

distribution 

The number of measurements conducted for image analysis was determined based on the 

variations in crystal size induced by a change in the crystallization conditions. Figure B.1 shows 

the average crystal width (number based) plotted against the number of measurements for 5 

experiments that exhibited different crystal size distributions. The average crystal width 

typically stabilizes after 200 measurements, after which the fluctuations in the average value 

(<5%) are significantly lower than the variation between experiments.         

     

Figure B.1 Variations in the number based mean crystal width over the number of measured crystals 

during image analysis of experiments 1, 3, 5, 7 and 9. 

Note that the volumetric distribution is based on the higher end of the number based 

distribution, which contains a smaller amount of samples and thus it is more scattered. To 

study the accuracy of the volumetric distributions obtained with 700 crystals, the 

measurements for experiments E1 and E4 were conducted in duplicate with approximately 700 

crystals per repetition, coming from different pictures of the same experiment. The mass-based 

mean sizes were considered to be the least reproducible value for these measurements, since 

they are heavily dependent on the higher end of the distribution. Thus, the measurement error 

was estimated from the reproducibility of these values. The obtained results are reported in 

Table B.1. 
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Table B.1 Results from the duplicate measurements of the mass-based mean crystal length and width 

for runs E1 and E4. 

Run Dimension 
Mass-based mean 

size, R1 (μm) 
Mass-based mean 

size, R2 (μm) 
Average ± SD 

(μm) 
Error (%) 

E1 

Width 27.6 27.0 27.3 ± 0.3 2.2 

Length 168 203 185 ± 18 19 

E4 

Width 21.4 24.1 22.8 ± 1.4 12 

Length 162 177 169 ± 7 8.7 

 

In this work, E4 and E5 presented the smallest crystal sizes, with a mass-based mean 

crystal width of 23 µm for both experiments. The largest mass-based crystal width, obtained at 

the second stage of E9, was 42 µm. Considering that the estimation error can be as high as 20 

%, care should be taken when studying small variations in the crystal size distribution. 

Furthermore, it is important to induce significant variations in the process conditions during 

the study, and to compensate the uncertainties on the size distribution by using a large 

amount of experiments. The obtained variations during the MSMPR experiments were 

considered high enough to study an overall trend, although they may be limited for very 

similar experiments. This estimation error explains the observed differences between the 

observed and model predicted crystallization kinetics, and further supports the need for a 

reliable automated size measurement that increases the number of measurements by at least 

an order of magnitude.  

B.2 XRPD patterns for the MSMPR product 

The obtained XRD patterns from experiments 1, 3, 6 and 8 are reported in Figure B.2. 

These experiments were selected to include the effects of supersaturation and temperature in 

the analysis. As it was expected for a system without previous polymorphism issues, the crystal 

structure remains unaltered in the MSMPR experiments. Furthermore, based on the 

background of the XRD patterns, the product shows a similar degree of crystallinity than that 

found in the batch product. 
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Figure B.2 XRD patterns of the crystals obtained from full-scale batch and lab scale MSMPR 

crystallization. 
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C.1 XRPD patterns of the crystallized samples  

At the end of the experiments with air injection, the crystallized samples were filtered 

together and the powder was analyzed using X-Ray Powder Diffraction. The resulting patterns 

are reported in Figure C.1 and Figure C.2. 

 

Figure C.1 XRD patterns of the glycine samples crystallized with air injection. The reference patterns 

(purple) were calculated using the Mercury software from Cambridge Crystallographic Data Centre 

(CCDC). 
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Figure C.2 XRD patterns of the L-arginine samples crystallized with air injection. The reference patterns 

(purple) were calculated using the Mercury software from Cambridge Crystallographic Data Centre 

(CCDC). 
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C.2 Logged air temperature and saturation data 

Throughout the course of the experiments with air injection, the temperature and Relative 

Humidity (RH) of the injected air were measured every 5 minutes with a sensor located at the 

end of the second condenser (see Figure 5.1). The logged data is plotted in Figure C.3 and 

Figure C.4.  

     

     

     

Figure C.3 Evolution of the air temperature and saturation throughout the experiments with air 

injection on glycine solutions. Top: 200 μl/min; Middle: 650 μl/min; Bottom: 1200 μl/min. E1-E5 

correspond to 5 repetitions at the same conditions. Each of these repetitions contains up to 16 parallel 

samples. 
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Figure C.4 Evolution of the air temperature and saturation throughout the experiments with air 

injection on L-arginine solutions. Top: 1100 μl/min; Middle: 1500 μl/min; Bottom: 2100 μl/min. E1-E5 

correspond to 5 repetitions at the same conditions. Each of these repetitions contains up to 16 parallel 

samples. 
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D.1 Effect of gas injection on solvent evaporation 

Given that this study covers the effect of a flowing gas on MSMPR crystallization kinetics, 

the effects of solvent evaporation that could trigger a supersaturation increase must be 

mitigated to get reliable conclusions. This is not a concern when the gas is internally circulated 

from the headspace, as the gas phase will be saturated and roughly at the same temperature 

than the magma. However, using an external gas feed requires quantitative knowledge on its 

effect on supersaturation.  

Figure D.1 shows the evolution of the solute concentration over 7 hours of gas dispersion 

in an undersaturated API-ethanol solution at 10 °C. 

 

Figure D.1 Evolution of the API concentration in the undersaturated solution over 7 hours of gassing. 

Temperature: 10 °C. Impeller speed: 800 rpm. Dispersion from gas entrainment and bottom injection 

(2.5 L/min, pre-saturated gas). 

Over the seven hour long experiment, the API concentration dropped from 15 g/L to 14 

g/L, corresponding to a condensation rate of 9 mL/h. Consequently, the ethanol concentration 

in nitrogen achieved in the gas traps (working at 20 °C) falls above the gas saturation point at 

10 °C. The experiments in this work have a residence time between 45 min and 60 min. 

Considering the existing variations between experiments and the short residence times, 

variations in the mother liquor concentration induced by the gas phase are negligible in the 

MSMPR crystallizer. 
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D.2 Preliminary mixing and product removal studies 

To investigate the effects of agitation intensity and foam formation in three-phase mixing, 

the homogeneous distribution of solids in the MSMPR crystallizer was investigated with an 

API suspension at equilibrium. A 2 L suspension was prepared with a total concentration of 

100 g/L of Melitracen HCl in ethanol. 900 mL of the prepared suspension were poured in the 

crystallizer and the rest was saved for refilling the vessel between samples. The agitation speed 

was set to 800 rpm for the measurements. 4 mL HPLC samples were taken from the 

suspension at three different positions in the crystallizer, being 5, 63, and 115 mm from the 

bottom of the vessel. The sampling was conducted in triplicates before the vessel was refilled 

to 900 mL. Then, gas dispersion was started with the maximum investigated hold-up (12%) 

and the sampling was repeated in triplicates. To validate the accuracy of the off-line FBRM 

sampling, the chord length distribution was measured in-line from the top of the crystallizer 

and from 45 mL off-line samples taken at the three different positions previously mentioned. 

The vessel was refilled to 900 mL before each sample. The obtained results, summarized in 

Table D.1, demonstrate that gas dispersion has no significant impact on the crystal 

concentration or the size distribution in the crystallizer. 

Table D.1 API concentrations and square weighted mean chord lengths for the samples taken at 

different positions in the MSMPR crystallizer. The liquid level had a total approximated height of 120 

mm. 

Sampling 
height (mm) 

CAPI (g/L) – No 
gas 

CAPI (g/L) – 
12% hold-up 

FBRM Sqr wt mean 
(μm) – No gas 

FBRM Sqr wt mean 
(μm) – 12% hold-up 

5 100.3 ± 1.9 103.8 ± 1.6 44.5 (off-line) 44.3 (off-line) 

63 100.6 ± 0.4 99.6 ± 2.5 42.9 (off-line) 44.8 (off-line) 

115 102.6 ± 2.3 99.7 ± 2.8 
43.2 (off-line) 

44.0 (in-line) 
43.8 (off-line) 
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D.3 Measured steady state classification in the MSMPR crystallizer 

The steady state classification in the MSMPR crystallizer was studied at the end of each 

experiment by taking three magma samples at different positions in the crystallizer. The 

classification level was studied from the fraction of API concentration between the MSMPR 

crystallizer and the dissolver. Results are provided in Figure D.2. 

 

Figure D.2 Steady state classification values for each continuous crystallization experiment, expressed 

as the fraction between the API concentration in the magma and that in the dissolver. The error bars 

correspond to the standard deviation from HPLC analysis accounting for error propagation. 

None of the experiments presented a significant excess in the API concentration at the 

crystallizer over that at the feed vessel. On the contrary, some of the experiments presented a 

lower API concentration in the crystallization magma (up to 7%). These results do not show a 

particular trend, but share similar values with our observations at a smaller scale and are likely 

related to the accuracy of the sampling method. Indeed, when a suspension is being sampled, 

classification of the solid phase can occur during sampling leading to a small reduction in the 

measured API concentration. As most of the experiments show deviations lower than 2%, it is 

reasonable to assume that there is no significant classification in the steady state crystallizer. 
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D.4 Detection of crystal breakage in the experiments with variable 

mixing 

To study the reason behind the crystal size distribution variations in experiments A7, A1.3 

and A8, optical microscopy pictures showing the 2D projection of the steady state magma were 

manually analyzed. The analysis was conducted for 700 crystals using the image processing 

software ImageJ (ver. 1.6.0). The resulting crystal shape distributions, reported in Figure D.3, 

show no significant variation in the crystal shape. 

 

Figure D.3 Steady state crystal shape distribution for experiments A7, A1.3 and A8, obtained from the 

2D projection of the crystallization magma. 

 

 


