
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 30, 2024

Lattice constant measurement from electron backscatter diffraction patterns

Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

Published in:
Journal of Microscopy

Link to article, DOI:
10.1111/jmi.12529

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Saowadee, N., Agersted, K., & Bowen, J. R. (2017). Lattice constant measurement from electron backscatter
diffraction patterns. Journal of Microscopy, 266(2), 200-210. https://doi.org/10.1111/jmi.12529

https://doi.org/10.1111/jmi.12529
https://orbit.dtu.dk/en/publications/8217dcb4-019c-41ac-996e-41f1c5ed0a91
https://doi.org/10.1111/jmi.12529


1 
 

LATTICE CONSTANT MEASUREMENT FROM ELECTRON BACKSCATTER 

DIFFRACTION PATTERNS 

 

N. Saowadee*, K. Agersted, J.R. Bowen† 

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 

Frederiksborgvej 399, 4000 Roskilde, Denmark. 

 

Key words: EBSD, EBSD pattern, Kikuchi band width, Lattice constant, strontium titanate, XRD, 

Yttria stabilized zirconia. 

Abstract 

Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about 

lattice constants of crystallographic samples that can be extracted via the Bragg equation. An 

advantage of lattice constant measurement from EBSPs over x-ray diffraction (XRD) is the ability to 

perform local analysis. In this study lattice constants of cubic STN and cubic YSZ in the pure 

materials and in co-sintered composites were measured from their EBSPs acquired at 10 kV using a 

silicon single crystal as a calibration reference. The EBSP distortion was corrected by spherical back 

projection and Kikuchi band analysis was made using in-house software. The error of the lattice 

constant measurement was determined to be in the range of 0.09-1.12% compared to values 

determined by XRD and from literature. The confidence level of the method is indicated by the 

standard deviation of the measurement which is approximately 0.04 Å. Studying Kikuchi band size 

dependence of the measurement precision shows that the measurement error decays with increasing 

band size (i.e. decreasing lattice constant). However, in practice the sharpness of wide bands tends to 

be low due to their low intensity, thus limiting the measurement precision. Possible methods to 

improve measurement precision are suggested. 

* Now at Physics Department, Faculty of Science, Khonkean University, Khonkean  40002, Thailand 
† Corresponding author: J.R. Bowen. Tel: +45 4677 4720; email: jrbo@dtu.dk 
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Introduction 

Lattice constants of crystalline materials are generally measured using the technique of X-ray 

diffraction (XRD) (Cullity and Stock, 2001) or neutron diffraction (Furrer et al., 2009). The measured 

lattice constant using XRD is an average value over the whole or large portions of the sample and 

thus many grains in a polycrystalline sample. For sparsely populated secondary phases, XRD peaks 

may not appear with sufficient intensity above the background signal and in such cases determining 

the lattice constant of minor phase fractions is impossible by XRD. Electron backscatter diffraction 

(EBSD) is a technique principally used for measuring the lattice orientation of crystalline samples in 

the scanning electron microscope (SEM) by collecting electron diffraction patterns that originate from 

the local position of the electron beam (Schwartz, 2009). The patterns contain Kikuchi bands whose 

width in the EBSP contain information directly related to their specific lattice plane spacing by the 

Bragg equation (eq. 1). Therefore, knowing the band width and the crystal plane of the band allows 

lattice constant determination from EBSPs. Since the EBSP is obtained locally in the SEM, lattice 

constant measurement of crystals of minor phases can be performed assuming that they can be located 

by e.g.  SEM image contrast or elemental analysis, and subsequently crystallographically indexed. 

However, although this is theoretically and experimentally straight forward, the precision of 

measuring lattice constants from EBSPs needs consideration.  

Early efforts to automate pattern indexing (Wright and Adams, 1991) recognised precision 

limitations of using detected band widths. Thus during automated analysis, EBSPs are 

crystallographically indexed by comparing angles between detected bands to look-up tables of known 

crystallographic data. 

EBSPs have previously been used to analyse crystallographic parameters. Wilkinson used 

normalised cross-correlation to detect small shifts in zone axis position in high angular resolution 

EBSPs (Wilkinson, 1996). The zone axis shift in SiGe eptixaial layers on Si substrates was used to 

calculate biaxial lattice strain to 0.02% as zone axis shift in this case implied a cubic-tetragonal 

distortion.  This method has been adapted to low angular resolution wide angle  EBSPs to determine 
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lattice strain with equivalent accuracy to high resolution EBSPs (Wilkinson et al., 2006). However, 

without knowledge of Kikuchi band widths hydrostatic changes in lattice parameter remain 

inaccessible. Michael and Eades used higher-order Laue zone (HOLZ)  rings to measure lattice plane 

spacing in the seven basic crystal systems with deviations to calculated values in many cases to <1% 

(Michael and Eades, 2000). They also demonstrate that multiple HOLZ ring measurements within 

EBSPs can be reproducible to 0.003 nm. Keller et al. used pattern quality measurements as an indirect 

method to detect changes in lattice parameter to determine the elastic strain field around 80 nm thick 

oxidised AlGaAs layers sandwiched between GaAs layers on a GaAs substrate (Keller et al., 2004). 

Measurement of EBSP pattern quality provides a scalar quantity reflecting Kikuchi band broadening 

associated with a range of lattice spacing in the electron beam interaction volume induced by lattice 

strains averaged over all lattice planes. In a thorough presentation of the advantage of spherical 

EBSPs, Day demonstrated how average Kikuchi band profiles can be extracted by projecting the 

sphere to a cylinder normal to the band (Day, 2008). Alternatively band widths can be elegantly 

extracted by inversion of the spherical map that effectively integrates bands to disks of diameter 

equivalent to the band width. Although not the focus of the work, the information naturally yields 

lattice constants. Recently band profiles have been used to determine chirality (Winkelmann and 

Nolze, 2015) and, Ram et al. have developed a rigorous “Kikuchi bandlet” method to deconvolute 

intersections of overlapping Kikuchi bands to improve band edge detection to better than 0.1° in 

EBSPs (Ram et al., 2014). Dingley and Wright (Dingley and Wright, 2009) used information from 

EBSPs to determine unit cell space group and lattice constants of silicon and titanium crystalline 

samples. Li and Han reported a method using a large number of manually identified bands from a 

single EBSP to determine the Bravais lattice of an unknown mineral with lattice parameter accuracy 

of 4% and 1.1° (Li and Han, 2015). These latter two works however focused on determination of unit 

cell space group rather than the precision of lattice constant calculation. 

In this work, we focus on studying the accuracy of measuring of lattice constant from EBSPs 

and compare the results to the values measured by XRD. Materials used in this study are composite 
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samples of doped strontium titanate (STN) and yttria-stabilised zirconia (YSZ). Both crystalline have 

cubic lattices but have different lattice constants. STN and YSZ were chosen in this study because 

they are used in development of solid oxide fuel cell and electrolysis cell electrodes in our research 

group. Some background and application of STN and YSZ in solid oxide fuel cells can be found in 

(Sudireddy and Agersted, 2014).      

Computing lattice constants from Kikuchi band widths 

In EBSP, Kikuchi bands are formed by backscattered electrons that satisfy the Bragg equation: 

 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 sin 𝜃𝜃 = 𝑛𝑛𝑛𝑛      (1) 

where 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 is lattice spacing of (hkl) planes, 𝜃𝜃 is Bragg angle, 𝑛𝑛 is electron wavelength and n 

is order of interference (in this case n is 1). Figure 1 illustrates schematic of projection of 

backscattered electron on a phosphor screen in the SEM chamber. Spherical projection of the 

diffraction pattern on a flat phosphor screen yields distorted Kikuchi bands. Consequently bandwidths 

(𝑊𝑊ℎ𝑘𝑘𝑘𝑘) of the bands located far from the pattern center are wider than usual. To obtain the correct 

bandwidth (𝐴𝐴ℎ𝑘𝑘𝑘𝑘) of the projection at the detector distance (D), the flat EBSP has to be radially back 

projected to the spherical surface of radius D as shown in Figure 1. See Appendix 1 for a description 

of the back projection method. The correct bandwidth 𝐴𝐴ℎ𝑘𝑘𝑘𝑘 relates to the Bragg angle (in radius) as 

equation 2   

     𝐴𝐴ℎ𝑘𝑘𝑘𝑘 = 2𝜃𝜃𝜃𝜃      (2) 

 Since the Bragg angle is very small, the term sin𝜃𝜃 in equation 1 can be replaced by 𝜃𝜃. 

Substitution of 𝜃𝜃 in to equation 2 yields  

      𝑑𝑑ℎ𝑘𝑘𝑘𝑘 = 𝜆𝜆𝜆𝜆
𝐴𝐴ℎ𝑘𝑘𝑘𝑘

     (3) 

Equations 4 and 5 (Kelly et al., 2000) are the relationship of lattice constant (𝑎𝑎) of a cubic 

lattice and lattice spacing 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 of plans ℎ𝑘𝑘𝑘𝑘 and lattice constants (𝑎𝑎, 𝑐𝑐) of tetragonal lattice and lattice 

spacing 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 of plans ℎ𝑘𝑘𝑘𝑘 respectively. 

   (Cubic)  1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘
2 = ℎ2+𝑘𝑘2+𝑘𝑘2

𝑎𝑎2
    (4) 
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   (Tetragonal)  1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘
2 = ℎ2+𝑘𝑘2

𝑎𝑎2
+ 𝑘𝑘2

𝑐𝑐2
    (5) 

The relationship for other lattice systems can be found in for example (Koch, 2006). For cubic 

structures, the lattice constant 𝑎𝑎 can be obtained by substituting 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 from equation 3 into equation 

4. In practice the product 𝑛𝑛𝜃𝜃 can be treated as a calibration constant (𝐶𝐶 = 𝑛𝑛𝜃𝜃) resulting final equation 

for compute the lattice constant (eq.6).  

𝑎𝑎 = 𝐶𝐶
𝐴𝐴ℎ𝑘𝑘𝑘𝑘

√ℎ2 + 𝑘𝑘2 + 𝑘𝑘2    (6) 

A well-known lattice constant sample can be used to find the calibration the constant 𝐶𝐶. In 

this work only cubic lattices were studied. Tetragonal or more complicated systems have two or more 

unknown parameters and thus an advanced method of data fitting is needed to solve for the lattice 

constants. 

 

Experimental 

Materials and sample preparation  

Four samples used in this experiment are Sr0.94Ti1.0Nb0.1O3 (STN94) sintered at 1450 °C in 

air, 8 mol.% yttria-stabilised zirconia (8YSZ), a dense binary mixture of STN94 and 8YSZ (50:50) 

sintered in gas mixture 9 vol.% hydrogen and 91 vol.% argon (STN-YSZ 50% noxal9) and a dense 

binary mixture of STN94 and 8YSZ (90:10) sintered in air (STN-YSZ 10% air). The two binary 

mixtures were selected in this study since an STN lattice constant dependency on sintering 

atmosphere was reported by Karczewski (Karczewski et al., 2010). Therefore, potential of 

measurement lattice constants from EBSPs to differentiate their lattice constants was investigated. A 

summary of the four samples is shown Table 1. 

The 8YSZ sample was carbon coated with an approximate thickness of 10-18 nm to eliminate 

surface charging in SEM analyses. The sample surfaces were milled with a 30kV 2 nA focused ion 

beam (FIB) approximately 1 µm in depth to remove residual stress and damage from mechanical 

polishing. The milled surfaces were then polished with a FIB 5kV 2.5 nA probe to remove the damage 
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layer created by the 30 kV FIB milling. More detail of sample surface preparation by FIB polishing 

can be found in  (Saowadee et al., 2013). A silicon single crystal was used as a known reference to 

calculate a calibration constant. The silicon sample surface was prepared in the same manner as the 

four ceramic samples. 

EBSP acquisition 

EBSD work was performed on a CrossBeam 1540XB™ (Zeiss, Oberkochen Germany) 

equipped with a Nordlys S™ EBSD detector (Oxford Instruments, High Wycombe UK). The 

Flamenco program within the CHANNEL 5 software suite (Oxford Instruments, High Wycombe UK) 

was used for collection of EBSPs and indexing Kikuchi bands. EBSD acquisition parameters used 

were pixel Binning 1x1, gain amplification low, Frame averaging 20 and integration time is on the 

order of 300 -1000 ms. An SEM working distance of 15 mm was used. Two sets of EBSPs from each 

sample were collected. The first set was acquired at 30 kV and EBSD detector distance 17.727 mm. 

This data set was used for indexing Kikuchi bands in the EBSPs. The second set was collected at 

SEM 10 kV and EBSD detector distance 35.527 mm. Detector distances were determined from 

pattern centre calibration parameters output as a ratio to the EBSP width. The second set yields a 

higher magnification of the EBSP of the first set. The latter data set was used for measuring Kikuchi 

bandwidths to maximize the measurement precision. However, the first set is needed for optimum 

Kikuchi band indexing. A summary of EBSPs data collection is listed in Table 2. 

Lattice constant calculation 

There are four main steps to measure lattice constant from EBSPs: 

1) Indexing EBSPs 

Each EBSP collected at SEM 30 KV was carefully indexed using the CHANNEL5 Flamenco 

software. To enable indexing, match units of STN and YSZ were created using the Twist program of 

Channel 5 software suite based on crystallographic information proposed by Page et.al. (Page et al., 

2008) and Yashima et.al. (Yashima et al., 1994). The space group and lattice constant of STN is  
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𝑝𝑝𝑝𝑝3�𝑝𝑝 and 3.9237Å respectively and correspondingly for YSZ is 𝐹𝐹𝑝𝑝3�𝑝𝑝 and 5.14086 Å. Match units 

of Si were created using space group 𝐹𝐹𝑑𝑑3�𝑝𝑝 and its standard lattice constant 𝑎𝑎 = 5.43053 Å (Többens 

et al., 2001). Pattern indexing yields the zone axes in the EBSP required to determine the Kikuchi 

band Miller indices. 

2) Determination of Miller indices of Kikuchi band.  

Five widest observable bands in each EBSP were selected. Miller indices of the selected bands 

were determined by comparing the EBSP with a simulated EBSP generated by using the HKL Fast 

Acquisition software (Oxford Instruments, High Wycombe, UK). The zone axes resulting from step 

1 were used in the comparison manually. After matching the zone axes to find the orientation of the 

EBSP, the Miller indices of the selected bands can be determined. 

3) Bandwidth measurement 

The correct bandwidth 𝐴𝐴ℎ𝑘𝑘𝑘𝑘 of the selected bands in each EBSP was measured using an in-

house developed program “EBSP-Geo” using Microsoft Visual C++ 2008 Express edition 

(Saowadee, 2014). For our system the full EBSP image is 1344 x 1024 pixels corresponding to the 

phosphor screen size of 38 𝑥𝑥 28 𝑝𝑝𝑝𝑝, which gives a sensor pixel size of 0.02827 mm. This constant 

is used to convert distance units between pixels and mm in the calculation of the software. The final 

measured band width is in pixels. Figure 2 shows a distortion corrected band of STN in STN94 by 

the radial back projection method (Saowadee, 2013), its row average intensity profile (black line) and 

its slope (blue line). The edges of the band are defined as the positions of maximum and minimum 

slope. The edges were manually located. The advantage of this method compared to local band width 

measuring is that it integrates an entire band and thus gives a more statistically robust measure of 

band width. Naturally longer Kikuchi bands in the EBSP give a better statistical value. In this 

experiment the length of Kikuchi bands is in the range 396-1136 pixels. A potential source of error 

of this method is horizontal alignment of the band. Band misalignment results in blurring of the 

intensity slope and thus leads to loss of precision in the position of the maximum and minimum. In 

this work Kikuchi bands were aligned manually to obtain the sharpest slope profile.  
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4) Lattice constant computing 

The final step is to compute lattice constants of STN and YSZ in each sample using equation 

6. Before utilising equation 6 to compute lattice constant, the calibration constant has to be 

determined.  

Calibration constant  

The band widths of five crystal planes in Si were used to compute the calibration constant 

𝐶𝐶 = 𝑛𝑛𝜃𝜃 using equation 6 where 𝑎𝑎 = 5.43053 Å . The bandwidth 𝐴𝐴ℎ𝑘𝑘𝑘𝑘 and Miller indices of the 

selected bands can be determined as described in the previous section. 

Reference lattice constant of STN and YSZ 

 Standard lattice constants of cubic STN for STN94 (Page et al., 2008) and cubic YSZ 

for 8YSZ (Yashima et al., 1994) were used as a reference in this study. The lattice constants of cubic 

STN and YSZ in STN-YSZ 50% (noxal9) and STN-YSZ 10% (air) were determined from XRD 

spectra (Bruker D8, Germany). XRD angular step is 0.01 degree 1 degree/min. 

Results and discussion 

EBSPs 

Figure 3 shows SEM images of single phase STN94 and 8YSZ and example EBSPs collected 

at 10kV and 30 kV. Figure 4 (a) shows an SEM image of STN-YSZ 50% (noxal9) and its sample 

EBSPs of STN phase and YSZ phase collected at 10 kV and 30 kV and (b) are SEM images of STN-

YSZ 10% (air) and its sample EBSPs of the STN and YSZ phases collected at 10 kV and 30 kV. 

Electron contamination marks in the SEM images reveal the collection positions of EBSPs on each 

sample. In the SEM images of Figure 4 the dark phase is YSZ and the bright phase is STN due to its 

electronic conductivity. For reference Figure 5 shows EBSPs of standard Si sample acquired at 10 

kV and 30 kV. Figure 6 (a) is an example of an indexed EBSP (SEM 30 kV) of STN in STN-YSZ 

10% (air) with five selected bands and their Miller indices and (b) is the EBSP collected at the same 

location of (a) and collected at SEM 10 kV which is used for measuring bandwidth. 
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Lattice constant measurement from XRD 

Figure 7(a) shows XRD peaks of the STN-YSZ 10% (air) and (b) is that of STN-YSZ 50% 

(noxal9). The peaks were compared to standard XRD peaks of STN and YSZ to identify their 

structure. XRD peaks in Figure 7(b) shows that both STN and YSZ phases in STN-YSZ 50% (noxal9) 

have cubic lattices. In STN-YSZ 10% (air) XRD peaks of STN indicated that this phase is cubic. 

However, XRD peaks of YSZ in STN-YSZ 10% (air) shows that both cubic YSZ and tetragonal YSZ 

existed in the sample. In addition some unidentified peaks appeared labelled as red “u” in Figure 7(a). 

Measuring lattice constants from the XRD peaks was performed by using STOE WinXPow 2.20 

software. The lattice constants of the cubic STN and YSZ are listed in Table 4 while the lattice 

constants of tetragonal YSZ are 𝑎𝑎 = 3.6277 Å  𝑐𝑐 = 5.145 Å and its space group is P42/nmc. 

Although most refinements were performed to a precision of 10-5Å, we conservatively list our 

experimental values to 10-4Å in Table 4. The collected EBSPs of YSZ in STN-YSZ 10% (air) are all 

tetragonal. As this work is limited to cubic systems, the lattice constants of the tetragonal YSZ in this 

sample was not analysed.  

Calibration constant 

Five selected Kikuchi bands from the Si single crystal were used for computing the average 

calibration constant. Table 3 lists the Miller indices, the band width in pixels and the corresponding 

determined calibration constants.  The calibration constants were computed using equation 6 resulting 

in a value of 𝐶𝐶 =  164.0 𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑘𝑘𝑝𝑝. Å 

Lattice constants Measured from EBSPs 

The lattice constants of cubic STN and cubic YSZ in the four samples were calculated using 

equation 6 and the results are listed in Table 4. Each calculation result in the table is an average lattice 

constant measured from 25 Kikuchi bands (5 bands x 5 EBSPs).  The precision of the lattice constant 

measurement is determined by measuring standard deviation (SD) while accuracy is the measurement 

deviation between the EBSD determined lattice constants and those measured by XRD or from 
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literature. Standard deviations of the measuring are in the range 0.03-0.04 Å and indicate the precision 

or consistency level of the calculation procedure. From XRD measurements, the lattice constant 

difference of STN in different samples is in the range 0.01-0.02 Å while lattice constant difference 

of YSZ is approximately 0.02 Å. With this precision, the lattice constant measured from EBSPs in 

this experiment cannot differentiate the differences in lattice constant of STN or YSZ between the 

four samples. The lattice constant accuracy, the last column of Table 4, of cubic YSZ is in the range 

0.57-1.12 % which is slightly larger the error observed for cubic STN, 0.19-0.35%. Kikuchi band 

widths used in the calculation of STN lattice constant are in the range 185-207 pixels while those of 

YSZ are in the range 137-165 pixels.  As such, this indicates that the lattice constant accuracy 

determined from EBSPs is dependent on the lattice constant itself. Thus to minimize the measurement 

error a set of widest detectable Kikuchi bands should be selected for the measurement. 

Since recorded EBSPs are a discrete image of the real diffraction pattern, the precision of 

lattice constant measurement from EBSP is limited by the back projected image resolution which in 

turn is a function of the detector pixel size. Therefore, the precision of measuring lattice spacing is 

quantized in units of back projected pixels during band width measurements. As one lattice constant 

can be computed from various band widths wider bands can give higher lattice constant resolution 

than narrow bands. To study the effect of band size on the measurement precision, the lattice constant 

per band width (𝑎𝑎/𝐴𝐴ℎ𝑘𝑘𝑘𝑘) of band series ((100), (200),…,(800)) of STN YSZ and Si were calculated 

by using equation 6 and the real lattice constants in Table 4 and the calibration 𝐶𝐶 =  164.0 𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑘𝑘𝑝𝑝. Å. 

Figure 8 plots the lattice constant per pixel as a function of the band widths determined from the 

calibration constant and the lattice constants listed in Table 4. The values of lattice constant per pixel 

imply a lower theoretical limit of the measurement precision of the configuration of the system used 

in this work. The graph shows that wider bands give a higher theoretical measurement precision but 

the gain in precision is nonlinear and diminishes with increasing band width and higher order crystal 

planes. In practice wide bands tend to have low intensity due to the crystallographically corrected 

scattering factor associated with narrow spaced lattice planes. Low band intensity bands therefore 
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have a low signal to noise ratio relative to the background noise in the EBSP and as such are subject 

to additional error in the measured bandwidth that is independent of the image resolution discussed 

above. This error is of a statistical nature and is most likely randomly distributed. The main user 

controlled parameters affecting the error is the combination of EBSP detector exposure time, detector 

gain and the number of detector image frames averaged during pattern acquisition.  

In this experiment the largest band we can observe and identify is the (224) band of STN. The 

average bandwidth of (224) bands (over 37 bands) is 205.08 pixels with standard deviation (𝜎𝜎1) 1.71 

pixels. Multiplying 𝜎𝜎1 with 0.026 Å/pixels (the lattice constant per pixel for a band size of 205 pixels), 

yields the precision 0.044 Å. While the narrowest bands in this experiment are the (133) family of 

YSZ with average bandwidth (over 15 bands) 138.07 pixels and standard deviation 0.88 pixels. The 

precision of the smallest band is therefore correspondingly 0.038 Å. This example shows that in 

practice the narrower band yields higher precision of the lattice constant measurement. Thus the 

optimum condition of each experiment must be determined to obtain the highest precision. The graphs 

in Figure 8 indicate the theoretical limit of our experiment due to the EBSP image resolution. The 

graphs also illustrate the precision dependency of the lattice constant itself. The smaller lattice of 

STN generally generates wider Kikuchi bands than YSZ and Si in the same acquisition configuration. 

Consequently theoretical precision limit of STN is slightly better than the limit of YSZ and Si. Due 

to the precision limit of measuring lattice constants from EBSPs, the original aim to determine lattice 

constant differences of STN in the three samples could not be resolved.  

Ram et al. have demonstrated an accuracy of <0.1° in Kikuchi band edge location by removing 

the deleterious effects of band intersections (Ram et al., 2014). In comparison if one takes the pixel 

size and detector distance used for the measured STN and YSZ results above, a simple calculation 

reveals that the pixel size at the source point subtends ~0.05°. Thus standard deviations of 1-2 pixels 

in band widths yield a surprisingly good precision given that the current work relies on simple 

averaging to minimise the imprecision in Kikuchi band width induced by intersections. 
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To obtain improved precision increased EBSP image resolution (reduced CCD sensor pixel 

size) is needed. Using a longer detector distance and a lower SEM accelerating voltage can magnify 

Kikuchi band width, however longer acquisition time is then needed due to lower backscattered signal 

intensity. A consequence of longer detector distance though is the loss of capture angle, thus fewer 

bands within a pattern can be analysed and the lengths over which Kikuchi bands can be averaged is 

reduced. Thus a trade-off between resolution and sampling statistics will occur. Detector distance is 

also ultimately limited by SEM chamber size. Better sensitivity CCD sensors can enhance signal-to-

noise ratio and thus will increase the statistical precision of the measurement. However improving 

image quality cannot improve the image resolution limit. Another way to improve the band width 

measurement precision is to implement curve fitting of the slope of row averaging intensity (in Figure 

2). This allows possibility to identify band edges with sub-pixel accuracy which may able to give an 

order of magnitude more back projected pixel size resolution.  Given the work of (Ram et al., 2014) 

it is expected that combining measurements of many averaged deconvoluted band widths could yield 

additional increases in lattice constant precision. Further developments to increase precision and 

simplify data acquisition and analysis procedures accompanied with unit cell space group 

determination methods (Dingley and Wright, 2009; Li and Han, 2015) would lead to a useful EBSP 

based local crystallographic analysis tool . 

Conclusion 

Lattice constants of cubic STN and cubic YSZ in STN94, 8YSZ, STN-YSZ 50% (noxal9) and 

STN-YSZ 10% (air) were measured from SEM 10 kV EBSP of size 1344x1024 pixels. The lattice 

constant of STN in STN94 STN-YSZ 50% (noxal9) and STN-YSZ 10% (air) are 3.92 Å 3.94 Å and 

3.93 Å respectively. While lattice constants of YSZ in 8YSZ and STN-YSZ 50% (noxal9) are 5.17  Å 

and 5.18 Å respectively. Statistical precision of the measurement is quantified by the standard 

deviation of band width measurements and is in the range 0.03-0.04Å. With the determined 

experimental precision it was not possible distinguish difference in the lattice constants of STN or 

YSZ in the four different samples. The accuracy of the measurement compared to lattice constants 
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measured from XRD or literature is in the range 0.09-1.12%. The theoretical precision of lattice 

constant measurement from EBSP is limited by EBSP image resolution. Lattice constant resolution 

(lattice constant per band width) increases as band width increases. Lattice constant resolution also 

depends on the lattice constant itself. Although wider bands theoretically yield greater precision, in 

practice low intensity of the wide band increase band width measurement error thus reduces the 

measuring precision. Possible methods to improve the measuring precision are: higher resolution and 

sensitivity EBSD detectors, increasing detector distance, lowering SEM voltage, using curve fitting 

for sub-pixel band edge determination and averaging of deconvoluted Kikuchi bands.   
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Appendix 1: Data sampling of EBSP by radial back projection 

To perform the radial back projection, EBSP images of resolution 1344 x 1024 pixels need to 

mapped back into its captured area of size 38 x 28 mm, which is the size of CCD detector, on the 

phosphor screen by the factor 38/1344 = 0.02827 mm/pixel. Given the origin of the system and x, y 

z directions are as shown in Figure 9. 𝑝𝑝𝑐𝑐 = (𝑥𝑥𝑝𝑝𝑐𝑐 ,𝑦𝑦𝑝𝑝𝑐𝑐 , 0) is position of the pattern centre on the 

phosphor screen. The radius of the projecting sphere is the detector distance 𝜃𝜃 and centre at the 

sample position 𝑆𝑆 = (𝑥𝑥𝑝𝑝𝑐𝑐,𝑦𝑦𝑝𝑝𝑐𝑐,𝜃𝜃). 𝑐𝑐1′ = (𝑥𝑥𝑐𝑐1′ ,𝑦𝑦𝑐𝑐1′ , 0) and 𝑐𝑐2′ = (𝑥𝑥𝑐𝑐2′ ,𝑦𝑦𝑐𝑐2′ ,𝜃𝜃) are manually selected 

end points of central line of a selected band on the phosphor screen. 𝑐𝑐1 = (𝑥𝑥𝑐𝑐1,𝑦𝑦𝑐𝑐1, 𝑧𝑧𝑐𝑐1)  and 𝑐𝑐2 =

(𝑥𝑥𝑐𝑐2,𝑦𝑦𝑐𝑐2, 𝑧𝑧𝑐𝑐2)  are projection of 𝑐𝑐1′  and 𝑐𝑐2′  on the sphere surface. The band’s capturing area is defined 

as a rectangle with length 𝐿𝐿 = 𝜃𝜃𝜃𝜃 (the arc length 𝑐𝑐1-𝑐𝑐2) and width 𝑊𝑊, manually set to cover the width 

of the selected band, on the sphere surface (see Figure 9 and Figure 10). 𝜃𝜃 is the angle between 𝑟𝑟1 
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and 𝑟𝑟2 and can be determined from dot product of the two vectors. 𝑟𝑟1 and 𝑟𝑟2 are constant vectors of 

magnitude 𝜃𝜃 point from 𝑆𝑆 to 𝑐𝑐1 and 𝑐𝑐2. To determine 𝑟𝑟1 and 𝑟𝑟2, two auxiliary vectors 𝑟𝑟′1 and 𝑟𝑟′2 

point from 𝑆𝑆 to 𝑐𝑐1′  and 𝑐𝑐2′  respectively are introduced.  

 𝑟𝑟′1 = (𝑥𝑥𝑐𝑐1′ − 𝑥𝑥𝑝𝑝𝑐𝑐)�̂�𝑝𝑥𝑥 + (𝑦𝑦𝑐𝑐1′ − 𝑦𝑦𝑝𝑝𝑐𝑐)�̂�𝑝𝑦𝑦 − 𝜃𝜃�̂�𝑝𝑧𝑧 (7) 

 𝑟𝑟′2 = (𝑥𝑥𝑐𝑐2′ − 𝑥𝑥𝑝𝑝𝑐𝑐)�̂�𝑝𝑥𝑥 + (𝑦𝑦𝑐𝑐2′ − 𝑦𝑦𝑝𝑝𝑐𝑐)�̂�𝑝𝑦𝑦 − 𝜃𝜃�̂�𝑝𝑧𝑧 (8) 

�̂�𝑝𝑥𝑥 �̂�𝑝𝑦𝑦 and �̂�𝑝𝑧𝑧 are unit vectors point to positive x y and z directions respectively. 

𝑟𝑟1 and 𝑟𝑟2 point to the same direction of 𝑟𝑟′1 and 𝑟𝑟′2 respectively and can be determined by 

resizing the vector 𝑟𝑟′1 and 𝑟𝑟′2.  

 𝑟𝑟1 = 𝜆𝜆
|𝑟𝑟′1| 𝑟𝑟

′
1 (9) 

 𝑟𝑟2 = 𝜆𝜆
|𝑟𝑟′2| 𝑟𝑟′2 (10) 

The points 𝑐𝑐1 and 𝑐𝑐2 can be determined by translating the sample position 𝑆𝑆 with the vectors 

𝑟𝑟1 and 𝑟𝑟2 respectively. Figure 10 illustrates the data sampling grid of the capturing area. The square 

grid size 𝛿𝛿 is 0.02827 mm, the pixel size of the CCD sensor. The number of grid points along the 𝑊𝑊 

direction is 𝑀𝑀~𝑊𝑊/𝛿𝛿 and along the 𝐿𝐿 direction is 𝑁𝑁~𝐿𝐿/𝛿𝛿. The grid points are indexed by i and j (0 ≤

𝑝𝑝 ≤ 𝑀𝑀 and −𝑁𝑁
2

 ≤ 𝑗𝑗 ≤ 𝑁𝑁
2
 ).The data sampling procedure consists of two steps: 1) determining position 

of grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) on the sphere surface and 2) reading the pixel intensity for the grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) 

from the corresponding point 𝑝𝑝′(𝑝𝑝, 𝑗𝑗) on the phosphor screen.  

Given  𝑟𝑟(𝑝𝑝, 𝑗𝑗) is the position vector of grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) with respect to the sample position, 

the position of the grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) can be determined by translating the sample position with the 

vector 𝑟𝑟(𝑝𝑝, 𝑗𝑗). The vector 𝑟𝑟 is used to scan the grid points over the capturing area. �̂�𝑝𝐿𝐿(𝑝𝑝, 𝑗𝑗) and �̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗) 

are unit tangential vectors at the point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) which point along the 𝐿𝐿 and 𝑊𝑊 curves respectively. The 

scanning starting at the point 𝑐𝑐1 ( 𝑝𝑝(0,0) =  𝑐𝑐1) and value of �̂�𝑝𝐿𝐿(0,0) and �̂�𝑝𝑊𝑊(0,0) at this point are: 

 �̂�𝑝𝑊𝑊(0,0) = 𝑟𝑟1×𝑟𝑟2
|𝑟𝑟1||𝑟𝑟2| (11) 
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 �̂�𝑝𝐿𝐿(0,0) = �̂�𝑒𝑊𝑊(0,0)×𝑟𝑟1
|𝑟𝑟1|  (12) 

The principal scanning direction is along the arc 𝑐𝑐1 − 𝑐𝑐2. Scanning in the 𝑊𝑊 direction is 

separated into two areas, positive 𝑗𝑗 and negative 𝑗𝑗. For positive 𝑗𝑗, moving from grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) to 

𝑝𝑝(𝑝𝑝, 𝑗𝑗 + 1) can be done by shifting the vector 𝑟𝑟(𝑝𝑝, 𝑗𝑗) by 𝛿𝛿 to �̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗) direction as in equation (13)  

 𝑟𝑟(𝑝𝑝, 𝑗𝑗 + 1) = 𝑟𝑟(𝑝𝑝, 𝑗𝑗) + 𝛿𝛿�̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗) (13) 

For negative 𝑗𝑗, moving from grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) to grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗 − 1) can be done in the same 

fashion.  

 𝑟𝑟(𝑝𝑝, 𝑗𝑗 − 1) = 𝑟𝑟(𝑝𝑝, 𝑗𝑗) − 𝛿𝛿�̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗) (14) 

Assuming that �̂�𝑝𝐿𝐿has not changed direction while moving between grid points along W e.g. 

�̂�𝑝𝐿𝐿(𝑝𝑝, 𝑗𝑗 + 1) = �̂�𝑝𝐿𝐿(𝑝𝑝, 𝑗𝑗 − 1) = �̂�𝑝𝐿𝐿(𝑝𝑝, 0) the new value of �̂�𝑝𝑊𝑊 at the points 𝑝𝑝(𝑝𝑝, 𝑗𝑗 + 1) and 𝑝𝑝(𝑝𝑝, 𝑗𝑗 − 1) can 

be calculated by using equations (9) and (10) 

 �̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗 + 1) = 𝑟𝑟(𝑖𝑖,𝑗𝑗+1)×�̂�𝑒𝐿𝐿(𝑖𝑖,0)
|𝑟𝑟(𝑖𝑖,𝑗𝑗+1)|  (15) 

 �̂�𝑝𝑊𝑊(𝑝𝑝, 𝑗𝑗 − 1) = 𝑟𝑟(𝑖𝑖,𝑗𝑗−1)×�̂�𝑒𝐿𝐿(𝑖𝑖,0)
|𝑟𝑟(𝑖𝑖,𝑗𝑗−1)|  (16) 

After scanning the complete line 𝑝𝑝, the position vector 𝑟𝑟 is moved back to 𝑟𝑟(𝑝𝑝, 0) and the 

position is then shifted to the next line (𝑝𝑝 + 1) by 𝛿𝛿 in the �̂�𝑝𝐿𝐿direction as in equation (11). The new 

vector �̂�𝑝𝐿𝐿(𝑝𝑝 + 1,0) also needs to be calculated using equation (12) 

 𝑟𝑟(𝑝𝑝 + 1,0) = 𝑟𝑟(𝑝𝑝, 0) + 𝛿𝛿�̂�𝑝𝐿𝐿(𝑝𝑝, 0) (17) 

 �̂�𝑝𝐿𝐿(𝑝𝑝 + 1,0) = [�̂�𝑒𝑊𝑊(𝑖𝑖,0)×𝑟𝑟(𝑖𝑖+1,0)]
|𝑟𝑟(𝑖𝑖+1,𝑗𝑗)|  (18) 

The scanning pattern is a fish bone structure as shown in Figure 10. Assuming vector 

components of 𝑟𝑟 at the grid point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) is 𝑟𝑟(𝑝𝑝, 𝑗𝑗) = 𝑋𝑋𝑖𝑖𝑗𝑗�̂�𝑝𝑥𝑥 + 𝑌𝑌𝑖𝑖𝑗𝑗�̂�𝑝𝑦𝑦 + 𝑍𝑍𝑖𝑖𝑗𝑗�̂�𝑝𝑧𝑧 a vector pointing in the 

same direction but ending at the phosphor screen is 𝑟𝑟′(𝑝𝑝, 𝑗𝑗) = 𝜆𝜆
𝑍𝑍𝑖𝑖𝑖𝑖

(𝑋𝑋𝑖𝑖𝑗𝑗�̂�𝑝𝑥𝑥 + 𝑌𝑌𝑖𝑖𝑗𝑗�̂�𝑝𝑦𝑦 + 𝑍𝑍𝑖𝑖𝑗𝑗�̂�𝑝𝑧𝑧). The vector 
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𝑟𝑟′(𝑝𝑝, 𝑗𝑗) points to the projection point 𝑝𝑝′(𝑝𝑝, 𝑗𝑗) = ( 𝜆𝜆
𝑍𝑍𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖𝑗𝑗, 𝜆𝜆

𝑍𝑍𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖𝑗𝑗) of the point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) then pixel intensity 

of the point 𝑝𝑝(𝑝𝑝, 𝑗𝑗) is read from the point 𝑝𝑝′(𝑝𝑝, 𝑗𝑗) 
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Figures  

 

Figure 1: Schematic diagram of the relationship between Kikuchi bandwidth (𝑊𝑊ℎ𝑘𝑘𝑘𝑘) Bragg angle (θ) 

and the arc length (Ahkl), real Kikuchi band width, which is a radial back projection of 𝑊𝑊ℎ𝑘𝑘𝑘𝑘 on the 

spherical surface of radius of detector distance. 

 

 

Figure 2: Row averaging of a captured band yields its average cross section intensity. The slope of 

the average band cross section intensity was used to determine the real band width 𝐴𝐴ℎ𝑘𝑘𝑘𝑘.  
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Figure 3: (a) SEM image of STN94 and its example EBSPs collected at 10 kV and 30 kV and (b) 

SEM image of YSZ and its example EBSPs collected at 10 kV and 30 kV. Note: vertical features in 

SEM image indicate the surface area polished by FIB milling. 
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Figure 4: (a) SEM image of STN-YSZ 50% (noxal9) and its example EBSPs of STN phase and YSZ 

phase collected at 10 kV and 30 kV. (b) SEM image of STN-YSZ 10% (air) and its example EBSPs 

of STN phase and YSZ phase collected at 10 kV and 30 kV. 
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Figure 5:EBSPs of standard Si sample collected at SEM a) 10 kV and b) 30 kV. 
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Figure 6: (a) An example of an indexed EBSP (30 kV) of STN in STN-YSZ 10% (air) with five 

selected bands and their Miller indices. (b) The pattern collected at the same location of (a) but 

collected at 10 kV. 
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Figure 7: (a) is 2θ plot of STN-YSZ 10% (air) XRD peaks and (b) is 2θ plot of STN-YSZ 50% 

(noxal9) XRD peaks. The STN phase in both samples is cubic.  YSZ in STN-YSZ 50% (noxal9) is 

cubic while both cubic and tetragonal YSZ existed in STN-YSZ 10% (air). Unidentified STN-YSZ 

10% (air) peaks are marked as “u” in red. 
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Figure 8: Plots of calculated lattice constant per pixel 𝑎𝑎/𝐴𝐴ℎ𝑘𝑘𝑘𝑘 of various band widths of Si, STN and 

YSZ. 
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Figure 9: Schematic shows the radial back projection system. The centre of the projecting sphere of 

radius 𝜃𝜃 is at the sample position 𝑆𝑆. 𝑐𝑐′1 and 𝑐𝑐2′  are selected end points of the central line of a selected 

band and 𝑐𝑐1 and 𝑐𝑐2 are their projection on the sphere surface.  
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Figure 10: Data sampling grid of the capturing area on the sphere surface. 
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Table Captions 

Table 1: Summary of Samples. 

Samples  Phase ratio (STN:YSZ) Sintering atmosphere 

STN94  1:0 air 

8YSZ 0:1 air 

STN-YSZ 50% noxal9 0.5:0.5 9 vol% H2 and 91 vol% Ar 

STN-YSZ 10% air 0.9:0.1 air 

 

Table 2: Summary of EBSP collection. 

Sample Phases 
Number of patterns 

SEM 30 kV SEM 10 kV 

STN-YSZ 50% (noxal9) STN 5 5 

YSZ 5 5 

STN-YSZ 10% (air) STN 5 5 

YSZ 5 5 

STN94 STN 5 5 

8YSZ YSZ 5 5 

Silicon Si 1 1 
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Table 3: Calibration constant computed from five Kikuchi bands in single crystal Si. 

Bands  

(hkl) 

Band width  

(pixels) 

Calibration constant  

(𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑘𝑘𝑝𝑝. Å) 

(224) 150 166.2 

(2-42) 149 165.1 

(2-4-2) 148 164.1 

(026) 190 163.2 

(026) 188 161.4 

Average ± SD 164.0±1.8 

 

Table 4: Average lattice constants of YSZ and STN phases in STN-YSZ 10% (air) STN-YSZ 50% 
(noxal9), STN94 and 8YSZ computed from EBSPs compared to XRD results. 

 

Samples Phases 

Lattice constant measured from 

Accuracy  EBSPs  

Average ± SD 
XRD 

STN-YSZ 10% 

(Air) 

STN a = 3.93 ± 0.04 Å a = 3.9163 Å 0.35% 

YSZ No calculation Undetermined  

STN-YSZ 50% 

(noxal9) 

STN a = 3.94 ± 0.04 Å a = 3.9324 Å 0.19% 

YSZ a = 5.18 ± 0.03 Å a = 5.1224 Å  1.12% 

STN94 STN a = 3.92 ± 0.03 Å a = 3.9118 Å 0.21% 

8YSZ YSZ a = 5.17 ± 0.03 Å a = 5.14086 Å  

(YASHIMA et al., 1994) 
0.57% 
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