
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 12, 2024

A short numerical study on the optimization methods influence on topology
optimization

Rojas Labanda, Susana; Sigmund, Ole; Stolpe, Mathias

Published in:
Structural and Multidisciplinary Optimization

Link to article, DOI:
10.1007/s00158-017-1813-2

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Rojas Labanda, S., Sigmund, O., & Stolpe, M. (2017). A short numerical study on the optimization methods
influence on topology optimization. Structural and Multidisciplinary Optimization, 56(6), 1603-1612.
https://doi.org/10.1007/s00158-017-1813-2

https://doi.org/10.1007/s00158-017-1813-2
https://orbit.dtu.dk/en/publications/1a48357a-710c-429f-8777-2ff7f2a5bdbb
https://doi.org/10.1007/s00158-017-1813-2


Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

A short numerical study on the optimization methods influence on
topology optimization

Susana Rojas-Labanda · Ole Sigmund · Mathias Stolpe

Received: date / Accepted: date

Abstract Structural topology optimization problems are com-
monly defined using continuous design variables combined
with material interpolation schemes. One of the challenges
for density based topology optimization observed in the re-
view article Sigmund and Maute (2013) is the slow conver-
gence that is often encountered in practice, when an almost
solid-and-void design is found.

The purpose of this forum article is to present some pre-
liminary observations on how designs evolves during the
optimization process for different choices of optimization
methods. Additionally, the authors want to open a discussion
on how to properly define and identify the boundary transla-
tion that is often observed in practice. The authors hope that
these preliminary observations can open for fruitful discus-
sions and stimulate further investigations concerning slowly
moving boundaries. Although the discussion is centered on
density based methods it may be equally relevant to level-set
and phase-field approaches.
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1 Introduction

The review article Sigmund and Maute (2013) studies, among
many other topics, the way optimization algorithms gener-
ate the designs in structural topology optimization, i.e. the
design iteration history. The design parametrization is based
on density based topology optimization combined with the
finite element method for structural analysis and the Solid
Isotropic Material with Penalization (SIMP) interpolation
scheme (see e.g. Zhou and Rozvany (1991) and Bendsøe and
Sigmund (1999)). The computational behaviour reported in
Sigmund and Maute (2013) is that the optimization algo-
rithms suggest the final topology in relatively few iterations.
A substantial number of iterations are then required to find
the final geometry by slowly moving the boundaries.

Sigmund and Maute (2013) use a mechanism design ex-
ample to show that “the optimization rapidly finds a fairly
good design but requires a very large number of iterations
for just slight improvements in objective function but rather
large changes in geometry.” This effect is also illustrated
by using two different starting points for a minimum com-
pliance problem resulting in a two-bar truss like structure.
From this example, Sigmund and Maute (2013) conclude as
follows: “This shows that the SIMP approach is very good
in locating a good design for a uniform grey starting guess
but that it behaves similar to a phase field method, i.e. it
operates with a solid and void phase and changes shape by
moving boundaries, when the design has reached or is ini-
tialized in a solid-void state.”

The underlying reasons for the slowly moving bound-
aries could be as fundamental as the choice of design parame-
trization, which would be unfortunate since it is widespread
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use and difficult to remedy. The observed behaviour could
also be because of the choice of regularization. A sensitiv-
ity based filtering technique is used in Sigmund and Maute
(2013). It is claimed that the behaviour also occurs for den-
sity based filtering and this is supported by the numerical
experiments in this study. In fact, it could be a combination
of several of these issues or something completely different.

Unfortunately, the numerical studies performed herein
do not lead to any definitive conclusions regarding the above.
Nevertheless, the study provides insight that may spur fur-
ther studies in this important challenge. Also, the study gives
valuable insight in the convergence behavior of different op-
timization methods.

2 Problem formulations

Two structural topology optimization problems are consid-
ered throughout this article, the classical minimum compli-
ance problem (Bendsøe and Sigmund, 2003) and the com-
pliant mechanism design problem, see e.g. Sigmund (1997)
and Sigmund (2009). More details regarding topology opti-
mization problems can be found in e.g. the text book Bendsøe
and Sigmund (2003). The problems are formulated in their
discretized version. Isotropic material and a regular mesh
with a constant density throughout each element are con-
sidered. Additionally, only a single and design-independent
load is assumed. The SIMP material interpolation scheme
is used to produce almost solid-and-void designs. Thus, the
stiffness matrix is defined as in Bendsøe (1989), Bendsøe
and Sigmund (2003), and Andreassen et al (2011). Finally,
a density filter is used in order to regularize the problem
(Bourdin, 2001).

The discretized minimum compliance problem in the nested
approach is formulated as

minimize
t∈Rn

uT (t)K(t)u(t)

subject to vT t≤V
0≤ t≤ 1,

(1)

with u(t) = K−1(t)f. The design variables are defined by t,
the stiffness matrix is represented with K(t) and the load
vector with f. A vector with all entries equal to one is de-
noted by 1.

Finally, the volume constraint is defined as a linear in-
equality with v = (v1, . . . ,vn)

T ∈ Rn the relative volume of
each element and 0 < V < 1 the maximum volume fraction
allowed.

For the mechanism design problem, a constraint enforc-
ing negative output displacement (uout ) is included in order
to avoid ending in a bad local minimum.

The mechanism design problem in the nested approach
used in this article is formulated as

maximize
t∈Rn

uout = lT u(t)

subject to vT t≤V
uout ≤ 0
0≤ t≤ 1,

(2)

The output displacement is defined using a unit length vec-
tor l with zeros in all the degrees of freedom expect at the
output. The domain contains an input and an output spring
stiffness (denoted kin and kout , respectively). An example of
a mechanism design problem is found in Figure 3.

The complete formulation of the problems can be found
in, for instance, Rojas-Labanda and Stolpe (2015).

3 Optimization methods and implementation details

The aim of the article is to assess by example, whether the
boundary translation might be affected by the optimization
solver choice. For this purpose, different optimization algo-
rithms are considered. The classical first-order structural op-
timization Method of Moving Asymptotes (MMA), (Svan-
berg, 1987) is compared to the interior point method im-
plemented in IPOPT (Wächter and Biegler, 2006), and a se-
quential quadratic programming method (SQP) implemented
for structural optimization problems see e.g. Boggs and Tolle
(1995) and Rojas-Labanda and Stolpe (2016).

All the optimization methods attempt to solve1 the nested
formulation of the topology optimization problem (1) and
(2).

Interior point methods, such as IPOPT, approximately
solve a sequence of barrier problems

minimize
x,s

f (x)−µkφ(x,s)

subject to g(x)+ s = 0.

Corresponding to the general problem minimize f (x) sub-
ject to g(x)≤ 0. Here f (x) is the objective function, φ(x) =
∑

n
i=1 log(ui−xi)+∑

n
i=1 log(xi− li)+∑

m
i=1 log(si) is the bar-

rier function, µk > 0 is the barrier parameter at the k−th
iteration, with µk ↓ 0, and s is the slack variable (Wächter
and Biegler, 2006). The inequality constraints are defined
by g(x) ≤ 0. To simplify notation, the equality constraints
have been removed from the problem formulation.

The monotone barrier parameter strategy solves a se-
quence of barrier sub-problems. Once the sub-problem is
solved for a fixed µk (and a given tolerance), the barrier
parameter is decreased until convergence. It ensures global
convergence, but in general, it requires more iterations than

1 In this manuscript the word solve (in the context of optimization
problems) should be understood as finding a point numerically satisfy-
ing the KKT conditions within some prescribed tolerances.
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an adaptive barrier parameter update strategy, see Nocedal
et al (2009). In the latter, the barrier problem is not solved
for a fixed value of the barrier parameter. Additionally, µk
is both allowed to decrease and increase. For large values of
the barrier parameter µ , the optimization algorithm not only
reduces the objective function but also forces the variables
to the interior of the feasible set (due to the barrier function).
More details of interior point methods can be found in e.g.
Forsgren and Gill (1998), Nocedal and Wright (1999), Byrd
et al (1999), and Yamashita (1998). Since the Hessian of
the Lagrangian of both problems (in the nested approach) is
dense and very expensive, IPOPT uses an approximation of
the Hessian based on limited memory BFGS approximations
(Dennis and Moré (1977) and Nocedal (1980)). The IPOPT
version used in the numerical experiments is 3.10.3 with the
default linear solver MUMPS (Amestoy et al, 2000).

On the other hand, SQP methods solve sequences of
quadratic sub-problems with linearized constraints. In par-
ticular, two sequential programming methods are implemented
for structural optimization problems. TopSQP is developed
for solving the minimum compliance problem (Rojas-Labanda
and Stolpe, 2016), while a general SQP method is imple-
mented for solving the mechanism design problem (Boggs
and Tolle, 1995). TopSQP includes two phases, the classical
QP subproblem (IQP) and an equality constrained QP prob-
lem (EQP) to promote fast convergence, based on Morales
et al (2010). Additionally, TopSQP takes advantages of the
structure of the problem in order to use partial information
of the Hessian and avoid its direct storage and computation.
Both IQP and EQP phases use a positive definite approxima-
tion of the Hessian (Rojas-Labanda and Stolpe, 2016). On
the other hand, the general SQP method (Boggs and Tolle,
1995) solves only the classical QP subproblem (IQP) us-
ing a limited memory BFGS approximation. More informa-
tion about these solvers for structural topology optimization
problems can be found in Rojas-Labanda and Stolpe (2015)
and Rojas-Labanda and Stolpe (2016).

The stopping criteria for all the methods are based on
the 2-norm of the first-order optimality conditions, i.e. the
KKT conditions (Nocedal and Wright, 1999). The optimal-
ity tolerance for MMA is set to 10−4 while for the rest of the
methods the value is 10−6. The feasibility tolerance for all
solvers is set to 10−8. Additionally, a maximum number of
iterations2 equal to 1,000 is set. Most of the problem data,
such as the magnitude of the load, the element areas, the
Young’s modulus contrast, the Young’s moduli of elasticity
values of both, void (Ev) and solid (E1), the spring stiffness
values (kin, kout ) and the constraint scaling are identical for
all instances and methods. In particular, the Young’s mod-
ulus contrast is set to E1/Ev = 106. However, the objective
function is scaled in order to improve the performance of
the solvers (see Table 1). MMA, TopSQP, and SQP are im-

2 Number of optimization sub-problems solved.

Design domain

Fig. 1: Design domain representation for the minimum com-
pliance example.

Fig. 2: Representation of two different starting points; a uni-
form design and a vertical solid bar.

Fig. 3: Compliant mechanism inverter design domain, with
its boundary conditions and external load definition (from
Rojas-Labanda and Stolpe (2015)).

plemented in MATLAB and the analysis, density filter, and
the sensitivity analysis are all based on the code presented in
Andreassen et al (2011). Finally, Table 1 lists the values of
the parameters used in the numerical experiments. The spe-
cific parameter settings for IPOPT can be found in Rojas-
Labanda and Stolpe (2015).

4 Numerical experiments

First of all, the boundary translation effect is analysed for
the minimum compliance problem (1). Sigmund and Maute
(2013) suggest to use the benchmark example described in
Figure 1. The minimum compliance problem is solved for
two different starting points. The optimal design is a two-
bar like structure.

Additionally, the inverter mechanism design problem (see
Figure 3) is also taken into consideration.

Throughout the section the slowly moving boundaries
are understood in the visual sense as in Sigmund and Maute
(2013). The authors of this article consider that this effect
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Table 1: Parameters used in the numerical experiments.

Parameter Description Value

E1/Ev Young’s modulus contrast 106

E1 Solid Young’s modulus 1
Ev Void Young’s modulus 10−6

scale obj Objective function scale constant (minimum compliance problem, all solvers) 10−2

scale obj SQP objective function scale constant (mechanism design problem) 102

scale obj IPOPT objective function scale constant (mechanism design problem) 104

scale disp const uout constraint scale constant (mechanism design problem, all solvers) 102

ν Poisson ratio 0.3
p SIMP penalization parameter 3
rmin Radius density filter 0.03×nelx
vi Volume scale factor 1√

n
opt tol Optimality tolerance 10−4 or 10−6

feas tol Feasibility tolerance 10−8

max iter Maximum number of iterations 1,000
µ0 Initial barrier penalization value for IPOPTm 10

occurs when a good topology is found relatively quickly, but
numerous iterations are spent in moving the bars. To the best
of our knowledge, no formal definition has been established.

4.1 Slowly moving boundaries using different starting
points in the minimum compliance problem

The design domain considered for the compliance minimiza-
tion problem is shown in Figure 1. The design domain is
discretized as in Sigmund and Maute (2013) using 50 by 20
elements. The volume fraction V is set to 0.2. The radius fil-
ter is fixed to 1.5 = 0.03×50. Two different starting guesses
are studied; a uniform density (of 0.2) and a straight, solid
and vertical bar located in the middle of the design domain,
and satisfying the volume constraints, see Figure 2.

This example is suggested in Sigmund and Maute (2013)
as a good benchmark problem for the purpose of studying
slowly moving boundaries. Table 2 contains the informa-
tion of the final designs found by the different optimiza-
tion methods using two different starting points. The table
includes the objective function value (compliance) and the
number of outer iterations (gradient evaluations) needed to
solve the problem. For this numerical experiment, IPOPT
is run using both, the monotone (IPOPTm) and the adaptive
(IPOPTa) barrier parameter update strategy.

The difference between the number of iterations when
different starting points are considered is remarkable. MMA
and TopSQP divide the solid bar into two members and then
slowly move the boundaries outwards. At every iteration,
the design is (visually) almost solid-and-void. In contrast,
throughout the first iterations of the interior point methods
the design domain turns greyish, see Figures 4 and 5. In par-
ticular, the initial design of IPOPTm disappears and then the
two bars are appearing in the correct position (see Figure 5).

Table 2: Objective function value and the number of itera-
tions when the minimum compliance problem (see Figure 1)
is solved with MMA, IPOPT, and TopSQP. The table shows
the results using two different starting points illustrated in
Figure 2. .

Solver Starting point Compliance Iterations

MMA Uniform 11.257256 24
MMA Bar 11.536553 149

IPOPTa Uniform 12.034256 36
IPOPTa Bar 11.344896 290
IPOPTm Uniform 11.803645 58
IPOPTm Bar 11.682916 98
TopSQP Uniform 11.247049 33
TopSQP Bar 11.526452 144

The barrier parameter update strategy chosen (monotone
vs. adaptive) considerably affects the amount of intermedi-
ate design variables (i.e. the amount of grey). The monotone
approach turns the solid and void design in an almost com-
pletely grey design, while the adaptive strategy has more dif-
ficulties in changing the whole design to grey. The scaling
of the problem can also considerably affect the behaviour of
interior point methods.

In order to understand this effect it is important to keep
in mind that interior point methods solve sequences of bar-
rier sub-problems (see Section 3). The bound constraints of
the original problem are included in the objective function
of the barrier sub-problem, and thus, the bounds are penal-
ized by the barrier parameter. For large values of µ , interior
point methods try to reduce both the objective function and
the barrier function. However, while µ goes to zero, the rel-
evance of the barrier function decreases.
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(a) Iteration 1 (b) Iteration 4 (c) Iteration 7 (d) Iteration 10

(e) Iteration 13 (f) Iteration 17 (g) Iteration 20 (h) Iteration 290

Fig. 4: Intermediate and final designs at different optimization iterations for IPOPTa.

(a) Iteration 1 (b) Iteration 4 (c) Iteration 7 (d) Iteration 10

(e) Iteration 13 (f) Iteration 17 (g) Iteration 20 (h) Iteration 98

Fig. 5: Intermediate and final designs at different optimization iterations for IPOPTm.

For the minimum compliance problem, the barrier func-
tion increases when the design variables tend to the bounds.
Therefore, at the beginning of the optimization history, which
normally has a relatively large barrier parameter value, the
obtained designs are mostly grey. This same reasoning can
be used to explain the difference in the design history when
different barrier parameter update strategies are used. If the
adaptive strategy is chosen (IPOPTa), the barrier penalty de-
creases fast at the beginning of the optimization process.

Thus, it cannot blur the solid bar completely as it does in the
monotone strategy (IPOPTm). This behaviour indicates that
the log-barrier term dominates the objective in the barrier
problem despite the penalization term (SIMP) in the com-
putation of compliance.

Therefore, it is possible to find a set of parameters such
that interior point methods with a solid bar as initial point
behave similar to the same method applied to the uniform
starting guess. This explains why the number of iterations
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for IPOPTm reported in Table 2 is almost the same for the
different starting points.

Remark 1 During the preliminary numerical experiments,
we experienced that the robustness of the solvers is sensi-
tive to the scaling of the problem. The scaling of the objec-
tive function is highly important in the behaviour of interior
point methods since they balance the minimization of the ob-
jective function and the penalization of the bounds. For some
poorly scaled problems, the behaviour observed in this arti-
cle may not be visible. For the same reason IPOPTm starts
with a relatively large barrier parameter equal to µ0 = 10.
This parameter is responsible of penalizing the bounds.

On the other hand, when linearly constrained nonlinear
problems are considered, MMA and TopSQP belong to the
same class of methods, i.e. sequential convex approximation
methods and thus behave similarly. Both solvers produce in-
termediate designs which are almost black and white.

Remark 2 The considered problem is in general noncon-
vex. The objective function values reported in Table 2 corre-
spond to different local minima. We would like to emphasize
that the purpose of this study is not to judge which method
finds the best design, although this is of course highly rele-
vant, but instead to illustrate the qualitative the behaviour of
the algorithms. For a comparative study of the performance
of the solvers we refer to Rojas-Labanda and Stolpe (2015).

Since interior point methods generally start, or can be
instructed to start, with a relatively large value of the barrier
parameter, the behaviour of the solver is (relatively) not af-
fected by the starting point. This observation does not mean
that using interior point methods can avoid the slowly mov-
ing boundaries which are normally observed at the end of
the optimization process. A disadvantage is its inability to
take advantage of qualified starting guesses.

4.2 Slowly moving boundaries in the inverter mechanism
problem

The second example presented in Sigmund and Maute (2013)
is the compliant mechanism problem described in e.g. Sig-
mund (1997) and Sigmund (2009). Figure 3 shows the de-
scription of the design domain of the inverter problem. In
particular, the design domain is discretized using 80×40 el-
ements, the volume fraction limit is set to V = 0.3, and the
input and output springs are set to kin = 1 and kout = 0.001,
respectively. The radius filter is set to rmin = 0.03×80= 2.4.

The review article Sigmund and Maute (2013) includes
an example in which the Optimality Criteria method (OC,
(Rozvany and Zhou, 1991), (Zhou and Rozvany, 1991)) needs
1,562 iterations before reaching the stopping criteria and in
which the difference in objective function values between

Table 3: The table contains the objective function value and
the number of iterations when the inverter problem is solved
with MMA, SQP, and IPOPTa.

Solver uout Number of iterations

MMA −1.9924 1,000∗

SQP −1.9753 143
IPOPTa −1.9741 325

iteration 100 and 1,562 is 5.5%. Additionally, it includes a
density difference plot between those two designs. In this
example, OC slowly moves the bars of the design.

We perform the same study using different optimiza-
tion methods with the aim of indicating the difference be-
tween optimization solvers with respect to the slowly mov-
ing boundaries effect. More specifically MMA, SQP, and
IPOPTa are used to solve the mechanism design problem.

Table 3 shows the objective function value (output dis-
placement, uout ) and the number of iterations needed for the
different solvers. MMA stopped due to the maximum num-
ber of iterations (1,000). In contrast, SQP and IPOPTa con-
verge within relatively few iterations.

Remark 3 The examples in Sigmund and Maute (2013) are
solved by the MATLAB code described in Andreassen et al
(2011). This code stops if the norm of the difference between
two consecutive primal variable vectors is less than some
threshold. This criterion thus stops the algorithm if it is not
making primal progress. This criterion thus ignores the pos-
sibility that the algorithm may be adjusting the working set
and the corresponding Lagrange multipliers (which is ex-
actly what is in progress when the boundaries are slowly
moving). The differences in stopping criteria, the choice of
norms and the scale of the problem explain the difference in
the number of iterations reported in Tables 2 and 3, and in
Sigmund and Maute (2013).

MMA relatively fast finds a “good” solid and void de-
sign. However, it needs a significant number of iterations to
move the bars in order to find better designs. Similar be-
haviour is observed in SQP, but since it uses a more efficient
second-order approximation, the movement of the bars re-
quires fewer iterations. On the other hand, intermediate de-
signs of IPOPTa contains more grey elements and the solver
tries to find a good design without producing prematurely
a solid and void design (see Figure 6). These grey designs
do not disappear, as it occurs in MMA (and SQP), due to
the barrier penalty parameter. The barrier function is penal-
ized at the beginning of the optimization process, and with
it, “black-and-white” designs.

IPOPTa spends most of the iterations in finding an op-
timal geometry but also in improving the objective function
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(a) Iteration 10 (b) Iteration 40 (c) Iteration 70 (d) Iteration 100

(e) Iteration 160 (f) Iteration 200 (g) Iteration 250 (h) Iteration 320

Fig. 6: Intermediate designs at different optimization iterations of IPOPTa.

value. This observation is clearly illustrated in Figures 7,
8, and 9. The objective function value at each iteration, the
number of intermediate design variables (variables between
0.01 and 0.95), and the norm of the KKT conditions3 are
presented for each solver.

Figure 7 and 8 show that MMA and SQP quickly im-
prove the objective function and then level out. In contrast,
the objective function values of IPOPTa (see Figure 9) de-
creases slower and more gradually than in MMA and SQP.
The same occurs for the number of grey elements. IPOPTa
spends more iterations to remove all the grey elements, while
MMA and SQP remove the intermediate design variables
at the very beginning of the optimization process, and then
they slowly move the bars.

From the density history of the solvers, it is possible to
identify when the designs are “visually good”. For MMA,
the design is identified in a very early stage, between the 38-
th and the 100-th iteration. SQP, in turn, needs about 60 to
70 iterations to define the design. In contrast, IPOPTa needs
around 180−200 iterations, and these intermediate designs
still include grey areas.

In addition, Figures 10a, 11a, and 12a, show the ratio
of improvement between the intermediate objective function
value and the optimal one, i.e it is represented

rimprov = (
u∗out

ui
out
−1)×100.

Here, i indicates the outer optimization iteration. For those
positive objective function values, the value represented is
the maximum possible, i.e. 100. A design difference be-
tween a given intermediate iteration and the final iteration
is also presented in Figures 10b, 11b, and 12b. In particu-
lar the choice of this intermediate iteration is chosen such as

3 The KKT condition of IPOPT cannot be obtained with the inter-
face used in these numerical examples, and thus cannot be presented in
Figure 9.

the percentage of improvement between objective function
values is less than or equal to 10% (rimprov = 10).

The percentage of improvement in the objective function
value throughout the optimization process is clearly differ-
entiated between MMA, SQP, and IPOPTa. Both MMA and
SQP at the 40-th iteration, they obtain an objective function
value that is “only” 10% higher than the optimal found (at
most). However, IPOPTa needs 194 iterations to achieve this
threshold. At this point, the visual difference in the designs
of interior point methods are much smaller than the differ-
ence in the designs of MMA and SQP. In the two latter cases,
the bars have been clearly moved (see Figure 10b and 11b).

These numerical experiments indicate how interior point
methods and convex approximation type methods behave.
The former spends more iterations without suggesting a good
design. However when a “visually good” design is found, it
is in fact much closer and accurate to the final design than
the “visually similar” designs suggested by MMA and SQP
methods.

These preliminary and limited numerical experiments
indicate that the choice of optimization method affects slowly
moving boundaries, at least visually. The objective func-
tion value in solvers such as MMA and SQP decreases too
rapidly and the grey elements disappear in few iterations.
Thus, the final design is obtained by slowly moving the bound-
aries. In contrast, IPOPT balances the improvement of ob-
jective function value with the reduction of grey elements in
the early stage. This produces that the boundaries are prop-
erly located and therefore the solver does not need to move
them. These preliminary experiments suggests that the
term “visually similar” for interior point methods can
be related to “relatively close objective function value”.
This relationship is not found when using MMA or SQP.

Remark 4 Enforcing grey designs at the beginning of the
optimization process is not suitable for all multiphysics prob-
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Fig. 7: Objective function value at each optimization iteration, number of intermediate design variables (logarithmic scale),
and norm of the KKT conditions (logarithmic scale) using MMA as solver.
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(b) Number of intermediate design variables
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Fig. 8: Objective function value at each optimization iteration, number of intermediate design variables (logarithmic scale),
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Fig. 9: Objective function value at each optimization iteration and number of intermediate design variables (logarithmic
scale) using IPOPTa as solver.
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lems. Some physics situation require clearly defined bound-
aries, such as fluid-structure interaction problems.

5 Closing remarks and future directions

Several observations, interpretations, and open questions can
be made based on the presented numerical results. Since the
observations are supported by only a handful of numerical
experiments they do, of course, not provide conclusive ev-
idence. They do, however, give indications in which areas
future theoretical and numerical investigations should be di-
rected.

– It is still unclear how the slowly moving boundaries can
be identified during the optimization process and how to
properly and theoretically define them.

– The TopSQP method behaves similar to MMA for this
type of problems. However, since TopSQP and SQP use
efficient second-order approximations, they generally con-
verge using fewer iterations.

– Interior point methods behave (if they are appropriately
scaled and with appropriate parameters) different com-
pared to sequential convex approximation methods. At
the beginning of the optimization process, relatively large
barrier parameter values in interior point methods can
turn the initial point to a greyish design. Thus, they per-
form similarly independently of the starting point.

– Interior point methods (with proper scale and parame-
ter selection) can keep intermediate design values for a
longer period than MMA. Thus, they are able to properly
identify the location of the structural boundaries, avoid-
ing the expensive operation of moving members once
the design is solid and void.

– The performance of interior point methods is little af-
fected by the initial point. A direct consequence is that
the solver cannot take advantage of qualified starting
guesses.

– In the numerical experiments presented, visually similar
designs relate to similar objective function values when
IPOPT is used.

– In many practical applications, the optimization solvers
are stopped after a relatively small number of iterations.
Interior point methods might not produce solid-and-void
designs since the barrier penalization parameter values
could be relatively large for these intermediate iterations.

– The use of continuation methods to delay the solid-and-
void designs in MMA and SQP methods might help to
reduce the slowly moving boundaries but it would in-
crease the number of iterations.

The authors of this article hope that the observations pre-
sented here can lead the field to further investigate the slowly
moving boundaries issue. We hope these results will help

and guide the community to answer some research questions
such as how to properly define the slowly moving bound-
aries, how to identify them, and finally how to avoid them.
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