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Effects of quadratic and cubic nonlinearities on a

perfectly tuned parametric amplifier

S. Neumeyer, V. S. Sorokin, J. J. Thomsen

Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, Denmark

Abstract

We consider the performance of a parametric amplifier with perfect tuning
(two-to-one ratio between the parametric and direct excitation frequencies)
and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation
with appended quadratic nonlinearity is considered as the model system,
and steady-state solutions and corresponding stabilities are obtained by the
method of varying amplitudes. Some general effects of pure quadratic, and
mixed quadratic and cubic nonlinearities on parametric amplification are
shown. In particular, the effects of mixed quadratic and cubic nonlineari-
ties may generate additional amplitude-frequency solutions. In this case an
increased response and a more phase sensitive amplitude (phase between
excitation frequencies) is obtained, as compared to the case with either
pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability
in the amplitude-phase characteristics are predicted, supporting previously
reported experimental observations.

Keywords: parametric amplification, quadratic and cubic nonlinearities,
method of varying amplitudes

1. Introduction

Parametrically amplifying (adding parametric to direct excitation for
boosting resonant oscillations) microelectromechanical resonators, which in
recent years have been used for filtering and sensoring [1, 2], can be advanta-
geous for low-noise signal amplification [3], and appear promising for energy
harvesting [4, 5]. They can conveniently be modelled with an appended cu-
bic nonlinearity [6], reflecting the symmetric effects of nonlinear curvature or
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midplane stretching [7], with the nonlinear effects being comparably stronger
due to the small length scale [8]. The effects of pure cubic nonlinearity for a
parametric amplifier have been investigated in [9].

The effect of mixed quadratic and cubic nonlinearities is considered in
the present work for two reasons. First, the quadratic nonlinearity can con-
veniently be introduced alongside the cubic nonlinearity as a correction term
of the mathematical model. In this way it appears in the governing equa-
tion of motion as small compared to the cubic term. Secondly, the study of
relatively strong quadratic nonlinearity is also relevant because it can model
an asymmetry in restoring forces of elastic structures [10, 11], e.g. due to
buckling or initial curvature. The quadratic nonlinearity may even overcome
the cubic nonlinearity, if the static deflection is large, or when the beam is
very slender [12]. Therefore this study is motivated by an interest in general
effects on parametric amplifiers, of both pure quadratic nonlinearity, and
mixed quadratic and cubic nonlinearities.

Several works report on combined parametric and direct excitation in-
cluding quadratic and cubic nonlinearities [13–15]. Commonly a perturba-
tion method is applied, assuming damping, nonlinear, and excitation terms
to be small, and that subthreshold (response dominated by the direct ex-
citation component) pumping (adding parametric excitation) is applied. In
some cases it is also assumed that the quadratic nonlinearity is smaller than
the cubic nonlinearity, e.g. [16]. The present work considers both when the
quadratic nonlinearity is smaller and larger than the cubic nonlinearity, and
focuses on superthreshold (response dominated by the parametric excitation
component) pumping. Superthreshold pumping is of interest because of the
potentially higher achievable gains [9], as compared to being operated below
their linear instability threshold, i.e. for subthreshold pumping.

In Sect. 2 a model system is proposed and the corresponding steady-
state vibration amplitude is solved for using the method of varying ampli-
tudes (MVA), for the cases of pure as well as mixed cubic and quadratic
nonlinearities. In Sect. 3 these results are compared with results of direct
numerical integration, showing good agreement. In Sect. 4 main conclusions
of the paper are outlined.
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2. Steady-state response analysis

A forced Duffing-Mathieu equation with unit-normalized linear natural
frequency and additional quadratic nonlinearity is investigated:

ẍ+ βẋ+
(
1 + p cos (2Ωt)

)
x+ k2x

2 + k3x
3 = d cos (Ωt+ φ) , (1)

where ˙(x) denotes temporal derivatives, β = 2ζ where ζ is the damping
ratio, k2 is a quadratic nonlinearity coefficient, k3 is a cubic nonlinearity
coefficient, (. . .)x describes the linear elastic restoring force, p is a parametric
excitation amplitude, d is a direct excitation amplitude, t is time, and φ is
the phase between the external and parametric excitation. A similar system
but without quadratic nonlinearity has been investigated in [9]. It is the
simplest one degree of freedom system which captures the effects of linear
damping, quadratic and cubic nonlinearities, and which has both direct and
parametric excitation, which are necessary for a parametric amplifier. Such
a system is also physically easy to realize approximately [17–20].

To solve the steady-state oscillations x(t) of (1) approximately, the MVA
is employed, as proposed in [21], where one assumes a harmonic series solution
form:

x(t) =
n∑

m=0

Am1(t) cos (mΩt) + Am2(t) sin (mΩt) , (2)

where the amplitudes Am1 and Am2 are time-varying, and not required to
vary slowly. This is contrary to the method of harmonic balance, where the
coefficients Am1 and Am2 would be constants and (2) an approximation. The
allowed time dependency of Am1 and Am2 means that (2) merely represents
a shift of variables, by which the solution form (2) is exact for any value of
n. The transition from x to 2n + 1 new variables, Am1 and Am2 (A02 = 0),
implies that a total of 2n + 1 equations are needed. Inserting (2) into (1)
and requiring the coefficients of the involved harmonic terms to vanish iden-
tically, we introduce 2n additional equations; equation 2n + 1 then includes
the remaining harmonic terms, including those having order higher than n.
Considering n = 2 and thus the first three harmonics in (2), yields:

x(t) = A01(t) + A11(t) cos (Ωt) + A12(t) sin (Ωt)

+ A21(t) cos (2Ωt) + A22(t) sin (2Ωt) , (3)

3



and one obtains the following five equations with five variables A11, A12, A21,
A22, and A01 to solve for:

Ä11 + βȦ11 + 2ΩȦ12 + βΩA12 + A11

(
1− Ω2 + 1

2
p+ 2k2A01 + 3k3A

2
01

)
+ (3k3A01 + k2) (A11A21 + A12A22)

+ 3
2
k3A11

(
1
2

(
A2

11 + A2
12

)
+ A2

21 + A2
22

)
= d cos (φ) , (4)

Ä12 + βȦ12 − 2ΩȦ11 − βΩA11 + A12

(
1− Ω2 − 1

2
p+ 2k2A01 + 3k3A

2
01

)
+ (3k3A01 + k2) (A11A22 − A12A21)

+ 3
2
k3A12

(
1
2

(
A2

11 + A2
12

)
+ A2

21 + A2
22

)
= −d sin (φ) , (5)

Ä21 + βȦ21 + 4ΩȦ22 + A21 + pA01 + 2Ω (βA22 − 2ΩA21)

+ 1
2
k2
(
A2

11 − A2
21 + 4A01A21

)
+3k3A21

(
1
4

(
A2

21 + A2
22

)
+ 1

2

(
A2

11 + A2
12

)
+ A2

01

)
+ 3

2
k3A01

(
A2

11 − A2
12

)
= 0, (6)

Ä22 + βȦ22 − 4ΩȦ21 − 2βΩA21

+ A11A12 (k2 + 3k3A01) + A22

(
1− 4Ω2 + 2k2A01

)
+ 3k3A22

(
1
4

(
A2

21 + A2
22

)
+ 1

2

(
A2

11 + A2
12

)
+ A2

01

)
= 0, (7)
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Ä01 + βȦ01 + A01 + 1
2
pA21 + 3

2
k3A11A12A22

+ 3
4
k3A21

(
A2

11 − A2
12

)
+ k2

(
1
2

(
A2

11 + A2
21 + A2

22

)
+ A2

01

)
+k3A01

(
3
2

(
A2

11 + A2
12 + A2

21 + A2
22

)
+ A2

01

)
=

− 1
4

({
k3A

3
11 − 2A12 (2k2 + 6k3A01 − 3k3A21)A22

+A11

[
2 (p+ 2k2A21)− 3k3

(
A2

12 − A21 (4A01 + A21) + A2
22

)]}
cos (3Ωt)

+
{
A21

(
3k3A

2
11 − 3k3A

2
12 + 2 [p+ (k2 + 3k3A01)A21]

)
−6k3A11A12A22 − 2 (k2 + 3k3A01)A

2
22

}
cos (4Ωt)

+ 3k3
{
−2A12A21A22 + A11

(
A2

21 − A2
22

)}
cos (5Ωt)

+ k3A21

{
A2

21 − 3A2
22

}
cos (6Ωt)

+
{
−k3A3

12 + 2A11 (2k2 + 6k3A01 + 3k3A21)A22 + A12 [2 (p+ 2k2A21)

+3k3
(
A2

11 + 4A01A21 − A2
21 + A2

22

)]}
sin (3Ωt)

+
{

6k3A11A12A21 +
[
2p+ 3k3A

2
11 − 3k3A

2
12 + 4 (k2 + 3k3A01)A21

]
A22

}
sin (4Ωt)

+ 3k3
{

2A11A21A22 + A12

(
A2

21 − A2
22

)}
sin (5Ωt)

−k3A22

{
−3A2

21 + A2
22

}
sin (6Ωt)

)
. (8)

Eqs. (4)-(8) cannot be solved exactly. To obtain approximate solutions we
neglect higher (> n) harmonics in (8), i.e. all of the right-hand side, so that:

Ä01 + βȦ01 + A01 + 1
2
pA21 + 3

2
k3A11A12A22

+ 3
4
k3A21

(
A2

11 − A2
12

)
+ k2

(
1
2

(
A2

11 + A2
21 + A2

22

)
+ A2

01

)
+ k3A01

(
3
2

(
A2

11 + A2
12 + A2

21 + A2
22

)
+ A2

01

)
= 0. (9)

This simplification is adequate when in (1) the quadratic nonlinearity term
k2x

2, the cubic nonlinearity term k3x
3, and the linear parametric excitation

term px are small compared to the linear restoring term x. Steady-state
solutions are obtained by requiring all time derivatives in (4)-(7), (9) to
vanish, so that:

βΩA12 + A11

(
1− Ω2 + 1

2
p+ 2k2A01 + 3k3A

2
01

)
+ (3k3A01 + k2) (A11A21 + A12A22)

+ 3
2
k3A11

(
1
2

(
A2

11 + A2
12

)
+ A2

21 + A2
22

)
= d cos (φ) , (10)
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− βΩA11 + A12

(
1− Ω2 − 1

2
p+ 2k2A01 + 3k3A

2
01

)
+ (3k3A01 + k2) (A11A22 − A12A21)

+ 3
2
k3A12

(
1
2

(
A2

11 + A2
12

)
+ A2

21 + A2
22

)
= −d sin (φ) , (11)

A21 + pA01 + 2Ω (βA22 − 2ΩA21)

+ 1
2
k2
(
A2

11 − A2
21 + 4A01A21

)
+3k3A21

(
1
4

(
A2

21 + A2
22

)
+ 1

2

(
A2

11 + A2
12

)
+ A2

01

)
+ 3

2
k3A01

(
A2

11 − A2
12

)
= 0, (12)

− 2βΩA21 + A11A12 (k2 + 3k3A01) + A22

(
1− 4Ω2 + 2k2A01

)
+ 3k3A22

(
1
4

(
A2

21 + A2
22

)
+ 1

2

(
A2

11 + A2
12

)
+ A2

01

)
= 0, (13)

A01 + 1
2
pA21 + 3

2
k3A11A12A22

+ 3
4
k3A21

(
A2

11 − A2
12

)
+ k2

(
1
2

(
A2

11 + A2
21 + A2

22

)
+ A2

01

)
+ k3A01

(
3
2

(
A2

11 + A2
12 + A2

21 + A2
22

)
+ A2

01

)
= 0, (14)

from which the steady-state amplitudes A11, A12, A21, A22, and A01 can be
determined. Note that considering n = 1 in (2) is sufficient for pure cubic
nonlinearity, in order to obtain a good agreement between the approximate
analytical results, and the corresponding results obtained by direct numerical
integration. In the case of pure quadratic nonlinearity, however, one needs
at least n = 2, otherwise the softening effect will remain a part of the higher
(> n) harmonics, which is neglected in (9).

Since Am1 and Am2 for m > 0 are amplitudes of the time harmonic
response (cf. (2)), eqs. (10)-(14) can be used to calculate frequency re-
sponses, and thus to assess the effects of quadratic and cubic nonlinearities
on a perfectly tuned parametric amplifier. The amplitudes Am1 and Am2

are determined from (10)-(14) approximately by neglecting nonlinearities in
A21, A22, and A01. The approximate analytical steady-state amplitude a is
also here computed as the absolute maximum of x(t) (cf. (2)). Backbones
are then derived by zeroing the forcing and damping terms. The steady-
state amplitude-frequency solutions could also have been obtained using the
method of Harmonic Balance [22]. However, the MVA also provides the
modulation equations (4)-(7), (9) from which stability of the steady-state so-
lutions can be determined by evaluating Jacobian eigenvalues. The response
x(t) is also found by direct numerical integration of (1), and the correspond-
ing steady-state amplitude is computed as the absolute maximum of x(t).
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3. Results

Fig. 1 shows various steady-state amplitude-frequency relations for sub-
and superthreshold pumping in the case of no nonlinearity, pure cubic non-
linearity, pure quadratic nonlinearity, and mixed cubic and quadratic nonlin-
earities. Fig. (a) shows that classical responses with softening or hardening
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backbone
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Figure 1: Steady-state amplitude-frequency relations showing (a) subthreshold (p = 0.01)
quadratic (k2 = 0.3, k3 = 0) and cubic (k2 = 0, k3 = 0.5) responses, and their respective
backbones (b) linear (k2 = k3 = 0) superthreshold (p = 0.1) response (c) pure cubic (k2 =
0, k3 = 0.3) superthreshold response (d) pure quadratic (k2 = 0.3, k3 = 0) superthreshold
response. Solid blue curve and solid red curve with squares respectively denote stable
and unstable approximate analytical results. Solid black curves denote backbones. Circles
denote results obtained by direct numerical integration of (1). (φ = −π/4, β = 0.01,
d = 0.01).

are obtained for subthreshold pumping. In the case of pure quadratic nonlin-
earity, the backbone to the left is obtained by direct numerical integration,
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whereas the one to the right is obtained using the MVA. The discrepancy
for the latter is due to neglecting nonlinearities in amplitudes A21, A22, and
A01, as mentioned in Sect. 2. Note also that for the backbones, the ampli-
tude equals zero at the linear natural frequency and approaches infinity in
the linear case, as would be expected. Fig. (b) depicts linear superthreshold
pumping. As compared to the subthreshold case, an extra peak emerges, and
the solutions are now dominated by the parametric excitation component.
Fig. (c) shows superthreshold pumping with pure cubic nonlinearity. Con-
trary to the classical hardened Duffing response where the lower solution on
the peak is unstable, here the lower solution on the upper peak is stable. This
observation has been reported previously [9]. Fig. (d) shows superthreshold
pumping with pure quadratic nonlinearity. The response is similar to that
of negative cubic nonlinearity (softening) and opposite of positive cubic non-
linearity (hardening). As in the case with pure cubic nonlinearity, the shift
from sub- to superthreshold pumping results in the emergence of an extra
peak, and a partial shift in stability of the solutions. A good agreement
between results of direct numerical simulation and approximate analytical
results is obtained in all of the above cases. Results of superthreshold pump-
ing with cubic nonlinearity and a quadratic nonlinearity correction term are
not shown in the figures; the otherwise hardened response, due to a positive
cubic nonlinearity, simply becomes less hardened. This is similar to the case
for subthreshold pumping.

Fig. 2 presents the response for mixed quadratic and cubic nonlinearities
for sub- and superthreshold pumping where, respectively, below and above
unit amplitude the quadratic and cubic nonlinearities dominate the response.
The results in fig. (a) for subthreshold pumping have been reported elsewhere
[15], except than in our case the unstable solution on the upper part of the
peak is too close to the stable solution to be visible. The insert shows that the
approximate analytical response x(t) as given by (2), of which the absolute
maximum value is chosen as the amplitude a, is slightly anharmonic lacking
symmetry with respect to x = 0. That is, even harmonics are present, but
it is still reasonable to choose the absolute maximum value of the response
x(t) as the amplitude a, since the approximate analytical response and the
response obtained through direct numerical integration are similar. For su-
perthreshold pumping (fig. (b)) the response becomes more intricate: Two
additional solutions emerge, compared to the case of superthreshold pumping
with pure cubic nonlinearity in which a maximum of five solutions coexist
(Fig. 1(c)), so that a maximum of seven solutions coexist, e.g. for Ω = 1.
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Figure 2: Steady-state amplitude-frequency relations with mixed quadratic and cubic non-
linearities (k2 = 0.3, k3 = 0.05) for (a) sub- and (b) superthreshold pumping. Parameter
values and markers as used in Fig. 1 unless stated otherwise.

For lower amplitudes (below the dashed line in fig. (b)), the stability of the
peaks is similar to the case of pure quadratic nonlinearity (Fig. 1(d)), and for
higher amplitudes similar to the case of pure cubic nonlinearity (Fig. 1(c)).
Even though the amplitude is large and the analytical solution is approxi-
mate, it is still validated by results of direct numerical integration.

Fig. 3 depicts the case where the effects of quadratic and cubic nonlin-
earities cancel out for amplitudes smaller than unity, i.e. a close to linear
response is obtained for an extended range of amplitudes as compared to
when the effects of quadratic and cubic nonlinearities do not cancel out. Fig.
(a) shows the response for subthreshold pumping whereas fig. (b) shows the
response for superthreshold pumping. The insert in fig. (a) shows that the
response x(t) is almost symmetric with respect to x = 0. Significantly larger
amplitudes than for pure quadratic or cubic nonlinearity (figs. 1(c,d)), are
obtained in both cases. This could be useful for e.g. sensor applications and
energy harvesters utilizing parametric amplification. Besides the benefits of
tuning the device such that a higher steady-state amplitude is realized, the
obtained response of a parametric amplifier is also of general interest, since
one may encounter systems where the effect of quadratic nonlinearity can-
cels that of the cubic nonlinearity, or even becomes dominant [10–12], as also
mentioned in the introduction. Note that the stability of the solutions is
different than for the linear case (Fig. 1(b)).

Fig. 4 presents steady-state amplitude-frequency relations for paramet-
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Figure 3: Steady-state amplitude-frequency relations where the effects of quadratic and
cubic nonlinearities cancel out for a < 1 (k2 = 0.3, k3 = 0.1) for (a) sub- and (b) su-
perthreshold pumping where the insert in (a) shows the response x(t) and the insert in
(b) is a blow up. Parameter values and markers as used in Fig. 1 unless stated otherwise.

ric excitation p ranging from sub- to superthreshold pumping. The response
for p ' 0 in each subfigure is for subthreshold pumping, whereas the two
other responses in each figure are for superthreshold pumping, as can also be
seen by the emergence of additional solutions. Fig. (a) shows the linear case.
The minimum of the unstable response, i.e. the response at Ω ≈ 1, lowers
with increasing pumping, and the frequency separation between the peaks on
each response curve increases with increasing pumping. Figs. (b-d) show, re-
spectively, in the case of pure cubic nonlinearity, pure quadratic nonlinearity,
and for mixed cubic and quadratic nonlinearities, a transition from sub- to
superthreshold pumping where the peak separation increase with increased
pumping, as in the linear case.

Fig. 5 shows steady-state subthreshold amplitude-phase relations for
pure quadratic, pure cubic, and various combinations of mixed quadratic
and cubic nonlinearities. Fig. (a) reveals that for almost any phase φ the
largest response is obtained in the linear case. Nonlinear effects reduce the
amplitude, both in the case of pure quadratic nonlinearities, pure cubic non-
linearities, or mixed quadratic and cubic nonlinearities. Fig. (b) depicts a
case where the effects of quadratic and cubic nonlinearities cancel near Ω ≈ 1.
A significant increase in response is obtained; the maximum magnitude of the
response is almost the same as in the linear case. But at the same time the
amplitude-phase response differs qualitatively from the linear one; jumps and
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Figure 4: Steady-state amplitude-frequency relations for parametric excitation amplitude
for (a) linear (k2 = k3 = 0) (b) pure cubic nonlinearity (k2 = 0, k3 = 0.5) (c) pure
quadratic nonlinearity (k2 = 0.3, k3 = 0) (d) quadratic and cubic nonlinearities (k2 = 0.3,
k3 = 0.08). Parameter values and markers as used in Fig. 1 unless stated otherwise.

bi-stability are observed, similar to experimental results [23]. In all cases a
good agreement between analytical approximate results and results of direct
numerical integration is obtained. In general it is observed that with increas-
ing nonlinear coefficients, the amplitude becomes less phase sensitive, except
in the case where the effects of quadratic and cubic nonlinearities cancel out;
here the amplitude can be even as sensitive as in the linear case. Steady-state
superthreshold amplitude-phase relations are not shown since superthreshold
parametric pumping appears to yield a phase-insensitive response.
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Figure 5: Steady-state subthreshold amplitude-phase relations for (a) linear (k2 = k3 = 0),
pure quadratic (k2 = 0.3, k3 = 0), pure cubic (k2 = 0, k3 = 0.1), and mixed quadratic
and cubic nonlinearities (k2 = 0.3, k3 = 0.1) (b) mixed quadratic and cubic nonlinearities
(k2 = 0.3, k3 = 0.08). (Ω = 1.) Parameter values and markers as used in Fig. 1 unless
stated otherwise.

4. Conclusions

The effects of quadratic and cubic nonlinearities on the response of a
parametric amplifier were investigated. These effects are often inherently
present for real amplifiers, but can also be purposefully introduced and uti-
lized. Approximate analytical steady-state responses were obtained by the
method of varying amplitudes and compared to results of direct numerical
integration, showing good agreement. Mixed quadratic and cubic nonlineari-
ties may generate additional amplitude-frequency solutions. When the effects
of quadratic and cubic nonlinearities cancel out, a significantly increased re-
sponse with a more phase sensitive amplitude is obtained, as compared to
the case with pure quadratic or cubic nonlinearity. Jumps and bi-stability in
the amplitude-phase characteristics were predicted theoretically, supporting
previously reported experimental findings.
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