Speciation analysis of 129I in seawater using coprecipitation and accelerator mass spectrometry and its applications

Xing, Shan; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran

Published in:
Journal of Radioanalytical and Nuclear Chemistry

Link to article, DOI:
10.1007/s10967-016-5060-6

Publication date:
2017

Document Version
Peer reviewed version

Citation (APA):
Speciation analysis of 129I and 127I in Seawater using Co-precipitation and Accelerator Mass Spectrometry and Its Applications

Shan Xing 1 • Xiaolin Hou 1,2, *

1 State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi’an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2 Technical University of Denmark, Center for Nuclear Technologies, Risø Campus, Roskilde 4000, Denmark

Abstract
Speciation analysis of long-lived 129I in seawater can provide useful information on the source of water masses. This paper presents an improved method for speciation analysis of 129I based on coprecipitation of iodide as AgI with Ag$_2$SO$_3$ and AgCl. By adding small amount of 127I carrier, the separation efficiency of iodine species and the accuracy and precision of 129I measurement are remarkably improved. Depth profiles of 129I species in seawater from the Antarctica were analyzed for investigation of the water circulation in the Antarctic, and the results are presented.

Keywords Iodine-129 • Chemical species • Accelerator mass spectrometry • Seawater

Introduction
Iodine exists predominantly as dissolved iodate, iodide, and a minute amount of organic iodine in the ocean [1]. Because of the strong biological activities, relatively high iodide concentration is often found in surface water, coastal and estuary areas [2, 3]. Therefore, the transformation of iodine species can reflect the change of marine
Due to low concentration of iodine in seawater, iodine carrier is normally added as carrier for separation of 129I from matrix using solvent extraction [4, 5], this is not suitable for the determination of low level 129I in the seawater received less anthropogenic 129I such as those collected in southern hemisphere including the Antarctic and deep seas, because of contribution of 129I in the iodine carrier to the sample during sample preparation. A rapid and simple coprecipitation method for separation of iodine (127I and 129I) species from seawater for measurement of 129I/127I using accelerator mass spectrometry (AMS) has been reported by our group [6]. Accelerator mass spectrometry (AMS) is the most suitable method for determination of ultralow level 129I/127I in natural samples with a 129I/127I atomic ratio $< 10^{-10}$ [2, 7-11], especially collected from the southern hemisphere and the deep seas, such as the Antarctic. However, due to low concentration of iodine in samples, 127I signal in AMS measurement of the target prepared using carrier-free coprecipitation method is very weak, causing the measurements of both 127I and 129I unreliable. This work aims to improve the method of speciation analysis of 129I by increasing the 127I signal in AMS measurement. Meanwhile, species of 129I and 127I in seawater profiles from in the Antarctic are analyzed to demonstrate the application of speciation of 129I in marine environmental tracer.

Materials and methods

Samples and chemicals
Sampling locations (indicated as red dots) of seawater profiles in the Amundsen Sea, Antarctica.

Seawater profiles from 3 sampling location were collected using a CTD rosette consisting of Niskins bottles and CTD sensors in the research vessel N.B. Palmer during cruise in the Amundsen Sea, Antarctica (73°-74° S, 111°-114° E) in December, 2010 (Fig. 1). Meanwhile, salinity, seawater temperature and concentrations of chlorophyll, phosphate, nitrite, total nitrogen, ammonium, silicate and partial pressure of CO₂ were measured by on-line detecting system of research vessel (Table 1). One seawater sample was collected in the open sea of the Yellow Sea (43°29.5′N, 121°59.1′E) in January, 2013. Certified reference material IAEA-418 was provided by International Atomic Energy Agency collected at the DY-FAMED station (43°25.117′N, 7°50.040′E) in the open Mediterranean Sea on 18 February, 2001.

129I standard solution (NIST-SRM-4949c) was purchased from the National Institute Standard and Technology (Gaithersburg, MD). 127I carrier solution with low 129I level (129I/127I atomic ratio < 2×10⁻¹⁴) was prepared by dissolution of iodine crystal (Woodward iodine, Woodward Iodine Corporation, Oklahoma, U.S.A.) into 0.40 mol/L
NaOH-0.05 mol/L NaHSO₃ solution. ^{127}I carrier (KI, $^{129}\text{I}/^{127}\text{I}$ atomic ratio $< (2.0\pm0.3)\times10^{-13}$) was purchased from Shantou Xilong Chemical Factory in Shantou, China. All chemical reagents used were of analytical grade, and all solutions were prepared using deionized water (18.2 MΩ·cm).
Table 1 Salinity, seawater temperature and concentrations of chlorophyll, pCO$_2$, phosphate, nitrite, total nitrogen, ammonium and silicate observed in the Amundsen Sea, Antarctica

<table>
<thead>
<tr>
<th>Sampling station</th>
<th>Depth(m)</th>
<th>Salinity (psu)</th>
<th>Seawater temperature (ºC)</th>
<th>chlorophyll (µg/L)</th>
<th>pCO$_2$ (µatm)</th>
<th>Phosphate (µM)</th>
<th>Nitrite (µM)</th>
<th>Total nitrogen(µM)</th>
<th>Ammonium (µM)</th>
<th>Silicate (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>33.8</td>
<td>-0.81</td>
<td>20.5</td>
<td>180.5</td>
<td>0.97</td>
<td>0.0284</td>
<td>13.9</td>
<td>0.121</td>
<td>80.7</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>34.1</td>
<td>-1.63</td>
<td>—</td>
<td>—</td>
<td>1.93</td>
<td>0.0461</td>
<td>30</td>
<td>0.0576</td>
<td>89.3</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>34.1</td>
<td>-1.72</td>
<td>—</td>
<td>—</td>
<td>1.97</td>
<td>—</td>
<td>30.6</td>
<td>—</td>
<td>83.4</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>34.3</td>
<td>-1.11</td>
<td>—</td>
<td>—</td>
<td>2.16</td>
<td>—</td>
<td>33.6</td>
<td>—</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>394</td>
<td>34.4</td>
<td>0.19</td>
<td>—</td>
<td>—</td>
<td>2.18</td>
<td>—</td>
<td>34.6</td>
<td>—</td>
<td>108</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>33.9</td>
<td>-1.45</td>
<td>1.41</td>
<td>382</td>
<td>1.85</td>
<td>0.0284</td>
<td>27.7</td>
<td>0.0871</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>34.0</td>
<td>-1.70</td>
<td>—</td>
<td>—</td>
<td>1.89</td>
<td>0.0235</td>
<td>29.1</td>
<td>0.291</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>34.1</td>
<td>-1.79</td>
<td>—</td>
<td>—</td>
<td>1.91</td>
<td>0.0306</td>
<td>29.7</td>
<td>0.217</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>640</td>
<td>34.5</td>
<td>0.44</td>
<td>—</td>
<td>—</td>
<td>2.16</td>
<td>—</td>
<td>34.7</td>
<td>—</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>34.5</td>
<td>0.62</td>
<td>—</td>
<td>—</td>
<td>2.13</td>
<td>—</td>
<td>34.4</td>
<td>—</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>1227</td>
<td>34.6</td>
<td>-0.79</td>
<td>—</td>
<td>—</td>
<td>2.12</td>
<td>—</td>
<td>33</td>
<td>—</td>
<td>104</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33.8</td>
<td>0.12</td>
<td>26.2</td>
<td>193.9</td>
<td>1.07</td>
<td>0.0268</td>
<td>15.2</td>
<td>0.219</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>34.1</td>
<td>-1.63</td>
<td>—</td>
<td>—</td>
<td>1.89</td>
<td>0.0496</td>
<td>30.6</td>
<td>0.0693</td>
<td>84.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34.2</td>
<td>1.24</td>
<td>—</td>
<td>—</td>
<td>2.02</td>
<td>—</td>
<td>32.8</td>
<td>—</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>34.3</td>
<td>-0.19</td>
<td>—</td>
<td>—</td>
<td>2.12</td>
<td>—</td>
<td>33.7</td>
<td>—</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>34.6</td>
<td>0.56</td>
<td>—</td>
<td>—</td>
<td>2.15</td>
<td>—</td>
<td>34.2</td>
<td>—</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>
Separation of iodine and its chemical species in seawater

After removal of potential suspended particles in the seawater by filtration through a 0.45 membrane, 0.60 L and 1.20 L of seawater were taken for separation of total iodine and iodine species respectively. 0.60 L seawater was transferred to a beaker. 0.5 kBq of 125IO_3^- tracer was spiked, 0~1.0 mg of 127I carrier and 0.50 ml of 2.0 mol/L NaHSO$_3$ solution were added into the beaker, and then 3.0 mol/L HNO$_3$ was added to adjust pH 1–2 to convert all iodine species to iodide. 30 mg Ag$^+$ (28 ml of 0.01mol/L AgNO$_3$ solution) was dropwise added to the sample solution under stirring to form AgI-AgCl-Ag$_2$SO$_3$-AgBr coprecipitate. The precipitate was separated by centrifuge and sequentially washed with 3.0 mol/L HNO$_3$, H$_2$O, 30% and 20% NH$_4$OH to remove Ag$_2$SO$_3$ and most of AgCl and AgBr until 1-3 mg of precipitate was obtained. The detailed method for separation of iodine as AgI-AgCl precipitation from seawater has been reported elsewhere [6].

1.20 L seawater was transferred to a beaker for separation of iodide in seawater. 0.5 kBq of 125I$^-$ tracer and 0~1.0 mg of 127I$^-$ carrier (KI, 129I/127I atomic ratio < 2.0×10$^{-13}$ carrier) were spiked, NaHSO$_3$ was added into the sample to a final concentration of 0.30 mmol/L, and then 0.5 mol/L HNO$_3$ was slowly added under stirring to adjust pH 4.2-5.5 (measured using a pH meter). 150 mg Ag$^+$ (45 ml of 0.03 mol/L AgNO$_3$) was dropwise added to the solution to form AgI-AgCl-Ag$_2$SO$_3$-AgBr coprecipitate. The precipitate was separated by centrifuge and the supernatant was used for separation of iodate. The separated precipitate was sequentially washed with 3.0 mol/L HNO$_3$, H$_2$O, 30% and 20% NH$_4$OH until 1-3mg of precipitate were obtained. To the supernatant, 0.5 kBq 125IO$_3^-$ tracer was spiked, 0.1-0.2 mg of 127I carrier, 0.5 ml of 2.0 mol/L NaHSO$_3$ solution were added, and then 3.0 mol/L HNO$_3$ was added to adjust pH 1–2 to convert all iodine species to iodide. The following procedure was the same as that for total
iodine. The detailed AgI–AgCl precipitation method has also been reported elsewhere [6]. The diagram of the analytical procedure is schematically shown in Fig. 2.

125I in the precipitate was measured using a NaI gamma detector (Model FJ-2021, Xi'an Nuclear Instrument factory, Xi'an, China) for monitoring the chemical yield of iodine in the procedure. The recovery of iodine species in the entire procedure is higher than 80%.

As in our previous work [12], two 129I standard solutions, with a total iodine concentration of 1.00 mg/ml and 129I/127I atomic ratios of 9.954×10^{-12} and 1.138×10^{-10} respectively, were first prepared by dilution of 129I standard solution (NIST-SRM-4949c) with 127I carrier solution. Two 129I working solutions were prepared by mixing the above prepared 129I standard solution with NaCl solution in Cl/I mass ratio of 2:1. From each standard, 1.0 ml of working solution was taken to a 15 ml centrifuge tube, after addition of 0.5 kBq of 125I tracer, 0.10 ml of 2.0 mol/L NaHSO3, 0.20 mL of 3.0 mol/L HNO3, and 2.0 ml of 1.0 mg/ml Cl− were added. After mixed, 0.20 ml of 1.0 mol/L AgNO3 was added to coprecipitate iodine as AgI–AgCl. After centrifuge, the precipitate was sequentially washed with 3.0 mol/L HNO3 and deionized water. For 129I standards in AgI form, the 129I/127I standard solution with a total iodine concentration of 1.0 mg/ml was first converted to iodide by NaHSO3 in acidic medium, and then AgNO3 was added to directly precipitate iodide as AgI.

The procedure blank samples were prepared using the same procedure as for separation of total iodine, iodide and iodate in seawater but no sample was added. The prepared AgI–AgCl or AgI precipitate was analyzed for 129I using AMS.

Iodine in the commercial 125I tracer exists as iodide (NaI). To synthesize 125IO3− tracer, 125I− solution was taken to a beaker, NaClO was added, then HCl is added to adjust pH 1-2 to oxidize iodide to iodate. The remained NaClO in the solution was
decomposed by heating at 80℃. The residue is dissolved in water and passed through a small anion exchange column (AG 1-×4 resin, NO$_3^-$ form, 1.0 cm in diameter and 5 cm in height). The effluent containing iodate was collected and used as 125IO$_3^-$ tracer.

50 ml of seawater was taken to a beaker and 125I$^-$ was spiked. The sample was loaded to an anion exchange column (1.0 × 5.0 cm, AG1-×4 resin, NO$_3^-$ form), the column is rinsed with 10 ml of 0.2 mol/L NaNO$_3$. The influent and rinse solution were collected and combined for 127IO$_3^-$ determination. Iodide on the column was eluted with 5% NaClO, and the eluate was used for determination of 127I$^-$. 125I in the iodide fraction was measured by gamma spectrometer to monitor chemical recovery of iodide during column separation.

AMS measurement of 129I

The separated AgI–AgCl coprecipitate was dried in an oven at 60-70 °C for 3-6 h, the dried precipitate was ground to a fine powder and mixed with five times by mass of niobium powder (325-mesh, Alfa Aesar, Ward Hill, MA), which was finally pressed into a copper holder using a pneumatic press (Zhenjiang Aode Presser Instruments Ltd.). 129I/127I atomic ratios in the prepared targets were measured by AMS using 3MV Tandem AMS system (HVEE) in the Xi’an AMS center. I$^{5+}$ ions were chosen for the measurement, where 127I$^{5+}$ was measured as charges (current) using a Faraday cup and 129I$^{5+}$ was measured using a gas ionization detector. All samples were measured for 6 cycles and 5 min per sample in each cycle. A detailed description of AMS system and measurement of 129I has been reported elsewhere [13].

Measurement of 127I concentration by ICP-MS

1.0 mL sample solution of the iodide fraction and the iodate fraction separated
using anion exchange column and the original seawater were taken to a vial, Cs⁺
solution was spiked to a concentration of 2 ng/mL, and the samples were diluted for 10
times using 1% NH₃OH solution. ¹²⁷I in the prepared samples was measured using ICP-
MS (X-series II, Thermo Scientific, USA). The detection limit of 0.02 ng/mL for ¹²⁷I
was obtained. Iodide concentration was corrected for chemical yield during column
separation.
Fig. 2 Schematic diagram of the analytical procedure for speciation analysis of 129I in seawater
Table 2 Results of 129I and 127I signals in background, blanks and standards, as well as in IAEA-418 treated using solvent extraction and coprecipitation and measured by AMS in the AgI–AgCl targets

<table>
<thead>
<tr>
<th>Sample</th>
<th>Intensity of signals in 5 min a</th>
<th>Measured 129I concentration ($\times 10^8$ at/L)</th>
<th>Measured 129I/127I ratio b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127I$^{5+}$, nA</td>
<td>129I$^{5+}$, counts/min</td>
<td></td>
</tr>
<tr>
<td>Background (Nb power)</td>
<td>0.27±0.12</td>
<td>0.2±0.1</td>
<td></td>
</tr>
<tr>
<td>Procedure blank 1</td>
<td>209.5±17.4</td>
<td>5.4±0.4</td>
<td>0.03±0.003</td>
</tr>
<tr>
<td>Procedure blank 2</td>
<td>164.1±17.9</td>
<td>4.6±0.7</td>
<td>0.04±0.004</td>
</tr>
<tr>
<td>Standard -1 (AgI) c</td>
<td>590.7±1.9</td>
<td>5030±300</td>
<td>11.35±0.17</td>
</tr>
<tr>
<td>Standard-1 (AgI-AgCl) c</td>
<td>198.4±1.04</td>
<td>1697±198</td>
<td>11.41±0.18</td>
</tr>
<tr>
<td>Standard-2 (AgI-AgCl) c</td>
<td>264.6±6.0</td>
<td>202.4±23.0</td>
<td>1.02±0.03</td>
</tr>
<tr>
<td>IAEA-418 (solvent extraction)</td>
<td>511.6±4.2</td>
<td>794.4±96.0</td>
<td>2.52±0.044</td>
</tr>
<tr>
<td>IAEA-418 (coprecipitation)</td>
<td>470.1±3.1</td>
<td>1806±184</td>
<td>2.54±0.042</td>
</tr>
</tbody>
</table>

a The results are given as average and 1 standard division of 6 measurements. b Average of six measurements, corrected by comparison with standard and blank subtraction. c The defined 129I/127I atomic ratio of 1.138×10^{-10} (standard-1) and 9.954×10^{-12} (standard-2) according to certified value in 129I standard (NIST-SRM-4949c) and 127I carrier prepared using iodine crystal (Woodward iodine). d The certified value of 129I in the certified reference material IAEA-418 is $(2.16–2.73) \times 10^8$ atom/L [14].
Results and discussion

Influence of the amount of 127I carrier on 129I measurement

Fig. 3 Variation of the measured concentration of 129I with the amount of 127I carrier

Fig. 4 Variation of the measured 127I current with the amount of 127I carrier

Fig. 3 shows the variation of measured concentration of 129I with the amounts of added 127I carrier in samples. The concentration of 129I (1.39×10^6 atoms/L) for sample-1
and 38.7×10^6 atoms/L for sample-2) by the carrier free AgI-AgCl coprecipitation method is 1.5-3.5 times higher than those measured by the carrier added AgI-AgCl coprecipitation method, which concentrations of 129I measured range from 4.08×10^6 atoms/L to 5.53×10^6 atoms/L for sample-1 and 26.1×10^6 atoms/L to 29.7×10^6 atoms/L for sample-2. Fig. 4 shows the variation of the measured 127I current with the amounts of added 127I carrier in samples. The 127I signal (137-620 nA) of sample-2 in the target by the carrier added AgI-AgCl coprecipitation method is two to three orders of magnitude higher than that (4.4 nA) by the carrier free AgI-AgCl coprecipitation method and that (0.77 nA) in the process blank. It is indicated that the low concentration of iodine in sample might produce a low 127I signal in AMS measurement.

![Graph](image)

Fig. 5 Variation of the measured 129I/127I ratios with amount of 127I carrier

The amount of 127I carrier is a key parameter for improving the measurement accuracy and precision of 129I. Fig. 5 shows variation of the measured 129I/127I ratios with the amount of added 127I carrier in samples. The difference between the measured
$^{129}\text{I}/^{127}\text{I}$ ratios of sample and procedure blank decreases with the increase of ^{127}I carrier. When 1.0 mg ^{127}I carrier is added, the measured $^{129}\text{I}/^{127}\text{I}$ value of sample-1 with a $^{129}\text{I}/^{127}\text{I}$ atomic ratio $\sim 10^{-11}$ ($(0.65\pm0.02) \times 10^{-12}$) was close to that of the blank ($(0.26\pm0.02) \times 10^{-12}$), which increases the analytical uncertainty of ^{129}I in the sample after a correction for the blank. T-test of the results of >0.5 mg ^{127}I carrier shows no significant difference between the sample-1 and blank at $p>0.05$. When the amount of ^{127}I carrier was reduced to 0.1-0.2 mg, the measured $^{129}\text{I}/^{127}\text{I}$ value in the sample-1 was one order of magnitude higher than that in blank. Furthermore, because of contribution of ^{129}I in the iodine carrier to the sample, addition of more amount of ^{127}I carrier is not suitable for the determination of low level ^{129}I in the seawater. These results reveal that addition of small amount of carrier (0.1-0.2 mg) in the sample can significantly arise the measurement uncertainty in AMS measurement, especially in the low level sample.

Reliability of the measurement of ^{129}I and its species in seawater

In this work, the chemical recovery of iodine in overall separation procedure measured using ^{125}I which was spiked into the sample in the beginning of the separation to be higher than 80%. It should be mentioned that a high recovery of iodine is crucial for accurate measurement of ^{129}I in low level samples, such as those collected from the Antarctic due to the very low concentration of ^{129}I. Meanwhile, the sensitive measurement, procedure blank, and background of instrument are also important for the measurement of low level ^{129}I. The procedure blanks for analysis of seawater samples were prepared using the same procedure as for the sample, the instrumental background was prepared by pressed only Nb powder into target holder, the measurement results including the measured signal intensity of ^{127}I and ^{129}I in these blanks, standards and IAEA-418 are presented in Table 2. The measured $^{129}\text{I}/^{127}\text{I}$ atomic
ratios in the procedure blanks are lower than 4×10^{-13}, which is two to three orders of magnitude higher than those in the standards and IAEA-418. This low blank level and the high sensitivity of AMS for 129I measurement ensure the reliability of the analytical results of 129I in these low-level samples. It can be observed that compared with the standards and IAEA-418, the 129I signal (4.6-5.4 counts/min) in the procedure blanks of snow are slightly higher than that ((0.2±0.1 counts/min) in the instrumental background, indicating no significant contribution of 129I signal from the chemical separation and target preparation procedure. 127I signal in the procedure blank and IAEA-418 prepared by coprecipitation method using 200 μg 127I carrier ((164.1-470.1) nA) is more than 30 times higher than that of instrument background (Nb powder, 0.27 nA) (Table 2), ensuring a reliable and stable 127I signal in the AMS measurement. The measured 129I/127I ratios in two types of standards prepared by AgI precipitation and AgI–AgCl coprecipitation are $(11.35\pm0.17) \times 10^{-11}$ and $(1.02\pm0.03) \times 10^{-11}$ respectively (Table 2), which are in a good agreement with the known value of 1.138×10^{-10} and 9.954×10^{-12}, respectively. T-test of the results of 129I/127I atomic ratio at shows no significant difference between the measured value and known value at $p>0.05$. All these features indicated that the analytical results of low level 129I in the Antarctic seawater samples in this work is reliable.

A certified reference material, IAEA-418 (Mediterranean Sea water) has been analyzed using the improved coprecipitation method as well as the traditional solvent extraction method, i.e., after addition of iodine carrier and NaHSO$_3$, the pH of solution was adjusted to 1-2 using HNO$_3$ and then after the procedures of extraction and back-extraction iodine was precipitated as AgI and finally measured by AMS. The concentrations of 129I and 129I/127I atomic ratios of IAEA-418 obtained by the two method are presented in Table 2, which shows very good agreement between the
analytical results obtained by the coprecipitation method and those obtained by the solvent extraction method and shows no significant difference (p>0.05 for t-Test). It is confirmed that this improved method presented here is reliable. The analytical results of 129I concentration in IAEA-418 seawater ($(2.54\pm0.042) \times 10^8$ atoms L$^{-1}$ for coprecipitation method) are agreed well with the certified value ($(2.16-2.73)\times10^8$ atoms L$^{-1}$) [14].

Table 3 Comparison of Analytical Results for 129I Species in Seawater from Yellow Sea by Coprecipitation (Method-1) and Ion-Exchange Chromatography (Method-2)

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>129I, $\times 10^7$atom/L</th>
<th>129I/127I, $\times 10^{-10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total iodine</td>
<td>Method-1</td>
<td>5.43±0.10</td>
<td>3.29±0.06</td>
</tr>
<tr>
<td></td>
<td>Method-2</td>
<td>5.69±0.14</td>
<td>3.44±0.09</td>
</tr>
<tr>
<td>I$^-$</td>
<td>Method-1</td>
<td>3.93±0.07</td>
<td>12.99±0.22</td>
</tr>
<tr>
<td></td>
<td>Method-2</td>
<td>3.92±0.12</td>
<td>12.96±0.41</td>
</tr>
<tr>
<td>IO$_3^-$</td>
<td>Method-1</td>
<td>2.14±0.07</td>
<td>1.59±0.05</td>
</tr>
<tr>
<td></td>
<td>Method-2</td>
<td>1.79±0.08</td>
<td>1.32±0.06</td>
</tr>
</tbody>
</table>

Due to lack of certified reference materials of seawater for 129I species, the improved coprecipitation method was validated by analysis of seawater sample collected from Yellow Sea by both the improved coprecipitation method presented in
this work and the conventional anion-exchange chromatography method [2, 15]. 129I in the iodide, iodate, and total iodine forms separated by two methods as AgI-AgCl or AgI were measured by AMS. The concentrations and ratios of total 129I, 129I$^-$, 129IO$_3^-$ obtained by the two methods are presented in Table 3, which show excellent agreement between the analytical results for 129I species obtained by the coprecipitation method and those obtained by the conventional anion-exchange chromatographic method and shows no significant difference ($p>0.05$ for t-Test). This confirms that the improved coprecipitation method for speciation analysis of 129I presented here is reliable and suitable for analysis of 129I in seawater. In addition, the sample was analyzed twice (Table 2), and the results of these samples show a good replicability for both concentrations and ratios of 129I specie (RSD<5%). Meanwhile, more than 95% of iodide by using the improved coprecipitation method can be separated from seawater and cross contamination of iodine species can be ignored.

Compared with the anion-exchange chromatography method for separation of iodine species in seawater [15], the main advantages of the improved method presented in this work are less chemicals consuming, very easy to operate and separate iodine from seawater, which make this method suitable for in situ separation of iodine species on board sampling vessels during expedition. In particular, this is very suitable for the separation of low level 129I from seawater collected in the area far away from nuclear activity such as the Antarctic.

Distribution of 129I and 127I species in seawater in the Antarctic
The depth distribution of 129I concentrations, 129I/127I atomic ratios and iodine species molar ratios in three Antarctic seawater profiles are presented in Fig. 6. The concentrations of 129I range from 1.09×10^6 atoms/L to 2.40×10^6 atoms/L, with an average of 1.71×10^6 atoms/L, which is lower than that in the Northern Hemisphere (> 1.0×10^7 atoms/L) [16], and 129I/127I atomic ratios range from 3.7×10^{-12} to 9.0×10^{-12}, with an average of 6.0×10^{-12}, which is only 4 times higher than the pre-nuclear level (1.5×10^{-12}) in the marine system [17-20], indicating that a predominantly anthropogenic source of 129I has not only reached into the Antarctic surface marine environment [21] but into the deep water down to 1227 meters. The main source of 129I in the investigated area might be attributed to the global fallout of atmospheric nuclear weapons testing [21].

The vertical variations for the concentrations of 129I and 129I/127I atomic ratios in the profile 2 shows a small but visible decreased trend with increase of the depth and might reflect weak vertical migration in the ice shelf zone. However, the characteristic
of vertical variation of profile 1 and 3 in the Amundsen Sea Polynya fluctuates smoothly with increase of the depth in some ranges, indicating strong vertical exchange/mixture of the water masses between the surface and the deep sea. The trend of profile 2 is similar with that in the Gulf of Mexico and the Makarov Basin, Arctic Ocean, which decreases with the increase of depth and the highest 129I concentration lies near the surface (<100m) [22, 23]. The trend of profile 1 and 3 is different from that in the profile 2 and in most of the global oceans, where exponentially decreases with the increase of depth in the offshore Fukushima [24] and where the highest concentration for Beaufort Sea in the Arctic Ocean and for Toyama Bay in the Japan sea lies near the subsurface layer (~ 200m) and then exponentially decreases with the increase of depth [25, 26], indicating strong mixture of the water masses between the surface and subsurface layer.

The analytical results of the iodine species ratio for 127I and 129I show a obviously different distribution of 129I compared with 127I in the peofile 1 (Fig. 6). The 127I/127IO$_3^-$ values are normally below 0.35 and show a fairly small variation while the ratios for 129I/129IO$_3^-$ lie at 0.84-4.20, indicating iodine-129 exists predominantly as iodide. This discrepancy between the iodine species ratio for 127I and 129I likely reflects different sources of the isotopes and comparatively long time to reach equilibrium between iodide and iodate in the open sea. It is well known that iodine mainly exists as iodate in the open sea and as iodide in the coastal water and surface water by reduction of iodate through some procedures, such as biological activity, photochemical and chemical reactions [2, 24]. Profile 1 was collected from an open sea, and the 127I/127IO$_3^-$ ratios are typical values for the open sea. Meanwhile, there are higher concentrations of phosphate, nitrite, total nitrogen, silicate, pCO$_2$ and lower concentrations of chlorophyll, ammonium in the whole profile (Table 1), indicating the relatively weak biological activity. Therefore, the 129I species should stem from its source. However, the higher
$^{129}\text{I}^{}/^{129}\text{IO}_3^{-}$ values in the deep sea might reflect strong vertical mixture of water masses and originate from the upwelling of circumpolar deep water [27] that carried the higher $^{129}\text{I}^{}/^{129}\text{IO}_3^{-}$ values. These results indicate that the chemical speciation analysis of ^{129}I can be used to investigate the transport, dispersion, and mixture of the water masses. This work is a preliminary result of the investigation for the dispersion and mixing of water in the Antarctic, a further investigation is in preparation.

Acknowledgements

Financial supports from the Ministry of Science and Technology of China (2015FY110800), as well as State Key Laboratory of Loess and Quaternary Geology are gratefully acknowledged.

References

