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Abstract This work shows that a combined shape and

topology optimization method can produce optimal 2D

designs with minimal stress subject to a volume con-

straint. The method represents the surface explicitly

and discretizes the domain into a simplicial complex

which adapts both structural shape and topology. By

performing repeated topology and shape optimizations

and adaptive mesh updates, we can minimize the max-

imum von Mises stress using the p-norm stress measure

with p-values as high as 30, provided that the stress is

calculated with sufficient accuracy.
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Denmark
E-mail: naage@mek.dtu.dk

Asger N. Christiansen
Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Asmussens Allé, B.303B,
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1 Introduction

The Deformable Simplicial Complex (DSC) method (Mis-

ztal and Bærentzen 2012) has recently been applied to

structural topology and shape optimization where the

objective was to minimize compliance subject to a vol-

ume constraint in homogeneous isotropic linear elastic

2D and 3D domains (Christiansen et al 2014a,b). How-

ever, in many applications, the interest is not to min-

imize compliance but rather to avoid large stress con-

centrations which lead to structural fatigue and frac-

ture (Sanford 2003). Consequently, we will apply DSC-

based topology and shape optimization to the problem

of minimizing the maximal von Mises stress subject to

a volume constraint1.

One should note that minimizing the maximal von

Mises stress is more difficult than compliance due to

the “singularity” phenomenon, its local nature and its

highly non-linear behavior (Le et al 2010). Neverthe-

less, minimizing the maximal von Mises stress has been

treated in shape optimization, i.e. with explicit bound-

ary representation in e.g. Francavilla et al (1975); Chang-

wen and Minghua (1990); Le et al (2011). Furthermore,

a maximum von Mises stress constraint has been en-

forced in topology optimization problems (e.g.Duysinx

and Sigmund (1998); Svanberg and Werme (2007); Bruggi

and Venini (2008); Le et al (2010); Cheng and Jiang

(1992); Allaire and Jouve (2008); Allaire et al (2011,

2014); Ha and Cho (2008); Yamasaki et al (2011)) and

a number of other papers. In the work of (Amstutz

and Novotny 2010) the authors present a topology op-

timization method which utilizes a p-norm stress mea-

sure with very high p’s such that the locality of stresses

1 A preliminary version of this work was presented at the
4th International Conference on Engineering Optimization
(EngOpt 2014).
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is resolved. Common for the aforementioned topology

optimization methods is that they all use implicit rep-

resentation of boundaries and a smoothed von Mises

stress measure for the objectives and/or constraints. In

this work, we consider the fundamental question; given

a specified amount of material what is the structural

layout that leads to the smallest (global) stress? To an-

swer this question we minimize the approximate maxi-

mal von Mises stress of a structure with respect to both

shape and topology via an explicit boundary represen-

tation.

In our DSC approach, the design domain is dis-

cretized into non-overlapping triangular elements (a sim-

plicial complex) that are either labeled solid (filled with

material) or void (filled with air). Since the initial step

is to discretize the design problem, it should be noted

that the presented work applies the discretize-then-optimize

approach to solving the optimization problem. Conse-

quently, the structural surface is represented explicitly

by the collection of edges which are sandwiched between

the void and solid elements. Even though the struc-

ture is represented explicitly (as opposed to e.g. the

density method (Bendsøe 1989; Bendsøe and Sigmund

2003) and level set method (Wang et al 2003; Allaire

et al 2004)), the DSC method is able to accommodate

large shape and topology changes while maintaining

well-shaped triangular elements. It does so by repeat-

edly performing local mesh operations. Furthermore,

this approach uses a single representation of the domain

discretization as opposed to combined implicit/explicit

approaches as e.g. Allaire et al (2013).

The DSC optimization method (Christiansen et al

2014a,b) changes the shape and topology of a struc-

ture by staggering discrete and continuous2 optimiza-

tion steps. The discrete step relabels elements from

solid to void based on an analytical optimization proce-

dure which uses the topological derivative, or a heuristic

measure, whereas the continuous step moves the nodes

using classical shape optimization techniques.

To generate a differentiable cost function, the p-

norm stress is used as an approximation to the max-

imum function (Duysinx and Sigmund 1998). We show

that the p−norm stress based on the stress values eval-

uated in element centroids, i.e. via one point quadra-

ture, results in non-physical jagged surfaces (Haftka

and Gürdal 1992). This well-known problem is allevi-

ated by performing a more accurate p−norm calcula-

tion based on a higher order quadrature.

The method is described in detail in Section 2 and

verified on the well-known plate with a hole example. In

2 Here, and throughout the paper, the use of ”continu-
ous optimization” refers to solving a discretized optimization
problem with continuous design variables.

section 3 we investigate the influence of the p-norm in-

tegration order and in section 4, we apply the suggested

approach to two 2D problems: the L-shaped cantilever

beam (also known as the Norwegian sock) and the por-

tal frame. The results show that the maximal stress

is significantly reduced compared to the corresponding

compliance optimized designs. We summarize our find-

ings in Section 5.

2 Method

2.1 Discretization

(a) Time step 1 (b) Time step 2

Fig. 1 Example that demonstrates how the DSC method
labels solid, void and interface regions and how it performs a
topology change. In the figure the white region corresponds
to void and blue to solid.

The proposed DSC optimization approach uses a
simplicial complex to represent the structure, i.e. it dis-

cretizes the design domain into triangular elements as

seen in Fig. 1. The elements e consist of either void (no

material) or solid (filled with material). Therefore, the

interface between solid and void (the surface) is repre-

sented by the collection of element edges that are sand-

wiched between a triangle labeled void and a triangle

labeled solid. In addition to serving as the geometric

representation, the solid elements of this discretization

are also used for the finite element analysis. This means

that “void” regions are not included in the FE analy-

sis. To ensure an accurate analysis, it is important to

sustain a high quality mesh with no degenerate trian-

gles within the solid region; the mesh quality of the

void region is of no concern cf. Fig. 1. Based on an

isotropic plane stress assumption, the (linear) finite el-

ement equations for the 2D solid domain investigated

in this paper is stated as follows

Ku = f (1)
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where K is the global stiffness matrix, f is the global

load vector and u is the global displacement vector. The

element e stiffness matrix and load vector are evaluated

as

Ke =

∫
Ωe
h (Be)

T
EeBedΩ

≈
ng∑
g

h
(
Be
g

)T
Ee
gB

e
gJgwg (2)

fe =

∫
Γ e
h (N e)

T
qedΓ ≈

ng∑
g

h
(
N e

q

)T
qgJgwg (3)

where Be is the strain displacement matrix, Ee the

constitutive matrix, N e the shape function matrix, h

is the thickness and qe is the element traction force.

Due to its importance in the proposed optimization

method, we also state the Gauss integration summa-

tion where g refers to the Gauss point index, ng the

number of Gauss points, Jg the element Jacobian, and

wg the weight factor. Throughout the paper we employ

quadratic and linear Lagrange shape functions to in-

terpolate the displacements and geometry, respectively.

That is, we use straight-sided triangles for the geom-

etry and quadratic representation (6-noded Lagrange

triangles) of the physics. This formulation proves ad-

vantageous for the shape optimization presented in Sec.

2.2.2.

2.2 Optimization

The optimization algorithm follows the approach from

(Christiansen et al 2014a,b) in the sense that each itera-

tion consists of three distinct steps cf. Fig. 2 flowchart.

The first step is to perform a topological design up-

date, i.e. to insert one or more holes as described in the

upcoming section 2.2.1. The second step updates the

shape by solving a continuous, parameter free shape op-

timization problem which is presented in section 2.2.2.

The first two steps are performed on a fixed mesh and

the third step updates the mesh by the DSC method

as described in section 2.2.3. Finally, in section 2.2.4,

the termination criteria is explained, and suggestions

for making the optimization process more efficient are

provided.

2.2.1 Topology update

Although DSC can change the topology by merging

holes or material domains, it still lacks the ability to

generate new holes. One remedy to resolve this short-

coming is to initiate the optimization from structures

Fig. 2 DSC optimization flowchart.

with many holes, as often used in level-set approaches,

but this leads to a dependence on the initial design and

restricts the topological search space. Hence, it is more

desirable to use a fully solid initial design and introduce

holes during the optimization process. In compliance

optimization (Christiansen et al (2014b)), holes are in-

troduced using the topological derivative. As an alter-

native to using the topological derivative for the p-norm

stress measure, we use the analytical value for a stress

concentration around a circular hole in an infinite plate
as criterion for hole insertion (Savin 1961). Acknowl-

A

1

2

3

4

5

6

Fig. 3 An element patch centred on node A. The red squares
denote element vertices.

edging the fact that the removal of a single element

causes stress concentrations, we use a heuristic hole

insertion rule that utilizes averaging over small element
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patches as shown in Fig. 3. That is, for all elements we

compute the maximum element stress measure σ̃e as

σ̃e = max
g

(|3σg1 − σ
g
2 |, |σ

g
1 + σg2 |) (4)

where σg1 and σg2 are the principal stresses at Gauss

point g (with σg1 ≥ σ
g
2). The nodal averaged stress mea-

sure σ̃A, associated with node A, is the average of the

neighbouring elements maximum values (Fig. 3), i.e.

σ̃A =

∑
e σ̃e
Ne

(5)

where Ne refers to the number of elements which share

node A, i.e. the number of elements in the node A ele-

ment patch. The hole insertion step identifies the node

with the minimum stress measure σ̃A, and removes its

corresponding element patch. Note that only one hole

can be inserted per FEM analysis. Even though we

remove patches rather than single elements we will in-

evitably introduce stress concentrations. This issue is

alleviated by the subsequent shape optimization step.

2.2.2 Shape optimization

The shape optimization step updates the structure to a

new configuration which is within a small perturbation

of its current shape. That is, based on the current mesh

configuration, i.e. the discretized system, we use a pa-

rameter free shape optimization procedure to determine

new positions of the solid and void interface nodes. Note

that during this step the mesh topology remains unal-

tered. The design variables in this optimization step are

the normal movements tn of the interface nodes that

are not subjected to external loads (Fig. 4). The new

positions of the interface nodes are given by

pn(tn) = p0n + tnnn (6)

Here, p0n is the initial position of node n and tn is the

design variable. The normal, nn, of node n is com-

puted by averaging the normals of the interface ele-

ments which are connected to node n.

To prevent the supported nodes in moving away

from the supported region (line), support nodes can

only move tangentially to the support as illustrated in

Fig. 4. Note that we still denote this direction by nn.

Furthermore, only the edge supported nodes are moved

during the shape optimization; the interior supported

nodes are fixed.

The design variables tn are collected in a vector

t = [. . . , tn, . . .]
T and the shape optimization problem

Fig. 4 Supported nodes (green) are not perturbed during the
continuous optimization step except the nodes at the bound-
ary of the support (green and red). However, these nodes are
moved along the support rather than normal to it, as opposed
to the unsupported nodes (red).

is formulated as

t∗ = arg min
t

: φ(p(t)) = max σ(p(t))

subject to : g(p(t)) =
V (p(t))

V ∗
− 1 ≤ 0

: K(p(t))u(p(t)) = f

: tmin ≤ t ≤ tmax

(7)

Here, V (p(t)) is the volume of the structure and V ∗

is the maximum volume allowed. The equilibrium (FE)

equations are restated with design dependence where

it is noted that the load is design independent. tmin

and tmax are lower and upper limits on the design vari-

ables t which are prescribed such that triangles do not

degenerate and nodes do not move outside of the de-

sign domain during the shape optimization step. Conse-

quently, the magnitude of shape changes is determined

by the element size. Apart from their superior FE con-

vergence properties, the use of second order elements

for the interpolation of the displacement field also en-

ables the use of larger elements and hence larger shape

changes. Note that we use straight-sided triangles as

done in Christiansen et al (2014b).

The von Mises stress is evaluated as

σ(p(t)) =
√
σT (p(t))Aσ(p(t)) , (8)

where A is given by

A =

 1 − 1
2 0

− 1
2 1 0

0 0 3

 , (9)

and σ is the stress vector given by

σ(p(t)) = EB(p(t))u(p(t)). (10)
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Since the max function is not smooth, the maximum

von Mises stress is replaced by a differentiable approx-

imate expression, e.g. the p-norm stress,

max σ(p(t)) ≈
(∫

Ω

σp(p(t))dΩ

) 1
p

= φ(p(t)) (11)

where p is relatively ”large”, cf. Duysinx and Sigmund

(1998). The p−norm stress, which is always larger than

or equal to the true maximum stress, is integrated nu-

merically via

(∫
Ω

σp(p(t))dΩ

) 1
p

=

(
ne∑
e

(
ng∑
g

σpg(p(t))Jg(t)wg

)) 1
p

(12)

where ne denotes the number of solid elements. A close

look at the expression for the p-norm stress integration

reveals an obvious and extremely important require-

ment to the numerical scheme. Since p needs to take

large values, the σp field within an element may be

highly non-linear and cannot be recovered accurately by

a single point quadrature (ng = 1). In theory, σ is of or-

der 1 for quadratic elements which means that σp with

p = 20 would require the use of ng = 79 Gauss points

for exact integration. This number of Gauss point could

have been used in the presented work, but as our nu-

merical experiments of Section 4 will show, we have

found that ng = 3 works in most cases and that seven

Gauss points (ng = 7, see Fig. 5) is enough to ensure

robustness for the considered design problems.

With the proposed higher order quadrature, we elim-

inate the need for shape filtering (cf. Le et al (2011);

Bletzinger (2014)). A filter may still be desirable if ad-

ditional boundary smoothness is desired (however, it is

noted that its implementation is cumbersome at best).

In general, a filter is also used to reduce complexity of

designs in topology optimization. Here, we limit the de-

sign complexity indirectly by placing the bound on the

minimum element size parameter δmin.

The shape optimization problem is solved by the

Method of Moving Asymptotes (MMA), cf. (Svanberg

1987). Convergence is deemed if the Karush-Kuhn-Tucker

conditions are satisfied to within an acceptable toler-

ance, if the mesh becomes excessively distorted or if the

maximum number of iterations Nmax = 20 is exceeded,

whence the overall optimization process described in

the flow chart from Fig. 2 continues.

Due to the stress concentrations which appear in

regions surrounding concentrated loads and supports,

we omit them when evaluating the objective function.

This is justifiable since such loadings and corners are

idealizations of distributed loads and small fillets and

Fig. 5 Distribution of the seven Gauss points used for the p-
norm stress integration. The red squares denote the element
nodes, and the black dots denote the Gauss points.

rounds. In our implementation, we simply exclude el-

ement contributions to the element summation in Eq.

(12) if the element center is within a small distance of

these features.

2.2.3 Mesh update by the Deformable Simplicial

Complex method

The last step in the design cycle is to update the mesh

resulting from the shape optimization, and if necessary,

to merge material (or void) domains if they are suf-

ficiently close to one another cf. Fig 1. For this pur-

pose the DSC method is used (Misztal and Bærentzen

2012)3. The use of DSC for combined shape and topol-

ogy optimization, i.e. the necessary mesh operations, is

explained in details in (Christiansen et al 2014b) and

the following should be regarded as a brief summary of

these findings.

The DSC method removes low quality triangles (caps

and needles) by performing mesh operations such as

Laplacian smoothing, edge flip, vertex insertion and

vertex removal. Note that the DSC method only im-

proves the mesh quality where necessary (often near

the surface) and, as a consequence, it is much faster

than a complete remeshing. The DSC method also per-

forms mesh topology changes by collapsing low quality

triangles which are sandwiched between two surfaces.

In addition to ensuring high quality elements, the

DSC method also controls the level of detail of both the

surface and the mesh by collapsing small triangles and

splitting large triangles. Consequently, we always at-

tain a mesh of the desired complexity, described by the

discretization parameter δave (corresponding to the av-

erage element edge length in the material mesh). More

importantly, the DSC method allows for mesh adaptiv-

ity so that regions over which the response is smooth are

represented by a coarser discretization and vica versa.

3 An open-source framework is available at www.github.

com/asny/2D-DSC

www.github.com/asny/2D-DSC
www.github.com/asny/2D-DSC
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This is especially relevant in designs with small scale

features which lead to large stress concentrations.

2.2.4 Problem stages and stopping criteria

Our hybrid optimization scheme requires at least two

global convergence criteria to ensure that the process

is not stopped prematurely. That is, at least one hole

insertion and shape optimization step. In addition to

these criteria, we also monitor whether or not the vol-

ume constraint is fulfilled and the final topology i.e

number of holes, is reached. Since we start from a fully

solid design domain the goal is to reach the active vol-

ume constraint as fast as possible. For this reason it is

undesirable to perform too many shape optimizations

since these only make small volume perturbations. On

the other hand, hole insertions quickly reduce volume.

Using this as a rule of thumb and requiring that the

process be stable, we proceed as follows:

While the final volume fraction constraint is not

reached, the active volume fraction constraint is relaxed

by subtracting 2% from the previous active volume frac-

tion. This is similar to (B)ESO type approaches that

also often start from a fully solid design (Querin et al

1998). Repeated hole insertion steps (i.e. one finite ele-

ment analysis for each patch that is removed) are per-

formed, until the new active volume fraction constraint

is reached. This is followed by a single shape optimiza-

tion step and a DSC update (as shown in Fig. 2). This

multiple hole insertion process continues until the final

volume fraction constraint is reached. The 2% is cho-

sen to render the method robust; increasing this num-

ber will hasten the optimization process considerably,

however, at the risk of losing stability.

Once the final volume fraction constraint is active

we must decide when to stop the hole insertion pro-

cess. Hole insertions cease when a hole is introduced

in the same location in two succesive iterations. More

specifically we insert a hole and perform 15 consecutive

shape optimization steps and DSC updates. Based on

our numerical experiments the 15 steps are sufficient to

allow the hole to merge or expand as necessary. After

the 15 shape optimization steps are completed the next

hole is inserted and its location is compared to that

of the previously inserted hole. The process terminates

when the new hole is located over a previously merged

hole. The tolerance for determining the hole proximity

is ||cold − cnew||2 ≤ 2δave, where cnew and cold are

the patch center positions for the current and previ-

ous hole. From this condition it is clear that the hole

proximity detection procedure is mesh dependent.

After the hole insertion ends we assume that the

final topology is reached. The remainder of the opti-

mziation process only performs shape optimization and

DSC steps until convergence at which time the whole

optimization algorithm is stopped. This convergence oc-

curs when the change in nodal positions between con-

secutive shape optimization steps fullfills ||pSHAPEold −
pSHAPEnew ||∞ < 0.0125 δave and the change in nodal posi-

tions between consecutive DSC updates fulfills ||pDSCold −
pDSCnew ||∞ < 0.67 δave. We remark the 0.0125 and 0.067

values are based on numerical experiments and that

they are chosen conservatively such that they ensure the

optimization process does not stop prematurely. Note

that this need not be the case as we can replace δave
with a mesh independent parameter. This is however

deemed outside the scope of this manuscript.

2.3 Sensitivity analysis

The non-linear optimization problem (Eq. 7 with the

objective function replaced by Eq. (12)) is solved for

t∗ = [. . . , t∗n, . . .]
T using the gradient-based optimiza-

tion algorithm Method of Moving Asymptotes (MMA)

(Svanberg 1987). We compute the necessary derivatives

of the objective and constraint functions with respect

to each design variable t using the adjoint method. For

the p-norm, the element adjoint load is obtained

F eλ = φ(p(t))1−p
∫
Ωe
σ(p(t))p−1

(
∂σ(p(t))

∂u
dΩ

)T
(13)

with

∂σ(p(t))

∂u
=
∂
√
σ(p(t))TAσ(p(t))

∂u
(14)

=
σ(p(t))TAEB(p(t))

σ(p(t))
(15)

After solving the adjoint problem for λ, the gradient is

computed from

∂φ(p(t))

∂tn
= −λT ∂K(p(t))

∂tn
u(p(t)) +

1

p
φ1−p(p(t))×

Ne∑
e

∫
Ω̃e

(
pσ(p(t))p−1

∂σ(p(t))

∂tn
J(p(t))

+ σ(p(t))p
∂J(p(t))

∂tn

)
dΩ̃e

(16)

where Ω̃e is the parent element. That is, all elements

sharing node n contributes to its sensitivity, c.f. Fig. 3.
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The derivative of the stress measure is given as

∂σ(p(t))

∂tn
=
∂
√
σ(p(t))TAσ(p(t))

∂tn
(17)

=
σ(p(t))TAE ∂B(p(t))

∂tn
u(p(t)

σ(p(t))
(18)

After the optimized design variables t∗ are com-

puted, the mesh is deformed via Eq. (6) and updated

via the DSC method.

3 Accuracy and integration order

The exponent in the p−norm stress and the order of

the numerical integration rule is critical for the shape

optimization. The governing equations are solved, as

mentioned earlier, by the finite element method using

quadratic elements. This element choice has previously

prevented the appearance of jagged surfaces during the

continuous optimization step when minimizing compli-

ance (Christiansen et al 2014b). To illustrate how the

p-norm von Mises stress minimization problem differs

from the minimum compliance problem, we study the

biaxially loaded plate design problem shown in Fig. 6.

The design is initialized as shown in Fig. 6 and a

maximum volume constraint V ∗ of 80% of the design

domain is enforced. When minimizing compliance, the

result is a smooth round hole (Fig. 7), which we know

is optimal from analytical theory (Savin 1961). Note,

however, that the hole is not completely circular and

that the maximum stress is higher than predicted by

the theory that assumes an infinite plate. Hence, the

comparison was made to show the qualitative aspect

of our results. In this plot and in those of Figs. 8-10

the element stress is defined as the maximum stress

attained at the element Gauss points.

Now we minimize the p-norm stress integrated with

a simple one point quadrature (ng = 1). As seen in Fig.

8, the surface is less smooth already for p = 1, and for

increasing p values it becomes increasingly jagged, cre-

ating reentrant corners with stress singularities which

are obviously not optimal. To alleviate the jaggedness,

the literature has applied filtering techniques to smooth

the surfaces. However, here we show that the need for

filtering can be eliminated by evaluating the stress norm

using higher order quadrature. Already for ng = 3 we

obtain much smoother surfaces as seen in Fig. 9. How-

ever, in some cases we still see instabilities e.g. for p =

Objective p uTKu max
i

σi (
∫
Ω
σ12dΩ)

1
12

Compliance - 609466 2.631 5.431
p-norm stress 1 609739 2.783 5.476
p-norm stress 4 609596 2.763 5.437
p-norm stress 8 609505 2.737 5.431
p-norm stress 12 609478 2.627 5.429

Table 1 Summary of results from Figs. 7 and 10. Columns
give compliance (uTKu), maximal von Mises stress evalu-
ated at element Gauss points (max

i
σi), and p-norm von Mises

stress
(

(
∫
Ω
σ12dΩ)

1

12

)
for the test cases optimized for com-

pliance and varying p-values using ng = 7.

12 in Fig. 9b. Next we use ng = 7 for p = 1, 4, 8, 12.

As shown in Fig. 10 the optimized shapes are smooth

for all p values tested. Further, as shown in Tab. 1, the

maximum von Mises stress decreases with increasing p,

which suggests that a proper p value combined with ac-

curate integration, is an effective way of decreasing the

maximum von Mises stress. Note also that the com-

pliance minimization also exhibits low stress which is

not always the case as will be seen in the subsequent

examples.

As a final validation, we modify the problem in Fig.

6 by applying −σ2 rather than σ2 which corresponds

to a pure shear loading. A maximum volume constraint

V ∗ of 90% of the design domain is enforced. According

to the analytical solution (Sternberg and Koiter 1958;

Cherkaev et al 1998), the optimized hole should have a

sharp corner with the angle equal to 102.6◦. Our numer-

ical optimization of the p−norm stress (p = 12, ng = 7)

yields 101.7◦ (Fig. 11). Obviously, sharp corners do not

appear if a shape smoothing filter is applied4. We re-

mark that the presence of sharp corners in stress opti-
mized structures is suspicious. Nevertheless, the theory

shows that the stress is bounded at a sharp corner. Con-

sidering multiple loading cases obviously removes such

sharp features.

4 Results

In the following examples we use seven point quadra-

ture (ng = 7) for the p-norm computation. In each

figure we plot the maximum Gauss point von Mises

stress of the element and use a color map scaled be-

tween the minimum and maximum stress for all sub-

figures in a given plot. The maximum and minimum

edge lengths control the element size along the domain

boundary and the maximum and minimum areas con-

trol the element size in the interior. The degeneration

angle, the degeneration area and the degeneration edge

4 The design with a sharp corner and filtering of other parts
in Le et al (2011) obtained by applying a nonuniform filter.
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(a) Plate with a hole problem definition (b) Plate with a hole discretization

Fig. 6 Plate problem definition (left) and the initial discretization (right). The plate thickness is 1mm. The average edge
length is δave = 20mm. The “jet” color map is used to visualize the von Mises stress across the structure. The gray color
represents the void region. The color scale ranges from 0.84N/mm2 to 6.14N/mm2.

Fig. 7 Hole in a plate design with compliance as the optimization objective. The “jet” color represents the von Mises stress.
The color scale ranges from 0.986N/mm2 to 2.783N/mm2

length (see Christiansen et al (2014a,b) for details) are

used to maintain the mesh quality. The minimum an-

gle controls the edge flipping in the DSC step and the

degeneration angle controls the mesh distortion in the

shape optimization step. The DSC settings are shown

in Tab. 2 5. For all examples we illustrate the design

domain by dark gray and include a surrounding border

of non-design elements in light grey. This surrounding

border is convenient, since it allows objects to extend to

5 For all studies we use δave = 15mm and A =
0.5
√

3δ2ave/4mm2 unless otherwise stated.

the boundary of the design domain without any mesh

complications cf. (Christiansen et al 2014b). Note that

these non-design elements are not included in the FE

analysis..

It is noted that maximum stress minimization prob-

lems with high p-values are extra sensitive to small

shape variations and that GCMMA (Svanberg 2002)

could be beneficial to avoid oscilations in the optimiza-
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(a) p = 1, ng = 1 (b) p = 4, ng = 1

(c) p = 8, ng = 1 (d) p = 12, ng = 1

Fig. 8 Hole in a plate designs with one point integration for different values of p. The “jet” color represents the von Mises
stress. The color scale ranges from 0.092N/mm2 to 4.167N/mm2.

Max area Min area Degeneration area
2A 0.5A 0.25A

Max edge Min edge Degeneration edge
2δave 0.5δave 0.25δave

Min angle Degeneration angle Degeneration angle in MMA
20◦ 10◦ 5◦

Table 2 DSC mesh settings. A: average element area. δave:
average element edge length.

tion history. That said, we have successfully used MMA

with conservative asymptote initializations.

4.1 L-bracket

We first study the L-bracket problem (Duysinx and

Bendsøe 1998) which is defined and initialized as de-

picted in Fig. 12. The design problem is to minimize

the p−norm stress subject to a volume constraint V ∗

of 50% of the design domain.

We first investigate the effect of the norm param-

eter p as seen in Figs. 13, 14 and Tab. 3. From Fig.

13 we see a more uniform distribution of von Mises

stress and a reduced maximal von Mises stress as p is

increased. Furthermore, we note that the compliance

increases significantly as we increase p; unlike the hole

in a plate design example. In Fig. 14, we plot the nodal

von Mises stress over the edge which connects the sup-

port to the load, initially defined as the lines connecting

points EDC in Fig. 12. The nodal stress is obtained by

element averaging over the nodal von Mises stress for

all neighboring elements. Similar to the previous ob-

servations, the nodal von Mises stress decreases with

increasing p. For p = 30, a very smooth stress distri-

bution is reached. It was surprising being able to ef-
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(a) p = 8, ng = 3 (b) p = 12, ng = 3 (c) p = 16, ng = 3

Fig. 9 Hole in a plate designs with three point quadrature for different values of p. The “jet” color represents the von Mises
stress. The color scale ranges from 0.17N/mm2 to 2.89N/mm2.

fectively optimize with such a high p-value, since the

p-norm is highly ill-conditioned in this case. The suc-

cess is attributed to the conservative MMA asymptote

update strategy which, however, necessitates many de-

sign iterations. Despite this drawback we use p = 30 in

the remaining examples.

Not surprisingly, the stress minimization designs re-

sult in much more evenly distributed stress compared

to the compliance minimized design. The results in Tab.

3 confirm this. Interestingly, the compliance for the

stress based designs increase by only 20%, whereas the

stress reduces significantly, indicating that one can re-

duce stress levels without significantly increasing com-

pliance.

Next, we repeat the example with different aver-

age element edge lengths (δave = 15, 12, 8mm); all other

things being equal. From Fig. 15, it is seen that though

different δave values produce different designs, the over-

all shape and stress distributions of the problematic

corner are similar. The differences in design topologies

and shapes clearly show that the proposed methodol-

ogy is mesh dependent. This is expected since the only

length scale control is through the DSC δave mesh-size

parameter. From Tab. 3, it is seen that the design with

δave = 8mm has larger maximum von Mises stress than

those corresponding to δave = 12mm and δave = 15mm.

This is expected since mesh refinement leads to a more

flexible structure and the Gauss points, where we eval-

uate the p−norm stress, are closer to the boundary,

resulting in higher stress values. Fig. 16 which shows

that the optimized stress distributions along the inside

edge confirms this conjecture. Nonetheless, the stress

values for the different designs are similar which means

we can obtain satisfactory results without resorting to

extremely refined meshes.

Objective p δave uTKu max
i

σi (
∫
Ω
σ30dΩ)

1
30

Compliance - 15 598228 12.4471 13.3571
p-norm stress 4 15 617983 9.18918 9.82297
p-norm stress 8 15 669411 5.70153 6.20554
p-norm stress 12 15 706759 4.99254 5.49015
p-norm stress 30 15 722620 4.23616 5.09667
p-norm stress 30 12 721513 4.18581 4.99195
p-norm stress 30 8 763997 4.26196 5.13208

Table 3 Data for the L-bracket problem with compliance
(uTKu), maximal von Mises stress (max

i
σi) and p-norm von

Mises stress
(

(
∫
Ω
σ30dΩ)

1

30

)
values optimized for different p

and δave.

Hole number uTKu max
i

σi (
∫
Ω
σ30dΩ)

1
30

0 162419 8.04827 9.73099
3 824016 4.62809 5.72415
5 741356 4.39659 5.25673
16 727802 4.23505 5.10675

Table 4 Results for the L-bracket problem with different
initial topology from Figs. 19-22. The table presents com-
pliance (uTKu), maximal von Mises stress on Gauss points

(max
i

σi) and p-norm von Mises stress
(

(
∫
Ω
σ30dΩ)

1

30

)
values

optimized with p = 30 and δave = 15.

Fig. 17 shows the convergence histories of the p-

norm stress and volume for a specific optimization run.
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(a) p = 1, ng = 7 (b) p = 4, ng = 7

(c) p = 8, ng = 7 (d) p = 12, ng = 7

Fig. 10 Hole in a plate designs for minimization of stress with seven point quadrature (ng = 7) for different values of p. The
“jet” color represents the von Mises stress. The color scale ranges from 0.986N/mm2 to 2.783N/mm2.

The oscillations are attributed to the DSC updates that

change mesh and structural topology. However, as the

design process converges and holes are no longer in-

serted, the oscillations cease. We emphasize that the

total number of FE evaluations is high compared to

other topology optimization approaches, albeit some ef-

ficiency is achieved by using fewer high-order elements

to represent the design.

To verify the optimality of the optimized designs the

δave = 15mm design is studied. For a single constraint

problem the KKT conditions state that ∇f +λ∇g = 0

for all non-bounded design variables. This is illustrated

in Fig. 18 which shows the KKT condition for the non-

bounded variables in the direction of negative ∇ig with

lengths scaled by ∇if/∇ig. The figure shows that the

arrows have (almost) equal lengths and thus serves as

a visual proof that the optimality condition is close to

being satisfied for this design.

Another observation from Fig. 18 is that the stress

along the boundaries is far from uniform. Hence, a fully-

stressed design strategy, which adds material at highly

stressed boundaries and subtracts at low stressed bound-

aries, would lead to an entirely different (and sub opti-

mal) topology. The difference between the fully-stressed

design strategy and the strategy used here is that the

former does not rely on sensitivity information, and

hence results in suboptimal designs; our designs satisfy

the optimality conditions.

To further validate the hole insertion step, we com-

pare our design with p = 30 and δave = 15 of Fig.

13e to shape only optimized designs. Figs 19-22 show

the shape only designs corresponding to different initial

topologies. Bear in mind, the DSC can still change the
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Fig. 11 Hole in a plate designs subject pure shear. The p-norm stress (p = 12) is the optimization objective. The “jet” color
represents the von Mises stress. The color scale ranges from 0.87N/mm2 to 4.51N/mm2.
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(a) (b)

Fig. 12 L-bracket problem definition (a) and the initial discretization (b). The L-bracket thickness is 1mm and the average
edge length δave = 15mm. The “jet” color map represents the von Mises stress. The color scale ranges from 0.02N/mm2 to
14.11N/mm2.

topology by merging holes. As expected, the optimized

designs depend on the initial topology and the design

corresponding to the initial structure without holes is

the worst Finally, it is observed that none of the shape

only designs perform as well as the topology optimized

design.

4.2 Portal

The last example considers the design of a portal (Le

et al 2010). We initialize the problem as seen in Fig.

23 and minimize the p−norm stress subject to a vol-

ume constraint V ∗ of 50% of the design domain. We

also include a compliance constraint to help the opti-

mizer converge in this problem with highly localized

stress concentrations. The compliance is constrained to

be less than 150% of the compliance of an entirely filled

design domain (see Fig. 23b). Our numerical experi-
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(a) Compliance (b) p = 4 (c) p = 8

(d) p = 12 (e) p = 30

Fig. 13 Effect of changing p when minimizing the p-norm von Mises stress of the L-bracket beam problem for fixed δave = 15.
The “jet” color map represents von Mises stress. The color scale ranges from 0.00N/mm2 to 13.36N/mm2.

ments have shown that if the compliance constraint is

omitted, the optimized designs for high p values con-

tain jagged boundaries away from the loads, supports

and highly stressed regions. We conjecture that this is

due to oscillations in the sensitivities for regions with

little influence on the maximum stress; and the size of

this region is relatively large for problems with high p

values.

Figs. 24 and 25 and Tab. 5 compare our stress min-

imization design to a compliance minimization design

with the same volume constraint. As expected the von

Mises stress is more uniformly distributed for the stress-

based design.

Objective uTKu max
i

σi (
∫
Ω
σ30dΩ)

1

30

Compliance 958168 17.4363 18.8035
p-norm stress 1140620 5.785 6.82696

Table 5 Compliance (uTKu), maximal von Mises stress on

Gauss points (max
i

σi) and p-norm stress
(

(
∫
Ω
σ30dΩ)

1

30

)
for

the portal design. The stress minimization is conducted with
p = 30.

5 Discussion

We have applied the shape and topology optimization

method based on the DSC framework, proposed in Chris-

tiansen et al (2014b) for compliance minimization, to

minimize the maximal von Mises stress of 2D struc-

tures, in the p-norm sense. We have shown that using

higher order quadrature for the evaluation of the p-

norm stress and second order shape functions results

in smooth boundary designs without the need for ad-
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Fig. 14 Distribution of nodal von Mises stress over the inside edge that connects the support to the load, i.e. boundary curve
segment EDC, for the five designs illustrated in Fig. 13. Note that the oscillations to the right are due to the loaded area which
is not included in the stress norm evaluation.

(a) δave = 15mm (b) δave = 12mm (c) δave = 8mm

Fig. 15 Effect of changing the element edge length δave when minimizing the p-norm von Mises stress of the L-bracket problem
with p = 30. The “jet” color map represents von Mises stress. The color scale ranges from 0.07N/mm2 to 5.132N/mm2.

ditional smoothing. It is also demonstrated that the

framework accomodates high p-values, e.g. p = 30, and

thus makes it possible to minimize the maximal stress.

However, increasing the p-value causes ill-conditioning

of the optimization problem and hence the scheme

requires a large number of iterations. That is, the

method is not very practical in its current form. How-

ever, if initial designs are obtained from classical density

based topology optimization, then the costly first stage

of the optimization process can be omitted, i.e. the pro-

cess of reaching the final volume fraction constraint. We

also remark that the omittance of the load and support

regions in the evaluation of the p-norm stress objec-

tive increases the preprocessing task required by the

designer.
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Fig. 16 Distribution of the nodal von Mises stress over the inside edge connecting the support to the load for the three designs
illustrated in Fig. 15.

Fig. 17 The objective function and volume constraint history for p=30, δave=12. Each red point corresponds to a DSC
update.
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Fig. 18 Optimality condition verification (arrows corresponds to ∇if and are scaled by ∇if/∇ig) and stress distribution.
The color scale ranges from 0.00N/mm2 to 4.24N/mm2.

(a) (b)

Fig. 19 The initial discretization of the L-bracket (a) without holes and the p-norm stress optimized result (b). The “jet” color
map represents the von Mises stress. The grey color indicates the void region. The color scales for the initial and optimized
structures range from 0.02N/mm2 to 10.84N/mm2 and 0.00N/mm2 to 8.04N/mm2, respectively.

Future work includes extending the approach to 3D

– which has already been used to generate minimal com-

pliance designs (Christiansen et al 2014a) – and im-

proving its efficiency. However, before proceeding to a

3D implementation, the efficiency of the method must

be improved. This could for example be done by the

two-step approach described above, by starting with a

design that fulfills the volume constraint a priori or by

a continuation method in the p-value such that it is

slowly increased from e.g. 4 to 30. It would also be

interesting to study the size of the omitted loaded and

supported regions and their influence on the optimized

topologies.
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(a) (b)

Fig. 20 The initial discretization of the L-bracket (a) with 3 holes and the p-norm stress optimized result (b). The “jet” color
map represents the von Mises stress. The grey color indicates the void region. The color scales for the initial and optimized
structures range from 0.02N/mm2 to 15.15N/mm2 and 0.00N/mm2 to 4.63N/mm2, respectively.

(a) (b)

Fig. 21 The initial discretization of the L-bracket (a) with 5 holes and the p-norm stress optimized result (b). The “jet” color
map represents the von Mises stress. The grey color indicates the void region. The color scales for the initial and optimized
structures range from 0.02N/mm2 to 14.11N/mm2 and 0.00N/mm2 to 4.40N/mm2, respectively.
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(a) (b)

Fig. 22 The initial discretization of the L-bracket (a) with 16 holes and the p-norm stress optimized result (b). The “jet” color
map represents the von Mises stress. The grey color indicates the void region. The color scales for the initial and optimized
structures range from 0.02N/mm2 to 17.18N/mm2 and 0.00N/mm2 to 4.24N/mm2, respectively.
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Fig. 23 Portal problem definition (a) and the initial discretization (b). The portal thickness is 1mm and the average edge
length is δave = 20mm. The “jet” color map represents the von Mises stress. The grey color indicates the void region. The
color scale ranges from 0.01N/mm2 to 14.83 N/mm2.
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Fig. 24 Compliance minimization result of the portal problem. The “jet” color map represents the von Mises stress. The grey
color indicates the void region. The color scale ranges from 0.00N/mm2 to 17.44N/mm2.

Fig. 25 Maximal stress minimization result of the portal problem. The “jet” color map represents the von Mises stress. The
grey color indicates the void region. The color scale ranges from 0.00N/mm2 to 5.79 N/mm2.
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