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English Abstract

Genetically modified organisms (GMOs) can be used to produce chemicals for everyday appli-

cations. Engineering microorganisms is a multidisciplinary task comprising four steps: design,

build, test and learn. The design and learn phases rely on computational, statistical models, data

analysis and machine learning. The process of creating strains with commercially relevant titers

is time consuming and expensive. Computer-aided design (CAD) software can help scientists

build better strains by providing models and algorithms that can be used to generate and test

hypotheses before implementing them in the lab.

Metabolic engineering already uses computational tools to design and analyze the metabolic

and regulatory mechanisms of microorganisms. Genome-scale metabolic models (GEMs) de-

scribe the biochemical reactions in an organism and their relationship with the genome, hence

they can be used to design microbial cell factories. In this PhD thesis we present cameo, a CAD

software for metabolic engineering that uses GEMs. State-of-the-art and novel algorithms are

implemented in cameo. These algorithms have beenmade accessible using a high-level API to en-

able any user to start running them without having advanced programming skills. Using cameo,

we designed a Saccharomyces cerevisiae strain with improved mevalonate production.

In the food industry, recombinantDNA technologies cannot be used because of strict GMO

regulations, especially in Europe. This industry relies on classical strain improvement (CSI) and

adaptive laboratory evolution (ALE) to create new and better products. Nevertheless, some engi-

neering and design principles can be applied to create strains in this industrial setup. In this work,

we present MARSI, a software tool that uses a completely new model-based approach to strain

design, focusing on metabolite targets. MARSI designs can be implemented using ALE or CSI.

i



WeusedMARSI to enumeratemetabolite targets inEscherichia coli that could be used to replace

experimentally validated gene knockouts.

Genetic variability occurs naturally in cells. However, the effects of those variations are un-

predictable and can impact the performance of production strains. Moreover, strains resulting

from CSI and ALE experiments contain a lot of mutations that are not trivial to explain. In this

thesis, we explored strategies to integrate re-sequencing data using GEMs. Here, we present a

workflow to integrate and analyze data from E. coli wild-type, mutant and closely related strains.

In this study, we evaluated the effect of genetic variability on kcats. These parameters can be used

to constrain GEMs and produce more accurate predictions. Therefore, using a combination of

bioinformatics, chemoinformatics andmachine learning tools, we explored the landscape of kcats

using multiple enzyme sequences and their chemical reactions.
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Danish Abstract

Genmodificeredeorganismer (GMO)kan anvendes til at produceremange almentbrugte kemikalier.

Modificering af mikroorganismer er en tværdisiplinel proces bestående af fire faser: design, kon-

struktion, test og analyse. Design- og analysefaserne anvender statistiske modeller, dataanalyse

og machine learning. At udvikle stammer til kommercielt relevante processer er tidskrævende og

dyrt. Computer-assisteret design (CAD) software hjælper forskere med at konstruere bedre stam-

mer ved hjælp afmodeller og algoritmer, der kan generere og teste strategier før de implementeres

i laboratoriet.

Inden for metabolic engineering er computerbaserede værktøjer allerede i brug i forbindelse

med design og analyse af mikroorganismers metaboliske og regulatoriske mekanismer. Genom-

skalametaboliskemodeller (GEMs)beskriver alle de biokemiske reaktioner, der finder sted i cellen

samt deres forhold til genomet, og kan således anvendes til at designe mikrobielle cellefabrikker.

I denne PhD-afhandling præsenteres cameo, et CAD-værktøj til metabolic engineering der er

baseret på GEMs og som implementerer både eksisterende og nyudviklede algoritmer. Algorit-

merne er tilgængelige via et brugervenligt API, så de kan anvendes selv uden videregående pro-

grammeringsfærdigheder. Ved hjælp af cameo har vi designet en Saccharomyces cerevisiae stamme

med forbedret produktion af mevalonate.

I fødevareindustrien kan rekombinanteDNA-teknikker ikke anvendes på grund af streng lov-

givning inden for GMO området, specielt i Europa. Industrien anvender derfor klassisk strain-

engineering (CSI) eller adaptive laboratory evolution (ALE) til at udvikle nye og forbedrede pro-

dukter. På trods af dette kan visse engineering- og design-principper også anvendes til at udvikle

stammer inden for denne industri. I denne afhandling præsenterer vi softwaren MARSI, som
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anvender en helt ny model-baseret design-metode baseret på metabolit-targets. De designs, der

findes afMARSI, kan implementeres in vivo enten via CSI eller ALE.Her demonstreresMARSI

ved at finde metabolit-targets i Escherichia coli, som kan erstatte eksperimentelt validerede gen-

deletioner.

Genetisk variation forekommernaturligt i celler,men effekterne af varianter er næstenumulige

at forudsige og kan påvirke produktiviteten af cellefabrikker. Derudover kan der i stammer, sk-

abt ved hjælp af CSI eller ALE, være opstået mutationer som ikke uden videre kan forklares. I

denne afhandling udforskes strategier til at integrere sekventeringsdata med GEMs. Vi præsen-

terer etworkflow til at analysere data fraE. coli vildtype- ogmutantstammer samt nært beslægtede

stammer. Ydermere evalueres effekten af genetiske variationer på enzymers kcat-parametre. Disse

parametre kan bruges til at opstille restriktioner i GEMs for derved at lave bedre forudsigelser af

metabolisk aktivitet. Ved hjælp af en kombination af bioinformatik, kemoinformatik, statistik

og machine learning, udforskede vi forskellige enzymers kcat ved at inddrage deres sekvenser og

kemiske reaktioner.
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Synopsis

The evolution of modern societies lead to the introduction of chemicals in goods and services

we use everyday. Chemicals can be found all around everything we interact with, including plas-

tics, cosmetics, soaps, detergents, clothes, and drugs, among others. Moreover, there are many

other chemicals that reach us indirectly, which are used in agriculture, energy and heat produc-

tion, transport of goods and manufacture. The chemical industry is large and valuable. In 2015,

it recorded 3.5€ Trillion in sales (The European Chemical Industry Council, 2016).

Most chemicals we use today are produced from feedstocks based on fossil resources (such

as, petroleum and natural gas) In Europe, approximately 90% of the chemicals are derived from

fossil resources(Bazzanella and Ausfelder, 2017, p 23). With the expected growth of the global

population and the industrialization of underdeveloped countries, the demand for chemicals will

certainly increase. However, fossil based feedstocks are a nonrenewable resource.

There are, however, alternative feedstocks that can be used to produce some of the chemicals

we use. Biomass (i.e., residues from agriculture, wood, crops or seaweed) provides an alternative

raw material for chemical production Microorganisms can be used to convert the biomass into

these chemicals in biorefineries, by converting them into cell factories.

Switching to bio-based production of chemicals reduces the dependency on fossil fuels. Be-

cause the chemical industry is a valuable and indispensable business, new supply chains have a

chance to become profitable business, as access to petroleum reserves becomes more expensive.
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Some of these chemicals can and are already being produced from renewable feedstocks (Biddy

et al., 2016).

During the past 40 years, recombinant DNA (rDNA) technologies enabled us to combine

genetic material frommultiple sources to create microorganisms capable of producing chemicals

in a fermentor (Adrio andDemain, 2010). Moreover, DNA sequences and laboratory equipment

became cheaper an easy to use, reducing the time and cost of creating cell factories. Still, the

creation of a commercial relevant strain is still expensive and time consuming (Figure 1).

years

titer

Academic
project

2-3 6-8

Industrial
project

1-10g/L

> 100g/L

>$50 million

current
future
death valley

Figure 1: Current titers, time and costs of producing a chemical using biotechnology. Academic projects run in a small

scale, mostly for proof of concept. They have low titers and yields. Commercial projects take longer (6-8 years) and require

manymore people working on it. The cost of bringing a strain to production is over 50$million (Nielsen and Keasling, 2016).

Many projects die in the transition between academia and industry, due to the time and cost of increasing the titers to com-

mercially competitive values and scale-up. In the future, we expect to be faster and better at build strains in the academic

environment but also at translating the technology to industry.

Theprocess of creating a cell factory comprises four steps: design, build, test and learn (Nielsen
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andKeasling, 2016). To create commercially viable and competitive solutionswe need better tech-

nology. Reliable computational models and algorithms and cost effective experimental methods

and protocols, are constantly being developed to speed up the process and further reduce the

costs of building strains.

This PhD thesis address some challenges of designing cell factories using genome-scale meta-

bolic models (GEMs). We propose three major objectives:

1. Create a robust and reliable computer-aided design (CAD) platform for metabolic engi-
neering using GEMs.

2. Make strain design methods available for academic and industrial applications.

3. Use omics data, including resequencing data, to understand the effects of engineering
strains and make better designs.

This work is divided in twomajor parts. The first part comprises the development and appli-

cation of CAD methods for metabolic engineering, using GEMs. Such methods are capable of

enumerate and prioritize metabolic engineering targets. A new method was included, that can

be applied in industrial setups where recombinant DNA (rDNA) technologies cannot be used.

And, the second part aims to provide a platform for integration and analysis of omics data. We

focused our efforts on resequencing data, because little has been done to combine such data with

GEM in a systematic fashion, like RNA-Seq or proteomics data.

In the first part of this thesis I focused on CAD methods. To create a CAD tool useful for

designing strains, I andmy colleagues developed a software package named computer-aided meta-

bolic engineering and optimization (cameo). It contains state-of-the-art and novel algorithms that

use GEMs for in silico design of cell factories. GEMs are mathematical models that describe the

biochemical portfolio of microorganisms. These reactions are connected to the genome and pro-
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teome via gene-protein-reaction (GPR) associations (O’Brien et al., 2015). The major tasks im-

plemented in cameo are: identification of the most efficient heterologous pathways for a variety

chemical products; enumeration of gene knockouts targets, over- and down-regulation targets,

and cofactor swap targets; prioritization and analysis of genetic engineering strategies (Figure 2).

The software is built in a modular way, the algorithms are optimized for speed and scalability,

and it is easy to extend, meaning that new algorithms can be easily implemented. This software

aims to be a reference tool for the metabolic engineering community.

Using cameo, we designed a Saccharomyces cerevisiae strain with improved mevalonate pro-

duction. The mevalonate pathway is very important, because it leads to the production of a

large range of valuable chemicals including fuels, antibiotics, natural colors and anti-cancer drugs,

among other products (Liao et al., 2016, Zhang et al., 2011). The strain was built in the laboratory

by our colleagues at the Synthetic Biology Tools for Yeast group. This work shows that CAD

methods provide useful insights for metabolic engineering and that our software is capable of

provide guidance in the design process.

To finalize the first part, we addressed a limitation of the current CAD algorithms: they

are meant to be implemented using genetic engineering. However, the European regulation on

genetically modified organisms (GMOs) restricts the use of rDNA technologies in the food in-

dustry. Food containing GMO organisms, such as yogurt, wine, beer, or fermented meat cannot

be commercialized. To stay competitive and create new products, this industry relies on classical

strain improvement (CSI) and adaptive laboratory evolution (ALE). Despite the advances in

these techniques, they lack the control and speedy provided by rDNA technologies. Neverthe-

less, developing strains using CSI and ALE can be achieved with using rational design. In collab-

oration with Chr. Hansen A/S, we developed metabolite analogues for rational strain improve-
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Figure 2: Overview of GEM applications in the context of cell factory optimization. Here, we highlighted three applications

of GEMs in the cell factory optimization process. First, the selection of the best performing host can be identifiedwithin the

limits of stoichiometric boundaries. Second, the identification and prioritization of genetic engineering targets to redirect

the flux towards the product. Finally, comparison between growth and production rates, andmedium compositions of

different strategies to help designing the fermentation process.

ment (MARSI), a new method to identify metabolite targets that can reshape the metabolism

ofmicrobial strains towards desired phenotypes. Traditional metabolic engineering software pre-

dicts gene or reaction knockout targets. MARSI predicts antimetabolite targets, that can be im-
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plemented using ALE or CSI by culturing the cells with chemical analogues. These strains built

in the laboratory are compatible with GMO regulations. The software containing this method is

an extension of cameo.

In the second part of this thesis, we also address the challenges of integrating resequencing

data with GEMs. There are several algorithms available to integrate many types of omics, mostly

transcriptomics and proteomics, and alsometabolomics. In collaborationwithmy colleagues, we

created another software package name driven— data-driven constraint-based modeling. Using

the same design principles as in cameo, this package contains state-of-the-art methods that use

high-throughput data to constraint GEMs.

Contrary to most omics data, resequencing data has not yet been combined with GEMs to

design cell factories. Strains generated using ALE or CSI contain mutations resulting from evo-

lution. Unlike engineered strains, making sense of these mutations is a challenging task, because

their effect (i.e., their contribution to the phenotype) is not always obvious.

I and my colleagues collected tools and knowledge generated from medical applications (i.e.,

effect of mutations in cancer and other diseases) and adapted those methods to include in our

constraint-based modeling framework. First we collected data from SABIO-RK containing de-

tailed kinetic information for many enzymes and reactions, across multiple species. Second, we

used SIFT and FoldX to relate the properties of the sequence to the kkacts. Finally, we generated

features for the reactions and enzymes and applied machine learning algorithms to try to predict

the impact of genetic modifications on the kkacts (Figure 3).

We identified no correlation between sequence conservation and catalytic rate. The stability

of proteins can, in some cases, informabout the kkacts, probably because it relateswith the fraction

of correctly folded enzyme. Finally, we cannot used our linear model to predict kkacts because the

xx



amount of data that we could retrieve consistently is not sufficient.

ITSDEGVRAGRSIP...VTSVEHVIVLKRTGGKIGWQEGR
ITADEGVRAGRAIP...VKSVEHVIVLKRTGGKTEWQEGR
ITADEGIRAGRSIP...VTSVEHVIVLKRTGSDIDWQEGR
ITADEGIRAGRSIP...VTSVEHVIVLKRTGSDIDWQEDR

vmax,1
vmax,2
vmax,3
vmax,4

Figure 3: Predicting flux limits imposed by genetic variation. The gene sequence (and consequently the amino-acid com-

position) of an enzymewill have consequences on the amount of expressed protein, protein stability and activity. If we can

predict those parameters, we can then use the vmax of the reactions in a GEM and better understand the effect of mutations

in enzymes.
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Thesis Structure

chapter 1: designing cell factories using genome-scale models

The first chapter of this thesis is a brief introduction to cell factory optimization and CAD. It

covers their applications and the process of building cell factories. It also introduces constraint-

based modeling and how it can be used in the process of designing and analyzing cell factories.

chapter 2: cameo: a python library for computer aidedmetabolic

engineering and optimization of cell factories

The second chapter describes the usage and implementation of a CAD software to design cell

factories. This library harnesses the power of GEMs and combines them with a collection of

state-of-the-art and novel optimization algorithms to enumerate and prioritize genetic interven-

tion strategies in the context of cell factory design.

chapter 3: marsi: metabolite analogues for rational strain im-

provement.

Chapter three describes new algorithms for CAD in a context where genetic engineering is not

allowed due to GMO regulations. These algorithms predict metabolites targets that can be used

to improve strain using CSI or ALE. The software also provides sensitivity analysis to assess im-

xxv



pact of metabolite analogues in the metabolism. The software includes a database of chemical

analogues and a simple querymethod to identifymetabolite analogues for themetabolite targets.

chapter 4: improving mevalonate production in saccharomyces cere-
visiae using constraint based modeling

Chapter four is a research paper describing how to design and build a strainwith improvedmeval-

onate production. It describes how CAD algorithms can be used to identify bottlenecks in me-

tabolism and how to test different hypothesis using the GEMs.

chapter 5: analysisofgeneticvariationandpotentialapplications

in genome-scale metabolic modeling

Chapter five is a review about genetic variation, its impact and applications inmetabolic engineer-

ing. This chapter contains an overview of the existing methods to analyze genetic variants and

how it can be used in combination with genome-scale metabolic models for cell factory optimiza-

tion.

chapter6: predictingenzymekinetics: thequestfortheholygrail

The work described on chapter six is an analysis of the kinetics data landscape. It highlights the

challenges of collecting and processing the available data in the public domain. Predicting the

effects of mutations in the kinetics could provide a better understanding of genetic variability

across strains and species, but unfortunately the amount of available data is scarce.
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chapter 7: conclusions and perspectives

The last chapter summarizes the results of this PhD thesis and the impact of this work in biotech-

nology. It also contains future perspectives regarding the work presented.
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In nature nothing is created, nothing is lost, everything
changes.

Antoine Lavoisier

1
Designing cell factories using genome-scale

models

Summary

This chapter is an introduction to metabolic engineering of cell factories. It is written in three
parts. The first describes biotechnology andprovides historical context formetabolic engineering.
The second part highlights the principles and challenges ofmetabolic engineering. The third part
describes constraint-based modeling and how it can be used for computer-aided design of cell
factories.
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Introduction

Biotechnology has been defined as the use of biological systems tomodify and improve processes
andproducts (UnitedNations, 2001). Mankindhas beenusing biotechnology for over tenmillen-
nia (Figure 1.1). It allowed our species to thrive and modern life would be unimaginable without
it. Even the most ancient biotechnology applications created by mankind, like selective breeding
and fermentation, are still in practice today.

8000 BCE

<6000 BCE

6000 BCE

Agriculture and
selective breeding

Beer and wine
fermentation

Milk 
fermentation 

1928
Penicillin

1972-73
Recombinant DNA

1984

First GMO
plant antibiotic

-resistant tobacco

Genetically
engineered

"human"
 insulin

1978

DNA Fingerprinting

1983

BIOTECHNOLOGY

TIMELINE

Figure 1.1: Timeline of biotechnological applications. Some of themost relevant biotechnology achievement in time. Agri-

culture and selective breeding are themost ancient applications of biotechnology, followed by beer (Young, 2017) wine

(Hames, 2012, p17), and yogurt (Tribby, 2009). The rDNA technology (Cohen et al., 1973, Jackson et al., 1972, Lobban and

Kaiser, 1973,Mertz andDavis, 1972) brought a new dimension to biotechnology by enabling direct manipulation of DNA to

create new biotechnological applications.

The first biotechnological products appeared by chance, whenmicroorganisms in nature col-
onized grapes, ground cereals or milk exposed to the environment and converted the sugars into
other chemicals. Inside their cells, microbial species contain enzymes that can catalyze chemical
reactions responsible for converting the sugars into ethanol or lactic acid, leading to the produc-
tion of fermented products such as beer, wine and yogurt. These chemical reactions — required
to sustain life within cells — are called metabolism. In fact, cells can convert not only sugars but
a variety of other chemicals that may be present in their environment.
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Rearranging themetabolism enables us to usemicroorganisms for chemical production. The
first attempts to improve the production of chemicals using microorganism were performed us-
ing media optimization and classical strain improvement (CSI) (Rowlands, 1984), e.g., the pro-
duction of penicillin in around 1940-50’s (Barreiro et al., 2012). However, creating strains using
CSI is not a very reproducible process and it requires testing a lot of strains without knowing or
controlling the changes in their DNA. Nevertheless, CSI is still used nowadays, e.g., in the food
industry where legislation in some parts of the world prohibits products containing GMO on
the market (Derkx et al., 2014).

Rational improvement of microorganisms became possible in the early 70’s with the appear-
ance of rDNA — DNA molecules created in the laboratory with genetic material from multiple
sources (Cohen et al., 1973, Jackson et al., 1972, Lobban and Kaiser, 1973, Mertz and Davis, 1972).
The rDNA brought a new dawn to biotechnology, by expanding the portfolio of biotechnologi-
cal applications.

Metabolic engineering

In the beginning of the 90’s, the field of metabolic engineering emerged. The term metabolic
engineering was coined by Bailey et al. (1990) to describe the application rDNA to improve the
production of metabolites and proteins, via manipulation of metabolic and regulatory processes
inside the cells.

Metabolic engineering allowed us to create microorganisms that are more efficient at produc-
ing chemicals. Some chemicals are part of the native metabolism (Rossum et al., 2016a, Zhang
et al., 2009) or producedbyothermicroorganisms. Others are traditionally harvested fromplants,
such as natural colors, flavors and drugs (Lau and Sattely, 2015, Lee and Schmidt-Dannert, 2002,
Marienhagen and Bott, 2013) or animals, such as insulin (Quianzon and Cheikh, 2012). Nowa-
days, the portfolio of products that can bemade using cell factories ranges from cheap bulk chem-
icals like plastics and fuels to high-value products like drugs and food supplements (Figure 1.2).

Bio-based production of chemicals brings several advantages and these processes tend to be
more sustainable. Applications of cell factories can tackle different problems, e.g., CO2 fixation
(Nevin et al., 2011) to decrease green house effect, biofuel production to ease the dependence on
fossil fuels (Peralta-Yahya et al., 2012) or biosynthesis of plant derived chemicals, such as opioids,
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to reduce the land usage (Galanie et al., 2015). Cell factories can also be used to produce new phar-
maceuticals and overcome antibiotic resistance (Weber et al., 2015). Finally, bio-based production
can introduce new products to the market with better properties (Yang et al., 2016) to improve
our lifestyle.

Manipulatingmicroorganisms with commercially relevant yields has proven to be a challeng-
ing task. And expensive, too. There are unanticipated effects of applying genetic modifications
to microorganisms: deregulation of cell cycle, decreased growth rate, change in protein concen-
tration or decrease of production rates. Also, when cloning heterologous genes in a new envi-
ronment, it is not guaranteed that the proteins will fold correctly, find their expected substrates
or unexpectedly react with native molecules (Bailey, 1991). All of these unpredictable effects can
make the development of cell factories a long and expensive process. Currently, creating a com-
mercial production strain requires 6–8 years and over $50 million (Nielsen and Keasling, 2016).

To overcome the uncertainties of engineering cells and enable better implementation of cell
factories, Bailey (1991) proposed an iterative cycle consisting of three phases: design, build and
test. With the appearance of better and cheaper high-throughput technologies, both laboratorial
and computational, a learning step was introduced, where the data generated at each iteration
can be used to improve the design process (Figure 1.3).

Design Phase

The aim of the design phase is to identify strategies that can improve the production of a given
chemical. It starts with the identification of candidate hosts based on previous knowledge about
the process (e.g., temperature, pH and product extraction), raw-materials (e.g. types of sugars
or feedstocks), strain physiology (growth-rate, tolerance to product and feed stock toxicity) and
genetic engineering tools available. Once the host has been chosen, it is necessary to engineer

Figure 1.2 (following page): Examples of chemical compounds that can be produced using cell factories. Heterologous

steps are defined considering classical hosts for metabolic engineering: Escherichia coli and Saccharomyces cerevisiae. Target

compounds are: diaminopentane (bio-nylon) (Kind et al., 2014); Vanillin (flavor) (Hansen et al., 2009); Steviol (sweetener)

(Brandle and Telmer, 2007);β-Carotene (natural color) (Li et al., 2013); Lycopene (natural color) (Farmer and Liao, 2001);

L-Lactate (plastic, polylactic acid (PLA)) (Dien et al., 2001); D-Lactate (plastic, PLA) (Zhou et al., 2003); 2,3-Butanodiol (fuel)

(Ng et al., 2012); 1-Butanol (fuel) (Gulevich et al., 2012); Farnesene (Jet fuel) (Rupasinghe et al., 2001); 3-Hydroxybutyrate

(polyester) (Mahishi et al., 2003)
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DESIGN

TEST

BUILD

LEARN

METABOLIC
ENGINEERING

CYCLE

COMPUTATIO
NAL

EXPERIM
ENTAL

DoE

Machine learning CRISPR/Cas9

Figure 1.3: Themodernmetabolic engineering cycle. It consists of four phases: design, build, test, and learn. 1)Design

phase. Mathematical models, previous knowledge and rational design are combined tomake the best strains. 2) Build phase.

The design is implemented into a host. This includes assembly of heterologous pathways, manipulation of native genes

and promoters and/or evolution of strains under selective pressure. 3) Test phase. The performance of the implemented

strains is evaluated. This is the phase where production is measured. 4) Learn phase. Beforemoving to the next round of

design and trying to further improve the strains, the data generated can be used understandwhat failed andwhat worked

in the current designs. The first and fourth steps rely on computational methods, whereas steps two and three are heavily

experimental. This iterative loop stops when the desired titers and yields have been reached.
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the metabolism. When the native metabolism is not enough to create the desired product, het-
erologous elements can be added to connect the native metabolism with the final product or to
overcome native regulatory limitations, such as feedback inhibition mechanisms (Nielsen and
Keasling, 2016).

Identification of heterologous proteins can be achieved by collecting data from literature or
databases. In some cases, where there is not enough information to bridge the native metabolism
of the host to a desired product, retro-biosynthesis algorithms can be used to identify de novo pro-
duction pathways (Campodonico et al., 2014, Carbonell et al., 2011, Hatzimanikatis et al., 2005).
The biosynthesis of some secondarymetabolites, such as tetracycline (an antibiotic) or epothilone
B (an anticancer drug) requires complex gene clusters, which involve large sets of genes. Those
genes can be found using computation tools capable of identifying these biosynthetic gene clus-
ters from chemical structures (Dejong et al., 2016).

Models of metabolism and regulation are very useful in the design process. Cells are intrinsi-
cally complex systems where many species can participate in multiple processes, whichmakes the
selection of genetic manipulations a challenging task. Stoichiometric models, such as genome-
scale metabolic models (GEMs) describe the portfolio of biochemical reactions present in an or-
ganism and their connection to genes and enzymes, using Boolean rules— gene-protein-reaction
(GPR) associations.

Stoichiometric models have proven very useful in the field of metabolic engineering because
they can be used to predict metabolic fluxes and how they are affected by genetic manipulations
(McCloskey et al., 2013). GEMs can be used with a panoply of different algorithms to guide the
design of cell factories: predict the effect of gene/reaction knockouts, gene over and under expres-
sion, and insertion of heterologous pathways (Machado and Herrgård, 2015, Maia et al., 2016).

It is also possible to combine GEMs with omics data to improve their predictability (Maia
et al., 2016). In every step of the cycle, data from previous iterations can be integrated with the
model to generate better predictions. The next generation of these models is already under devel-
opment. ME-models (metabolism and expression) are an expansion of the GEMs and account
for protein expression. These new models include the process of transcription and translation
(O’Brien and Palsson, 2015). ME-models are better at predicting genetic intervention targets in
silico (King et al., 2017).

After the manipulations are identified and prioritized, it is necessary to design the genetic
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elements. There are two major consideration when optimization the DNA sequences: available
genetic engineering tools and experimental setup. DNA sequences can also be optimized for
hosts-specific codon-usage. There are already a good deal of synthetic biology computational
tools available to help with these tasks (Marchisio and Stelling, 2009).

Build Phase

In the build phase, the modifications planned in the design phase are introduced to the host.
The challenges in this phase fall on three main categories: to overcome physiological limitations,
to implement the genetic modifications to the host and to correctly assembly the DNA parts.
Molecular biology tools are used to introduce the genetic manipulations and heterologous ele-
ments, while evolution can help to overcome the physiological limitations of the host (Nielsen
and Keasling, 2016).

The raw materials and the final products can be toxic to the host in high concentrations, as
well as the intermediate products in the metabolic pathways. Besides, some hosts have latent
uptake pathways that are inefficient or not expressed. Adaptive laboratory evolution ALE is a
method for phenotypic improvement that consists of selecting the best performing strains (e.g.,
the fastest growing strain) under selective pressure, such as a new carbon source, different temper-
ature, or presence of toxic compounds. It can be used to improve the tolerance to toxic chemicals
or to enable the uptake of chemicals from the medium (Hansen et al., 2017, Lee and Kim, 2015).

The CRIPSR!/Cas9 technology has enabled efficient implementation of multiple genetic
modifications (i.e., gene insertions or knockouts (Jakočiūnas et al., 2015), and up or down reg-
ulation (Gilbert et al., 2013)) in a single transformation and it works in different hosts.

Inserting complex heterologous pathways is, however, challenging. It is necessary to effi-
ciently assemble parts ofDNA together and reach the right balancing of expression levels in order
to achieve optimal conversion rates. Modernmolecular biology provides a huge number of tools
to put the parts together. DNA parts can be assembled in vivo or in vitro, with different number
of elements and sizes(Cavaleiro, 2016, p.14-43). Combinatorial assembly can be used to generate
libraries of clones with different expression levels (Smanski et al., 2014).
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Test Phase

The performance of strains is evaluated in the test phase. Different aspects of the process are
evaluated in this phase: how tolerant has a strain become to a given chemical; how many genes
where successfully knocked-out; what is the expression level of up or down regulated genes; are
the inserted genes being expressed; which of the heterologous assembly combinations resulted
in production of the desired chemicals; and what are the yields, titers and productivity of those
chemicals; what are the growth rates of the strains (Lee andKim, 2015,Nielsen andKeasling, 2016,
Petzold et al., 2015).

The target molecules and their amounts can be detected using analytical chemistry assays like
mass spectrometry (MS), gas chromatography (GC), liquid chromatography (LC). These assays
are very reliable, however, they are not very high-throughput. If the number of clones generated
is very large, then high-throughput screening (HTS) is preferred, because the analyzes are time-
consuming and expensive (Petzold et al., 2015).

In the past years, high-throughput technology, like Next-Generation Sequencing (NGS) and
shotgun proteomics provide quantitative measurements of transcript and protein levels. Such
data is useful to verify if the strains have been correctly engineered and to identify possible bot-
tlenecks (Petzold et al., 2015).

Biosensors play an important role in the development of cell factories. They provide HTS
without the need of classical analytical methods (i.e. GC, LC or MS), because they allow in vivo
reporting of chemical intracellular concentrations. Sensors can be combined with selection (e.g.,
toxic compounds or antibiotics) or sorting techniques (e.g., fluorescence-activated cell sorting
(FACS)) to identify the best performing strains (Genee, 2016, p19–24).

Learn Phase

Before moving to the next iteration, it is important to gather some knowledge about the strains
developed. The learn phase has not always been considered a step in cell factory development
and it still does not hold much emphasis in the entire process (Nielsen and Keasling, 2016). Sys-
tematically measuring and storing relevant information about the genotype and the associated
phenotype can improve the designs. Nevertheless, pioneeringworks are emerging using tools like
design of experiment (DoE), machine-learning and statistical analysis to provide enlightenment
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during the engineering process.
Statistical-based analysis is also showing promising results. Statistical models, such as DoE

have been used to combine expression data withmathematicalmodeling to improve productions
(Xu et al., 2017). Proteomics data has also been used in combination with machine-learning to
enhance protein production (Sastry et al., 2017).

More recently, a multi-omics framework — combining statistical analysis, machine-learning
and GEMs — was applied to production of mevalonate derived products in E. coli. The frame-
work has shownhow to find useful patterns in the data thatwere used to improve the production
process and to identify genetic intervention targets that lead to higher production (Brunk et al.,
2016).

Evolutionary Engineering

Evolutionary engineering canbeused as an alternative approach to improveproductionofmetabo-
lites or proteins or other industrially relevant phenotypes such as tolerance to stresses. The evolu-
tionary engineering approach consists of generating genetic variation and applying selection and
screening methods to achieve the desired phenotypes (Sauer, 2001). A landmark of evolutionary
engineering is the production of penicillin. Starting in the 40’s, Penicillium chrysogenum went
through several rounds of mutagenesis to create strains capable of production high amounts of
penicillin (Barreiro et al., 2012). Evolutionary engineering is a practical solution to overcome the
complexity of cells in cases where suitable selection or screening methods are available. It can fur-
thermore be used when rDNA technologies are not allowed due to regulations or when genetic
engineering tools are not available. Evolutionary engineering has attracted increasing attention
recently due to rapid development of DNA sequencing technology allowing the use of whole
genome sequencing (WGS) (i.e., to sequence the complete DNA of an organism at once) to iden-
tify the mutations in strains obtained using evolutionary engineering approaches.

Genetic variation can be obtained using classic strain improvement (CSI, e.g., chemical, UV
or X-Ray mutagenesis) or ALE — exposure to stress conditions (e.g., toxic compounds, high-
temperature or alternative carbon sources) in serial or continuous cultivation routines relying
primarily on natural mutation (Alkım et al., 2014). In vivo recombination (i.e., mating or conju-
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gation) also provides the means of increasing genetic variability (Sauer, 2001). The cells able to
survive the experimental procedure acquire newphenotypes. In general the screening or selection
process identifies mutants with the desired phenotype, but the exact process depends on the ap-
plication (e.g. (Johansen et al., 2015, Steensels et al., 2014)). Evolutionary engineering is nowadays
often used in an iterative fashion in order to obtain improved production strains (Figure 1.4). In
the evolutionary engineering cycle metabolic models can be used as tools to interpret genotypic
and phenotypic data and to design either improved selection regimes or genetic changes that im-
prove the selection for the desirable phenotype.

Design Phase

In this alternative design phase we can plan strategies to achieve the desired phenotype. For ex-
ample, ALE experiments can be planned according to the desired phenotype: increased tolerance
to a given chemical or improved growth on a latent carbon source (Dragosits and Mattanovich,
2013, Hansen et al., 2017). GEMs can be used to plan evolutionary experiments. It has already
been shown that E. coli evolved strains perform as predicted by these models (Fong et al., 2005,
Ibarra et al., 2002) at least in the case of growth on alternate carbon sources.

GEMss also have been used to predict antimetabolite targets for cancer treatment (Agren
et al., 2014). This functionality can be extended to design strains in the context of evolutionary
engineering. When exposed to toxic chemicals, cells will rearrange their phenotype. The sur-
vivors are likely to block the conversion of toxic chemicals (e.g., mutations transports, enzymes
or regulatory genes). In this PhD thesis, we propose new a computational method to identify
metabolite targets that can be use to reshape the metabolism. With this method we can identify
phenotypes that can be achieved by supplying toxic analogues (see chapter 3).

Finally, the actual ALE experiments can be simulated using ALEsim (LaCroix et al., 2017).
This software allows theuser to simulate different parameters of theALEexperiment suchpassage
size, cell count or duration of the experiment in order to design the experimental protocol.

Mutation and selection

The mutation and selection phase consists of inducing mutations in the microorganisms and se-
lecting for the best performing strains. UV and chemical mutagenesis are easy to apply to any
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Figure 1.4: Alternative cell factory development cycle using evolutionary engineering.We can use evolution to develop

strains with new phenotypes in four steps: design: use computationmodels to predict the expected phenotypes from chang-

ing carbon-sources or exposure to toxic chemicals; build: use ALE or CSI to evolve the cells using suitable selection pressure;

test: identify which isolates have the desired phenotype andwhere themutations occur in the isolate genomes; and learn:

analyze the genotype-phenotype data to explain causality and understand the effect of themutations.

organism. Most mutagenesis strategies are biased either in the types of mutations they induce or
locations of these mutations (Sauer, 2001). This reduces the sampling of the potential sequence
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space and thus the efficiency of mutagenesis-based strategies.
Exposing cells to toxic non-mutagenic chemicals can yield more understandable results than

exposure to mutagens. For example, exposing Streptococcus thermophilus to 2-deoxyglucose (a
glucose analogue) resulted inmutants that cannot phosphorylate glucose. Thesemutants secrete
glucose insteadof consuming it (Sørensen et al., 2016) - a desirable phenotype in the dairy industry.
Chemical targets predicted by metabolic models can be implemented the same way.

ALE allows for a more sophisticated selections. Phenotypes that can be coupled to growth
(i.e., production of a chemical or utilization of a substrate) can be obtained by selecting the fast
growing strains (Hansen et al., 2017). Selections can also be performed in variable conditions in
order to optimize cellular responses to environmental changes.

Screening and resequencing

After obtaining isolates after applying the relevant selection, it is necessary to characterize two key
features of these isolates: mutations and phenotypes. Identification ofmutations can be achieved
using WGS. NGS provides a fast, cheap and accurate way to resequence the entire genome and
there are severl algorithms available tomap different types ofmutations as long as a referencewild
type reference genome is available (LaCroix et al., 2015). Thephenotypes that need tobe character-
ized include growth behavior in the selection or other relevant conditions as well as production
of desired metabolites. In most cases standard analytical methods are required to characterize
production phenotypes, but in some cases colorimetric or other high throughput assays can be
applied.

Learn

Not all the mutations occurring during the mutagenesis are responsible for the desired trait. It is
necessary to find causal mutations for phenotypes. Genome-wide association studies GWAS has
been used to link genetic traits to features in population (e.g., susceptibility to diseases (Chapman
andHill, 2012) or the linage of the individuals (Rosenberg et al., 2010)). genome-wide assotiation
studies (GWAS) has also beenused to characterize sequence determinants of bacterial phenotypes
such as virulence and resistance (Lees andBentley, 2016). Similarmethods canbeused to compute
the contribution of single nucleotide variations (SNVs) to the phenotype in the ALE setting,
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given that we know which trait strains were selected for and we have a sufficiently large number
of isolates resequenced and phenotypically characterized (Jensen, 2015).

Predicting the effect of mutations on phenotypes in general is a challenging task even for bac-
teria. A major general challenge that needs to be solved to predict mutation effects, is the ability
to predict effects of mutations on protein activity. In this thesis, we reviewed the tools avail-
able for evaluating the effect of genetic variation and challenges of combining those effects with
GEMs (Chapter 5). We also evaluated the possibility of predicting the effects of genetic variation
in enzymes (Chapter 6). The initial attempts to bridge genetic variation andGEMs systematically
has shown amoderate correlation between predicted and observed growth rates of ALEmutants
(Jensen, 2015). The ability to predict effects of mutations on enzyme activities would allow clos-
ing the evolutionary engineering loop (Figure 1.4) as GEMs could be modified in a systematic
fashion to account for mutations that are present after taking an isolate through the loop.

Computer-aided design using genome-scale metabolic
models

The usage of computers to help solve design problems dates back to the 40s and 50s where they
were used for designing electrical systems. The term computer-aided design (CAD) appeared a
few years later, describing the use of computers to aid in the process of creating, modifying and
analyzing designs (Ross, 1960). CAD quickly spread across multiple fields, such as civil engineer-
ing and architecture, automobile industry, entertainment and animation, medicine, and many
others. Two key features of modern CAD software are the ability to use models to describe the
systems under study and to help provide insight into the designs. With no exception, biological
sciences have been adopting these tools.

In the field of metabolic engineering, the biological systems we are trying to modify are com-
plex. The models available to describe the metabolism, such as GEMs, kinetic models or ME-
models, can be very large and interconnected. For example, the latest GEM for Escherichia coli
contains 2251 reactions, 1136 metabolites and 1366 genes (Orth et al., 2011). Moreover, the algo-
rithms necessary to run simulations with the models are not trivial either. Identifying and pri-
oritizing the metabolic engineering strategies is a multistep process (Brochado and Patil, 2014).
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It requires mathematical programming and the number of results generated can be very large.
Working with such models is not an easy task and it cannot be easily achieved using canonical
software like Microsoft Excel.

Available software

There is CAD software already available for metabolic engineering. Two good examples are Opt-
Flux (Rocha et al., 2010) and the COBRAToolbox (Hyduke et al., 2011). OptFlux is a standalone
application that can be use to perform state-of-the-art optimization of cell factories using GEMs.
TheCOBRAToolbox is a constraint-basedmodelingMATLAB librarywithmetabolic engineer-
ing capabilities using extension scripts. On one hand, theCOBRAToolbox ismore versatile than
OptFlux, because it is script-based, so users can code and create their own workflows. On the
other hand, OptFlux uses a graphical user interface, which is more friendly for researchers with
no programming skills. However, the methods and workflows are predefined and running mul-
tiple individual simulations can become tedious. These two software tools are open-source, but
the COBRAToolbox requiresMATLAB, which is a commercial software. OptFlux is free to use,
but under the restrictive GPLv3 license.

In the next chapter of this thesis we present computer-aided metabolic engineering and opti-
mization (cameo), a CAD software that is open-source, free to use, and user-friendly. We devel-
oped cameo to tackle major problems: provide a truly open and free to use library for metabolic
engineering, create a reference community tool, make modeling accessible to people without en-
gineering and computational background, and easy-to-deploy software in personal computers or
high performance computing (HPC) stations.

Constraint-based modeling

In the context of chemical production, GEMs are a powerful and versatile tool. Thesemodels can
be used to calculate flux distributions by constraining them to reflect different scenarios. Some
examples include the effect of gene or reaction knockouts, different media compositions, expres-
sion profiles, physiological data (i.e. growth, secretion and uptake rates), metabolite or enzyme
concentrations, or presence of new enzymes (Blazier and Papin, 2012,O’Brien et al., 2015, Sánchez
et al., 2017, Yizhak et al., 2010).
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A GEM can be represented using a i × j stoichiometric matrix (S) with i rows, represent-
ing the set of unique metabolite species present in specific sub-cellular compartments, and j

columns, to represent the reactions. Each cell in the matrix is the stoichiometric coefficient of
the i-th metabolite in the j-th reaction (Figure 1.5). TheSmatrix can be multiplied by the vector
of fluxes v to get the change of rate in metabolite concentrations∆[X]/t.

Figure 1.5: How to build a stoichiometric matrix. Ametabolic network can be described as a set of equations representing

the stoichiometry of each reaction. To build thematrix we simply iterate through everymetabolite and reaction and set the

coefficient of themetabolite for that reaction. If themetabolite is consumed by a reaction, then the coefficient is negative,

and positive if it is produced. If themetabolite does not participate in that reaction, the coefficient is zero.

Ifwe assumeapseudo steady-state,where the concentrationsofmetabolites remainunchanged,
thenS ·v = 0. From here, we can transform this matrix into a system of linear equations (Figure
1.6B-C).However, thismatrix usually has numerous degrees of freedom, whichmakes the system
underdetermined. Therefore, there are multiple solutions that satisfy this system and it cannot
be solved analytically without determining the value of some variables.

Given the structure of the model — which is imposed by the mass balance of the reactions
— we can optimize relevant objective functions (e.g., maximize growth rate) using linear pro-
gramming (LP) by formulating the problem described in Figure 1.6D, where vlb and vub define
the limits of each flux. c is a vector of zeros, except for the reactions to maximize. Because of
the mass balance, constraining the uptake rate of carbon is enough to bound the system. The
growth rate can be determined by maximizing the biomass reaction — a reaction describing the
stoichiometric composition of metabolites present in one gram of biomass. In this case, cwill be
filled with zeros, except at the index of the biomass reaction. This method is called Flux Balance
Analysis (FBA) (Orth et al., 2010) (Figure 1.6).
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Basic operations using GEMs

The basic operations performed with a GEM consist of changing the reaction bounds and the
coefficients of the stoichiometric matrix. These tasks are essential to test hypothetical scenarios:
knockout effects, different media composition and changing the cofactor affinities of enzymes.
A good CAD should simultaneously provide an easy and intuitive way to execute those tasks
and validation, such as checking mass-balance and charge balance or identification of infeasible
constraints and bounds.

Reaction knockouts can be tested by setting the lower and upper bounds to 0 (Figure 1.6F).
However, the reactions are catalyzed by enzymes encoded in the genome. Therefore, it is not
possible to knockout actual reactions, but genes encoding the enzymes that catalyze them. The
relationship between genes and reactions is not always one-to-one. We use GPR rules to describe
which genes are responsible for each reaction. These association rules are encoded using Boolean
logic (1.7). The effect of knocking out genes can be assessed by testing the GPR rule of each
reaction. If theminimal number of genes necessary to express the reaction are knocked-out, then
the lower and upper bounds of the reactions are set to 0.

Knockout strains commonly exhibit sub-optimal phenotype (i.e., lower growth and produc-
tion rates). To achieve the phenotype predicted with FBA, they need to adapt (Segrè et al., 2002).
To accommodate the missing activities, other internal regulatory modifications are required to
reroute the metabolic fluxes. The changes necessary to recover the optimal phenotype (i.e., max-
imum growth rate) will not be observed when the cells are cultivated. Instead, we will likely
observe a sub-optimal phenotype (Segrè et al., 2002, Shlomi et al., 2005).

Three methods have been proposed to account for the effects of regulatory reprogramming.
The Minimization of Metabolic Adjustment (MOMA) (and a linear derivation, Linear Mini-
mization of Metabolic Adjustment (lMOMA)) assume that the cells will try to retain the previ-
ous fluxes, given the possible available routes. The new mathematical objective becomes min :

Figure 1.6 (following page): Consequences of mathematical constraints imposed by the genome-scalemetabolic model.

Given a hyperspace where the reaction fluxes exist (A), the pseudo-steady state assumption and environmental uptake

rates (B) define a hypercone (C). Because the hypercone is convex, we can usemathematical programming (D) to identify

optimal solutions in inside the cone (E). Other constraints — explaining genetic interventions, experimental conditions,

andmeasurements (F) — can be used to constrain the space further (G). Microorganisms need time to adjust to the genetic

modifications (H) resulting sub-optimal flux distribution (I).
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(isozymes). In some cases (e.g, case C), the same enzyme can catalyze different reactions.

∥v − vwt∥2. This formulation minimizes the euclidean distance between the parent strain (vwt)
and the mutant strain (Segrè et al., 2002). Computing the euclidean distance is quadratic pro-
gramming (QP) problem, which is computationally intense comparing with LP. Themathemat-
ical formulation can be converted to the 1-norm (i.e., Manhattan distance) and it becomes linear.

Analternativeway to address this problem isusingmixed-integer linear programming (MILP).
The cells will need to express new proteins to activate fluxes. For that reason, we can constrain
the number of new activities in the cell and keep using the existing ones. The Regulation on/off
Minimization (ROOM) method implements that assumption (Shlomi et al., 2005).

The Minimization of Metabolites Balance (MiMBl) approach overcomes the effect of the
stoichiometric representation. The flux values depend on the stoichiometric coefficient. This
approach introduces themetabolite turnover, that is the sum of all fluxes producing ametabolite.
By minimizing the change in turnover followed by the minimal change in fluxes that support it,
this new approach shown improved sensitivity comparing with the previousmethods (Brochado
et al., 2012).

All approaches have proven to be better than FBA at predicting the phenotype of cells after
single gene deletion in laboratory strains. MiMBl also performs well with multiple knockouts,
being able to capture epistatic interactions.
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Changing media can be achieved by changing the bounds of boundary reactions. Boundary
reactions represent metabolites that come in and out of the system. By changing the bounds
of those reactions, we can change the available carbon, nitrogen, oxygen, sulfur and phosphate
sources, as well as micro-nutrients (e.g., iron, magnesium, calcium, etc.).

Swapping cofactors is done by replacing the coefficients of metabolites in the stoichiometric
matrix (Figure 1.8. For example, to test if producing more NADPH instead of NADH can be
used to improve a production strain. It has been hypothesized that changing the redox balance
in S. cerevisiae could make this host more flexible for production of chemicals (Rossum et al.,
2016b).
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Figure 1.8: Swapping cofactors. The two reactions can be carried with different cofactor (NAD andNADHor NADP and

NADPH). To change the cofactor in themodel, we simply need to change the stoichiometric coefficients of the cofactors

in the reaction in the stoichiometric matrix. Changing just one of the cofactors is against themass-balance principles and

render themodel invalid.

Manipulating the model is required for the implementation of workflows, such as solution
space analysis (e.g., flux variability analysis (Mahadevan and Schilling, 2003) or production enve-
lope) and identification of essential genes, reactions andmetabolites (Edwards and Palsson, 2000,
Kim et al., 2007).
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Solution space analysis

Analysis of the solution space can be used to inform about the impact of changing constraints
in the model. Media conditions, specific growth and production rates, knockouts and other con-
straints will have an impact on the flux distribution .

Essential reactions are those reactions required to support a given cellular objective (e.g., growth
or ATP production). They can be found by individually knocking out each reaction and testing
if the model objective still can be computed. Likewise, essential genes can be identified using the
same iterative approach (Edwards andPalsson, 2000). Essential metabolites are defined asmetabo-
lites necessary to support the cellular objective. They can be identified by blocking the produc-
tion of each metabolite . In order to allow feasible results, the mass balance constraint for that
metabolite should be relaxed in order to allow its production (Kim et al., 2007)

Theoptimal solutionof FBA is not always unique. There are different combinations of fluxes
that can result in the same flux distribution. The existence of these alternative optimal solutions
depends on the model constraints (i.e., medium composition and reaction knockouts). We can
use Flux Variability Analysis (FVA) to explore the solution space. The method consists of mini-
mizing and maximizing the flux of each reaction while constraining the previous objective (e.g.,
maximize growth) to its previous solutions (Figure 1.9C).

Heterologous pathway prediction

Identification of heterologous pathways is not an easy task. There are currently 43269 unique
reactions identified in MetaNetX (version 3.0, downloaded 15th August 2017). Identification of
smaller linear pathways that depend on one precursor can easily be put together by the human
brain. However, identifying long pathways with multiple precursors is a large combinatorial
problem.

The combination of GEMs, a database of biochemical reactions, andmathematical program-
ming allows the identificationof the shortest possible pathways [OptStrain, (Pharkya et al., 2004)].
Enumeration of these pathways can done using MILP. A binary variable y can be set on or off
based on the flux carried by a reaction:

vlb · y ≤ v ≤ vub · y
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So, for every reaction in a database (consisting of the reactions not present in theGEM) the short-
est pathway can be identified by minimizing the sum of y. To do so, we need to extend the
stoichiometric matrix with the reactions present in the database.

This can be achieved using mathematical optimization. Considering the set of substrates
R (a subset of the metabolites M ) that can be consumed by a microorganism, the maximum
theoretical yield of a product p can be calculated using LP by solving the following problem:
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max:MWp · Sp · v

s.t:
∑

Si · v ≥ 0,∀i ∈ M ∧ i /∈ R (1.1)∑
i∈R

(MWi · Si · v) = −1 (1.2)

where theMW is the vector of molecular weights for each metabolite. Constraint 1.1 allows any
metabolite to be secreted and constraint 1.2 is used to scale the uptake rate of the substrates to one
unit of mass.

The smallest number of necessary reactions to produce a given product p, can be identified
by combining the binary variables and the previous problem. Using MILP, we can identify the
minimum number of y variables using the following mathematical problem:

min : ∥y∥1
s.t :

∑
Si · v ≥ 0, ∀i ∈ M ∧ i /∈ R∑
i∈R (MWi · Si · v) = −1

MWp · Sp · v ≥ Y ieldp

vlb · y ≤ v ≤ vub · y
yi ∈ {0, 1},∀i ∈ Universal database

yi = 0, ∀i ∈ Model

Finally, we impose aminimum yield to ensure production of the target. This problem can be
implemented in an iterative algorithm to identify alternative solutions. To do that, we can add
the following constraint after every iteration, k:

yT
k · y ≤ ∥y∥1 − 1 (1.3)

In every iteration, the previous combination of y cannot be repeated, resulting in an alterna-
tive pathway. We can simplify this formulation by simply enforcing aminimum flux value on the
target compound.
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Enumeration of genetic intervention targets

The enumeration ofmetabolic engineering targets can be achieved by using four different groups
of methods: 1 – mathematical programming; 2 – evolutionary algorithms; 3 – analysis of the so-
lution space; and 4 – elementary flux modes. Groups 1, 2 and 4 are particularly good at iden-
tifying growth-coupled designs. A design is growth-coupled when it is not possible to sustain
growth without producing the target chemical (Figure 1.10). The coupling strength depends on
the mechanism that couples cellular growth with the production pathway (e.g., mass-balance or
redox balance).
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Figure 1.10: Growth-coupled designs explained. Using the network drawn on the top of the figure, A— no constraints are

applied— the solution space for different biomass and product fluxes can be any value in the whole stoichiometric space

(blue area) . In the B case, the reaction knockout forces the flux to go towards the product pathway. However, with the

alternative product being produced from the same pathway, there aremultiple possible flux values for the production of

the target chemical (orange area). Only when the second knockout is introduced (C), the flux has to go towards the desired

product if there is biomass production (orange area).

Group 1: Plain mathematical programming. Using bi-level optimization, a MILP can be de-
fined to identify reaction knockouts that redirect the flux towards a desired target. The problem
can be formulated as:
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max: vchemical (OptKnock)

y

s.t.


max: cT · v
s.t. S · v = 0

vbiomass ≥ vmin_biomass

vlb · y ≤ v ≤ vub · y

 (Primal)

y = {0, 1}
∥y∥1 ≤ K

where, the y variables are binary indicators. If y equals 0, there is no flux through the re-
action. This formulation is called OptKnock and it requires that some constraints are imposed
on themodel (aminimum growth (vmin_biomass) rate, the number of knockoutsK). The primal
problem (in this specific case FBA) could be anyLP (such as lMOMA) (Burgard et al., 2003). Like
OptStrain, OptKnock can be used to enumerate knockout strategies using constraint 1.3.

More advanced mathematical formulations have been developed to extend OptKnock. One
example is RobustKnock, that ensures growth-coupled designs (Tepper and Shlomi, 2010) by
eliminating competing pathways. Another one is OptORF, that accounts for regulatory effects
and allows the identification of gene knockouts, transcription factor knockouts and gene over-
expression (Kim and Reed, 2010). OptSwap extends RobustKnock and also allows the identifi-
cation of optimal cofactor swaps to find growth-coupled designs (King and Feist, 2013).

Group 2: genetic algorithms (GAs). These algorithms are inspired by Darwinian evolution.
In every iteration of the algorithm the fittest members of a population are selected and reproduce
(i.e., generate new individuals). During reproduction, crossover and mutations happen in the
individuals chromosomes. The GA evolves towards a global maximum. It is not guaranteed that
it will converge to a global optimum like OptKnock.

However, GA algorithms can be used to search over a large number of knockout combina-
tions very fast and allow the optimization objective to be non-linear, providing a broader range
of applications (Patil et al., 2005)). Figure 1.11 describes the implementation of a GA for identifi-
cation of gene knockouts, such as OptGene.
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Over- and under-expression can also be computed using GA. This can be achieved by using
a discrete representation of gene expression values Gonçalves et al. (2012). There are other vari-
ations of these algorithms, also inspired in nature, such as Bee Search (Choon et al., 2012) and
differential evolution (Choon et al., 2014). We implemented a version of OptSwap in cameo that
uses GA .

Group 3 Analysis of solution space. These approaches have two advantages over knockout-
based strategies: they can be used to search for non-growth coupled solutions (i.e., chemical com-
pounds that compete with biomass production, such as amino-acids) and they can provide de-
signs with higher yields. The implementation consists of scanning the production envelope and
analyzing the flux distributions obtained at each point (Figure 1.12A).

The flux variability scanning based on enforced objective flux (FVSEOF) method analyses
the trend of the flux limits for selected reaction groups (1.12B, Trend Analysis). FVSEOF was de-
veloped to search for reactions with increased flux, but decreasing patterns can also be identified.
Another method is DifferentialFVA, that compares the gap between the flux limits at each point.
For a given reaction, if there is a gap between the flux limits at two different points, then the flux
needs to increase or decrease (Figure 1.12B, Gap Analysis).

Group 4: Elementary flux mode analysis EFMA. The EFMA can be used to identify all the
minimal functional pathways that connect substrates to their products (i.e., biomass and by-
products). An elementary flux mode (EFM) is minimal set of reactions. If any reaction in the
EFM is blocked, then the EFM cannot carry flux (Zanghellini et al., 2013).

The counterpart of EFMs are the minimal cut sets (MCS). A MCS can be described as the
minimal set of reactions that blocks a certain objective. All the reactions in a MCS target all the
EFMs that carry flux toward anobjective (vonKampandKlamt, 2014). The enumerationofMCS
that can be used to identify genetic engineering targets and to analyze synthetic lethal knockout
combinations.
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Integration of omics data

GEMsprovide a good framework for integrationof high-throughput omics data. The data canbe
used to impose constraints on themodel and generate flux distributions that are closer to the cells
behavior. There are methods to integrate transcriptomics data (Blazier and Papin, 2012) and en-
zyme andmetabolite concentrations can also be used to constrain the model (Yizhak et al., 2010).
However, there is still missing a systematic integration method to account for genetic variation
(Chapter 5).
Fluxomics is themeasure of flux carried bymetabolic reactions. These measurements can be used
to constrain the model directly (Figure 1.6F).
Transcriptomics data is the transcript levels, which can be obtained with RNA-Seq. Some meth-
ods have beendeveloped to constrain the amount of transcriptwith theGEMs (Blazier andPapin,
2012, Kim and Lun, 2014).

The methods available try to infer which reactions are on or off using transcript levels. Some
methods use hard constraints — block reactions with transcript levels bellow a certain threshold
(1.6F). Other, impose soft constraints, by minimizing the inconsistency between the expression
data and the fluxes (Becker and Palsson, 2008) or maximizing the number of reactions that are
active and expressed (Zur et al., 2010).

Themain challenges are: transcript levels have aweak correlationwithmetabolic fluxes (Mox-
ley et al., 2009) and the relationship between genes and reactions is not one-to-one.
Proteomics data describe the abundance of peptides in the cells. It can be used like transcriptomics
data, but we can go beyond that. When combined with conversion rates (kcats), proteomics data
can be used to constraint the upper bound of the reactions and generate more accurate flux dis-
tributions (Sánchez et al., 2017).
Metabolomics can be used to constraint the model using thermodynamics. Given the free energy
of formation of eachmetabolite and its concentration, it is possible to constraint the direction of
the reactions in the GEM (Henry et al., 2007).
Combined omics data can also be used to impose extra constraints on GEMs. For example, gene
inactivation moderated by metabolism, metabolomics and expression (GIM3E) combines tran-
scriptomics and metabolomics data. That is achieved by explicitly representing the metabolite
turnover as variables and to force the model to produce a very small amount of the detected
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metabolites. The transcription data is used to softly constrain the model and a penalty is given to
reactions that are required but not expressed (Schmidt et al., 2013).

Integrative omics-metabolic analysis IOMA combines proteomics and metabolics. This is
achieved by constraining the flux levels to a Michaelis Menten-like rate equation that can be cal-
culated from protein and metabolite concentrations (Yizhak et al., 2010).

Visualization

Vision is the most important sense in human-computer interaction. Through our eyes we per-
ceivemost of the information returned fromthe computer. The results of data analysis are usually
presented in figures, plots, charts and diagrams made to help us understand the data intuitively.

Metabolic networks can be represented as maps. Each map represents a pathway or combi-
nation of pathways, connectingmetabolic precursors to their products. These maps, contain the
possible biochemical routes and represent our understanding of the biochemical conversions in-
side the cells. Several tools are available for visualization of metabolic networks, both desktop
applications and web applications (King et al., 2015). These networks can be used to display data
related with the reactions (e.g, fluxes) and metabolites (e.g., concentrations). More data types,
such as expression data can also be included, however it requires some assumptions about the
relationship between transcript levels and metabolic fluxes.

There are other ways of displaying the data created using the algorithms described before.
Production envelopes, show the upper and lower limits of the production flux as function of the
growth rate. The shape of the production envelopes can be used to visually compare designs: e.g.,
which designs have higher yield, or if any of the designs are growth coupled.

Conclusions and perspectives

Biotechnologyprovidedmankindwith tools and solutions that led tomodern society. TheCRISPR/Cas9
technology marks the beginning of a new era. The cost of synthetic DNA has decreased and
CRISPR provides a plug and play genetic toolkit that works across many species. Manipulating
organisms became a cheap and fast process.

Metabolic engineering has the potential to overcome challenges that mankind will face in
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the near future. Sustainable producing of chemicals is still a challenging and expensive process.
The duration and cost of building strains will decrease with the help of better technology. The
cut in DNA synthesis price and the discovery of CRISPR/Cas9 technology helped decrease the
cost of cell factory development (Kosuri and Church, 2014, Sander and Joung, 2014). Biosensors
promise a cheap and scalable toolbox to speed up the process, especially in the early iterations of
the metabolic engineering cycle. New technologies, like microfluidics, can increase the through-
put of built and tested strains in the laboratory and decrease the costs of reagents (Ma and Huo,
2016).

Evolutionary engineering is an alternative process tometabolic engineering. Cell populations
under selective pressure can change their regulatory and metabolic traits by changing their geno-
type. There are three main advantages over metabolic engineering: no need for a priori knowl-
edge about the host regulation and metabolism, GMO compatibility, and no need for genetic
engineering tools (Derkx et al., 2014, Sauer, 2001). Still, a good screening capacity is required to
implement evolutionary engineering.

Evolutionary and metabolic engineering can also be complementary tools to create strains.
For example, strains can be evolved to acquire physiological properties (tolerance to products and
substrates, high yields) and then engineered to acquire production traits (heterologous pathways
or feedback bypass) (Herrgård and Panagiotou, 2012, Sauer, 2001). But it also works the other
way around. We can first build our desired strain using metabolic engineering and use evolution
to improve the phenotype (Fong et al., 2005, Hansen et al., 2017).

Still, more focus is needed on the design and learn phases. The amount of data generated is in-
creasing and requires more sophisticated analysis methods, capable of integrating different types
of data, therefore metabolic engineering needs better software and informationmanagement sys-
tems.

Groundbreaking initiatives have shown promising results. Unsupervised learning can be
used to identify different stages of the fermentation process and pattern recognition can be used
to identify relevant changes in the metabolism (Brunk et al., 2016).

Despite the number of algorithms available, modeling of individual processes is still limited
approach inmetabolic engineering, because they fail to capture the complexity of events happen-
ing inside a cell. In the future, integrated models that predict different aspects of the engineering
process (e.g., protein expression, protein folding, gene expression, fluxes levels temporal events)
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will help increasing the success rate of metabolic engineering (Lechner et al., 2016).
Still, the analysis of genetic variability is not a systematic process and requires effort. The

integration with GEMs as well as a generic mutation-trait analysis approaches (i.e., GWAS) can
be an effective way of identifying and prioritizing relevant mutations.

Mathematical models describing biological systems are the underlying technology of CAD
software for biological sciences. In the context of metabolic engineering, GEMs shown reason-
ably good accuracy inprovidingnon-trivial solutions to improve chemical production (King et al.,
2017, O’Brien et al., 2015). It has been shown recently that the capacity to produce more protein
limits the growth rate of S. cerevisiae and explains the overflow effect. These can be recapitulated
using the GEM extended with enzyme activity constraints (Sánchez et al., 2017). The next gener-
ation ofmodels, theME-models, brings new dimensions themodel including protein expression
(O’Brien and Palsson, 2015) and are more reliable at predicting cellular phenotypes (King et al.,
2017). Many algorithms have been proposed during the last two decades to search for genetic
engineering targets and to analyze the data resulting from experiments (Maia et al., 2016).

There are some limitations in the existing software. The available software works, but it re-
quires people with a very specific training to retrieve meaningful results. Moreover, most of the
available software is academic, developed by scientists (usually PhD students) and not by software
developers. There is a need to create better CAD software that is efficient, reliable, intuitive and
user-friendly.

Metabolic and evolutionary engineering should be about making better strains. It is not
about knowing all possible details about complexmodels and algorithms. Retrievingmeaningful
results requires solid background knowledge about mathematical models and optimization algo-
rithms to overcome small practical problems (e.g., floating point numerical instability, numerical
precision or infeasibility analysis). First, such problems belong to a different domain of knowl-
edge. Second, the solutions for such problems should be handled by the software itself. Finally,
and most important, the software should be easy and intuitive to use.
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Figure 1.11: Evolutionary algorithm implementation for gene knockout optimization. First, the initial population is ran-

domly generated and evaluated. The algorithmwill loop until a termination criteria is met (e.g., number of evaluations,

number of iterations, maximum time, or fitness variation). In each iteration, the operator are applied to change the popu-

lation. The population is re-evaluated in every iteration. When the termination criteria is met, the algorithm returns the

fittest individual.
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Figure 1.13: Elementary fluxmodes andminimal cut sets. 1) Sample network with 6metabolites and 11 reactions. 2) All

EFM present in the network. 3) Examples ofMCS that block all EFMs that lead to the production of D.
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It is all about metabolic fluxes.

Jens Nielsen

2
Cameo: A Python Library for Computer

Aided Metabolic Engineering and
Optimization of Cell Factories

Summary

This chapter describes cameo, a CAD software for cell factory design. This tool is easy to use and
provides novel and state-of-the-art algorithms to identify the genetic modifications that can be
used to improve cell factories. This work has been deposited on BioRxiv on 9 June 2017 (https:
//doi.org/10.1101/147199).
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Abstract

Computational systemsbiologymethods enable rational designof cell factories on a genome-scale
and thus accelerate the engineering of cells for the production of valuable chemicals and proteins.
Unfortunately, for themajority of these methods’ implementations are either not published, rely
on proprietary software, or do not provide documented interfaces, which has precluded their
mainstream adoption in the field. In this work we present cameo, a platform-independent soft-
ware that enables in silico design of cell factories and targets both experienced modelers as well
as users new to the field. It is written in Python and implements state-of-the-art methods for
enumerating and prioritizing knock-out, knock-in, over-expression, and down-regulation strate-
gies and combinations thereof. Cameo is an open source software project and is freely available
under the Apache License 2.0. A dedicated website including documentation, examples, and in-
stallation instructions can be found at http://cameo.bio. Users can also give cameo a try at
http://try.cameo.bio.

Introduction

The engineering of cells for the production of chemicals and proteins affects all areas of our mod-
ern lives. Beer, yogurt, flavoring, detergents, and insulin represent just a few products which are
unimaginablewithout biotechnology. Engineered cellsmay further provide solutions tomany of
mankind’s greatest challenges like global climate, multiple drug resistance, and overpopulation,
by producing fuels, novel antibiotics, and food from renewable feedstocks. Manipulating cells
to perform tasks that they did not evolved for, however, is challenging and requires significant
investments and personnel in order to reach economically viable production of target molecules
(Lee and Kim, 2015).

A central task in developing biotechnological production processes is to reroute metabolic
fluxes towards desired products in cells. This task is particularly prone to failure due to our lim-
ited understanding of the underlying biology and the complexity of the metabolic networks in
even the simplest of organisms. In line with other recent technological advancements, like high-
fidelity genome editing through CRISPR/Cas9 (Sander and Joung, 2014) and DNA synthesis
costs dropping (Kosuri and Church, 2014), modeling methods are increasingly used to accelerate
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cell factory engineering, helping to reduce development time and cost (Meadows et al., 2016).
Genome-scale models of metabolism (GEMs) (McCloskey et al., 2013) are of particular inter-

est in this context as they predict phenotypic consequences of genetic and environmental per-
turbations affecting cellular metabolism (O’Brien et al., 2015). These models have been devel-
oped throughout the past 15 years for the majority of potential cell factory host organisms rang-
ing from bacteria to mammalian cells. A large repertoire of algorithms has been published that
utilize GEMs to compute cell factory engineering strategies composed of over-expression, down-
regulation, deletion, and addition of genes (see Machado and Herrgård, 2015, Maia et al., 2016).
Unfortunately, most of these algorithms are not easily accessible to users as they have either been
published without implementation (e.g. using pseudo code or mathematical equations to de-
scribe the method) or the implementation provided by the authors is undocumented or hard to
install. These problems significantly limit the ability of metabolic engineers to utilize computa-
tional design tools as part of their workflow.

Results

Cameo is open source software written in Python that alleviates these problems and aims tomake
in silico cell factory design broadly accessible. On the one hand it enables cell factory engineers to
enumerate and prioritize designs without having to be experts inmetabolic modeling themselves.
On the other hand it aims to become a comprehensive library of publishedmethods by providing
method developers with a library that simplifies the implementation of new cell factory design
methods.

Cameo provides a high-level interface that can be used without knowing anymetabolic mod-
eling or how different algorithms are implemented (see SupplementaryNotebook 8 [v0.10.3, cur-
rent]). In fact, themostminimal form of input that cameo requires is simply the desired product,
for example vanillin.

from cameo import api

api.design(product='vanillin')

This function call will run the workflow depicted in Figure 2.1. It is also possible to call the
same functionality from the command line. Firstly, it enumerates native and heterologous pro-
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duction pathways for a series of commonly used host organisms and carbon sources. Then it runs
a whole suite of design algorithms available in cameo to generate a list of metabolic engineering
strategies, which can then be ranked by different criteria (maximum theoretical yield, number of
genetic modifications etc.).

More advanced users can easily customize this workflow by providing models for other host
organisms, changing parameters and algorithms, and of course by including their own methods.

In order to become a community project and attract further developers, cameo has been
developed as a modular Python package that has been extensively documented and tested us-
ing modern software engineering practices like test-driven development and continuous integra-
tion/deployment on travis-ci.org (Figure 2.2 shows an overview of the package organization).

To avoid duplication of effort, cameo is based on the constraint-basedmodeling tool cobrapy
(Ebrahim et al., 2013) thus providing its users with already familiar objects and methods (see also
Figure 2.2a). Furthermore, cameo takes advantage of other popular tools of the scientific Python
stack, like for example Jupyter notebooks for providing an interactive modeling environment
(Pérez and Granger, 2007) and pandas for the representation, querying, and visualization of re-
sults (McKinney, 2010).

Accessing published GEMs can be a challenging task as they are often made available in for-
mats that are not supported by existing modeling software (Ebrahim et al., 2015). Cameo pro-
vides programmatic access to collections of models (Figure 2.2b) hosted by BiGG (King et al.,
2016) and the University of Minho darwin.di.uminho.pt/models. Furthermore, by relying on
the common namespace for reaction and metabolite identifiers provided by the MetaNetX.org
project (Bernard et al., 2014) that covers commonly used pathway databases likeKEGG(Kanehisa
et al., 2016), RHEA (Morgat et al., 2015), and BRENDA (Chang et al., 2015), a universal reaction

Figure 2.1 (following page): Cell factory designworkflowwith cameo. The first step is to import ametabolic model from a

file or using a web service. Next, the user needs to select a target product. If the target product is a non-native chemical,

shortest heterologous production pathways can be enumerated to determine a suitable route to the product (Pharkya et al.,

2004). Potential production pathways can then be compared using production envelopes, i.e., visualizations of the trade-off

between production rate and organism growth rate (see Supplementary Notebook 4 [v0.10.3, current]). After a production

pathway has been chosen, a number of different designmethods are used to compute the genetic modifications (designs)

necessary to achieve the production goal (see Supplementary Notebooks 5 [v0.10.3, current] and 6 [v0.10.3, current]). In

the end, the computed designs can be sorted using different criteria relevant to the actual implementation in the lab and

economic considerations such as the number of genetic modifications needed andmaximum theoretical product yield.

Furthermore, a number of results can be further visualized using the pathway visualization tool Escher (King et al., 2015)
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database can be used to predict heterologous pathways (see Supplementary Notebook 7 [v0.10.3,
current].

Most design algorithms rely on solving optimization problems. In order to speed up simu-
lations and ease the formulation of optimization problems, cameo replaces the solver interfaces
utilized in cobrapy with optlang (Jensen et al., 2017), a Python interface to commonly used op-
timization solvers and symbolic modeling language that is maintained by the authors of cameo.
Cameo always maintains a one-to-one correspondence of the GEM and its underlying optimiza-
tion problem, greatly facilitating debugging and efficient solving by enabling warm starts from
previously found solutions (Gelius-Dietrich et al., 2013). Furthermore, being based on sympy
(SymPy Development Team, 2016), optlang enables the formulation of complicated optimiza-
tion problems using symbolicmath expressions, making the implementation of published design
methods straightforward.

Runtimes of design methods are usually on the order of seconds to minutes. Nevertheless,
scanning large numbers of potential products, host organisms, and feedstocks, can quickly make
computations challenging (running the entire workflow using the high-level API takes on the
order of hours). As described above, cameo makes unit operations as fast as possible by imple-
menting an efficient interface to the underlying optimization software. In addition, a number of
methods in cameo can be parallelized, and can thus take advantage of multicore CPUs and HPC
infrastructure if available (see documentation).

With this broad overview of capabilities, we would like to emphasize the role of cameo as a
useful resource to the modeling community and wish to support its development as a commu-
nity effort in the long run. The majority of published strain design algorithms have not been
experimentally validated (Machado and Herrgård, 2015) and we believe that their inaccessibility
to users is a major factor for the lack of validation. With cameo we hope to counteract this prob-
lem bymaking these methods accessible to the entire metabolic engineering community and also
providing a platform for modelers to implement and publish novel methods.

Conclusions

With cameo version 0.10.3 we release a tool that is ready to be used in metabolic engineering
projects. It is under active development and future work will include interfacing cameo with
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genome-editing tools to streamline the translation of computed strain designs into laboratory
protocols, modeling of fermentation processes to get estimates on titers and productivities, and
include pathway predictions based on retrobiosynthesis including hypothetical biochemical con-
versions (Campodonico et al., 2014).
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to a number of optimization solvers. models enables programmatic access tomodels hosted on the internet. parallel pro-

vides tools for the parallelization of designmethods. visualization provides a number of high-level visualization functions,

e.g., production envelopes. flux_analysis implements many basic simulation and analysis methods needed for higher-level

designmethods and the evaluation of production goals etc. strain_design provides a collection of in silico designmethods and

is subdivided intomethods that use deterministic and heuristic optimization approaches. At last, api provides a high-level

interface for computing designs.
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1 Getting started with cameo

cameo reuses and extends model data structures defined by cobrapy (COnstraints-Based
Reconstruction and Analysis tool for Python). So, in addition to following this quick start guide
and other cameo tutorials, we encourage you to explore cobrapy’s documentation as well.

1.1 Step 1: Load a model

Loading a model is easy. Just import the ~cameo.io.load_model function.

In [1]: from cameo import load_model

For example, load the most current genome-scale metabolic reconstruction of Escherichia coli.

In [2]: model = load_model("iJO1366")

Models, reactions, metabolites, etc., provide return HTML when evaluated in Jupyter note-
books and can thus be easily inspected.

In [3]: model

Out[3]: <Model iJO1366 at 0x115c8ceb8>

1.2 Step 2: Simulate a model

The model can be simulated by executing ~cameo.core.solver_based_model.SolverBasedModel.solve.

In [4]: solution = model.optimize()

A quick overview of the solution can be obtained in form of a pandas DataFrame (all solution
objects in cameo provide access to data frames through a data_frame attribute).

In [5]: solution

Out[5]: <Solution 0.982 at 0x11555b160>

A data frame representation of the solution is accessible via solution.to_frame().

In [6]: solution.to_frame()



Out[6]: fluxes reduced_costs
DM_4crsol_c 2.1907e-04 0.0000
DM_5drib_c 2.2103e-04 0.0000
DM_aacald_c -0.0000e+00 0.0000
DM_amob_c 1.9647e-06 0.0000
DM_mththf_c 4.4010e-04 0.0000
... ... ...
ZN2abcpp 0.0000e+00 -0.0083
ZN2t3pp 0.0000e+00 -0.0021
ZN2tpp 3.3499e-04 0.0000
ZNabcpp 0.0000e+00 -0.0083
Zn2tex 3.3499e-04 -0.0000

[2583 rows x 2 columns]

Data frames make it very easy to process results. For example, let’s take a look at reactions
with flux != 0

In [7]: solution.to_frame().query('fluxes != 0')

Out[7]: fluxes reduced_costs
DM_4crsol_c 2.1907e-04 0.0000e+00
DM_5drib_c 2.2103e-04 0.0000e+00
DM_amob_c 1.9647e-06 0.0000e+00
DM_mththf_c 4.4010e-04 0.0000e+00
BIOMASS_Ec_iJO1366_core_53p95M 9.8237e-01 1.8492e-15
... ... ...
UPPDC1 2.1907e-04 0.0000e+00
USHD 1.9113e-02 0.0000e+00
VALTA -4.1570e-01 0.0000e+00
ZN2tpp 3.3499e-04 0.0000e+00
Zn2tex 3.3499e-04 -0.0000e+00

[437 rows x 2 columns]

1.3 Step 3: Exploring a model

Objects—models, reactions, metabolites, genes—can easily be explored in the Jupyter note-
book, taking advantage of tab completion. For example, place your cursor after the period in
model.reactions. and press the TAB key. A dialog will appear that allows you to navigate the
list of reactions encoded in the model.

In [8]: model.reactions.PGK # delete PGK, place your cursor after the period and press the TAB key.

Out[8]: <Reaction PGK at 0x11643af98>

For example, you can access the E4PD (Erythrose 4-phosphate dehydrogenase) reaction in the
model.

In [9]: model.reactions.E4PD



Out[9]: <Reaction E4PD at 0x116162c18>

Be aware though that due variable naming restrictions in Python dot notation access to reac-
tions (and other objects) might not work in some cases.

In [10]: # model.reactions.12DGR120tipp # uncommenting and running this cell will produce a syntax error

In these cases you need to use the model.reactions.get_by_id.

In [11]: model.reactions.get_by_id('12DGR120tipp')

Out[11]: <Reaction 12DGR120tipp at 0x115f85d30>

Metabolites are accessible through model.metabolites. For example, D-glucose in the cytoso-
lic compartment.

In [12]: model.metabolites.glc__D_c

Out[12]: <Metabolite glc__D_c at 0x115cfb898>

And it is easy to find the associated reactions

In [13]: model.metabolites.glc__D_c.reactions

Out[13]: frozenset({<Reaction MLTG1 at 0x1163779b0>,
<Reaction MLTG2 at 0x1163779e8>,
<Reaction TRE6PH at 0x116557ac8>,
<Reaction G6PP at 0x116206b00>,
<Reaction MLTG3 at 0x116377ba8>,
<Reaction GLCabcpp at 0x11623f3c8>,
<Reaction MLTG4 at 0x116377c18>,
<Reaction AMALT2 at 0x11605b438>,
<Reaction GLCt2pp at 0x11623f470>,
<Reaction MLTG5 at 0x116377c88>,
<Reaction TREH at 0x116557d30>,
<Reaction AMALT1 at 0x11605b588>,
<Reaction AMALT3 at 0x11605b6a0>,
<Reaction GLCATr at 0x1162336a0>,
<Reaction AMALT4 at 0x11605b710>,
<Reaction XYLI2 at 0x1165a1f28>,
<Reaction HEX1 at 0x1162a7748>,
<Reaction LACZ at 0x1162f0f98>,
<Reaction GALS3 at 0x1162157f0>})

A list of the genes encoded in the model can be accessed via model.genes.

In [14]: model.genes[0:10]



Out[14]: [<Gene b2215 at 0x10c6f3780>,
<Gene b1377 at 0x10950b4e0>,
<Gene b0241 at 0x109351be0>,
<Gene b0929 at 0x109351048>,
<Gene b4035 at 0x109351d68>,
<Gene b4033 at 0x109344b38>,
<Gene b4034 at 0x115e60518>,
<Gene b4032 at 0x115e60550>,
<Gene b4036 at 0x115e60588>,
<Gene b4213 at 0x115e605c0>]

A few additional attributes have been added that are not available in a cobrapy model. For
example, exchange reactions that allow certain metabolites to enter or leave the model can be
accessed through model.exchanges.

In [15]: model.exchanges[0:10]

Out[15]: [<Reaction DM_4crsol_c at 0x115f44390>,
<Reaction DM_5drib_c at 0x115f443c8>,
<Reaction DM_aacald_c at 0x115f44400>,
<Reaction DM_amob_c at 0x115f44438>,
<Reaction DM_mththf_c at 0x115f44470>,
<Reaction DM_oxam_c at 0x115f444a8>,
<Reaction EX_12ppd__R_e at 0x115f44550>,
<Reaction EX_12ppd__S_e at 0x115f44588>,
<Reaction EX_14glucan_e at 0x115f445c0>,
<Reaction EX_15dap_e at 0x115f445f8>]

Or, the current medium can be accessed through model.medium.

In [16]: model.medium.T

Out[16]: bound
EX_ca2_e 1000.00
EX_cbl1_e 0.01
EX_cl_e 1000.00
EX_co2_e 1000.00
EX_cobalt2_e 1000.00
... ...
EX_sel_e 1000.00
EX_slnt_e 1000.00
EX_so4_e 1000.00
EX_tungs_e 1000.00
EX_zn2_e 1000.00

[25 rows x 1 columns]

It is also possible to get a list of essential reactions ...



In [17]: from cameo.flux_analysis.analysis import find_essential_reactions
find_essential_reactions(model)[0:10]

Out[17]: [<Reaction DM_4crsol_c at 0x115f44390>,
<Reaction DM_5drib_c at 0x115f443c8>,
<Reaction DM_amob_c at 0x115f44438>,
<Reaction DM_mththf_c at 0x115f44470>,
<Reaction BIOMASS_Ec_iJO1366_core_53p95M at 0x115f44518>,
<Reaction EX_ca2_e at 0x115f5c3c8>,
<Reaction EX_cl_e at 0x115f5c588>,
<Reaction EX_cobalt2_e at 0x115f5c668>,
<Reaction EX_cu2_e at 0x115f5c860>,
<Reaction EX_glc__D_e at 0x115f697b8>]

... and essential genes.

In [18]: from cameo.flux_analysis.analysis import find_essential_genes
find_essential_genes(model)[0:10]

Out[18]: [<Gene b4245 at 0x115e90048>,
<Gene b0109 at 0x115f08080>,
<Gene b2838 at 0x115ea80f0>,
<Gene b0423 at 0x115f380f0>,
<Gene b2574 at 0x115e90128>,
<Gene b3809 at 0x115ea8128>,
<Gene b4407 at 0x115f38128>,
<Gene b0175 at 0x115ea8160>,
<Gene b3992 at 0x115f38160>,
<Gene b0928 at 0x115e90198>]
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1 Import models

1.1 Import models from files

The function ~cameo.io.load_model accepts a number of different file formats like SBML (Sys-
tems Biology Markup Language) for example.

In [1]: less data/e_coli_core.xml

In [2]: from cameo import load_model
model = load_model('data/e_coli_core.xml')

In [3]: model

Out[3]: <SolverBasedModel e_coli_core at 0x10704c240>

Other accepted formats include pickle (simply pickled models) and json.

1.2 Import models from the internet

In the previous quick start chapter we demonstrated how to use ~cameo.io.load_model to import
a model by ID. But where did the model come from? Cameo has currently access to two model
repositories on the internet, http://bigg.ucsd.edu and http://darwin.di.uminho.pt/models.

In [4]: from cameo import models

In [5]: models.index_models_bigg()

Out[5]: bigg_id gene_count metabolite_count \
0 e_coli_core 137 72
1 iAB_RBC_283 346 342
2 iAF1260 1261 1668
3 iAF1260b 1261 1668
.. ... ... ...
76 iYO844 844 990
77 iZ_1308 1308 1923
78 RECON1 1905 2766
79 STM_v1_0 1271 1800



organism reaction_count
0 Escherichia coli str. K-12 substr. MG1655 95
1 Homo sapiens 469
2 Escherichia coli str. K-12 substr. MG1655 2382
3 Escherichia coli str. K-12 substr. MG1655 2388
.. ... ...
76 Bacillus subtilis subsp. subtilis str. 168 1250
77 Escherichia coli O157:H7 str. EDL933 2722
78 Homo sapiens 3742
79 Salmonella enterica subsp. enterica serovar Ty... 2545

[80 rows x 5 columns]

In [6]: models.index_models_minho()

Out[6]: id name doi author \
0 1 iJR904 10.1186/gb-2003-4-9-r54 Reed
1 2 iAF1260 10.1038/msb4100155 Feist
2 3 iMM904 10.1186/1752-0509-3-37 Mo
3 4 iJP815 10.1371/journal.pcbi.1000210 Puchalka
.. ... ... ... ...
144 149 iYali4 10.1038/npjsba.2016.5 Kerkhoven
145 150 iLB1027_lipid 10.1371/journal.pone.0155038 Jennifer Levering
146 151 iLB1027 10.1371/journal.pone.0155038 Jennifer Levering
147 152 iMT1174 10.1186/s12918-015-0190-y Mohammad Tajparast

year formats organism \
0 2003 [sbml] Escherichia coli str. K12 substr. MG1655
1 2007 [sbml] Escherichia coli str. K12 substr. MG1655
2 2007 [sbml] Saccharomyces cerevisiae
3 2008 [sbml] Pseudomonas putida str. KT2440
.. ... ... ...
144 2016 [sbml] Yarrowia lipolytica
145 2016 [sbml] Phaeodactylum tricornutum
146 2016 [sbml] Phaeodactylum tricornutum
147 2015 [excel] Rhodococcus jostii RHA1

taxonomy validated
0 Bacteria; Proteobacteria; Gammaproteobacteria;... True
1 Bacteria; Proteobacteria; Gammaproteobacteria;... True
2 Eukaryota; Opisthokonta; Fungi; Dikarya; Ascom... True
3 Bacteria; Proteobacteria; Gammaproteobacteria;... True
.. ... ...
144 Eukaryota; Fungi; Dikarya; Ascomycota; Sacchar... False
145 Eukaryota; Stramenopiles; Bacillariophyta; Bac... True
146 Eukaryota; Stramenopiles; Bacillariophyta; Bac... True
147 Bacteria; Terrabacteria group; Actinobacteria;... False

[148 rows x 9 columns]



Models from BiGG and the University of Minho can conveniently be accessd via
~cameo.models.bigg and ~cameo.models.minho respectively.

In [7]: models.bigg.iJN746

Out[7]: <SolverBasedModel iJN746 at 0x1142a48d0>

In [8]: models.minho.iMM904

Out[8]: <SolverBasedModel iMM904 at 0x117f640b8>

Models in Minho database have been manually verified if they can be used to run simulations
as described in the publications.

In [9]: models.minho.validated.VvuMBEL943 # use TAB completion to see the other models

Out[9]: <SolverBasedModel HyunUkKim2010_VvuMBEL943_MetabolicModeling at 0x115769cc0>
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1 Simulate models

cameo uses and extends the model data structures defined by cobrapy, our favorite COnstraints-
Based Reconstruction and Analysis tool for Python. cameo is thus 100% compatible with cobrapy.
For efficiency reasons, however, cameo implements its own simulation methods that take advan-
tage of a more advanced solver interface.

1.1 Primer: Constraint-Based Modeling

Constraint-based modeling is a powerful modeling framework for analyzing metabolism on the
genome scale (McCloskey et al., 2013). For a model that encompasses n reactions that involve
m metabolites, S is a matrix of dimension m × n that encodes the stoichiometry of the metabolic
reaction system; it is usually referred to as stoichiometric matrix. Assuming that the system is in
a steady state—the concentration of metabolites are constant—the system of flux-balances can be
formulated as

Sv = 0 ,

where v is the vector of flux rates. With the addition of a biologically meaningful objective,
flux capacity constraints, information about the reversibility of reactions under physiological con-
ditions, an optimization problem can be formulated that can easily be solved using linear pro-
gramming.

, e.g., maximimization of biomass production,Given the maximization of growth rate as one
potential biological objective vbiomass, i.e., the flux of an artificial reaction that consumes biomass
components in empirically determined proportions, and assuming that the cell is evolutionary
optimized to achieve that objective, and incorporating knowledge about reaction reversibility, up-
take and secretion rates, and maximum flux capacities in the form of lower and uppers bounds (vlb
and vub) on the flux variables v, one can formulate and solve an optimization problem to identify
an optimal set of flux rates using flux balance analysis (FBA):

Max Zobj = cTv

s.t. Sv = 0
vlb ≤ v ≤ vub .

1.2 Flux Balance Analysis

Load a model.



In [1]: from cameo import load_model
model = load_model('iJO1366')

In cameo, flux balance analysis can be performed with the function fba.

In [2]: from cameo import fba
%time fba_result = fba(model)

CPU times: user 141 ms, sys: 4.53 ms, total: 146 ms
Wall time: 145 ms

Basically, fba calls model.solve() and wraps the optimization solution in a
FluxDistributionResult object. The maximum objective values (corresponding to a maxi-
mum growth rate) can obtained throug result.objective_value.

In [3]: fba_result.data_frame

Out[3]: flux
DM_4crsol_c 2.1907e-04
DM_5drib_c 2.2103e-04
DM_aacald_c -0.0000e+00
DM_amob_c 1.9647e-06
DM_mththf_c 4.4010e-04
... ...
ZN2abcpp 0.0000e+00
ZN2t3pp 0.0000e+00
ZN2tpp 3.3499e-04
ZNabcpp 0.0000e+00
Zn2tex 3.3499e-04

[2583 rows x 1 columns]

Flux distributions can be visualized using escher :

In [4]: fba_result.display_on_map("iJO1366.Central metabolism")

<IPython.core.display.HTML object>

1.3 Parsimonious Flux Balance Analysis

Parsimonious flux balance analysis (Lewis et al., 2010), a variant of FBA, performs FBA in in a
first step to determine the maximum objective value Zobj, fixes it in form of an additional model
constraint (cTv ≥ Zobj), and then minimizes in a second optimization the L1 norm of v. The
assumption behind pFBA is that cells try to minimize flux magnitude as well in order to keep
protein costs low.



Max |v|
s.t. Sv = 0

cTv ≥ Zobj

vlb ≤ v ≤ vub .

In cameo, pFBA can be performed with the function pfba.

In [5]: from cameo import pfba
%time pfba_result = pfba(model)

CPU times: user 551 ms, sys: 9.12 ms, total: 560 ms
Wall time: 604 ms

The objective_function value is |v| ...

In [6]: pfba_result.objective_value

Out[6]: 699.0222751839508

... which is smaller than flux vector of the original FBA solution.

In [7]: abs(fba_result.data_frame.flux).sum()

Out[7]: 763.15667411330537

1.4 Setp 2: Simulate knockouts phenotypes

Although PFBA and FBA can be used to simulate the effect of knockouts, other methods have
been proven more valuable for that task: MOMA and ROOM. In cameo we implement a linear
version of MOMA.

Simulating knockouts:

• Manipulate the bounds of the reaction (or use the shorthand method knock_out)

In [8]: model.reactions.PGI

Out[8]: <Reaction PGI at 0x11324ff28>

In [9]: model.reactions.PGI.knock_out()
model.reactions.PGI

Out[9]: <Reaction PGI at 0x11324ff28>

• Simulate using different methods:



In [10]: %time fba_knockout_result = fba(model)
fba_knockout_result[model.reactions.BIOMASS_Ec_iJO1366_core_53p95M]

CPU times: user 47.7 ms, sys: 2.61 ms, total: 50.3 ms
Wall time: 51.2 ms

Out[10]: 0.9761293262947276

In [11]: %time pfba_knockout_result = pfba(model)
pfba_knockout_result[model.reactions.BIOMASS_Ec_iJO1366_core_53p95M]

CPU times: user 535 ms, sys: 4.16 ms, total: 539 ms
Wall time: 559 ms

Out[11]: 0.9761293262947276

MOMA and ROOM relly on a reference (wild-type) flux distribution and we can use the one
previously computed.

Parsimonious FBA references seem to produce better results using this methods

In [12]: from cameo.flux_analysis.simulation import room, lmoma

In [13]: %time lmoma_result = lmoma(model, reference=pfba_result.fluxes)
lmoma_result[model.reactions.BIOMASS_Ec_iJO1366_core_53p95M]

CPU times: user 25.2 s, sys: 150 ms, total: 25.4 s
Wall time: 25.6 s

Out[13]: 0.87240935362436134

ROOM is a dificult computational problem. If the bounds of the system are not large enought,
it can take many hours to simulate. To improve the speed of the simulation and the chances of
finding a solution, we increase the bounds.

In [14]: for reaction in model.reactions:
if reaction.upper_bound == 1000:

reaction.upper_bound = 99999999
if reaction.lower_bound == -1000:

reaction.lower_bound = -99999999

In [15]: %time room_result = room(model, reference=pfba_result.fluxes)
room_result[model.reactions.BIOMASS_Ec_iJO1366_core_53p95M]

CPU times: user 17.5 s, sys: 105 ms, total: 17.6 s
Wall time: 17.3 s

Out[15]: 0.95190065834517257
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1 Analyzing models

cameo uses and extends the model data structures defined by cobrapy, our favorite COnstraints-
Based Reconstruction and Analysis tool for Python. cameo is thus 100% compatible with cobrapy.
For efficiency reasons though cameo implements its own analysis methods that take advantage of
a more advanced solver interface.

In [1]: from cameo import models
model = models.bigg.e_coli_core

1.1 Flux Variability Analysis

Flux variability analysis (FVA) enables the computation of lower and upper bounds of reaction
fluxes.

In [2]: from cameo import flux_variability_analysis

In [3]: fva_result = flux_variability_analysis(model)
fva_result.data_frame

Out[3]: lower_bound upper_bound
ACALD -20.0000 0.00
ACALDt -20.0000 0.00
ACKr -20.0000 0.00
ACONTa 0.0000 20.00
ACONTb 0.0000 20.00
... ... ...
TALA -0.1545 20.00
THD2 0.0000 333.22
TKT1 -0.1545 20.00
TKT2 -0.4664 20.00
TPI -10.0000 10.00

[95 rows x 2 columns]

In [4]: fva_result.plot(index=fva_result.data_frame.index[:25])

One very useful application of FVA is determining if alternative optimal solution exist.



In [5]: fva_result2 = flux_variability_analysis(model,fraction_of_optimum=0.5)
fva_result2.data_frame

Out[5]: lower_bound upper_bound
ACALD -12.6025 0.0000
ACALDt -12.6025 0.0000
ACKr -13.3589 0.0000
ACONTa 0.4714 13.8303
ACONTb 0.4714 13.8303
... ... ...
TALA -0.1545 13.2807
THD2 0.0000 168.6767
TKT1 -0.1545 13.2807
TKT2 -0.4664 13.1229
TPI -3.7935 9.5654

[95 rows x 2 columns]

In [6]: fva_result2.plot()

In [7]: from cameo.visualization import plotting

1.2 Phenotypic Phase Plane

The phenotypic phase plane is a modeling technique was developed to do a theoretical accesse-
ment of what cell can or cannot do in terms of the stoichiometric constraints [Edawards et al.
2001].

The phenotipic phase plane between growth and a product of interest yields the production
envelope: a representation between the trade of between production of the desired product and
growth.

In [8]: from cameo import phenotypic_phase_plane

In [9]: model.reactions.EX_o2_e.lower_bound = -10
result = phenotypic_phase_plane(model,

variables=[model.reactions.BIOMASS_Ecoli_core_w_GAM],
objective=model.reactions.EX_succ_e,
points=10)

In [10]: result.plot()

The production envelope allows is a quick way to inspect the limitations of the system to
design and how the production relates for with growth. In the previous example, succinate prud-
ction is completly decoupled from growth and by decreasing the growth rate it is theoretically
possible to produce up to 15 times more succinate.

In [11]: result.plot(points=[(0.52, 0), (0.23, 12.2)], points_colors=["green", "red"])

The production envelope can show the coupling between growth and production. There is no
stoichiometric couple between growth and production for succinate under aerobic conditions, but
that is not the case for acetate under anaerobic conditions.



In [12]: result = phenotypic_phase_plane(model,
variables=[model.reactions.BIOMASS_Ecoli_core_w_GAM],
objective=model.reactions.EX_ac_e)

result.plot()

In [13]: result.data_frame

Out[13]: BIOMASS_Ecoli_core_w_GAM objective_lower_bound objective_upper_bound \
0 0.0000 0.0000 20.0000
1 0.0294 0.0000 19.5528
2 0.0588 0.0000 19.1056
3 0.0883 0.0000 18.6584
4 0.1177 0.0000 18.2112
.. ... ... ...
15 0.4414 0.0000 13.2921
16 0.4708 0.0000 12.8449
17 0.5002 0.0000 12.3977
18 0.5296 2.6280 11.9505
19 0.5591 9.9057 11.5033

c_yield_lower_bound c_yield_upper_bound mass_yield_lower_bound \
0 0.0000 0.6667 0.0000
1 0.0000 0.6518 0.0000
2 0.0000 0.6369 0.0000
3 0.0000 0.6219 0.0000
4 0.0000 0.6070 0.0000
.. ... ... ...
15 0.0000 0.4431 0.0000
16 0.0000 0.4282 0.0000
17 0.0000 0.4133 0.0000
18 0.0876 0.3983 0.0861
19 0.3302 0.3834 0.3246

mass_yield_upper_bound
0 0.6555
1 0.6408
2 0.6262
3 0.6115
4 0.5969
.. ...
15 0.4356
16 0.4210
17 0.4063
18 0.3917
19 0.3770

[20 rows x 7 columns]

One can imediatly see if a design is feasible within the new defined constraints.



In [14]: result.plot(points=[(0.2, 8), (0.2, 2)], points_colors=["green", "red"])

The computed data can be inspected in the format of a pandas data frame by calling
result.data_frame

In [15]: result.data_frame

Out[15]: BIOMASS_Ecoli_core_w_GAM objective_lower_bound objective_upper_bound \
0 0.0000 0.0000 20.0000
1 0.0294 0.0000 19.5528
2 0.0588 0.0000 19.1056
3 0.0883 0.0000 18.6584
4 0.1177 0.0000 18.2112
.. ... ... ...
15 0.4414 0.0000 13.2921
16 0.4708 0.0000 12.8449
17 0.5002 0.0000 12.3977
18 0.5296 2.6280 11.9505
19 0.5591 9.9057 11.5033

c_yield_lower_bound c_yield_upper_bound mass_yield_lower_bound \
0 0.0000 0.6667 0.0000
1 0.0000 0.6518 0.0000
2 0.0000 0.6369 0.0000
3 0.0000 0.6219 0.0000
4 0.0000 0.6070 0.0000
.. ... ... ...
15 0.0000 0.4431 0.0000
16 0.0000 0.4282 0.0000
17 0.0000 0.4133 0.0000
18 0.0876 0.3983 0.0861
19 0.3302 0.3834 0.3246

mass_yield_upper_bound
0 0.6555
1 0.6408
2 0.6262
3 0.6115
4 0.5969
.. ...
15 0.4356
16 0.4210
17 0.4063
18 0.3917
19 0.3770

[20 rows x 7 columns]

In [16]: model.reactions.EX_o2_e.lower_bound = 0
result2 = phenotypic_phase_plane(model,



variables=[model.reactions.BIOMASS_Ecoli_core_w_GAM],
objective=model.reactions.EX_ac_e,
points=10)

result2.plot()

1.3 Flux Balance Impact Degree

In [17]: from cameo.flux_analysis.analysis import flux_balance_impact_degree

In [18]: model.reactions.EX_o2_e.lower_bound = -10

In [19]: %time fbid = flux_balance_impact_degree(model, ["EX_o2_e"])

CPU times: user 287 ms, sys: 4.74 ms, total: 292 ms
Wall time: 294 ms

In [20]: fbid

Out[20]: <cameo.flux_analysis.analysis.FluxBalanceImpactDegreeResult at 0x1056230b8>
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1 Predict gene knockout strategies

In cameo we have two ways of predicting gene knockout targets: using evolutionary algorithms
(OptGene) or linear programming (OptKnock)

If you’re running this notebook on try.cameo.bio, things might run very slow due to our in-
ability to provide access to the proprietary CPLEX solver on a public webserver. Furthermore,
Jupyter kernels might crash and restart due to memory limitations on the server.

In [1]: from cameo import models

In [2]: model = models.bigg.iJO1366

In [3]: wt_solution = model.optimize()
growth = wt_solution.fluxes["BIOMASS_Ec_iJO1366_core_53p95M"]
acetate_production = wt_solution.fluxes["EX_ac_e"]

In [4]: from cameo import phenotypic_phase_plane

In [5]: p = phenotypic_phase_plane(model, variables=['BIOMASS_Ec_iJO1366_core_53p95M'], objective='EX_ac_e')
p.plot(points=[(growth, acetate_production)])

1.1 OptGene

OptGene is an approach to search for gene or reaction knockouts that relies on evolutionary algo-
rithms[1]. The following image from authors summarizes the OptGene workflow.

Every iteration we keep the best 50 individuals so we can generate a library of targets.

In [6]: from cameo.strain_design.heuristic.evolutionary_based import OptGene

In [7]: optgene = OptGene(model)

In [8]: result = optgene.run(target=model.reactions.EX_ac_e,
biomass=model.reactions.BIOMASS_Ec_iJO1366_core_53p95M,
substrate=model.metabolites.glc__D_e,
max_evaluations=5000,
plot=False)

Starting optimization at Tue, 18 Jul 2017 17:55:41



Finished after 05:08:36

In [9]: result

Out[9]: <cameo.strain_design.heuristic.evolutionary_based.OptGeneResult at 0x116fc6198>

In [10]: result.plot(0)

In [11]: result.display_on_map(0, "iJO1366.Central metabolism")

<IPython.core.display.HTML object>

1.2 OptKnock

OptKnock uses a bi-level mixed integer linear programming approach to identify reaction knock-
outs[2]:

max: vchemical (OptKnock)
y

s.t.


max: cT · v

s.t. S · v = 0
vbiomass ≥ vmin_biomass

vlb · y ≤ v ≤ vub · y

 (Primal)

y = {0, 1}
‖y‖1 ≤ K

In [12]: from cameo.strain_design.deterministic.linear_programming import OptKnock

In [13]: optknock = OptKnock(model, fraction_of_optimum=0.1)

Running multiple knockouts with OptKnock can take a few hours or days...

In [14]: result = optknock.run(max_knockouts=1, target="EX_ac_e", biomass="BIOMASS_Ec_iJO1366_core_53p95M")

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

In [15]: result

Out[15]: <cameo.strain_design.deterministic.linear_programming.OptKnockResult at 0x11ad3b828>

In [16]: result.plot(0)

In [17]: result.display_on_map(0, "iJO1366.Central metabolism")

<IPython.core.display.HTML object>
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1 Predict expression modulation targets

Cameo provides algorithms to search for genes or reactions that can be over or down regulated in
order to achieve a given biological objective.

In [1]: from cameo import models

Load the E. coli core model.

In [2]: model = models.bigg.e_coli_core

1.1 Flux Scanning based on Enforced Objective Flux

In [3]: from cameo.strain_design.deterministic.flux_variability_based import FSEOF

In [4]: fseof = FSEOF(model)

In [5]: fseof.run(target=model.reactions.EX_succ_e)

Out[5]: <cameo.strain_design.deterministic.flux_variability_based.FSEOFResult at 0x1151bc978>

1.2 Differential flux variability analysis

Compares flux ranges of a reference model to a set of models that have been parameterized to lie
on a grid of evenly spaced points in the n-dimensional production envelope (n being the number
of reaction bounds to be varied).

In [6]: from cameo.flux_analysis.analysis import phenotypic_phase_plane
from cameo.strain_design.deterministic import DifferentialFVA

1.2.1 Succinate production

The production envelope looks like this.

In [7]: production_envelope = phenotypic_phase_plane(model,
variables=[model.reactions.BIOMASS_Ecoli_core_w_GAM],
objective=model.metabolites.succ_e)

production_envelope.plot(height=400)



Set up a model that represents a reference state (in this case a model with a constrained growth
rate).

In [8]: model.reactions.EX_o2_e.lower_bound = 0
reference_model = model.copy()
biomass_rxn = reference_model.reactions.BIOMASS_Ecoli_core_w_GAM
biomass_rxn.lower_bound = 0.
target = reference_model.metabolites.succ_e

Set up the differential flux variability analysis strain design method.

In [9]: diffFVA = DifferentialFVA(design_space_model=model,
reference_model=reference_model,
objective=target,
variables=[biomass_rxn],
normalize_ranges_by=biomass_rxn,
points=10)

Run differential flux variability analysis (only on the surface of the production envelope)

In [10]: result = diffFVA.run(surface_only=True)

In [11]: result.solutions

Out[11]: lower_bound upper_bound gaps \
reaction
ACALD 0.000000 0.000000 -2.339592e+00
ACALDt 0.000000 0.000000 0.000000e+00
ACKr -5.664889 -5.664889 0.000000e+00
ACONTa 0.429333 0.429333 0.000000e+00
ACONTb 0.429333 0.429333 0.000000e+00
... ... ... ...
TALA -0.033659 -0.033659 0.000000e+00
THD2 3.225950 3.225950 0.000000e+00
TKT1 -0.033659 -0.033659 0.000000e+00
TKT2 -0.101579 -0.101579 0.000000e+00
TPI 9.812852 9.812852 0.000000e+00

normalized_gaps biomass production KO \
reaction
ACALD NaN 0.000000 13.905778 True
ACALDt NaN 0.000000 13.905778 False
ACKr inf 0.000000 13.905778 False
ACONTa inf 0.000000 13.905778 False
ACONTb inf 0.000000 13.905778 False
... ... ... ... ...
TALA -0.141033 0.188145 2.123333 False
THD2 4.869204 0.188145 2.123333 False
TKT1 -0.141033 0.188145 2.123333 False



TKT2 -0.425623 0.188145 2.123333 False
TPI 42.313745 0.188145 2.123333 False

flux_reversal suddenly_essential free_flux \
reaction
ACALD False False False
ACALDt False False False
ACKr False False False
ACONTa False False False
ACONTb False False False
... ... ... ...
TALA False False False
THD2 False False False
TKT1 False False False
TKT2 False False False
TPI False False False

reaction excluded
reaction
ACALD ACALD False
ACALDt ACALDt False
ACKr ACKr False
ACONTa ACONTa False
ACONTb ACONTb False
... ... ...
TALA TALA False
THD2 THD2 False
TKT1 TKT1 False
TKT2 TKT2 False
TPI TPI False

[684 rows x 12 columns]

In [12]: result.plot(5, variables=['FBP', 'G6PDH2r', 'PGL', 'PGK'])

In [13]: result.display_on_map(2, map_name="iJO1366.Central metabolism")

<IPython.core.display.HTML object>

In [ ]:
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In [1]: from IPython.display import display
import re

1 Predict heterologous pathways

Predicting heterologous pathways is an important strategy to generate new viable strains. Because
portfolio of available reactions is very large, computer assisted pathway design becomes essential.
Cameo implements a pathway search algorithm using an universal biochemical reaction database
that enumerates the shortest pathways.

If you’re running this notebook on try.cameo.bio, things might run very slow due to our in-
ability to provide access to the proprietary CPLEX solver on a public webserver. Furthermore,
Jupyter kernels might crash and restart due to memory limitations on the server.

In [2]: from cameo import models
from cameo.strain_design import pathway_prediction

In [3]: model = models.bigg.iMM904

In [4]: predictor = pathway_prediction.PathwayPredictor(model)

In [5]: pathways = predictor.run(product="vanillin", max_predictions=4)

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR230 H(+) + 4-hydroxybenzoate + O2 + NADPH <=> H2O ... -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR230 1000

Max flux: 1.90533



<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR68718 H2O + 3,4-dihydroxybenzoate <=> 3-dehydroshiki... -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR68718 1000

Max flux: 3.36842

<IPython.core.display.HTML object>

equation lower_bound \
MNXR4008 H(+) + 3-oxoadipate <=> H2O + 5-oxo-4,5-dihydr... -1000
MNXR184 3-oxoadipyl-CoA + succinate <=> 3-oxoadipate +... -1000
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR228 CO2 + 5-oxo-4,5-dihydro-2-furylacetate <=> H(+... -1000
MNXR4119 2.0 H(+) + 3-carboxy-cis,cis-muconate <=> 3,4-... -1000
MNXR209 CoA + 3-oxoadipyl-CoA <=> acetyl-CoA + succiny... -1000
MNXR3655 2-(carboxymethyl)-5-oxo-2,5-dihydro-2-furoate ... -1000

upper_bound
MNXR4008 1000
MNXR184 1000
MNXR5340 1000
MNXR5336 1000
MNXR228 1000
MNXR4119 1000
MNXR209 1000
MNXR3655 1000

Max flux: 5.59223

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5338 2.0 H(+) + NADH + 3,4-dihydroxybenzoate <=> H2... -1000



MNXR1041 diphosphate + AMP + caffeoyl-CoA <=> CoA + ATP... -1000
MNXR4974 O2 + 2.0 trans-4-coumarate <=> 2.0 trans-caffeate -1000
MNXR227 diphosphate + AMP + 4-coumaroyl-CoA <=> CoA + ... -1000
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR18369 CoA + H2O + 4-coumaroyl-CoA + NAD(+) <=> H(+) ... -1000
MNXR232 H(+) + CoA + 4-hydroxybenzoate <=> H2O + 4-hyd... -1000
MNXR1039 acetyl-CoA + 3,4-dihydroxybenzaldehyde <=> H2O... -1000

upper_bound
MNXR5338 1000
MNXR1041 1000
MNXR4974 1000
MNXR227 1000
MNXR5340 1000
MNXR5336 1000
MNXR18369 1000
MNXR232 1000
MNXR1039 1000

Max flux: 2.24390

In [6]: pathways.pathways[0].reactions[0]

Out[6]: <Reaction MNXR5340 at 0x1227016d8>

In [7]: pathways.plot_production_envelopes(model, objective=model.reactions.BIOMASS_SC5_notrace)

This is the format of your plot grid:
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]
[ (2,1) x3,y3 ] [ (2,2) x4,y4 ]
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1 Easy strain design using a high-level interface

WARNING: if you’re running this notebook on try.cameo.bio, things might run very slow due to
our inability to provide access to the CPLEX solver on a public webserver. Furthermore, Jupyter
kernels might crash and restart due to memory limitations on the server.

Users primarily interested in using cameo as a tool for enumerating metabolic engineering
strategies have access to cameo’s advanced programming interface via cameo.api that provides
access to potential products (cameo.api.products), host organisms (cameo.api.hosts) and a con-
figurable design function (cameo.api.design). Running cameo.api.design requires only mini-
mal input and will run the following workflow.

Import the advanced interface.

In [1]: from cameo import api

1.1 Searching for products

Search by trivial name.

In [2]: api.products.search('caffeine')

Out[2]: InChI \
MNXM680 InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)...

SMILES charge formula mass name \
MNXM680 CN1C=NC2=C1C(=O)N(C)C(=O)N2C 0 C8H10N4O2 194.1906 caffeine

source search_rank
MNXM680 chebi:27732 0

Search by ChEBI ID.

In [3]: api.products.search('chebi:27732')

Out[3]: InChI \
MNXM680 InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)...

SMILES charge formula mass name \
MNXM680 CN1C=NC2=C1C(=O)N(C)C(=O)N2C 0 C8H10N4O2 194.1906 caffeine



source search_rank
MNXM680 chebi:27732 0

1.2 Host organisms

Currently the following host organisms and respective models are available in cameo. More hosts
and models will be added in the future (please get in touch with us if you’d like to get a particular
host organism included).

In [4]: for host in api.hosts:
for model in host.models:

print(host.name, model.id)

Escherichia coli iJO1366
Saccharomyces cerevisiae iMM904

1.3 Computing strain engineering strategies

For demonstration purposes, we’ll set a few options to limit the computational time. Also we’ll
create a multiprocessing view to take advantage of multicore CPUs (strain design algorithms will
be run in parallel for individually predicted heterologous pathways).

In [5]: from cameo.parallel import MultiprocessingView
mp_view = MultiprocessingView()

Limit the number of predicted heterlogous pathways to 4.

In [6]: api.design.options.max_pathway_predictions = 4

Set a time limit of 30 minutes on individual heuristic optimizations.

In [7]: api.design.options.heuristic_optimization_timeout = 30

In [ ]: report = api.design(product='vanillin', view=mp_view)

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>



<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR68718 H2O + 3,4-dihydroxybenzoate <=> 3-dehydroshiki... -1000
MNXR651 2.0 H(+) + NADH + formate <=> H2O + formaldehy... -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR68718 1000
MNXR651 1000

Max flux: 7.58479

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR2795 S-adenosyl-L-methionine + glycine <=> H(+) + S... -1000
MNXR68718 H2O + 3,4-dihydroxybenzoate <=> 3-dehydroshiki... -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR2795 1000
MNXR68718 1000

Max flux: 4.29196

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000



MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR230 H(+) + 4-hydroxybenzoate + O2 + NADPH <=> H2O ... -1000
MNXR640 methanol + NAD(+) <=> H(+) + NADH + formaldehyde -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR230 1000
MNXR640 1000

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR68718 H2O + 3,4-dihydroxybenzoate <=> 3-dehydroshiki... -1000
MNXR4427 methanol + H2O2 <=> 2.0 H2O + formaldehyde -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR68718 1000
MNXR4427 1000

<IPython.core.display.Javascript object>

This is the format of your plot grid:
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR230 H(+) + 4-hydroxybenzoate + O2 + NADPH <=> H2O ... -1000



upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR230 1000

Max flux: 1.90533

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR68718 H2O + 3,4-dihydroxybenzoate <=> 3-dehydroshiki... -1000

upper_bound
MNXR5340 1000
MNXR5336 1000
MNXR68718 1000

Max flux: 3.36842

<IPython.core.display.HTML object>

equation lower_bound \
MNXR4008 H(+) + 3-oxoadipate <=> H2O + 5-oxo-4,5-dihydr... -1000
MNXR184 3-oxoadipyl-CoA + succinate <=> 3-oxoadipate +... -1000
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR228 CO2 + 5-oxo-4,5-dihydro-2-furylacetate <=> H(+... -1000
MNXR4119 2.0 H(+) + 3-carboxy-cis,cis-muconate <=> 3,4-... -1000
MNXR209 CoA + 3-oxoadipyl-CoA <=> acetyl-CoA + succiny... -1000
MNXR3655 2-(carboxymethyl)-5-oxo-2,5-dihydro-2-furoate ... -1000

upper_bound
MNXR4008 1000
MNXR184 1000
MNXR5340 1000
MNXR5336 1000
MNXR228 1000
MNXR4119 1000
MNXR209 1000
MNXR3655 1000



Max flux: 5.59223

<IPython.core.display.HTML object>

equation lower_bound \
MNXR5338 2.0 H(+) + NADH + 3,4-dihydroxybenzoate <=> H2... -1000
MNXR1041 diphosphate + AMP + caffeoyl-CoA <=> CoA + ATP... -1000
MNXR4974 O2 + 2.0 trans-4-coumarate <=> 2.0 trans-caffeate -1000
MNXR227 diphosphate + AMP + 4-coumaroyl-CoA <=> CoA + ... -1000
MNXR5340 H(+) + NADH + O2 + vanillate <=> H2O + 3,4-dih... -1000
MNXR5336 2.0 H(+) + NADH + vanillate <=> H2O + vanillin... -1000
MNXR18369 CoA + H2O + 4-coumaroyl-CoA + NAD(+) <=> H(+) ... -1000
MNXR232 H(+) + CoA + 4-hydroxybenzoate <=> H2O + 4-hyd... -1000
MNXR1039 acetyl-CoA + 3,4-dihydroxybenzaldehyde <=> H2O... -1000

upper_bound
MNXR5338 1000
MNXR1041 1000
MNXR4974 1000
MNXR227 1000
MNXR5340 1000
MNXR5336 1000
MNXR18369 1000
MNXR232 1000
MNXR1039 1000

Max flux: 2.24390

<IPython.core.display.Javascript object>

This is the format of your plot grid:
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]
[ (2,1) x3,y3 ] [ (2,2) x4,y4 ]

Optimizing 6 pathways

In [ ]: report

1.3.1 IPython notebook

Click here to download this page as an IPython notebook.
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0.1 Vanillin production

In 2010, Brochado et al used heuristic optimization together with flux simulations to design a
vanillin producing yeast strain.

Brochado, A. R., Andrejev, S., Maranas, C. D., & Patil, K. R. (2012). Impact of stoichiometry
representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS
Computational Biology, 8(11), e1002758. doi:10.1371/journal.pcbi.1002758

0.2 Genome-scale metabolic model

In their work, the authors used iFF708 model, but recent insights in Yeast yielded newer and more
complete versions. Becuase this algorithms should be agnostic to the model, we implement the
same strategy with a newer model.

In [1]: from cameo import models

In [2]: model = models.bigg.iMM904.copy()

Constraints can be set in the model according to data found in the literature. The defined
conditions allow the simulation of phenotypes very close to the experimental results.

Model validation by comparing in silico prediction of the specific growth rate with experi-
mental data. Growth phenotypes were collected from literature and compared to simulated val-
ues for chemostat cultivations at four different conditions, nitrogen limited aerobic (green) and
anaerobic (red), carbon limited aerobic (blue) and anaerobic (white).

Österlund, T., Nookaew, I., Bordel, S., & Nielsen, J. (2013). Mapping condition-dependent
regulation of metabolism in yeast through genome-scale modeling. BMC Systems Biology, 7, 36.
doi:10.1186/1752-0509-7-36

In [3]: model.reactions.EX_glc__D_e.lower_bound = -13 #glucose exchange
model.reactions.EX_o2_e.lower_bound = -3 #oxygen exchange

In [4]: model.medium

Out[4]: EX_fe2_e EX_glc__D_e EX_h2o_e EX_h_e EX_k_e EX_na1_e \
bound 999999.0 13 999999.0 999999.0 999999.0 999999.0

EX_nh4_e EX_o2_e EX_pi_e EX_so4_e
bound 999999.0 3 999999.0 999999.0



In [5]: model.objective = model.reactions.BIOMASS_SC5_notrace #growth
model.optimize().objective_value

Out[5]: 0.3902223535079852

0.3 Heterologous pathway

Vanillin is not produced by S. cervisiae. In their work an heterolgous pathway is inserted to allow
generate a vanillin production strain. The pathway is described as:

Schematic representation of the de novo VG biosynthetic pathway in S. Cerevisisae (as
designed by Hansen et al [5]). Metabolites are shown in black, enzymes are shown in black
and in italic, cofactors and additional precursors are shown in red. Reactions catalyzed by
heterologously introduced enzymes are shown in red. Reactions converting glucose to aro-
matic amino acids are represented by dashed black arrows. Metabolite secretion is repre-
sented by solid black arrows where relative thickness corresponds to relative extracellular ac-
cumulation. 3-DSH stands for 3-dedhydroshikimate, PAC stands for protocathechuic acid, PAL
stands for protocatechuic aldehyde, SAM stands for S-adenosylmethionine. 3DSD stands for 3-
dedhydroshikimate dehydratase, ACAR stands for aryl carboxylic acid reductase, PPTase stands
for phosphopantetheine transferase, hsOMT stands for O-methyltransferase, and UGT stands for
UDP-glycosyltransferase. Adapted from Hansen et al. [5]. Brochado et al. Microbial Cell Factories
2010 9:84 doi:10.1186/1475-2859-9-84

Using cameo, is very easy to generate a pathway and add it to a model.

In [6]: from cameo.core.pathway import Pathway

In [7]: vanillin_pathway = Pathway.from_file("data/vanillin_pathway.tsv")
vanillin_pathway.data_frame

Out[7]: equation lower_bound \
3DSD 3-dehydroshikimate --> H2O + protocathechuic acid 0.0
ACAR_PPTase ATP + NADPH + protocathechuic acid --> ADP + N... 0.0
hsOMT S-adenosyl-L-methionine + protocatechuic aldeh... 0.0
UGT UDP-glucose + Vanillin --> vanillin-B-glucoside 0.0

upper_bound
3DSD 1000.0
ACAR_PPTase 1000.0
hsOMT 1000.0
UGT 1000.0

And now we can plug the pathway to the model.

In [8]: vanillin_pathway.plug_model(model)

In [9]: from cameo import phenotypic_phase_plane

The Phenotypic phase plane can be used to analyse the theoretical yields at different growth
rates.



In [10]: production_envelope = phenotypic_phase_plane(model, variables=[model.reactions.BIOMASS_SC5_notrace],
objective=model.reactions.EX_vnl_b_glu_c)

production_envelope.plot()

To find gene knockout targets, we use cameo.strain_design.heuristic package which im-
plements the OptGene strategy.

The authors used the biomass-product coupled yield (bpcy) for optimization which is the
equivalent of running OptGene in non-robust mode. All simulations were computed using
MOMA we use it’s equivalent linear version (minimizing the absolute distance instead of the
quadratic distance). The linear MOMA version is faster than the original MOMA formulation.

In [11]: from cameo.strain_design.heuristic.evolutionary_based import OptGene
from cameo.flux_analysis.simulation import lmoma

In [12]: optgene = OptGene(model)

In [13]: from cameo.flux_analysis import lmoma

In [14]: results = optgene.run(target=model.reactions.EX_vnl_b_glu_c,
biomass=model.reactions.BIOMASS_SC5_notrace,
substrate=model.reactions.EX_glc__D_e,
simulation_method=lmoma)

Starting optimization at Wed, 19 Jul 2017 13:19:12

Finished after 00:37:16

In [15]: results

Out[15]: <cameo.strain_design.heuristic.evolutionary_based.OptGeneResult at 0x10f31bdd8>



All things are poison and nothing is without poison. Only
the dose makes that a thing is no poison.

Paracelsus

3
MARSI: Metabolite analogues for rational

strain improvement

Summary

The forth chapter describes a new approach to CAD of strains in context where GMOs is not
allowed and strains are created using CSI or ALE. Metabolites can be ’knocked-out’ by blocking
the reactions consuming a givenmetabolites. This chapter has been submitted to Bioinformatics.
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Abstract

Summary: Metabolite analoguesmimic the structure of nativemetabolites and can competitively
inhibit their utilization and are commonly used as selection tools for isolating desirable mutants
of industrial microorganisms. Genome-scale metabolic models GEM representing all biochem-
ical reactions in an organism have proved useful for predicting effects of antimetabolites on cel-
lular phenotype. Here, we present the Metabolite Analogues for Rational Strain Improvement
(MARSI) framework. MARSI provides a rational approach to classical strain improvement by
searching for metabolites as targets instead of genes or reactions. The designs found by MARSI
can be implemented by supplyingmetabolite analogues in the culturemedia, which enablesmeta-
bolic rewiring without the use of recombinant DNA technologies. To facilitate experimental im-
plementation, MARSI provides tools to compare the identified metabolite targets to a database
of known drugs and analogues.
Availability and Implementation: The code is freely available athttps://github.com/biosustain/
marsi under the Apache License V2. MARSI is implemented in Python.
Contact: herrgard@biosustain.dtu.dk
Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Genome-scale metabolic models GEMs describe the biochemical reactions in an organism and
their relation to the proteome and genome (McCloskey et al., 2013). These models comprehen-
sively represent naturalmetabolism and they are useful for predicting the effect of antimetabolites
(Agren et al., 2014). Classical Strain Improvement CSI and adaptive laboratory evolution (ALE)
can be used to exploit the evolutionary capacity of microorganisms to improve phenotypes. CSI
can be defined as mutagenesis followed by screening (Derkx et al., 2014). ALE is the process of
selecting the fittest (e.g., strains that grow faster) under adverse conditions (Hansen et al., 2017).
Metabolite analogues, as stress inducers, can be used as the selective pressure in CSI or ALE set-
tings. Here, we present software that implements workflows to identify metabolites as targets
instead of gene or reaction knockouts. We also provide a pipeline to identify structural analogues
for those targets.
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Figure 3.1: Metabolite target identificationworkflow and examples of metabolite analogues targets. (A) Theworkflow for

obtainingmetabolite targets for CSI and ALE. (B) Comparison between the knownmetabolite analogues (columns 1 and 2)

and the bestMARSI hits (columns 3 and 4) used to calibrate the search parameters. We show the Tanimoto coefficient and

the structural score. We highlighted rowswhere the bestMARSI hit and the knownmetabolite analogue are the same.

Materials and Methods

The first workflow consists of systematically replacing reaction knockouts (identified a priori by
existing strain design methods) by metabolite knockouts until we can find metabolite targets
that result in a similar flux distribution. The second workflow consists of searching directly for
metabolite targets using heuristic optimization, without the need to specify reaction knockouts
a priori. A metabolite knockout consists of blocking all reactions, excluding transporters, con-
suming a given metabolite. After identifying the metabolite targets, we search for metabolite
analogues that could be used to replace them. We compiled a database of potential metabolite
analogues from publicly available sources (see 3). We use OpenBabel (O’Boyle et al., 2011) and
RDKit (http://www.rdkit.org) to calculate the following properties that allow comparing
candidate analogues to the metabolite target: number of atoms, number of bonds, number of
rings, MACCS fingerprints, Tanimoto coefficient (TC) and structural score (SS).
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Results

We implemented a software package containing algorithms to generate strain design strategies us-
ingmetabolite analogs. Our software could generatemetabolite targets for a published knockout-
based design (Harder et al., 2016). We also provide the tools to identify candidate metabolite
analogues that could be used for implementation of the designs.

Identification of replacement targets

We used an experimentally validated strain design for itaconic acid production inEscherichia coli
(Harder et al., 2016) and the latest GEM available forE. coli iJO1366 (Orth et al., 2014) to demon-
strate theuse ofMARSI. MARSIidentified acetyl-phosphate as ametabolite knockout target that
can replace the PTAr reaction knockout and sustain the same flux for itaconic acid production.
We use Biomass Product Coupled Yield (Patil et al., 2005) as fitness measure (Table 3.1). Using
a SS cutoff of 0.5 (see Supplementary Information 3), we found 182 for Acetyl-Phosphate (Table
S3.1 shows the top 10 hits). More examples of replacement targets in other E. coli strain designs
can be found in Supplementary Information.

Table 3.1: Knockout replacements for the strain design.

Non-replaced knockouts Replaced
reaction

Metabolite Original
fitness

New
fitness

PTA2, ICL, ALDD2x, PYK,
SUCOAS, GGGABADr

PTAr Acetyl-P 0.001 0.001

Query calibration with known metabolite analogues

In order to validate the ability of MARSI to find known chemical analogues for a target metabo-
lite, we selected 42 known metabolite-antimetabolite pairs from the literature (Table S3.3). We
compared the structural features between the analogues and their targetmetabolites (Figure S3.3).
We used a distance of 4 for the number of atoms, 3 for the number of bonds and 2 for the number
of rings as our query cutoff. The TC cutoff changes dynamically with the size of the metabolites
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(see 3). In Figure 3.1B, we show the SS and the TC between the targets and their known ana-
logues and the targets and the best hit analogue in the database. MARSI found better or as good
candidate analogues as the known examples for most metabolites.
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Supplementary Information

Metabolite knockouts

To knockout a metabolite we block all reactions consuming a given metabolite in all compart-
ments. Because we assume the use of metabolite analogues, we ignore transport reactions. We
use a reference flux distribution to identify which reactions consume a metabolite. If no refer-
ence is available, we block all reactions consuming that metabolite.

Antimetabolites database

We compiled a comprehensive chemical compound database using publicly available data (see
Table S3.1). We also included some known analogues retrieved from the literature (Table S3.2).

Structural similarity

Given two compounds X and Y, we can determine the maximum common substructure (MCS)
Z using the RDKit API. Let Z be , the similarity between X and Y is given by the function S as
follows:

S(X,Y, α, β) = s(X,Z, α, β) · s(Y, Z, α, β)

where s is the similarity between a molecule and Z. The function s is defined the following
way:

α · Z.atoms

mol.atoms
+ β · Z.bonds

mol.bonds

The atoms and bonds in Z is always lower or equal to either molecule X or Y. If alpha +

beta = 1, the similarity (S) is always [0, 1] The MCS algorithm provided by RDKit needs some
parameterization. Because we want things that have a similar structure regardless of the atom
substitutions we run the algorithm using the following parameters: maximize bounds, ignore
atoms types and bond types but still forcing the rings to match.
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Dynamic Tanimoto coefficient cutoff

Small metabolites share a lower Tanimoto coefficient with their known analogs (Figure S3.1). To
ensure that we can also reach thosemetabolites, we use a dynamic coefficient based on the follow-
ing equation:

Tcutoff = min(0.75, 0.017974 ·mol.atoms+ 0.008239)

The slope of the line was calculated using the linear least-squares regression for between the
numberof atoms,mol.atoms, and theTanimoto coefficients for all knownmetabolite analogues.
We adjusted the intercept to include all known analogues by subtracting 0.4 to the computed
value.

Database Query

The database query is done in three steps: filter metabolites by size (i.e., number of atoms, num-
ber of rings and number of bonds), filter metabolites using Tanimoto coefficient, and sort by
structural score. In the first step, we retrieve all entries (y) from the database thatmatch the query
(x) using the following criteria:

x.atoms− 4 ≤ y.atoms ≤ x.atoms+ 4

x.bonds− 3 ≤ y.bonds ≤ x.bonds+ 3

x.rings− 2 ≤ y.rings ≤ x.rings+ 2

Then we compute the Tanimoto coefficient for all the retrieved entries and we keep the ones
above the cutoff. Finally, we compute the structural score for the remaining entries and sort them
in descending order using the structural score.

Heuristic optimization search (OptMet)

We implemented a search method that identifies metabolite targets without the need to predict
reaction knockouts. To do that, we use evolutionary algorithms. These algorithms use heuristic
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approaches inspired inDarwinian evolution to optimize problemswith high combinatorial com-
plexity. They do not always guarantee the optimum result, but the solutions found are very close
to the global optimum and they have amuch lower computational cost. In a simple evolutionary
algorithm, there is a representation of the possible states, called the genome (Patil et al., 2005).
The solutions as represented as a genome. The genome vector, G, has n elements and the value
of each element is True or False. In this case, the n is the number of non-essential metabolites and
if the nth position of the vector G is True, then we knockout that metabolite. We store the best
results every iteration.

Additional replacement designs

We selected a subset of published growth-coupled designs for Escherichia coli that can be repro-
duced using the latest E. coliGEM(Table S3.5) (King et al., 2017). Then, we used our algorithm to
identify for metabolite knockout targets that could be used to replace one reaction knockout for
each design (Table S6). We identified 11 differentmetabolites that can be used as replacements tar-
gets. Computational implementation of the original designs and fitness calculations were done
using cameo, a python library for computer-aided metabolic engineering and optimization (Car-
doso et al., 2017).
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Table S3.1: Top 10 analogmatches for acetyl-phosphate.

InChI Key Tanimoto co-
efficient

Structural
similarity

NDYMFSJJUOHLFJ-
UHFFFAOYSA-N

0.28 1.0

QYIAMKIMEWJTFH-
UHFFFAOYSA-N

0.28 0.846

UIUWNILCHFBLEQ-
IHWYPQMZSA-M

0.25 0.783

ASCFNMCAHFUBCO-
UHFFFAOYSA-N

0.567 0.783

KYMLMTPYCDIFEC-
OWOJBTEDSA-N

0.467 0.783
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Table S3.1 – continued from previous

InChI Key Tanimoto co-
efficient

Structural
similarity

ICSOIMDWVVEKBW-
UHFFFAOYSA-M

0.3 0.783

RFKMCNOHBTXSMU-
UHFFFAOYSA-N

0.25 0.767

DPYMFVXJLLWWEU-
UHFFFAOYSA-N

0.227 0.767

HWTUHTNZLQJJEV-
UHFFFAOYSA-M

0.536 0.767

OHLVGBXMHDWRRX-
UHFFFAOYSA-N

0.214 0.767
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Table S3.2: Chemical Databases and queries used to retrieve the chemical compounds found in the analogues database.

Database Query/File Comments
KEGG (Kanehisa et al.,
2017)

BR08310 Enzyme inhibitors

ChEBI (de Matos et al.,
2010)

CHEBI:35221 ‘has role’ or ‘is a’ ontology
children

PubChem Compound
(Kim et al., 2016)

(antimetabolites) OR (ana-
log) OR (analogue)

Retrieved the summary as
file

DrugBank (Wishart et al.,
2006)

All open structures

ZINC (Irwin et al., 2012) ‘All clean’ dataset From ZINC12
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Table S3.3: List of knownmetabolite-analogue pairs manually collected from databases and literature.

Database Identifier Name Target Target
Identifier
(ChEBI)

PMID Group

PubChem 89034 Methionine
sulphox-
imine

L-
Glutamate

29985 Amino
acids

ChEBI 74545 acivicin L-
Glutamine

18050 Amino
acids

ChEBI 85005 anticapsin L-
Glutamine

18050 Amino
acids

ChEBI 74846 azaserine L-
Glutamine

18050 Amino
acids

ChEBI 18347 L-norleucine L-Leucine 15603 Amino
acids

ChEBI 42101 D-norleucine L-Leucine 15603 Amino
acids

PubChem 3032849 5-
hydroxylysine

L-Lysine 18019 6806159 Amino
acids

ChEBI 497734 thialysine L-Lysine 18019 6806159 Amino
acids

PubChem 99558 S-2-
aminoethyl-
L- cysteine

L-Lysine 18019 1841850 Amino
acids

ChEBI 4886 L-ethionine L-
Methionine

16643 Amino
acids

PubChem 146719 Thienylalanine L-
Phenylalanine

17295 Amino
acids

PubChem 16486 Azetidine car-
boxylic acid

L-Proline 17203 Amino
acids
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Table S3.3 – continued from previous page

Database Identifier Name Target Target
Identifier
(ChEBI)

PMID Group

ChEBI 75494 serine hydrox-
amate

L-Serine 17115 PMC248741 Amino
acids

ChEBI 72341 O-(2-
aminoethyl)-
L-serine

L-Serine 17115 Amino
acids

PubChem 150990 5-Methyl-DL-
tryptophan

L-
Tryptophan

16828 Amino
acids

PubChem 9577 DL-5-
Fluorotryptophan

L-
Tryptophan

16828 PMC429912 Amino
acids

ChEBI 18314 L-Norvaline L-Valine 16414 Amino
acids

ChEBI 28804 D-Norvaline L-Valine 16414 Amino
acids

PubChem 5790 Floxuridine Uridine 16704 PMC2827868 Nucleotides
PubChem 119182 Clofarabine Adenosine 16335 PMC2827868 Nucleotides
PubChem 439693 Pentostatin Adenosine 16335 PMC2827868 Nucleotides
PubChem 3011155 Nelarabine Adenosine 16335 PMC2827868 Nucleotides
PubChem 20279 Cladribine Adenosine 16335 PMC2827868 Nucleotides
PubChem 451668 Decitabine Cytidine 17562 PMC2827868 Nucleotides
PubChem 20279 Cladribine Cytidine 17562 PMC2827868 Nucleotides
PubChem 6253 Cytarabine Cytidine 17562 PMC2827868 Nucleotides
PubChem 9444 Vidaza Cytosine 16040 PMC2827868 Nucleotides
PubChem 60750 Gemcitabine Deoxycytidine 15698 PMC2827868 Nucleotides
PubChem 119182 Clofarabine Guanine 16235 PMC2827868 Nucleotides
PubChem 2723601 6-

thioguanine
Guanine 16235 PMC2827868 Nucleotides
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Table S3.3 – continued from previous page

Database Identifier Name Target Target
Identifier
(ChEBI)

PMID Group

PubChem 9444 Vidaza Thymine 17821 PMC2827868 Nucleotides
PubChem 5802 Bromouracil Thymine 17821 Nucleotides
PubChem 3385 5-fluorouracil Uracil 17568 PMC2827868 Nucleotides
ChEBI 28315 alloxanthine Xanthine 17712 Nucleotides
PubChem 8646 8-

Azaguanine
Guanine 16235 Nucleotides

PubChem 974 Oxamate L-Lactate 16651 Organic
Acids

ChEBI 45373 sulfanilamide p-
aminobenzoic
acid

30753 PMC3361698 Organic
Acids

PubChem 656481 methyl-
acetylphosphonate

Pyruvate 15361 Organic
Acids

PubChem 73544 2,5-Anhydro-
D-mannito

Fructose 28645 8374733 Sugars

PubChem 44099z 2-Deoxy-
Glucose-6P

Glucose-6-
Phosphate

17665 Sugars

PubChem 54679283 glucoascorbic
acid

Ascorbic
acid

29073 Vitamins

PubChem 80058 triethylcholine Choline 15354 Vitamins
PubChem 169371 Aminopterin Folate 62501 Vitamins
PubChem 6094 4-

deoxypyridoxine
Pyridoxine 16709 Vitamins

ChEBI 72290 pyrithiamine Thiamine 18385 Vitamins
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Table S3.4: Strain designs validated experimentally and reproduced in silico (King et al., 2017).If the “fvamin” value is

greater than 0, then the design is growth coupled. “::” means that a heterologous reaction was inserted and “∆” means

that a reaction was knocked out. The “target” refers to exchange reaction for the target product that is produced in the

design. The “substrate” column refers to themedia composition (assuming a baseM9minimal medium).

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

A1 EX_etoh_e glucose+LB anaerobic 0.142 4.8695 ::PDC
B1 EX_lac__D_e glucose anaerobic 0.1948 16.8641 ∆ACALD, ∆ALCD2x,

∆PTA2,∆PTAr
C1 EX_etoh_e glucose+LB anaerobic 0.105 0 ∆FRD2, ∆FRD3,

∆OBTFL, ::PDC,
∆PFL

D1 EX_succ_e glucose+LB microaerobic 0.1051 0.0329 ∆LDH_D, ∆OBTFL,
∆PFL

E1 EX_succ_e glucose anaerobic 0.1892 0.0627 ∆LDH_D, ∆OBTFL,
∆PFL

F1 EX_succ_e glucose anaerobic 0.1611 0.0534 ∆ACGAptspp,
∆GLCptspp,
∆LDH_D, ∆OBTFL,
∆PFL

G1 EX_lac__L_e glucose anaerobic 0.1972 0 ∆LDH_D, ::LDH_L,
∆PTA2,∆PTAr

H1 EX_lac__D_e glucose anaerobic 0.1388 0 ∆PPC,∆PTA2,∆PTAr
I1 EX_lac__L_e xylose anaerobic 0.1237 0 ∆LDH_D, ::LDH_L,

∆OBTFL,∆PFL
A2 EX_lac__L_e glucose anaerobic 0.1892 0 ∆LDH_D, ::LDH_L,

∆OBTFL,∆PFL
B2 EX_succ_e glucose+LB anaerobic 0.0769 0.0255 ∆ACGAptspp,

∆GLCptspp,
∆LDH_D, ∆OBTFL,
∆PFL, ::PYC
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

C2 EX_pyr_e glucose+acetatemicroaerobic 0.1063 0 ∆LDH_D, ∆OBTFL,
∆PDH, ∆PFL, ∆POX,
∆PPS

D2 EX_lac__L_e glucose anaerobic 0.1878 16.7322 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FORt2pp,
∆FORtppi, ∆FRD2,
∆FRD3, ∆LDH_D,
::LDH_L, ∆OBTFL,
∆PFL

E2 EX_lac__D_e glucose anaerobic 0.1878 16.7322 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FORt2pp,
∆FORtppi, ∆FRD2,
∆FRD3, ∆OBTFL,
∆PFL

F2 EX_ac_e glucose aerobic 0.4025 12.7299 ∆ACALD, ∆AKGDH,
∆ALCD2x,
∆ATPS4rpp,
∆FORt2pp, ∆FORtppi,
∆FRD2, ∆FRD3,
∆LDH_D, ∆OBTFL,
∆PFL

G2 EX_pyr_e glucose+acetatemicroaerobic 0.1063 0 ∆LDH_D, ∆OBTFL,
∆PDH, ∆PFL, ∆POX,
∆PPS

H2 EX_lac__D_e glucose anaerobic 0.1948 16.8641 ∆ACALD, ∆ALCD2x,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

I2 EX_lac__D_e glucose anaerobic 0.193 0 ∆PFK, ∆PFK_2,
∆PFK_3, ∆PTA2,
∆PTAr

A3 EX_lac__D_e glucose anaerobic 0.1908 16.929 ∆ACALD, ∆ALCD2x,
∆HEX1, ∆PFK,
∆PFK_2, ∆PFK_3,
∆PTA2,∆PTAr

B3 EX_succ_e glucose+LB microaerobic 0 0 ∆ACKr, ∆ICDHyr,
∆POX, ∆PTA2,
∆PTAr,∆SUCDi

C3 EX_succ_e glucose+LB anaerobic 0.085 0.0282 ∆ACALD,
∆ACGAptspp,
∆ALCD2x,
∆GLCptspp,
∆LDH_D, ::PYC

D3 EX_succ_e pyruvate+yeast
extract

anaerobic 0 0 ∆ACGAptspp,
∆GLCptspp,∆PYK

E3 EX_succ_e glucose+LB microaerobic 0 0 ∆ACKr, ∆ICDHyr,
∆POX, ∆PTA2,
∆PTAr,∆SUCDi

F3 EX_succ_e glucose anaerobic 0.1639 0.0543 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆LDH_D,
∆PTA2,∆PTAr, ::PYC

G3 EX_succ_e glucose+yeast
extract

anaerobic 0.0674 0.0223 ∆ACGAptspp,
∆GLCptspp,∆PYK
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

H3 EX_lac__D_e glucose anaerobic 0.1878 16.7322 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆OBTFL,
∆PFL

I3 EX_lac__L_e glucose anaerobic 0.1872 17.2334 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D,
::LDH_L, ∆MGSA,
∆OBTFL,∆PFL

A4 EX_lac__D_e glucose+betaineanaerobic 0.1878 16.7322 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆OBTFL,
∆PFL

B4 EX_lac__D_e glucose anaerobic 0.1872 17.2334 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆MGSA,
∆OBTFL,∆PFL

C4 EX_ala__L_e glucose+betaineanaerobic 0.0829 0 ∆ACALD, ∆ACKr,
::ALADH_L,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

D4 EX_ala__L_e glucose+betaineanaerobic 0 0 ∆ACALD, ∆ACKr,
::ALADH_L, ∆ALAR,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL

E4 EX_h2_e glucose anaerobic 0.2878 16.7623 ∆FDH4pp, ∆FDH5pp,
∆FRD2, ∆FRD3,
∆HYD1pp, ∆HYD2pp,
∆HYD3pp, ∆LDH_D,
::PDC,∆PDH

F4 EX_lac__D_e glucose anaerobic 0.1889 17.2079 ∆FRD2, ∆FRD3,
∆OBTFL, ∆PDH,
∆PFL,∆POX,∆PPS

G4 EX_etoh_e glycerol anaerobic 0.0541 0.7119 ∆FRD2, ∆FRD3,
∆PTA2,∆PTAr

H4 EX_1poh_e D-
Glucose+L-
Valine+L-
Isoleucine+L-
Leucine

microaerobic 0 0 ::1PDH, ::2OBUTDC,
∆ACALD, ∆ALCD2x,
∆DHAD1, ∆DHAD2,
::EX_1poh_e,
::EX_2mbtoh_e,
::EX_2phetoh_e,
::EX_iamoh_e, ∆FRD2,
∆FRD3, ∆LDH_D,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

I4 EX_iboh_e glucose microaerobic 0.164 0 ::3MOBDC,
∆ACALD, ∆ALCD2x,
::EX_2mbtoh_e,
::EX_2phetoh_e,
::EX_iamoh_e,
::EX_iboh_e, ∆FRD2,
∆FRD3, ::IBDH,
∆LDH_D, ∆PTA2,
∆PTAr

A5 EX_1boh_e D-
Glucose+L-
Valine+L-
Isoleucine+L-
Leucine

microaerobic 0 0 ::1BDH, ::2KVDC,
∆ACALD, ∆ALCD2x,
∆DHAD1, ∆DHAD2,
::EX_1boh_e,
::EX_2phetoh_e,
∆FRD2, ∆FRD3,
::ILV_PATHWAY,
∆LDH_D, ∆PTA2,
∆PTAr

B5 EX_etoh_e glycerol anaerobic 0.0541 0.7119 ∆FHL, ∆FRD2,
∆FRD3, ∆PTA2,
∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

C5 EX_etoh_e glucose+LB anaerobic 0.0792 5.3695 ∆ACGAptspp,
∆ACMANAptspp,
∆FRD2, ∆FRD3,
∆FRUpts2pp,
∆G6PDH2r,
∆GAMptspp,
∆GLCptspp,
∆HEX1, ∆LDH_D,
∆MANptspp, ∆ME2,
∆NADH10, ∆NADH5,
∆NADH9, ∆POX,
∆PTA2,∆PTAr

D5 EX_iamoh_e glucose anaerobic 0 0 ::3M1BDH, ::4MOBDC,
∆ACALD, ∆ALCD2x,
::EX_iamoh_e, ∆FRD2,
∆FRD3, ∆ILETA,
∆LDH_D, ∆LEUTAi,
∆OBTFL, ∆PFL,
∆PHETA1, ∆PTA2,
∆PTAr, ∆TYRTA,
∆VALTA
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

E5 EX_succ_e glucose anaerobic 0 0 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆ASPTA,
∆CITL, ∆FORt2pp,
∆FORtppi, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL, ∆PHETA1,
∆POX, ∆PTA2,
∆PTAr,∆TYRTA

F5 EX_1boh_e glucose microaerobic 0.1972 8.2255 ::1BDH, ∆ACALD,
∆ALCD2x, ::B2COAR,
::BTALDH,
::EX_1boh_e, ∆FRD2,
∆FRD3, ∆LDH_D,
∆PTA2,∆PTAr

G5 EX_succ_e glucose anaerobic 0 0 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆ASPTA,
∆CITL, ∆FORt2pp,
∆FORtppi, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL, ∆PHETA1,
∆POX, ∆PTA2,
∆PTAr,∆TYRTA

H5 EX_lac__D_e glucose aerobic 0.8471 0 ∆CYTBDpp,
∆CYTBO3_4pp,
∆QMO2,∆QMO3
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

I5 EX_succ_e glucose+betaineanaerobic 0.1081 7.673 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FORt2pp,
∆FORtppi, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL,∆POX

A6 EX_btd__RR_eglucose+yeast
extract

microaerobic 0.0502 4.851 ∆ACALD, ::ACLDC,
∆ALCD2x,
::EX_btd__RR_e,
∆FRD2, ∆FRD3,
∆LDH_D, ∆OBTFL,
∆PFL, ∆PTA2, ∆PTAr,
::sADHx, ::sADHy

B6 EX_lac__D_e glucose anaerobic 0.1878 16.7322 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆OBTFL,∆PFL

C6 EX_btd__meso_eglucose+yeast
extract

microaerobic 0.0502 4.851 ∆ACALD, ::ACLDC,
∆ALCD2x,
::EX_btd__meso_e,
∆FRD2, ∆FRD3,
∆LDH_D, ∆OBTFL,
∆PFL, ∆PTA2, ∆PTAr,
::sADHx

D6 EX_succ_e glycerol anaerobic 0.0387 0.0128 ∆ACALD, ∆ALCD2x,
∆LDH_D, ∆POX,
∆PPC,∆PTA2,∆PTAr,
::PYC
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

E6 EX_3hb_e glucose anaerobic 0.1639 0 ::3HB_POLYM,
∆ACALD, ∆ACKr,
∆ALCD2x, ::EX_3hb_e,
::EX_3hv_e, ∆LDH_D,
::PHPB, ∆POX,
∆PTA2,∆PTAr

F6 EX_h2_e glycerol anaerobic 0.1264 16.9207 ∆FRD2,∆FRD3
G6 EX_succ_e glycerol anaerobic 0 0 ∆ACGAptspp,

∆ACMANAptspp,
∆ACMUMptspp,
∆ARBTptspp,
∆ASCBptspp,
∆CHTBSptspp,
∆DHAPT,
∆FRUpts2pp,
∆FRUptspp,
∆GALTptspp,
∆GAMptspp,
∆GLCptspp,
∆MALTptspp,
∆MANGLYCptspp,
∆MANptspp,
∆MNLptspp,
∆OBTFL, ∆PFL,
∆SBTptspp,
∆SUCptspp,
∆TREptspp
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

H6 EX_lac__D_e glucose microaerobic 0.1273 10.0258 ∆ACALD, ∆ACKr,
∆ALCD2x,∆PPC

I6 EX_3hb_e glucose anaerobic 0.1972 0 ::3HB_POLYM,
∆ACKr, ::EX_3hb_e,
::EX_3hv_e, ∆LDH_D,
::PHPB, ∆POX,
∆PTA2,∆PTAr

A7 EX_3hb_co_la_eglucose microaerobic 0.1273 0 ::3HB_LA_POLYM,
∆ACALD, ∆ACKr,
∆ALCD2x,
::EX_3hb_co_la_e,
::PHPB,∆PPC

B7 EX_iboh_e glucose+yeast
extract

anaerobic 0.0715 5.8784 ::3MOBDC,
∆ACALD, ∆ALCD2x,
::EX_2mbtoh_e,
::EX_2phetoh_e,
::EX_iamoh_e,
::EX_iboh_e, ∆FRD2,
∆FRD3, ::IBDH,
∆LDH_D, ∆OBTFL,
∆PFL,∆PTA2,∆PTAr

C7 EX_lac__D_e glycerol anaerobic 0.0387 0 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆LDH_D, ∆LDH_D2,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

D7 EX_3hb_e glucose anaerobic 0.1081 0 ::3HB_POLYM,
∆ACALD, ∆ACKr,
∆ALCD2x, ::EX_3hb_e,
::EX_3hv_e, ∆LDH_D,
∆OBTFL, ∆PFL,
::PHPB, ∆POX,
∆PTA2,∆PTAr

E7 EX_14btd_e glucose microaerobic 0.1791 5.0499 ::4HBACT, ::4HB-
TALDDH, ∆ACALD,
::AKGDC, ∆ALCD2x,
::BTDP2, ::EX_14btd_e,
::EX_4hdxbld_e,
::EX_gbl_e,
::GBL_PROD,
∆LDH_D, ∆MDH,
∆OBTFL, ∆PFL,
::SUCCALDH
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

F7 EX_iboh_e glucose+yeast
extract

anaerobic 0.1077 0 ::3MOBDC,
::EX_2mbtoh_e,
::EX_2phetoh_e,
::EX_iamoh_e,
::EX_iboh_e, ∆FRD2,
∆FRD3, ∆G6PDH2r,
::IBDH, ∆LDH_D,
∆MDH, ∆NADH10,
∆NADH5, ∆NADH9,
∆POX, ∆PTA2,
∆PTAr

G7 EX_1boh_e glucose+yeast
extract

anaerobic 0.1181 4.6922 ::1BDH, ∆ACALD,
∆ALCD2x, ::B2COAR,
::BTALDH,
::EX_1boh_e, ∆FRD2,
∆FRD3, ∆LDH_D,
∆PTA2,∆PTAr

H7 EX_1boh_e glucose anaerobic 0.1972 1.2106 ::1BDH, ∆ACALD,
∆ALCD2x, ::B2COAR,
::BTALDH,
::EX_1boh_e, ∆FRD2,
∆FRD3, ∆PTA2,
∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

I7 EX_succ_e LB+glucose,
sorbitol,
and glu-
conate

microaerobic 0.0303 8.404 ∆ACALD,
∆ACGAptspp,
∆ALCD2x,
∆GLCptspp,
∆LDH_D, ∆OBTFL,
∆PFL

A8 EX_lac__D_e glucose microaerobic 0.1879 16.7322 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆OBTFL,∆PFL

B8 EX_1hex_e glucose+yeast
extract

anaerobic 0.1181 3.1281 ::1HDH, ∆ACALD,
∆ALCD2x,
::EX_1hex_e, ∆FRD2,
∆FRD3, ::HX2COAR,
::HXALDH,
∆LDH_D, ∆PTA2,
∆PTAr

C8 EX_iboh_e glucose anaerobic 0.1388 8.7924 ::3MOBDC,
∆ACALD, ∆ALCD2x,
::EX_2mbtoh_e,
::EX_2phetoh_e,
::EX_iamoh_e,
::EX_iboh_e, ∆FRD2,
∆FRD3, ::IBDH,
::KARA1x, ∆LDH_D,
∆OBTFL, ∆PFL,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

D8 EX_mal__L_e glucose anaerobic 0.0798 0 ∆ACALD, ∆ACKr,
∆ALCD2x,
∆DTARTD, ∆FRD2,
∆FRD3, ∆FUM,
∆LDH_D, ∆ME2,
∆MGSA, ∆OBTFL,
∆PFL,∆POX

E8 EX_lac__D_e glucose microaerobic 0.0846 0 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D,
∆LDH_D2, ∆OBTFL,
∆PFL, ∆POX, ∆PPS,
∆PTA2,∆PTAr

F8 EX_3hb_co_la_eglucose microaerobic 0.1879 0 ::3HB_LA_POLYM,
∆ACALD, ∆ALCD2x,
::EX_3hb_co_la_e,
∆FRD2, ∆FRD3,
∆OBTFL, ∆PFL,
::PHPB

G8 EX_lac__D_e glycerol microaerobic 0 0 ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D,
∆LDH_D2, ∆OBTFL,
∆PFL, ∆POX, ∆PPS,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

H8 EX_etoh_e glucose microaerobic 0.1893 17.204 ∆ACKr, ∆FRD2,
∆FRD3, ∆LDH_D,
∆OBTFL,∆PFL

I8 EX_etoh_e xylose microaerobic 0.1238 14.839 ∆ACKr, ∆FRD2,
∆FRD3, ∆LDH_D,
∆OBTFL,∆PFL

A9 None glucose microaerobic 0 0 ∆ACALD, ∆ALCD2x,
::EX_2ptone_e,
∆LDH_D, ::MKS,
∆POX, ∆PTA2,
∆PTAr, ::THE

B9 EX_1boh_e glucose+LB anaerobic 0.1039 5.7324 ::1BDH, ∆ACALD,
∆ACKr, ∆ALCD2x,
::B2COAR, ::BTALDH,
::EX_1boh_e, ∆FRD2,
∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL,
∆PFL

C9 EX_lac__D_e sucrose anaerobic 0 0 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆GCALDD, ∆LCADi,
∆OBTFL, ∆PFL,
∆PTA2,∆PTAr
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

D9 EX_3hb_e glucose anaerobic 0.2415 0 ::3HB_POLYM,
::EX_3hb_e,∆FDH4pp,
∆FDH5pp, ∆FRD2,
∆FRD3, ∆HYD1pp,
∆HYD2pp, ∆HYD3pp,
∆LDH_D, ∆PDH,
::PHPB

E9 EX_xylt_e glucose+xyloseanaerobic 0.1259 0 ∆ACALD,
∆ACGAptspp, ∆ACKr,
∆ALCD2x, ::EX_xylt_e,
∆FORt2pp, ∆FORtppi,
∆FRD2, ∆FRD3,
∆GLCptspp,
∆LDH_D, ::XYLR

F9 EX_1poh_e glucose+yeast
extract

anaerobic 0 0 ::1PDH, ::2OBUTDC,
∆ACALD, ∆ACHBS,
∆ACLS, ∆ALCD2x,
::BMALDH, ::BMAL-
HYD, ::CIMHYD,
::CIMSY, ::EX_1poh_e,
∆FRD2, ∆FRD3,
∆IPPS, ∆LDH_D,
∆PTA2,∆PTAr

137



Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

G9 EX_lac__L_e glycerol microaerobic 0.0501 7.2256 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆LDH_D, ::LDH_L,
∆MGSA, ∆PTA2,
∆PTAr

H9 EX_1boh_e glucose anaerobic 0.1972 8.225 ::1BDH, ∆ACACCT,
∆ACALD, ∆ALCD2x,
::B2COAR,
::BTALDH, ∆BUTCT,
∆DHACOAH,
::EX_1boh_e,
∆FRD2, ∆FRD3,
∆HADPCOADH3,
∆HXCT, ∆LDH_D,
∆OXDHCOAT,
∆PTA2, ∆PTAr,
∆REPHACCOAI

I9 EX_succ_e glucose+LB anaerobic 0.105 0.0348 ∆LDH_D, ∆OBTFL,
∆PFL, ::PYC
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Table S3.4 – continued from previous page

Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

A10 EX_but_e glucose anaerobic 0.1639 0 ∆ACACCT, ∆ACALD,
∆ALCD2x, ::B2COAR,
∆BUTCT, ::BUTTH,
∆DHACOAH,
∆FRD2, ∆FRD3,
∆HADPCOADH3,
∆HXCT, ∆LDH_D,
∆OXDHCOAT,
∆PTA2, ∆PTAr,
∆REPHACCOAI

B10 EX_h2_e glycerol anaerobic 0.0868 17.3145 ∆FDH4pp, ∆FDH5pp,
∆FRD2, ∆FRD3,
∆LDH_D, ∆MGSA,
∆NO3R1pp,
∆NO3R2pp,∆PPC

C10 EX_but_e glucose anaerobic 0.1659 0 ∆ACALD,
∆ACGAptspp,
∆ALCD2x, ::B2COAR,
::BUTTH, ∆FRD2,
∆FRD3, ∆GLCptspp,
∆LDH_D,∆POX

D10 EX_but_e glucose+LB anaerobic 0.0918 0 ∆ACALD, ∆ACKr,
∆ALCD2x, ::B2COAR,
::BUTTH, ∆FRD2,
∆FRD3, ∆LDH_D,
∆PTA2,∆PTAr
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Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

E10 EX_lac__L_e mannitol microaerobic 0.1082 0 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3,
∆LDH_D, ::LDH_L,
∆L_LACD2,
∆L_LACD3, ∆MGSA,
∆PTA2,∆PTAr

F10 EX_1boh_e glucose+yeast
extract

anaerobic 0 0 ::1BDH, ∆ACALD,
∆ACOLIPAabctex,
∆ALCD2x, ::B2COAR,
::BTALDH,
∆CLIPAabctex,
∆COLIPAPabctex,
∆COLIPAabctex,
∆ECA4COLIPAabctex,
∆ENLIPAabctex,
::EX_1boh_e,
∆FRD2, ∆FRD3,
∆K2L4Aabctex,
∆LDH_D,
∆LIPAabctex,
∆O16A4COLIPAabctex,
∆PTA2,∆PTAr

G10 EX_crot_e glycerol anaerobic 0.0387 0 ∆ACALD, ∆ALCD2x,
::CROT, ::EX_crot_e,
∆FRD2, ∆FRD3,
∆LDH_D, ∆POX,
∆PTA2,∆PTAr
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Key Target Substrate Aerobicity Growth
rate

Fva
min

Strain design

H10 EX_xylt_e glucose+xyloseanaerobic 0.0538 0 ∆ACALD,
∆ACGAptspp,
∆ACKr, ∆ALCD2x,
∆DXYLK, ::EX_xylt_e,
∆FORt2pp, ∆FORtppi,
∆FRD2, ∆FRD3,
∆GLCptspp,
∆LDH_D, ∆XYLI1,
∆XYLI2, ∆XYLK,
::XYLR
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Table S3.5: Predictedmetabolite targets and correspondent reaction knockout targets identified byMARSI for strain

designs that have been experimentally validated and reproduced in silico. Formost designs, it is not possible to find an

analogues-only design, but rather some of the gene deletions can be replaced bymetabolite analogues.

Key Base design Replaced
target

Metabolite
target

Old
Fit-
ness

New
Fit-
ness

B1 ∆ACALD,∆ALCD2x,∆PTA2 ∆PTAr actp 0.3285 0.3285
D2 ∆OBTFL, ∆PFL, ∆ACALD,

∆ACKr, ∆ALCD2x, ∆FORt2pp,
∆FORtppi, ∆FRD2, ∆FRD3,
::LDH_L

∆LDH_D lac-D 0.3143 0.3143

F2 ∆ATPS4rpp, ∆FORt2pp,
∆FORtppi, ∆FRD2, ∆FRD3,
∆LDH_D, ∆OBTFL, ∆PFL,
∆ACALD,∆AKGDH

∆ALCD2x acald, etoh 0.5123 0.5124

F2 ∆LDH_D, ∆OBTFL, ∆PFL,
∆ACALD, ∆AKGDH,
∆ALCD2x, ∆ATPS4rpp,
∆FORt2pp,∆FORtppi,∆FRD2

∆FRD3 2dmmq8 0.5123 0.5124

F2 ∆PFL, ∆ACALD, ∆AKGDH,
∆ALCD2x, ∆ATPS4rpp,
∆FORt2pp, ∆FORtppi, ∆FRD2,
∆FRD3,∆LDH_D

∆OBTFL ppcoa 0.5123 0.5124

H2 ∆PTA2,∆PTAr,∆ACALD ∆ALCD2x acald, etoh 0.3285 0.3285
H2 ∆ACALD,∆ALCD2x,∆PTA2 ∆PTAr actp 0.3285 0.3285
A3 ∆ACALD, ∆ALCD2x, ∆HEX1,

∆PFK, ∆PFK_2, ∆PFK_3,
∆PTA2

∆PTAr actp 0.323 0.323
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Table S3.5 – continued from previous page

Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

I3 ∆ALCD2x, ∆FRD2, ∆FRD3,
∆LDH_D, ∆MGSA, ∆OBTFL,
∆PFL,∆ACALD, ::LDH_L

∆ACKr actp 0.3225 0.3225

I3 ∆FRD2, ∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD,∆ACKr, ::LDH_L

∆ALCD2x acald 0.3225 0.319

I3 ∆FRD2, ∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD,∆ACKr, ::LDH_L

∆ALCD2x etoh 0.3225 0.3225

I3 ∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD, ∆ACKr, ∆ALCD2x,
∆FRD2,∆FRD3, ::LDH_L

∆LDH_D lac-D 0.3225 0.3225

I3 ∆OBTFL, ∆PFL, ∆ACALD,
∆ACKr, ∆ALCD2x, ∆FRD2,
∆FRD3,∆LDH_D, ::LDH_L

∆MGSA mthgxl 0.3225 0.3225

B4 ∆ALCD2x, ∆FRD2, ∆FRD3,
∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD

∆ACKr actp 0.3225 0.3225

B4 ∆FRD2, ∆FRD3, ∆MGSA,
∆OBTFL, ∆PFL, ∆ACALD,
∆ACKr

∆ALCD2x acald 0.3225 0.319

B4 ∆FRD2, ∆FRD3, ∆MGSA,
∆OBTFL, ∆PFL, ∆ACALD,
∆ACKr

∆ALCD2x etoh 0.3225 0.3225
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

B4 ∆OBTFL, ∆PFL, ∆ACALD,
∆ACKr, ∆ALCD2x, ∆FRD2,
∆FRD3

∆MGSA mthgxl 0.3225 0.3225

G4 ∆FRD3,∆PTA2,∆PTAr ∆FRD2 succ 0.0039 0.0042
G4 ∆PTA2,∆PTAr,∆FRD2 ∆FRD3 succ 0.0039 0.0042
B5 ∆FRD3,∆PTA2,∆PTAr,∆FHL ∆FRD2 succ 0.0039 0.0042
B5 ∆PTA2,∆PTAr,∆FHL,∆FRD2 ∆FRD3 succ 0.0039 0.0042
C5 ∆MANptspp, ∆ME2,

∆NADH10, ∆NADH5,
∆NADH9, ∆POX, ∆PTA2,
∆PTAr, ∆ACGAptspp,
∆ACMANAptspp, ∆FRD2,
∆FRD3, ∆FRUpts2pp,
∆G6PDH2r, ∆GAMptspp,
∆GLCptspp,∆HEX1

∆LDH_D lac-D 0.2771 0.2771

C5 ∆ACGAptspp,
∆ACMANAptspp, ∆FRD2,
∆FRD3, ∆FRUpts2pp,
∆G6PDH2r, ∆GAMptspp,
∆GLCptspp, ∆HEX1,
∆LDH_D, ∆MANptspp,
∆ME2, ∆NADH10, ∆NADH5,
∆NADH9,∆POX,∆PTA2

∆PTAr actp 0.2771 0.2771

144
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

F5 ∆PTA2, ∆PTAr, ∆ACALD,
∆ALCD2x, ∆FRD2, ∆FRD3,
::1BDH, ::B2COAR, ::BTALDH,
::EX_1boh_e

∆LDH_D lac-D 0.1622 0.1622

F5 ∆ACALD, ∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D, ∆PTA2,
::1BDH, ::B2COAR, ::BTALDH,
::EX_1boh_e

∆PTAr actp 0.1622 0.1622

I5 ∆LDH_D, ∆MGSA, ∆OBTFL,
∆PFL, ∆POX, ∆ACALD,
∆ACKr,∆ALCD2x,∆FORt2pp

∆FORtppi for 0.083 0.083

I5 ∆MGSA, ∆OBTFL, ∆PFL,
∆POX, ∆ACALD, ∆ACKr,
∆ALCD2x, ∆FORt2pp,
∆FORtppi

∆LDH_D lac-D 0.083 0.083

A6 ∆FRD2, ∆FRD3, ∆LDH_D,
∆OBTFL, ∆PFL, ∆PTA2,
∆PTAr, ∆ACALD, ::ACLDC,
::EX_btd__RR_e, ::sADHx,
::sADHy

∆ALCD2x acald, etoh 0.0806 0.0806

A6 ∆OBTFL, ∆PFL, ∆PTA2,
∆PTAr, ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3, ::ACLDC,
::EX_btd__RR_e, ::sADHx,
::sADHy

∆LDH_D lac-D 0.0806 0.0806
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

C6 ∆FRD2, ∆FRD3, ∆LDH_D,
∆OBTFL, ∆PFL, ∆PTA2,
∆PTAr, ∆ACALD, ::ACLDC,
::EX_btd__meso_e, ::sADHx

∆ALCD2x acald, etoh 0.0806 0.0806

C6 ∆OBTFL, ∆PFL, ∆PTA2,
∆PTAr, ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3, ::ACLDC,
::EX_btd__meso_e, ::sADHx

∆LDH_D lac-D 0.0806 0.0806

H6 ∆ALCD2x,∆PPC,∆ACALD ∆ACKr ac, actp 0.1277 0.1277
B7 ∆OBTFL, ∆PFL, ∆PTA2,

∆PTAr, ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3, ::3MOBDC,
::EX_2mbtoh_e, ::EX_2phetoh_e,
::EX_iamoh_e, ::EX_iboh_e,
::IBDH

∆LDH_D lac-D 0.1462 0.1462

E7 ∆MDH, ∆OBTFL, ∆PFL,
∆ACALD, ∆ALCD2x,
::4HBACT, ::4HBTALDDH,
::AKGDC, ::BTDP2,
::EX_14btd_e, ::EX_4hdxbld_e,
::EX_gbl_e, ::GBL_PROD,
::SUCCALDH

∆LDH_D lac-D 0.0904 0.0904

G7 ∆PTA2, ∆PTAr, ∆ACALD,
∆ALCD2x, ∆FRD2, ∆FRD3,
::1BDH, ::B2COAR, ::BTALDH,
::EX_1boh_e

∆LDH_D lac-D 0.1725 0.1725
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

G7 ∆ACALD, ∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D, ∆PTA2,
::1BDH, ::B2COAR, ::BTALDH,
::EX_1boh_e

∆PTAr actp 0.1725 0.1725

H7 ∆FRD3, ∆PTA2, ∆PTAr,
∆ACALD, ∆ALCD2x, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆FRD2 succ 0.0239 0.0264

H7 ∆PTA2, ∆PTAr, ∆ACALD,
∆ALCD2x, ∆FRD2, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆FRD3 succ 0.0239 0.0264

I7 ∆LDH_D, ∆OBTFL, ∆PFL,
∆ACALD, ∆ACGAptspp,
∆ALCD2x

∆GLCptsppg6p 0.1197 0.1197

I7 ∆OBTFL, ∆PFL, ∆ACALD,
∆ACGAptspp, ∆ALCD2x,
∆GLCptspp

∆LDH_D lac-D 0.1197 0.1197

B8 ∆PTA2, ∆PTAr, ∆ACALD,
∆ALCD2x, ∆FRD2, ∆FRD3,
::1HDH, ::EX_1hex_e,
::HX2COAR, ::HXALDH

∆LDH_D lac-D 0.115 0.115

B8 ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3, ∆LDH_D,
∆PTA2, ::1HDH, ::EX_1hex_e,
::HX2COAR, ::HXALDH

∆PTAr actp 0.115 0.115
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

C8 ∆OBTFL, ∆PFL, ∆PTA2,
∆PTAr, ∆ACALD, ∆ALCD2x,
∆FRD2, ∆FRD3, ::3MOBDC,
::EX_2mbtoh_e, ::EX_2phetoh_e,
::EX_iamoh_e, ::EX_iboh_e,
::IBDH, ::KARA1x

∆LDH_D lac-D 0.1221 0.1221

H8 ∆OBTFL, ∆PFL, ∆ACKr,
∆FRD2,∆FRD3

∆LDH_D lac-D 0.3256 0.3256

I8 ∆OBTFL, ∆PFL, ∆ACKr,
∆FRD2,∆FRD3

∆LDH_D lac-D 0.1837 0.1837

B9 ∆FRD2, ∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD, ∆ACKr, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆ALCD2x acald 0.1709 0.1693

B9 ∆FRD2, ∆FRD3, ∆LDH_D,
∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD, ∆ACKr, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆ALCD2x etoh 0.1709 0.1709

B9 ∆MGSA, ∆OBTFL, ∆PFL,
∆ACALD, ∆ACKr, ∆ALCD2x,
∆FRD2, ∆FRD3, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆LDH_D lac-D 0.1709 0.1709
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

B9 ∆OBTFL, ∆PFL, ∆ACALD,
∆ACKr, ∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D, ::1BDH,
::B2COAR, ::BTALDH,
::EX_1boh_e

∆MGSA mthgxl 0.1709 0.1709

G9 ∆FRD2, ∆FRD3, ∆LDH_D,
∆MGSA, ∆PTA2, ∆PTAr,
∆ACALD, ::LDH_L

∆ALCD2x acald, etoh 0.0362 0.0362

G9 ∆MGSA, ∆PTA2, ∆PTAr,
∆ACALD, ∆ALCD2x, ∆FRD2,
∆FRD3, ::LDH_L

∆LDH_D lac-D 0.0362 0.0362

G9 ∆ACALD, ∆ALCD2x, ∆FRD2,
∆FRD3, ∆LDH_D, ∆MGSA,
∆PTA2, ::LDH_L

∆PTAr actp 0.0362 0.0362

H9 ∆OXDHCOAT,∆PTA2,∆PTAr,
∆REPHACCOAI, ∆ACACCT,
∆ACALD,∆ALCD2x,∆BUTCT,
∆DHACOAH, ∆FRD2, ∆FRD3,
∆HADPCOADH3, ∆HXCT,
::1BDH, ::B2COAR, ::BTALDH,
::EX_1boh_e

∆LDH_D lac-D 0.1622 0.1622
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Key Base design Replaced
Target

Metabolite
Target

Old
Fit-
ness

New
Fit-
ness

H9 ∆REPHACCOAI, ∆ACACCT,
∆ACALD,∆ALCD2x,∆BUTCT,
∆DHACOAH, ∆FRD2, ∆FRD3,
∆HADPCOADH3, ∆HXCT,
∆LDH_D, ∆OXDHCOAT,
∆PTA2, ::1BDH, ::B2COAR,
::BTALDH, ::EX_1boh_e

∆PTAr actp 0.1622 0.1622

B10 ∆LDH_D, ∆MGSA,
∆NO3R1pp, ∆NO3R2pp, ∆PPC,
∆FDH4pp,∆FDH5pp,∆FRD2

∆FRD3 succ 0.1503 0.1421

B10 ∆LDH_D, ∆MGSA,
∆NO3R1pp, ∆NO3R2pp, ∆PPC,
∆FDH4pp,∆FDH5pp,∆FRD2

∆FRD3 2dmmq8 0.1503 0.1503

B10 ∆MGSA, ∆NO3R1pp,
∆NO3R2pp, ∆PPC, ∆FDH4pp,
∆FDH5pp,∆FRD2,∆FRD3

∆LDH_D lac-D 0.1503 0.1503

B10 ∆NO3R1pp, ∆NO3R2pp, ∆PPC,
∆FDH4pp, ∆FDH5pp, ∆FRD2,
∆FRD3,∆LDH_D

∆MGSA mthgxl 0.1503 0.1503
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Figure S3.1: Metabolite analogues retrieved using different cutoffs.Number of metabolite analogues from our selected

metabolite-antimetabolite pairs that can be retrieved using the difference between the number of atoms, the number of

bonds and the number of rings using different cutoffs.
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Figure S3.2: Comparison between Tanimoto coefficients and structural similarity.We can capture almost all known

metabolite analogues with a similarity of 0.5.
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Figure S3.3: Tanimoto coefficient vs. number of atoms. The distribution of the number of atoms permolecule. The line

represents the linear regression with adjusted intercept. This line was used to determine the cutoff value for smaller com-

pounds.
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He who loves practice without theory is like the sailor
who boards ship without a rudder and compass and never
knows where he may cast.

Leonardo da Vinci

4
Improving mevalonate production in

Saccharomyces cerevisiae using constraint
based modeling

Summary

In this chapter, the computer-aided design methods implemented in cameo were used to design
a S. cerevisiae platform strain with increased flux through the mevalonate pathway. The strains
are being implemented in the laboratory and the results enclosed here are preliminary. Because
of the intellectual property value of this work, many details including the designs, genotypes and
results from in silico simulations cannot be disclosed.
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Abstract

Mevalonate is the precursor of a large range of valuable chemicals. Saccharomyces cerevisiae has
a long history of metabolic engineering applications and contains a native mevalonate pathway.
In this work, we engineered S. cerevisiaemetabolism to increase the flux through the mevalonate
pathway. We used computer-aided design methods to search and evaluate different engineering
strategies. Using the results obtained in silico, we applied genetic modifications (insertion of het-
erologous genes and knockouts) that can shift the redox metabolism in the cytosol and increase
the availability of the cofactors necessary to produce mevalonate. We tested our hypothesis using
a NADPH/NADP+ biosensor and the β-Carotene pathway.

Introduction

Mevalonate is an essential precursor involved in cellular processes and leading to large range of
valuable chemicals. These include pharmaceutical (e.g., anti-malarial drug artemisinin, phytos-
terols with antioxidant and anti-cancer activity), fuels (e.g., farnesene), waterproof products and
food additives, such as carotenes (Liao et al., 2016, Zhang et al., 2011). Cell factories with enhanced
mevalonate pathway provide a great platform strain for production of these valuable chemicals.

Saccharomyces cerevisiae (Bakers’ yeast) is themainmodel organism for yeast species and has a
long history for metabolic engineering applications. It is well studied and generally recognized as
safe (GRAS) (Nevoigt, 2008). Themevalonate pathway is present andwell studied in S. cerevisiae,
making it our host of choice for this application.

Mevalonate is produced from acetyl-CoA in three steps. In the first step, two acetyl-CoA
molecules are combined into acetoacetyl-CoA by an acetoacetyl-CoA thiolase (ERG10). The fol-
lowing conversion is carried by 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (ERG13),
that converts acetoacetyl-CoA intoHMG-CoA. In the last step, HMG-CoA is reduced to meval-
onate using two NADPH molecules (Figure 4.1).

Genome-scale metabolic models GEMs are stoichiometric models that describe the portfolio
of biochemical reactions in organisms. These models have proven useful for metabolic engineer-
ing because they are capable of predicting the phenotype resulting from genetic interventions
(i.e., gene knockouts, knock-ins and expression changes) and media composition (O’Brien et al.,
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Figure 4.1: Mevalonate production pathway.

2015). GEMs for S. cerevisiae have been published and refined during the past 15 years (Förster
et al., 2003, Mo et al., 2009, Österlund et al., 2013, Pereira et al., 2016, Zomorrodi and Maranas,
2010).

In this work, we developed a S. cerevisiae platform strain with enhanced mevalonate pro-
duction. The strain was designed using cameo, a software tool for metabolic engineering (Car-
doso et al., 2017). We found combinations of heterologous enzymes and gene knockouts that
can increase the flux through the mevalonate pathway. We accomplish that by changing the re-
dox balance in the cytosol. The change in redox balance was reported using a NADPH/NADP+

biosensor (Zhang et al., 2016). We used the β-Carotene pathway to as an indirect measurement
of increased flux through the mevalonate pathway.

Results and discussion

DifferentialFVA analysis suggests NADPH turnover as a bottle-
neck of mevalonate production

TheDifferentialFVAmethod in cameo identifies significant flux changes required to increase flux
towards desired products. The results suggested redirecting fluxes to produce more NADPH.
The conversion of glycerol into dihydroxyacetone (DHA) generates extra NADPH when con-
verted. At the cost of one ATP, the dihydroxyacetone kinase (YML070W or YFL053W ) con-
verts the DHA into DHA-phosphate. The DHA-phosphate can be incorporated into glycolysis
again. Indeed, a recently published study shows that Escherichia coli strains producing isopen-
tanol, limonene and bisabolene using the mevalonate pathway have a higher NADPH turnover
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(Brunk et al., 2016).

Strainscontainingheterologousgeneshavethepotentialtopro-
duce more mevalonate

Themaximum theoretical yield ofmevalonate increases after inserting the newgenes in themodel
(Figure 4.2). The production envelope of the mutant shows that at any growth rate, the amount
ofmevalonate produced by themutant strain is higher than the wild-type (Figure 2). This means
that the availability of NADPH is limiting the production of mevalonate.

Genetically modified strains produce more β-Carotene

We implement our designs into a S. cerevisiae strains containing the β-Carotene pathway. We
observed improved production of β-Carotene, which has an orange color (4.3A). β-Carotene is
produced from farnesyl diphosphate (FPP)which is produced frommevalonate. Cells producing
more β-Carotene display brighter orange color. Because β-Carotene is produced via the meval-
onate pathway, it can be used as a proxy for the mevalonate production.

In addition, the ratio betweenNADPH/NADP+ wasmeasured, based on the previously pub-
lished biosensor (seeMaterial andMethods). We cloned the senor in a wild-type and twomutant
strains with a clean background (i.e., without the β-Carotene pathway). We saw a decrease in the
NADPH/NADP+ ratio (Figure 4.3B). This suggests that ourmutant strains are convertingmore
NADP+ intoNADPH, but themevalonate pathway is not able to convert an equivalent amount
of NADPH into NADP+.

Materials and Methods

Yeast metabolic model

Weperformed all simulations using the S. cerevisiaeGEM iMM904 (Mo et al., 2009). Themodel
was download from the BiGG Models database (King et al., 2016) and follows the Constraint-
Based Reconstruction and Analysis (COBRA) standards (Thiele and Palsson, 2010), therefore it
is fully compatible with the software we used (see below).
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In silico design of the strains

We used cameo software package (Cardoso et al., 2017) to design the strains in silico. Maximum
theoretical yields at different growth rates was computed using Flux BalanceAnalysis (FBA). The
identification of the required modifications was developed in 2 steps. First, we used Differen-
tialFVA to identify which fluxes needed to increase and decrease in relation to the wild type and
identified the cofactor limitation. Second, we used the model to test different modifications in
the central carbon metabolism and the effects of adding heterologous genes.

Strains and media

We the S. cerevisiae CEN.PK strains in these work. Cells were grown in Petri dishes on standard
synthetic complete (SC) and yeast extract peptone dextrose (YPD) (2% glucose) media and incu-
bated at 30 ◦C.

β-Carotene pathway

Weused a strain containing theβ-Carotene pathway frompreviously publishedwork (Jakočiunas
et al., 2015).

NADP-biosensor

We used a NADPH/NADP+ redox biosensor engineered from the Yap1p transcription factor.
The sensor is highly specific toNADPHbutnot toNADHZhang et al. (2016). When the amount
of NADPH over NADP increases, the strains are less fluorescence. We measure fluorescence as
described in the original paper.

Conclusions

The initial attempt to engineer the central carbon metabolism and redirect flux towards the de-
sired product has shown promising results. We observed higher β-carotene levels in the engi-
neered strains. We also observed an increasing amount ofNADPHlevels in the engineered strains.
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Still, we need to perform further optimization of these strains. We can use combinatorial
assembly to optimize the insertion of heterologous genes and find the optimal expression lev-
els. Plus, the mevalonate is self-regulated [i.e., subject of negative feedback by the pathway prod-
ucts (Dimster-Denk et al., 1994)]. We need to optimize enzymes in the mevalonate pathway too.
Adding pathways upstream of mevalonate, such as the β-Carotene pathway, allows us to divert
flux from the native metabolic pathways and provides a visual reporting system.

Finally, mevalonate with is a biomass precursor. Redirecting flux from that pathway com-
petes with cellular growth and makes growth-coupled designs more difficult to predict in silico.
We will combine computational methods to identify key genetic interventions that can reduce
the growth rate and redirect more carbon towards mevalonate.
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Figure 4.2: Production envelopes formevalonate. Themutant strain has an increased themevalonate production capacity.
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Figure 4.3: β-Carotene production in different strains andNADPH/NADP+ biosensor resultsA) Thewild-type (WT) strain

with theβ-Carotene pathway displays a yellow color. Themutant 2 (MT2) strain displays a orange color, which indicates

higher amounts ofβ-Carotene per cell. B) The ratio betweenNADPH/NADP+ decreases whenmore genetic modifications

are applied.
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This preservation of favourable variations and the destruc-
tion of injurious variations, I call Natural Selection, or the
Survival of the Fittest. Variations neither useful nor inju-
rious would not be affected by natural selection and would
be left a fluctuating element.

Charles Darwin

5
Analysis of genetic variation and potential

applications in genome-scale metabolic
modeling

Summary

The second chapter of this thesis is a review about the effect of genetic variation in cell factory op-
timization. The tools used to evaluate genetic variants are reviewed here. However, most of these
tools have been developed formedical applications and predict disease related effects. This review
also exposits the potential applications of combining re-sequencing datawith genome-scalemeta-
bolic models. This chapter has been published in Frontiers in Bioengineering and Biotechnology
on February 2015 (https://doi.org/10.3389/fbioe.2015.00013).
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Abstract

Genetic variation is the motor of evolution and allows organisms to overcome the environmen-
tal challenges they encounter. It can be both beneficial and harmful in the process of engineering
cell factories for the production of proteins and chemicals. Throughout the history of biotech-
nology, there have been efforts to exploit genetic variation in our favor to create strains with
favorable phenotypes. Genetic variation can either be present in natural populations or it can be
artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other
hand, unintended genetic variation during a long termproduction processmay lead to significant
economic losses and it is important to understand how to control this type of variation. With the
emergence of next-generation sequencing technologies, genetic variation in microbial strains can
now be determined on an unprecedented scale and resolution by re-sequencing thousands of
strains systematically. In this article, we review challenges in the integration and analysis of large-
scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting
the effects of genetic variants on protein function, and discuss approaches for interfacing exist-
ing bioinformatics approaches with genome-scale models of cellular processes in order to predict
effects of sequence variation on cellular phenotypes.

Keywords

Genetic Variation, SNP, Next-Generation Sequencing, Constraint-based modeling, Metabolic
Engineering, Adaptive Laboratory Evolution, Metabolism, High-throughput Analysis.
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Introduction

Genetic engineering has been used for several decades to manipulate microorganisms in order
to allow production of valuable products, including primary metabolites (e.g., amino-acids and
organic acids), secondary metabolites (e.g., antibiotics), and enzymes or other recombinant pro-
teins (Adrio andDemain, 2010). Genetic engineering is thus a central part in the quest to establish
sustainable and efficient processes for the production of fuels, chemicals, food ingredients, and
pharmaceutical products.

Most of these achievements would not been possible without sequencing technologies that
allowed us to identify the genetic sequences and validate the genetic manipulations in microor-
ganisms. More recently,Next-Generation Sequencing (NGS) technologies have provideduswith
the capability of fast and cheap sequencing of DNA at an unprecedented scale. NGS has allowed
de novo assembly of the genomes of thousands of organisms forwhich no genome sequenceswere
previously available, ranging from complex multicellular organisms (Kelley et al., 2014, Li et al.,
2010, Nakamura et al., 2013, Pegadaraju et al., 2013) tomicroorganisms (Soares-Castro and Santos,
2013, Yamamoto et al., 2014). NGS technologies also provide us with themeans to re-sequence or-
ganisms (Atsumi et al., 2010, Wang et al., 2014), i.e., the sequencing of genetically distinct strains
that are close enough to a reference strain with a sequenced genome. Re-sequencing is used to
determine genetic variants ranging fromsingle nucleotide variation (SNV) tomore complex struc-
tural variants such as large deletions, inversions and translocations. The falling cost of sequencing
allows routine re-sequencing of strains isolated from the wild, monitoring the genetic stability of
production strains during genetic engineering and fermentation processes, and determining the
genetic basis of adaptive laboratory evolution (ALE) (Herrgård and Panagiotou, 2012). In addi-
tion to biotechnological applications, re-sequencing of microbial strains plays also a key role in
other areas such as epidemiology of infectious diseases caused by bacterial and fungal pathogens,
and in understanding the effects of human activity on microbial diversity and evolution in the
environment.

Genome-scale metabolic models GSMs, consisting of biochemical reactions and their rela-
tions to the genome and proteome of a cell (through gene-protein-reaction associations; GPR),
are a proven framework for the in silico analysis of the metabolic physiology of microbes. GSMs
have also been used successfully for the design of metabolically engineered strains with improved
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production of commercially valuable proteins and metabolites: recombinant antibodies, food
additives (e.g., vanillin), organic acids, ethanol, among others (Brochado et al., 2010, Tepper and
Shlomi, 2009). These models have become increasingly popular over the past decade, and more
than one hundred models for different organisms have been published up to this date (http:
//optflux.org/models). The greatest strength of GSMs lie in their simplicity and computa-
tional efficiency; new GSMs can be readily built from genomic annotations complemented with
limited experimental data, and predictions from GSMs can be obtained using standard mathe-
matical optimization methods (Segrè et al., 2002, Shlomi et al., 2005, Varma and Palsson, 1993)
allowing phenotypic predictions within minutes.

Genetic variation that entails a complete loss of function—commonly referred to as gene
knockout—has been successfully used to tailor GSMs to a specific genotype to improve the pro-
duction of valuable compounds (e.g., biobutanol (Lee et al., 2008), sesquiterpene (Asadollahi
et al., 2009), vanillin (Brochado et al., 2010), polyhydroxyalkanoates (Puchałka et al., 2008) or
L-valine (Park et al., 2007)), but so far no methodological framework has been developed that
would allow the incorporation of other types of genetic variants systematically. In this work, we
review existing tools for analyzing genetic variants that capture more subtle changes such as syn-
onymous and non-synonymous SNVs in coding regions or variants in promoter or other regula-
tory regions. We will focus on outlining the challenges of combining more subtle genetic variant
information with GSMs in order to use models to predict strain-specific phenotypes.

Unveiling the effects of genetic variation

Genetic variability

Genetic variants, including SNVs and larger structural variants are commonly seen when natural
or engineered strains are re-sequenced (Figure 5.1). SNVs can be found across the genome in
different functional regions: (i) protein coding sequences, (ii) promoters and other regulatory
elements such as ribosome binding sites, (iii) splice sites and other regions affecting transcript
structures, and (iv) other genomic regionswith unknowndirect connections to any given protein
function. Moreover, insertions or deletions of nucleotides (indels) within a coding region can
cause a shift in the open reading frame usually denoted as frameshift mutations (Figure 5.1A). At
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the genome structure level, chromosomal rearrangements, e.g., swaps, inversions, deletions, and
insertions, can affect the function of one or more proteins (Figure 5.1B).

Figure 5.1: Common genetic variations. Variations at the (A) nucleotide level and (B) structural level. (C) Single nucleotide

polymorphismA/T across a population.

The spectrum of the resulting effects caused by these genetic variations on individual gene
or protein function or expression is very broad. Non-synonymous SNVs or in-frame indels in
protein coding sequences can disrupt, enhance, or modify the activity of the protein depending
on the exact amino-acid change introduced. Introduction or removal of a stop codon by spe-
cific SNVs or out-of-frame indels would be expected to result in more drastic changes of protein
function. For example, the appearance of a stop codon might lead to the separation of a multi-
domain protein to multiple individual single-domain proteins. The removal or replacement of
a stop codon could cause translational read-through leading to an elongated protein with poten-
tial new functions (Long et al., 2003). SNVs and indels in regulatory regions such as promoters
can affect the transcription or translation processes giving rise to variation in expression levels
in specific proteins. In eukaryotes, variants within introns can also affect transcript structures
by introducing new exons or removing existing ones. Some variations can also be completely
silent with no change of phenotype, for example, a small change in stop codon location might
not change the protein activity. Ideally, we should be able to predict the degree in which single
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and multiple genetic variants within or near a coding locus affect the relevant protein function
or expression. This would allow us to rapidly make sense of the vast quantities of re-sequencing
data that is becoming available without having to test the effects of all variants experimentally.

Larger-scale structural variations, such as duplications, deletions, translocations, and inver-
sions, can have significant effects on the expression or activity of individual proteins. For exam-
ple, there can be a complete loss of one or more genes, or a duplication of genomic regions can
modify the expression ofmultiple genes within or nearby these regions (Blount et al., 2012). Very
large scale genomic changes, such as duplicationof entire chromosomes, can change the activity of
hundreds of proteins at once and have been reported in both natural microbial strains (Gordon
et al., 2009) and in strains created byALE (Caspeta et al., 2014). The effects of structural genomic
variation are often more systemic than the effects of smaller scale variations, but any framework
attempting to predict the phenotypic effects of genetic variation needs to consider both small-
and large-scale variation.

In silico: predicting the effect of genetic variants

Amajor challenge to understanding the phenotypic consequences of genetic variation lies in our
ability to predict the mechanistic consequences of mutations. Proteins are very complex struc-
tures that fall into different functional categories and can be characterized bymany distinct prop-
erties. For example, how protein activities are measured depends on their functional category:
transcription factors can be characterized by their binding strength to a certain promoter region
whilemetabolic enzymeswould typically be characterized by their catalytic activity and specificity
for a certain substrate. Moreover, proteins don’t operate in isolation but interact with each other
andwithmetabolites, and these interactions have consequences on the activities of proteins. Here
we provide a non-exhaustive review of the types of methods that are commonly used to predict
the effects of genetic variants on protein function.

The study of single single nucleotide polymorphisms (SNPs) that affect human health is one
of the major focus areas of modern medical research. In human genetics, SNPs are single nu-
cleotide substitutions found in more than 1% of a population. Several algorithms were imple-
mented to determine the effect of SNP, mostly specialized to the analysis of human genotyping
data (see Table 5.1 and Figure 5.2). One limitation of most of these algorithms is that they are
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Figure 5.2: Summary of properties and approaches for variant-effect prediction software. Summary of properties and

approaches for software listed in Table 5.1. The approaches found fall into 4 different categories: Machine-Learning, Proba-

bilistic, Score (calculating a summarizing score of a set of hand-picked statistics), and Rule (using a set of empirically derived

rules). These approaches provide one of two types of classifications each: a binary classification (e.g., neutral or deleteri-

ous) or amulti-classification (e.g., benign, neutral, deleterious). The features used by those approaches can be computed

based on properties of the following 5 categories: (i) physicochemical properties (e.g., solvent accessibility, polarity, charge,

disorder, Grantham), (ii) structural information about the primary, secondary, and tertiary structure of a protein (e.g.,α-
helices,β-sheets, coil), (iii) evolutionary properties (multiple sequence alignments, position-specific scoringmatrices, Hid-

denMarkovmodels), and (iv) genome annotation (GO terms or other protein function annotations). The supported variants

were determined either by accessing the tools’ websites or by the description of the approach itself.

binary classifiers—deleterious or neutral, disease causing or neutral, tolerant or intolerant. This
means that the genetic changes will either be predicted to have no effect or to cause somemeasur-
able, negative impact on thephenotype. Thismaynotbe an issue in the context of humandiseases
as SNPs data are primarily used in diagnostics. However, fine tuning engineeredmicrobial strains
requires more than a black and white approach for predicting variant effects on protein function.
This is because many genetic variants can yield proteins with either increased or decreased activ-
ity, requiring methods that are able to predict also potential gains or modifications of functions.
In particular, when mutagenesis and selection or ALE methods are applied, one commonly sees
gain of functionmutations of specific genes that are crucial for the adaptation to for example new
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carbon sources (Conrad et al., 2011).
Of the existing algorithms (Table 5.1), SIFT (Sorting Tolerant from Intolerant) (Ng and

Henikoff, 2001) is often used as a gold standard to compare the performance of new algorithms
or as a foundation for novel prediction strategies. SIFT and related approaches are based on the
notion that evolutionary conservation can be used to predict the functional importance of a each
amino-acid in a protein and the impact of specific amino-acid substitutions. Thesemethods typi-
cally usemultiple sequence alignments of relatedproteins to determine a probabilistic description
of what amino-acid substitutions are allowed in specific sites within the target protein. These de-
scriptions can be used to determine the probability that non-synonymous coding SNPs observed
in a re-sequencing data set will be tolerated by the protein; substitutions with a probability score
smaller than a threshold are assumed to be deleterious (Kumar et al., 2009).

SIFT provides only a binary deleterious/non-deleterious classification, and other methods
havebeendeveloped to allowpredicting caseswhere SNPs improveprotein function. ThePolyphen
(Ramensky, 2002) and PolyPhen2 (Adzhubei et al., 2010) approaches provide the means to dis-
criminate three stateswhenanalyzing the effect of a SNP: benign, neutral, or deleterious. Polyphen
uses a list of predetermined rules that combine the output ofmultiple algorithms using combina-
tions of structural and sequence-based measures of mutation impact. PolyPhen2 uses a machine-
learning approach (a naive Bayes model) to predict an overall score for the variant effect, and the
classification to three categories is based on thresholds. Although the algorithm is trained with
human datasets, similar methods could potentially be used to build predictive models for variant
effects in microorganisms. The overall variant effect score could also be exploited in more ad-
vanced methods that combine scores from different variants affecting different proteins to make
phenotypic predictions.

Most studies on genetic variation focus on SNPs and disregard indels, which are also com-
monly observed when related microbial strains are compared to each other. The PROVEAN
(Choi et al., 2012) andMutation taster 2 (Schwarz et al., 2014) approaches are capable of analyzing
both SNPs and indels. PROVEAN uses substitution matrix scores (i.e. BLOSUM62) with gap
and extension penalties to compute a variation score between the wild-type and mutant. More
recently,Mutation taster 2 computes several features (structural and evolutionary properties) for
the mutated sequence using a Bayes classifier.

Onepossible approach for improvingour ability topredict variant effects onprotein function
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would be to predict effects of amino-acid changes on protein stability and folding (Khan and
Vihinen, 2010). There are a number of tools available for these tasks (Khan and Vihinen, 2010),
and stability predictions could be used to predict variant effects on protein function, as strongly
destabilizing mutations would result in complete loss of function for the protein. Methods for
predicting variant effects on protein stability have only been found to be moderately accurate in
independent evaluation studies (Khan and Vihinen, 2010). For this reason, stability predictors
should be combined with other variant effect prediction approaches to improve their predictive
power for general variant effect analysis. The application of these types of stability prediction
methods will be discussed in section 5 in more detail together with the applications of metabolic
modeling.

Themajority of algorithms (53%) for variant effect prediction listed inTable 5.1 rely onmachine-
learning approaches (e.g., AUTO-MUTE(Masso andVaisman, 2010), FunSAV(Wang et al., 2012)
orHANSA(Acharya andNagarajaram, 2011)), which is a practical strategy given thehuge amount
of data available for human diseases. Regarding the selection of features, most methods use evo-
lutionary conservation information (92%) andmore than half rely on structural properties (69%).
The selection of sufficient features is a challenge in itself; no matter what approach is used, it is
necessary to define which properties and attributes of proteins are capable of discriminating the
phenotypes of interest. The improvements in the prediction capabilities provided by sequence-,
evolution-, or structural-based features has beenpreviously studied, and these studies have shown
that the inclusion of structural properties leads to significant improvements in predictive power
(Saunders and Baker, 2002). This has been recently confirmed by a benchmark performance test
that includes several of the existing algorithms (Thusberg et al., 2011). Another effort to bench-
mark and improve different approaches is the Critical Assessment of Genome Interpretation
(CAGI) community, that organizes a benchmark competition on predicting the effect of genetic
variants on known disease phenotypes.

While the majority of algorithms aim to predict variant effects on individual proteins, a dif-
ferent objective is followed by the SNP-IN method that predicts how protein-protein interac-
tion (PPI) are affected by a SNP (Zhao et al., 2014). This is achieved by a set of features that
includes the relative free energy change between wild-type and mutant PPI, the energy of all in-
teractions in a protein complex, and other physicochemical properties, e.g., hydrophobic solva-
tion or water bridges. Using these features, supervised and semi-supervised machine learning
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approaches are used to predict how deleterious SNPs are. This approach is a very interesting, as
changes in PPIs could be used to explain epistatic interactions between multiple variants. Like
some previously mentioned prediction algorithms, SNP-PI requires an existing 3D model of the
protein structure and, in addition, knowledge of the PPIs a given protein is involved in.

At a larger scale, genome-wide association studies are used to identify how differences be-
tween hundreds of thousands of individuals and make genotype to phenotype consequences.
This approacheswork as black boxes andmake use of statistical andmachine-learning approaches
that require huge data-sets. The currentwork and applications (e.g., clinical risk assessment) have
been recently reviewed (Okser et al., 2014).

In vivo: deep mutational scanning and Tn-seq

Next generation sequencing has enabled studying the effects of genetic variation on individual
proteins or regulatory elements in vivo and in vitro. deepmutational scanning (DMS) is an effec-
tive high-throughput method to measure the effects of mutations on protein stability and func-
tion (Fowler and Fields, 2014). The space of all possible amino-acid substitutions in a protein
is exhaustively screened by first constructing a library of sequence variants using standard tech-
niques like error prone PCR, then by using a high-throughput assay to select variants based on
a fitness measure (e.g., growth rate, ligand binding or product fluorescence), and finally by ap-
plying deep sequencing to the selected and unselected sequence variant pools. This approach
results in a matrix that contains fitness values for each amino-acid substitution discovered in the
selected pool. Depending on the method used for creating sequence diversity and sequencing
depth, DMS can also be used to measure epistatic effects between substitutions at different sites.

The applicability of DMS is primarily limited by the lack of high-throughput functional as-
says for most proteins, and, for example, DMS has not been applied to metabolic enzymes so
far. When DMS can be applied at a broader scale, the results obtained from the assay could in-
crease the predictive power of bioinformatic tools for genetic variation analysis by providingmore
complete training datasets for the types of predictive methods discussed in the previous section.
Methods similar to DMS can also be used to systematically study effects of genetic variation in
regulatory regions on protein expression using fluorescence protein-based assays.

Here, we will highlight a few case studies using DMS and related methods to study protein
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or regulatory element function. In the analysis of Saccharomyces cerevisiae poly(A)-binding pro-
tein (Melamed et al., 2013), strong epistatic effects between substitutions at specific sites were
discovered. Although epistasis was not widespread, this is worrying from a computational mod-
eling perspective, asmodeling approaches usually don’t account for epistasis. Another important
highlight is the identification of alternative start codons. Although analyzed in previous studies,
the DMS has shown that some amino-acids can be replaced by methionine and yield functional
proteins (Kim et al., 2013). This biological information can be extrapolated to other studies and
is highly relevant when developing strategies to understand the effect of mutations, either in vivo
or in silico. Strategies similar to DMS have also been used to systematically study the effects of
variation in transcription factor binding sites and other regulatory elements such as ribosomal
binding sites (Kosuri et al., 2013). These studies will build the foundation for predicting effects
of non-coding sequence variants on protein expression.

The methods described above allow us to systematically study the effects of a large number
of variants in individiual proteins or regulatory regions. In microorganisms, it is also possible
to use a next generation sequencing-based method called Tn-seq to systematically study the ef-
fect of disruption of a large number of genomic loci on cellular phenotypes (van Opijnen and
Camilli, 2013). Transposons are mobile DNA elements that can disrupt a genetic locus by inte-
grating themselves into it (Figure 5.1B). Tn-seq, using high density transposon insertion libraries,
can be used to interrogate the function of, for example, regulatory elements and specific protein
domains in a single genome-wide assay (van Opijnen and Camilli, 2013). Tn-seq has found many
applications in microbiology, and it has been used for the identification of gene function, under-
standing genome organization, mapping genetic interactions, or assessing gene essentiality (van
Opijnen and Camilli, 2013, Yang et al., 2014). Tn-seq does not offer a resolution on the single base
pair level, but themethod can be rapidly used to generate sub-gene-level information relating, for
example, to the essentiality of specific domains in a protein. This information in turn could be
used to improve variant effect predictions, as variants in essential domains of a protein would be
more likely to be predicted to be deleterious than variants in non-essential domains of the same
protein.
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Predicting phenotypes from genotypes at the genome-
scale

Statistical andnetwork-orientedapproaches for predicting phe-
notypes from genotypes

Section 5 focused on the task of predicting the effects of genetic variation on individual protein
function or expression. However, this is only a small part of a much larger problem, that of
predicting cellular or organism phenotypic effects of all the genetic variants present in a genome.
This requires combing the effects of variation on the function and expression of all proteins. So
far, there have been surprisingly few efforts to take all genetic variants discovered in an individual
(either a human or a microbial strain) and attempt to predict how certain phenotypes would be
affected by all these variants together (Burga and Lehner, 2013, Lehner, 2013).

One of the first systematic attempts towards this goal was the pioneering study by Jelier et
al. in S. cerevisiae, where growth phenotypes of selected yeast strains under different conditions
were predicted from genetic differences between a reference strain and the strain of interest (Je-
lier et al., 2011). This was achieved by first predicting effects of coding and regulatory variants
on protein function and expression using approaches similar to the one outlined in the previous
section. These variant effect predictions were then combined into a single phenotypic prediction
for the strain, using published single gene deletion growth phenotyping data for a yeast reference
strain under the same condition. This approach can be considered to be highly simplistic, as the
effects of multiple genetic variants acting on separate proteins were treated cumulative. Despite
this, the approach still allowed accurate prediction of growth phenotypes across a broad range
of conditions. There have also been a number of other approaches for predicting broader phe-
notypic consequences of single variants by mapping the variant data onto biological networks
such as protein-protein interaction or genetic networks (Carter et al., 2013). However, these ap-
proaches have typically not attempted to use the whole genotype of an individual (i.e. more than
one variant at a time) to predict specific phenotypes.
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Using genome-scale metabolic models for interpreting genetic
variants

The phenotype prediction methods described above are data-driven and use statistical models to
predict the effects of genetic variants in the context of biological networks. However, for meta-
bolic networks we can go beyond statistical models and graph-based descriptions to constraint-
based models that are scalable to the genome-level and incorporate physicochemical, flux capac-
ity, and reaction directionality constraints (see Price et al. (2004) for a review of constraint-based
modeling). This type of mechanistic modeling approach is very useful for understanding genetic
changes that affect specific metabolic phenotypes. For example, the study of SNPs that affect mi-
tochondrial metabolism (Jamshidi and Palsson, 2006) is a good example of how variant data can
be mapped onto metabolic networks in order to explain the mechanistic basis of disease pheno-
types.

A genome-scale metabolic models is composed of biochemical reactions, collected from liter-
ature and the genome annotation of an organism. This system of reactions is encoded as amatrix
of stoichiometric coefficients that is usually referred to as stoichiometry matrix1. Assuming me-
tabolism is in a steady-state, i.e., metabolite concentrations don’t change over time, all fluxes have
to balance each other. These flux-balances constitute linear constraints that can easily be analyzed
using methods from linear algebra.

Furthermore, after inclusion of further constraints, e.g., known uptake and secretion rates
and knowledge about reaction directionality, linear optimization methods can compute biolog-
ically relevant flux vectors that maximize defined objective functions. For example, growth can
be simulated by maximizing the consumption of biomass precursors in empirically determined
proportions. This type of analysis is usually referred to as flux balance analysis (FBA; see Orth
et al. (2010) for a comprehensive introduction to this method).

Global optimal solutions to this linear optimization problems can be calculated very effi-
ciently using linear programming (computation times are on a millisecond to second range for
genome-scale models). Thus, one can compute thousands of phenotypes in a few minutes, sim-
ply by changing the constraints of the problem (see Lewis et al. (2012) for a comprehensive list of

1The rows and columns of the stoichiometry matrix correspond to metabolites and reactions respectively; nega-
tive (positive) factors represent consumption (production) of substrates (products).

182



available in silicomethods and Bordbar et al. (2014) for a review of their applications).
Since the relationship between reactions, enzymes, and genes (usually referred to as gene-

protein-reaction (GPR) associations) is usually known and encoded in these models, the effect
of a gene knockout can readily be mapped to the associated reactions by constraining their fluxes
to be zero or by removal from the model. This way FBA can be used to compute the metabolic
phenotype associatedwith ametabolic gene deletion,making it suitable for the analysis of genetic
variation data that involves deletions or othermutations that lead to the complete loss of function
of enzymes.

FBA assumes that knockout strains can recover to an optimal growth phenotype, which
mightbeunrealistic in caseswhere regulatorymechanisms—notmodeled explicitly in thesemodels—
might not be able to accommodate the desired state. Othermethodologies (e.g., ROOM(Shlomi
et al., 2005),MoMA (Segrè et al., 2002),MiMBl (Brochado et al., 2012) andRELATCH(Kim and
Reed, 2012)) employ more plausible assumptions and have been shown to improve the accuracy
of knockout predictions. For example,MoMAminimizes the euclidean distance of the wild type
and mutant flux distributions, assuming that the a mutant reaches the closest feasible flux distri-
bution that is not necessarily optimal. The predictive power of FBA and these other approaches
have been extensively assessed using genome-wide gene knockout assays (Snitkin et al., 2008) and
transposon insertion libraries (Yang et al., 2014) and have resulted generally in a high degree of
accuracy (Monk and Palsson, 2014).

Constraint-based models have also been applied to predict epistatic interactions by simulat-
ing effects of pairwise gene deletions, but with a significantly reduced accuracy in comparison to
single deletions (Szappanos et al., 2011). Furthermore, simulations ofmultiple gene deletions have
been successfully applied in developing design strategies formetabolic engineering by redirecting
flux to desired products (Blazeck and Alper, 2010, Milne et al., 2009).

A number of limiting factors can diminish the ability of constraint-based models to predict
phenotypic effects of loss of function mutations: (i) missing reactions and erroneous GPRs, (ii)
erroneous flux constraints due to the lack of thermodynamic or regulatory information, and (iii)
the assumption of a fixed biomass composition that is known to change across growth condi-
tions. Even with these limitations, constraint-based models still outperform statistical models in
predicting consequences of gene deletions (Szappanos et al., 2011).

Since constraint-based models have demonstrated good ability to predict phenotypic out-
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comes of single and multiple gene deletions, these models should also be useful for predicting
effects of other genetic variants. A SNV or indel that is predicted to reduce the maximal flux rate
of an enzyme can be used to constrain the upper bound of a flux. FBA and similar methods can
be used to compute the effects of these variations on the phenotype, providing a system-wide
overview of the effects caused by the substitution (Jamshidi et al., 2007). This is a fast and ef-
fective way of predicting phenotypes, but it requires that one can estimate the effect the variant
has on the maximum flux rate. Nevertheless, cases of complete loss of function fall into the same
category as gene knockouts, and combining the bioinformatic prediction tools discussed in sec-
tion 5 with modeling capabilities can be used to integrate variant data. This approach can also
be extended to any number of variants and genes, with the caveat that epistatic interactions are
currently not captured accurately by the models.

There is currently only a limited number of studies that use GSMs to systematically explore
the effects of genetic variants on phenotypes. Chang et al. (2013) conducted a study where GSMs
coupled with protein structures of metabolic enzymes (GEM-PRO2) were used to interpret ge-
netic variant data of Escherichia coli strains evolved to tolerate high temperatures (Chang et al.,
2013). In this study, a GSM of E. coli was constrained using experimentally or bioinformatically
determined thermostabilities of metabolic enzymes. Since the maximum flux capacity of a reac-
tion is proportional to the concentration of active enzyme, temperature changes can be modeled
by varying the flux constraints accordingly. This enables the predictionof enzymatic steps that are
disproportionately temperature sensitive. For the evolved strains, flux balance analysis was used
to explore the adaptation of the mutated enzymes; constraints associated with mutated proteins
were relaxed to explain the experimentally measured growth rates (Chang et al., 2013). The study
did not include separate predictions of variant effects on protein function, but rather treated all
variants observed in a protein as potentially affecting its activity.

A more recent study by Nam et al. (2014) describes the use of GSMs for understanding the
metabolic effects of cancer mutations. In particular, Nam et al. use genetic mutation informa-
tion, gene expression profile data, and a human GSM (Thiele et al., 2013) to construct context-
specific models for different cancer types. Loss and gain of function were systematically analyzed.
Loss of function was modeled as described above (i.e. constraining affected reactions’ fluxes to
0). Gain of a function, on the other hand, was modeled by adding novel promiscuous activities

2Genome-scale metabolic models are sometimes also referred to as GEMs.
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as predicted by chemoinformatic approaches. This approach allowed the prediction of potential
oncometabolites.

Kinetic modeling of genetic variants

As mentioned in the previous section, constraint-based modeling does not provide any infor-
mation about the dynamic behavior of a metabolic system. A full kinetic description of a bio-
chemical reaction network can be formulated using ordinary differential equations (Heinrich and
Schuster, 1996). Themajor advantage of using kinetic models to study effects of genetic variation
lies in their ability to account for mutations affecting catalytic or regulatory sites of an enzyme,
causing either a gain or loss of catalytic activity, or binding sites of allosteric regulators.

Previous studies of red blood cell metabolism provide an overview on how SNPs can alter
kinetic parameters and how kinetic models can be used to explain metabolic syndromes caused
by enzyme deficiencies (Jamshidi, 2002, Jamshidi and Palsson, 2009). A disadvantage of using
kinetic models is that kinetic parameters are not available for most enzymes and measuring the
parameters can be challenging. For this reason, building predictive genome-scale kinetic models
remains a challenge (Stanford et al., 2013a). Kinetic models are a viable tool for interpreting ge-
netic variant data only in specific cases like, for example, the red blood cell that harbors a relatively
simple metabolism.

Considerations and Future directions

Methods and tools to predict the effect of genetic variants

Many approaches have been explored in the past decade to understand and analyze the effects of
genetic variation. In particular, the most active field has been the application of NGS techniques
to characterize of genetic variation in the context of humandisease. The amount of disease related
information makes machine-learning approaches very suitable for the purpose of predicting ef-
fects of single genetic variants. Since most prediction methods have been trained and tested with
human data, many of the existing methods do not perform as well or are simply not suited for
the analysis of microbial genetic variants.
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The other area where the study of microbial genetic variation lags behind human genetics
is the systematic collection of variant and phenotyping data. Efforts to collect human genotype
and phenotype data in a standardized way are currently underway with databases such as dbSNP
and European Variation Archive. The UniProt database also collects variants found in the pro-
teins sequences when this information is available. Every day thousands of new environmental or
pathogenic isolates and laboratory developed microbial strains are sequenced around the world,
but there is no centralized repository for this data in common use. We argue that it is of utmost
importance to collect genetic variant data together with associated phenotypic data in a standard
way for microbes as well.

All the existing algorithms for variant effect prediction are used to classify variants to preas-
signed categories (for example deleterious or non-deleterious). The approaches that predict dele-
terious effects can already be handled as knockouts in modeling their phenotypic effects using
GSMs, but more subtle effects of mutations are missed by this approach. In order to improve
our ability to predict phenotypes, there is a need to move beyond classification towards quanti-
tative measures of variant effects on individual protein function. There are numerous features
related to protein function that may be relevant for predicting variant effects: evolutionary and
conservation, physicochemical (e.g., charge, polarity or free energy) and structural (e.g., secondary
structures, spacial distances between amino acids or B-factors).

Existing methods for predicting variant effects have been primarily focused on generic pre-
dictors for all proteins irrespective of their function (e.g., enzymes, transcription factors, trans-
porters, chaperons, etc.) and how do they behave in their environment (i.e. interaction with
other elements: proteins, metabolites, DNA, etc.). This limits the predictive power of the meth-
ods in cases where additional information is readily available such as the relatively well studied
field of microbial metabolism. For example, for metabolic enzymes, information on how kinetic
parameters are affected by mutations and how these parameters vary between enzymes from dif-
ferent species is systematically collected in databases such as BRENDA. This type of information
could be used to build improved variant effect predictors specifically for metabolic enzymes.

186

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ebi.ac.uk/eva/?Home
http://www.uniprot.org/help/variant
http://www.brenda-enzymes.org


Modeling and high-throughput data analysis

Improvements in genome-wide variant effect prediction can also come from improving or ex-
tending genome-scale modeling approaches. Recent innovations like GEM-PRO, as discussed in
Section 5, fulfill the requirement of 3D protein structures to predict the effects of genetic varia-
tion at the protein level and could be used to systematically analyze the effect of genetic variation
on a genome-scale for metabolism.

Approximately 10–30% of the genes encoded in a microbial genome are represented in meta-
bolic GSMs, limiting the utility of thesemodels for interpreting genomic variant data. Metabolic
GSMs can be extended in a number of ways to increase coverage of the overall set of genes. The
transcriptional regulatory network represented as interactions between transcription factors and
target genes, can help extend the coverage of predictive models and can be integrated with meta-
bolic GSMs in a number of ways (Chandrasekaran and Price, 2010, Covert et al., 2004). These
integrated models have been successfully used to make phenotypic predictions.

Another recent extension ofGSMs areME-Models3. Thesemodels account for the entirema-
chinery needed for gene and protein expression, providing a higher coverage of cellular functions
and a higher resolution of cellular composition (O’Brien et al., 2013). ME models have also been
extended further to incorporate protein translocation from the cytoplasm to the periplasm (Liu
et al., 2014). Currently, most of these extensions of GSMs have only been developed for E. coli
and significant efforts will be required to build these extended models for other bacteria as well
as eukaryotic model organisms such as S. cerevisiae.

The development of accurate kinetic models of metabolism, which could be useful for in-
vestigating the effects of mutations on allosteric regulation and catalytic activity, is still a tedious
process. These models are usually limited to small parts of metabolism focusing on central car-
bon metabolism (Chassagnole et al., 2002, Machado et al., 2014, Peskov et al., 2012). There are
two main reasons for these limitations: the models become huge in size and kinetic information
ofmany enzymes is still unknown. Protocols (Stanford et al., 2013b) andmethodologies (Chowd-
hury et al., 2014) are being developed to bring kinetic modeling to the genome-scale, but the re-
sulting models have not yet reached sufficiently mature stage for use in variant effect prediction.

In comprehensive level, a strategy for buildingwhole-cellmodels by combiningmultiple indi-

3Metabolism and Expression models
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vidual models of different cellular processes including cell cycle, metabolism, transcription, and
transport has been proposed (Karr et al., 2012). This strategy that also allows combining models
using different representations (constraint-based, kinetic, stochastic) was used to build a func-
tioning whole-cell model of one of the simplest prokaryotes, Mycoplasma genitalium. Efforts
towards building more complete genome-scale models of microbes will continue as more and
more information is collected and computing power increases. These models will bring us closer
to the goal of genome-wide prediction of phenotypes from genotyping data.

Opportunities

Genetic engineering tools, such as MAGE (Wang et al., 2009) or CRISPR/Cas9 (Xu et al., 2014),
already allow us to quickly edit genomes in a precise and accurate fashion at the single base-pair
resolution level at multiple loci simultaneously. These methods will allow us to map epistatic
interactions of variants within a single gene and between multiple genes more comprehensively
than before. On the other hand, new in silico tools for predicting variant effects on phenotypes
outlined above open the way to a new style of modeling at the scale of single nucleotides. These
new modeling tools will greatly benefit from better training datasets that can be obtained using
MAGE, CRISPR/Cas9 or other genome editing methods systematically to map epistatic interac-
tions. The application of these novel strategies provides a way to fine tune activities of proteins
in the context of complete cellular networks. For example, we envision that in the future we will
have predictive models of how engineering of multiple enzymes at the single amino-acid level
would affect the production of a desired metabolite.

To achieve the maximum potential of genome-scale biochemical network modeling and ge-
netic variant analysis, a linkmust be created between these two fields. The necessary information
to connect both worlds is already there: we know the genes, the proteins, and the reactions. The
major limitations are in the current methods and data sources. On the one hand we must over-
come the limitations of the tools available to predict variant effects by allowingmore fine grained
predictions of how a variant may affect any given protein function or expression. The usage
of protein folding predictions, for example, has already been established in metabolic modeling
(Chang et al., 2013), and it should be possible to use tools that predict variant effects on protein
stability together with genome-scale models. On the other hand, we need to improve biochemi-
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cal network modeling techniques: this is a evolving field and in the past decade there have been
efforts to standardize the construction of models (Thiele and Palsson, 2010) and improving pre-
diction methods by including high-throughput data (Machado and Herrgård, 2014).

Finally, it should be acknowledged that there will always be limitations in using solely ge-
nomic variant data as the basis for making phenotypic predictions for specific strains. We may
also need tomeasure intermediate phenotypes such as transcript, protein, ormetabolite levels for
these strains in order to make predictions of how a given genotype affects a specific phenotype
(Burga and Lehner, 2013). Fortunately enough comprehensive multi-omic data sets are currently
being collected for wild type microbial strains, allowing refinement of modeling and bioinfor-
matic approaches for phenotypic prediction (Ishii et al., 2007, Skelly et al., 2013). Hopefully, sys-
tematizing such data sets and a concerted action between modelers, geneticists, microbiologists,
and bioinformaticians will allow us to achieve the prediction of changed and novel metabolic
capabilities of a microbial strain from genomic re-sequencing data.
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Table 5.1: A summary of the available software tools for predicting the effect of the genetic variants.

Tool Description Reference

AUTO-MUTE Uses the ’4-Body Statistical Potential’ to compute
a set of features—based on protein 3D structure—
used to train a Random Forest model to predict
neutral or disease associated SNPs.

Masso and Vais-
man (2010)
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Table 5.1 – continued from previous page

Tool Description Reference

Align-GVGD This algorithm is based on Multiple Sequence
Alignment andGrantham distance to identify mis-
sense SNPs. The authors propose a measure to
calculate how much the substitution changes the
Grantham distance.

Tavtigian (2005)

CADD A machine-learning approach that uses a SVM
model to predict deleterious phenotypes caused by
SNPs.

Kircher et al.
(2014)

Chasman et al.
2001

A probabilistic approach to identify which SNPs
have an effect on the protein function using struc-
tural and evolutionary features that compare the
variation against a dataset of mutations of lac re-
pressor and T4 lysozyme.

Chasman and
Adams (2001)

CONDEL Consensus deleteriousness provides a score com-
puted based on the weighted average of the nor-
malized scores of 5 different tools: LogR.E-value,
MAPP, Mutation assessor, Polyphen and STIF.

González-Pérez
and López-Bigas
(2011)

Evolutionary
Action

Evolutionary Action is a function that links geno-
type with phenotype using evolutionary informa-
tion, by quantifying the impact of SNPs on the
fitness of a population; it correlates with disease-
associated mutations.

Katsonis and
Lichtarge (2014)

FATHMM Uses hidden Markov Modelss (HMMs) to obtain
position-specific information. The prediction is
based on the probability change of the HMM be-
tween wild type and mutant.

Shihab et al. (2012)
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Table 5.1 – continued from previous page

Tool Description Reference

FunSAV A Random Forest classifier for predicting deleteri-
ous SNPs. It combines properties of the mutated
proteinwith other tools (i.e nsSNPAnalyzer, PAN-
THER, PhD-SNP, PolyPhen2, SIFT and SNAP).

Wang et al. (2012)

FuzzySnps A machine-learning approach that uses a Random
Forest model trained by combining ’4-Body Statis-
tical Potential’ and sequence-based features to iden-
tify tolerant and intolerant SNPs.

Barenboim et al.
(2008)

Goldgar et al.
2004

A probabilistic approach to determine if a SNP is
disease-causing, which is achieved by computing
the likelihood of the protein to be similar to pre-
viously classified mutated proteins in a dataset.

Goldgar et al.
(2004)

HANSA It is a machine-learning classifier that uses a SVM
model to predict whether a SNP will be neutral or
disease causing.

Acharya and Na-
garajaram (2011)

LogR.E-value Uses the E-value computed by the HMMER algo-
rithm using PFAM motifs to distinguish between
deleterious and neutral SNPs.

Clifford et al.
(2004)

LS-SNP A workflow/database that uses predefined rules
and machine-learning (SVN) approach to system-
atically characterize known SNPs.

Karchin et al.
(2005)

Krishnan et al.
2003

Two machine-learning approaches—using SVM
and Decision Trees models—are used to predict
the ’effect’ or ’no-effect’ of a SNP.

Krishnan and
Westhead (2003)

MAPP Multivariate Analysis of Protein Polymorphism
uses statistical analysis to predict the deleterious ef-
fect of SNPs.

Stone (2005)
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Table 5.1 – continued from previous page

Tool Description Reference

Mutation assessor Predicts the degree of impact in a protein by scor-
ing the mutation based on the impact it causes
regarding the properties of a Multiple Sequence
Alignment of homologous sequences.

Reva et al. (2011)

Mutation taster 2 Uses a Bayes classifier to predict disease associated
effects caused by SNPs or Indels. The classifier
uses a set of features that includes splicing site
andpolyadenylation signal information alongwith
structural and evolutionary properties.

Schwarz et al.
(2014)

MutPred Uses a machine-learning approach to predict dis-
ease or neutral SNPs. The features used refer to
a probability of loss or gain of function regarding
several functional and structural properties of the
encoded protein. The authors trained SVM and
Random Forest models in this work.

Li et al. (2009)

nsSNPAnalyzer Uses a Random Forest model trained with fea-
tures (consisting of SIFT score and information
from Multiple Sequence Alignment and protein
3D structures) to identify disease associated SNPs.

Bao et al. (2005)

Papepro A SVMprediction model is used by the authors to
separate deleterious from neutral SNPs.

Tian et al. (2007)

Panther Using an internal database of HMM, an evolu-
tionary score is computed and themethod predicts
deleterious or neutral effects with a probability at-
tached. The cutoff can be defined by the user (de-
fault is 3).

Thomas and
Kejariwal (2004)
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Table 5.1 – continued from previous page

Tool Description Reference

PhD-SNP This approach uses one of two SVM models: one
is trained using sequence profile features and the
other is trained using sequence features. The
choice of which model to use is based on a prelimi-
nary decision: if the mutation exists in the homol-
ogy profile, the first model is used, otherwise the
prediction is done using the second model.

Capriotti et al.
(2006)

PMut Predicts pathological or neutral effects of amino-
acid substitutions. The prediction model is a Neu-
ral Network using structural-, physicochemical-,
and evolutionary-based features, all calculated us-
ing sequence information only (without requiring
a 3D protein structure).

Ferrer-Costa et al.
(2005)

Polyphen A set of rules defined by the authors is used to pre-
dict the effect of a SNP. These rules are built based
on 3 properties: PSIC score, substitution site prop-
erties, and substitution type properties. If one of
the rules matches, the output can be deleterious or
benign, otherwise the substitution is classified as
neutral.

Ramensky (2002)

PolyPhen2 The followup version of Polyphen, uses a naive
Bayes predictor to predict damaging, benign, or
neutral effects of SNPs. It uses structural informa-
tion if available.

Adzhubei et al.
(2010)

PROVEAN ProteinVariationEffectAnalyzer computes a score
based on evolutionary information to predict if a
genetic variant (i.e. SNPor Indel) is neutral or dele-
terious.

Choi et al. (2012)

193



Table 5.1 – continued from previous page

Tool Description Reference

RCOL Applies a Bayes’ formula to calculate the probabil-
ity of a SNP to be deleterious. The likelihood is
tested using 20 structural and physicochemical pa-
rameters.

Terp et al. (2002)

SAPRED Using a SVM prediction model, the authors com-
bine features computed from evolutionary, struc-
tural, and physicochemical properties to predict
disease associated SNPs.

Ye et al. (2007)

SIFT Using a PSSM, SIFT determines the probability of
a substitution being tolerated in a given position.

Ng and Henikoff
(2001)

SNAP Identifies non-neutral SNPs using machine-
learning approaches that combines a battery of
Neural Network models.

Bromberg et al.
(2008)

SNPs3D Combines a set of features obtained from protein
3D structure and evolutionary information to pre-
dict deleterious effects using a SVM model.

Yue et al. (2006)

SNPs&GO Amachine-learning approach that includesGOan-
notations as features in a SVM model to predict
whether a SNP is neutral or disease associated.

Calabrese et al.
(2009)

SNPs&GO3D It is the successor of SNPs&GO. It includes new
features obtained from protein 3D structure.

Capriotti and Alt-
man (2011)

Sunyaev et al. 2001 This approach uses a set of 7 rules empirically de-
fined by the authors to identify nsSNPs. If one of
the rules is matched, then the SNP is likely to be
deleterious.

Sunyaev (2001)
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Table 5.1 – continued from previous page

Tool Description Reference

SuSPect A SVM model implementation to predict disease
phenotypes caused by SNPs. The authors started
with a highnumber of features until they identified
9 that provided best performance.

Yates et al. (2014)

VarMode A machine-learning approach using a SVN model
to predict the effect of SNPs that includes informa-
tion regarding knownprotein-protein interactions.
It predicts non-synonymous SNPs.

Pappalardo and
Wass (2014)
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I have not failed. I’ve just found 10,000 ways that won’t
work.

Thomas Edison

6
Predicting enzyme kinetics: the quest for the

holy grail

Summary

This chapter describes the landscape of catalytic rates across multiple species and reactions. The
challenges and approaches to bridge data from different databases, including enzyme sequences
and structures as well as chemical compounds present in the reactions are also explained in this
chapter. Overall, here the reader can find how different aspects of biology and chemistry are
related to the enzyme activities.
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Abstract

Mutagenesis and evolution-based strategies has been used to develop strains for industrial ap-
plications for decades, but these strategies usually create strains with many mutations. Due to
developments in sequencing technology, we can now routinely resequence strains to determine
the mutations that are present. However, we lack tools to understand the effect of most of these
mutations without testing them in the laboratory one at a time. As described in previous chap-
ter, mutations can affect metabolic functions in multiple ways including modulation of gene
expression through intragenic mutations and mutations in actual enzyme coding sequences. In
this chapter we focus onmutations in enzyme coding sequences that could affect enzyme activity
through influencing the stability of enzymes, their catalytic rates (kcat), or their affinity to sub-
strates. Here we focus primarily on exploring the mutational and other determinants of enzyme
kcat values usingpublicly available in vitrokcat data. We collect the data for this analysis bymerging
enzyme kinetics data with protein sequence and structure as well asmetabolite structure informa-
tion from multiple databases. We use the dataset to study how predictable kcat values are from
features related to enzyme sequences, enzyme structures as well as features of chemical substrates
and products of the reaction. Due to incompleteness of datasets as well as lack of cross references
between databases, the full dataset has only limited coverage of the enzyme universe. We can still
use this limited dataset to explore determinants of kcat values at least for a subset of enzymes. We
observe no direct correlation between predicted mutation effect of specific mutations and cat-
alytic rates for the small number of enzymes where this data is available. However, we show that
certain mutations that are predicted to destabilize the protein can result in reduced kcat values.
Finally, we build a statistical model to predict kcat values from all the protein sequence/structure
and metabolite/reaction features. This model shows that certain features of the chemical trans-
formations catalyzed by enzymes can be used to predict the catalytic rate. In conclusion, we find
that at the present moment it is not possible to develop general models that explain how mu-
tations affect catalytic activities of enzymes primarily due to lack of comprehensive datasets that
span enough variants of different enzymes. However, it is possible to use the dataset that we have
created to study general determinants of catalytic rates.

213



Introduction

Genetic variation is the motor of evolution. Organisms change their genotype to adapt to chang-
ing conditions in the environment. Individuals with favorable mutations will prevail, leading to
the survival of the population. We can harness this characteristic using adaptive laboratory evo-
lution (ALE). ALE consists of selecting the fittest individuals in a population during the course
of time, while they are exposed to stress conditions. For example, selecting the fastest growing
strains under carbon limitation, high-temperature or presence of toxic chemicals (Hansen et al.,
2017).

The mutant strains obtained from ALE experiments contain two types of genetic variations.
The first type confers a new phenotype and allow the new individuals to survive. The impact of
these mutations in the protein activities can be difficult to predict, except if it is a clear disruption
of the protein (e.g., early stop codon). Other mutations are neutral (i.e., have no measurable
impact on the phenotype) and occur by chance. Predicting the effects of mutations in individual
enzymes can help distinguish causal from neutral mutations.

Genome-scale metabolic models (GEMs) describe the reactions occurring inside a cell and
their relation to the phenotype, encoded by gene-protein-reaction (GPR). These models have
found applications across multiple fields, including metabolic engineering, cancer analysis, phy-
logenetic analysis, etc (O’Brien et al., 2015). In a metabolic model, each reaction can occur up to a
maximum rate vmax. The vmax is determined by the enzyme concentration [E] and the turnover
numberkcat (vmax = [E]·kcat). Therefore, these parameters canbeused to constraint themodel,
by limiting themaximum flux of each individual reaction. Incorporating enzyme concentrations
and turnover numbers has proven to improve phenotype predictions in Saccharomyces cerevisiae
using a GEM (Sánchez et al., 2017).

Incorporating the impact of genetic variation in metabolic model would result in better phe-
notype predictions and could lead to a better understanding the causality ofmutations occurring
in enzymes. To accomplish that, we need to calculate the change in kcat and concentration for a
set of given enzymeswithmutations and use that information to constraint the flux limits. Using
these values we can directly assess the effect of mutations in the phenotype (Jamshidi et al., 2007).
However, we lack of predictive models capable of predicting the change in kcat or concentrations
given a change in DNA sequence.
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As described in the previous chapter, many tools have been published in the medical field to
assess the effect of mutations in diseases, with a high focus in cancer research. Mutations leading
to cancer or other health disturbances do not necessarily correlate with increase or decrease of
a given protein activity and therefore cannot be used to explain the impact of genetic variation
on a single protein (Cardoso et al., 2015). It is possible to predict enzyme kinetics using machine-
learning approaches for single enzymes. That, however, requires enough examples of reactions
or mutants and good quality protein structures (Carlin et al., 2016, Sipilä and Taskinen, 2004).

In this work we explored the global landscape of kcat values across multiple types of enzymes
using the curated kinetics data available at SABIO-RK (Wittig et al., 2012), protein sequence and
structure databases, and reaction substrate/product databases. Ideally, we would build structure-
basedmodels for enzyme catalytic rates for each enzyme that would allow predicting the effect of
mutations. Indeed,wehave structuralmodels for almost every enzyme inEscherichia. coli (Brunk
et al., 2016). Still, we do not have structural models for many other organisms and in particular
we do not have systematic measurements kcats for a reasonable number sequence variants of a
single enzyme. Therefore, we cannot build protein specific predictive models whenever we need.
Instead, we decided to build a general model with the examples available from multiple proteins
across different species.

We first analyzed the relationship between predictect mutation effects kcat changes for the
small number of enzymes in SABIO-RK where sufficiently large number of variant sequences
were available. We predicted mutation effects based on sequence alone using Sorting Intolerant
fromTolerant (SIFT) (Ng andHenikoff, 2001) andbased on structural data using foldX (Guerois
et al., 2002). These analyses showed that mutation effects predicted using sequence conservation
(SIFT) do not predict changes in kcat at all. Structural approaches (foldX) had some predictive
power, but still there was limited correlation between predictedmutation effects and kcat changes.

In order to study more generally the determinants of catalytic activity beyond mutations,
we computed 284 features using the data available (187 reaction specific features related to the
substrates and products of a reaction, 95 protein specific features related to both sequence and
structural features, pH and temperature of the enzyme kinetic experiment) and used them to
train different regression algorithms to predict kcats. To generate reaction and enzyme features,
we needed to integrate data from multiple databases (KEGG, ChEBI, PubChem, UniProt and
PDB). In every part of the process, we lost parts of the data due to lack or inconsistent identifiers
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in the SABIO-RK database and incorrect locations of mutations reflecting the lack of proper
identifiers in the biochemistry literature. The final complete data set is a under representation of
all the enzyme kinetics data available (2̃%) and it is not likely to represent well the whole universe
of enzymatic functions. However, it is possible to use the data and regression models trained on
the data to explore determinants of the variation in kcat values in the data.

We highlight interesting facts about the kcat landscape. First, evolutionary conservation alone
does not seem to explain the catalytic rates on its own. Second, the effects of protein stability
must be accounted for in using measured kcats. Finally, the maximum catalytic rates observed
vary with EC number and the actual chemistry that takes place. That suggests that the chemistry
of the reaction could limit the space of possible kinetic values. However, the amount of data is
not currently sufficient to do deeper assessment of general factors driving variation in catalytic
activity.

Materials and Methods

Retrieving SABIO-RK data

Kinetic datawas retrieved fromSABIO-RK(Wittig et al., 2012). Theworkflow to retrieve SABIO-
RK data can be found in Figure 6.1 The data was retrieved using theirWeb API.We collected the
following information: reaction stoichiometry, metabolite cross-references, enzyme functions
and cross-references, and kinetic parameters (i.e., kcat, kM, Hills constants, temperature and pH).
During the processing step, we discard polymerization reactions.

Enrich metabolites identifiers

Using theChemical Translation Service (CTM) to enrich ourmetabolites database (Wohlgemuth
et al., 2010). For everymetabolite in our database without a reference, we queried the CTMusing
metabolite names and accepted only entries that were 100%match. Using the data fromCTMwe
added cross-references (if available) for the following databases: KEGG, ChEBI and PubChem.
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Tier 1

Tier 2

Tier 3

Tier 4

53344 Kinetic entries

REST API

Skip polymerization reactions
52429 Kinetic Entries
28498 Enzymes

6770 Reactions
9221 Metabolites

Parse SBML and TXT files
Retrieve kinetic parameters

Calculate kcats 

16473 Kinetic Entries
4739   Enzymes

3011 Reactions
3680 Metabolites

Skip entries without kcat 
Skip enzymes without cross-references

0%

2%

70%

Data loss

Retrieve protein sequences

Parse and apply mutations
Skip invalid entiries (mismatching identifiers)

Skip entries with invalid mutations13722 Kinetic Entries
3926   Enzymes

2795 Reactions
3398 Metabolites74%

Figure 6.1: Worflow for kcat retrieval. Using the REST API we download 53344 SBML files describing each a single kinetic

experiment. Every tier represents the data after a processing step. The amount of data left is reported on the left.

Clustering the experiments by sequence

We retrieved the peptide sequences of each enzyme in our data set from UniProt. We generated
mutant specific sequences by applying the mutations described in the annotation. To build the
clusters we used UCLUST (Edgar, 2010). The clusters were computed using the following pa-
rameters: id = 0.6, target_cov = 0.7, query_cov = 0.7 and minqt = 0.5. All sequences
were sorted in descending order based on their length as suggested in UCLUST documentation.
We evaluated the clustering results by measuring the information entropy of the EC number an-
notations (using the first 2 digits). The information entropy was calculated using the following
equation:

−
n∑

i=0

·P (xi) · log10 P (xi)

where n is the number of observations and P (xi) is the probability of observing xi in the data.

Correcting inconsistent data entries

When multiple kcats were available for the same reaction catalyzed at the same pH and tempera-
ture by the same enzyme (with specific mutations), we selected the highest measured kcat value.
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Correcting mutation positions

We tested the SNVs, deletions, and indels against the sequences fromUniProt. In some cases, the
mutated amino-acid does notmatch the sequence. We assume this is a consequence of peptide se-
quencing used beforeNGS. To overcome that issue, we test themutations against post-processed
sequences to identify corrected position of each mutation, using the post-translational modifica-
tions (PTMs) and other processing events identified at UniProt. However, we can only validate
deletions, SNVs and indels are because the original amino-acid is reported in the mutation nota-
tion. Insertionmutations cannot bemappedbecause they containonly the insertionposition. So,
we only corrected the insertion mutations when there occurred together with other mutations.

Conservation scores

We determined the sequence conservation in 6 steps:

1. Group the sequences by reaction, sequence cluster, pH and temperature.

2. Select the longest available sequence in each group to be the reference.

3. Calculate the mutations required to convert a given sequence in the group into the refer-
ence sequence. Themutations were identified from a global sequence alignment. We used
the BLOSUM62 scoring matrix, a gap open penalty of −10 and a gap extension penalty
of−10 for the alignment.

4. Using SIFT software, we built a score matrix for every amino-acid in all positions. We
assigned the gap score at a given position to the average score of all amino-acids at that
position.

5. For every sequence in a group, we applied all the necessary gaps to match the reference
sequence. The modified sequence should have the same length as the reference sequence.

6. For every position in a sequence and the reference sequence, we retrieved the tolerance
score of each amino-acid or gap at the given position. The sequence conservation score is
the sum of all positional scores.

The change in conservation score is calculated using the following function:
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∆Cscore = |Cref − Cother|/Clength,

where the Cref is the conservation score of the reference sequence, Cother is the conserva-
tion score of the sequence we are comparing and Slength is the size of the largest sequence.

UniProt and PDB bridging pipeline

We created a workflow to convert the protein structures found in PDB into structures represent-
ing the wild-type sequences fromUniProt. This pipeline is necessary to remove cloning tags and
mismatching amino-acids between UniProt and PDB records.

The workflow consists of the following steps:

1. We retrieved all PDB structures identified in the UniProt cross-reference section. The pep-
tide chains in the PDB file and their relative positions after post-translational modification
are also reported in the UniProt data.

2. For eachpeptide chain in thePDB file, wematched a peptide chain reported in theUniProt
sequence. We did that by matching peptide chain positions described in the UniProt
records if more than one chain is reported.

3. We align thepeptide chains to identify smallmodifications. We applied the global sequence
alignment algorithm, using the BLOSUM62 scoring matrix.

4. If the mutations resulting from the alignment were SNVs or deletions, we created a new
protein structure. We removed the amino-acids reported as deletions and replacedof SNVs
using the ssbio library (Mih et al., 2017). Structures requiring insertion mutations were
discarded at this step.

5. Finally we used the foldX repair function on the modified files.
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Mutation effects related to protein stability

Weused foldX to compute the stability∆G. The foldXStability command takes the temperature
and pH as parameters. We built structural models with the specific mutations and calculated
the ∆G of each condition. The ∆∆Gs were calculated by subtracting the ∆Gs of individual
simulations.

Feature generation

We used three kinds of features: protein features, reaction features and process features.

Protein features. We computed 95 features using the protein sequences and strucutres. The fea-
ture set includes the frequency of each amino-acid, the frequency of charged, polar and basic
amino-acids, the grand average of hydropathy (GRAVY), the ∆G energy terms of folding pre-
dicted by foldX, EC numbers (up to the third digit), among others. The complete list of features
can be found in Table S6.1.

Reaction features. Using ChemAxon Calculator Plugins http://www.chemaxon.com and RD-
Kit (http://www.rdkit.org), we computed 187 features for each reaction. Reaction features
are computed using the metabolites (i.e., substrates features, product features) and the conver-
sion (diff between substrate and product features). The feature set includes 75 functional groups,
the number of bonds for (including bond types), polarizability, polar surface area (PSA), non-
polar surface area (NPSA), and charge, among others. The complete list of reaction features can
be found in Table S6.2.

Machine Learning

We trained four linear regression models using the features described before to predict the kcats.
We used a linearmodel fitted using LASSO, ridge regression, LARS, and LASSO-LARS learning
algorithms. The models, training methods and cross-validation functions are implemented in
the scikit-learn package (Pedregosa et al., 2011).
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PCA analysis of reactions for each EC number

We split the data by EC number and performed principal component analysis (PCA) using the
reaction features. We used the highest kcat for each reaction to color points in the scatter plots.

Results and Discussion

Available kcat data

SABIO-RKcontains 53344 entries representing experiments todeterminekinetic parameters (e.g.,
turnover numbers,Michaelis constants, inhibition constants, maximal velocity, etc.). Only 16473
entries contain kcat measurements and a valid sequence cross-reference to UniProt.

The enzymes retrieved from SABIO-RK are described by name, UniProt reference (if avail-
able) andmutations. To generate non-redundant identifiers, we used the UniProt references and
mutations. When no UniProt references were available, we generated a unique identifier for the
enzyme. We identified 4739 unique enzymes with cross-references (Figure 6.1). We then applied
the position correction algorithm to match the mutations to UniProt sequences. The final num-
ber of enzymes (wild-type and valid mutants) is 3926 (Figure 6.1).

We also noticed that SABIO-RK entries had multiple kcatsmeasurements for the same exper-
imental setup (i.e., same enzyme, reaction, pH and temperature). We merged 3058 redundant
experimental setups into unique records by keeping the highest kcat for each repeated entry. Our
final data set contains 11288 entries each with a unique combination of enzyme, reaction, pH and
temperature.

We split the data into three subsets using clustering. The ”all-measurements”, containing all
the 11288 entries that we could retrieve from SABIO-RK; ”ecoli-measurements”, containing the
subset of data where enzymes from E. coli and close related species can be found; and ”yeast-
measurements”, containing the subset of data for Saccharomyces cerevisiae and other close yeast
strain enzymes.

Clusters containing sequences belonging toE. coli strains, the ”ecoli-measurements” set, con-
tains 1192 entries. This corresponds to 154 distinct clusters of similar sequences and 394 unique
reactions. The data set containing yeast strains, the ”yeast-measurements” data set, contains 493
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entries, corresponding to 160 reactions and 62 sequence clusters.

Comparison between kcat and protein sequences

We computed the conservation scores for every peptide sequence relative to a reference sequence
in each sequence cluster in the ”ecoli-measurements” and ”yeast-measurements” subsets. Because
temperature and pH have an effect on the kinetic parameters, we grouped our data by sequence
cluster, reaction, pH and temperature. We observed no correlation between the variation in se-
quence conservation and the variation kcat in both yeast andE. coli data sets (Figure 6.2). Indeed,
the sequence conservation based on position specific probabilities fails to capture inter-residue in-
teractions (Hopf et al., 2015). Weneed amore comprehensivemodel to link amino-acid sequences
with enzymatic activity. However, to build such model, we need to collect more data.

Comparison between kcat and folding stability

We used foldX to compute the∆G of stability for each protein in the ”ecoli-measurements” set.
The stability∆G accounts for pH and temperature. For each cluster, we compared the∆∆G of
stability between different protein sequences with the change in kcat within each protein cluster
for different reactions. We applied our UniProt-PDB bridging pipeline on the E. coli data set to
create structures representing the wild-type and mutant sequences. There are two main reasons
why we changed the files PDB files: the proteins expressed for crystallization contain expression
tags and the sequences reported differ from the wild-type. We manage to recover 50 structures
from the 204 distinct protein sequences available in our data.

We split the data by cluster and reaction, because foldX calculations account for temperature
and pH. We plotted the kcats and ∆Gs to identify correlation patterns and found two groups
where between stability and kcat are correlated (Figure 6.3).

In the first group, the kinetic parameters were measured at 30 deg Celsius (Table 6.1). The
pH was 6.9 for two of the three experiments. This suggests that the kcat is influences by protein
stability in this cluster. Still, withonly threepoints this effect shouldnotbe considered completely
explanatory.

The second group contains also three measurements at constant pH and temperature (7.5,
22.0 deg Celsius). This indicates that the mutations make the protein more unstable and there-
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Table 6.1: First group description.

Temperature (◦C) pH kcat UniProt Id ∆G Mutations
30.0 6.9 0.95 P37610 -50.95
30.0 6.9 1.25 P37610 -51.53 S158A
30.0 8.0 1.83 P37610 -52.82

Table 6.2: Second group description.

Temperature (◦C) pH kcat UniProt Id ∆G Mutations
22.0 7.5 0.002 P0AES2 -211.75 K207R
22.0 7.5 0.280 P0AES2 -213.16 N341D
22.0 7.5 44.000 P0AES2 -205.75

fore the kcat decrease might be strongly influenced by the amount of active enzyme (Table 6.2).

Fitting the data using linear regression

We generated 284 potentially predictive features for the ”all-measurements” data set. The feature
generation approach we applied is very strict and requires identifiers all chemicals and enzymes
(including 3D structures), therefore the final data set comprises only 1012 entries (Table 6.3). The
data loss has 4 different causes: inconsistent UniProt identifiers, lack or inconsistent metabolite
identifiers, invalid mutation mapping, and lack of 3D structures.

We evaluated the distribution of EC numbers in the data set. We observed that Ligases and
Oxireductases were underrepresented in the data (Figure 6.4). At this point, we did not try to
balance the enzyme classes because we a limited amount of data.

Table 6.3: Overview of the data used to build linear regressionmodels.

Feature Count
Entries 1012

EC numbers 98
Species 59

Features 284
Wild-Type Enzymes 127

Mutant Enzymes 244
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Table 6.4: Residual sum of squares for different linear regressionmodels.

Data Set lasso ridge lars lasso-lars
Train 7.371E3 4.785E3 1.052E4 8.635E3
Test 1.795E3 1.561E3 2.329E3 1.946E3

Table 6.5: Feature count for different algorithms

Algorithm Feature count
LASSO 43
RIDGE 283
LARS 11
LASSO-LARS 23

We applied four different learning algorithms to build linear models: LASSO, ridge regres-
sion, LARS, and LASSO-LARS. Using the traditional machine learning approach, we split our
data into train and test (80% and 20%) and fitted the model parameters using cross validation.
Table 6.4 shows the residual sum of sequares (RSS) for each model and predictions are shown in
Figure 6.5.

Given the high number of features and the low amount of data, the fitted models is likely
to be overfitted. Plus, the 1012 data points represent 2% of the original entries in SABIO-RK
indicating severe undersampling of the enzyme space. Therefore, this model will not necessarily
generalize beyond the dataset used in the present study.

We selected themost predictive features (top 20 if available, Figures S6.5, S6.6, S6.7 and S6.8).
Despite the fact that we cannot use any of the models to predict kcats in general, we can still look
at patters in the data. The feature selection identified features corresponding to chemical changes
as a result of fitting the data. Applying LASSO, LARS and LASSO-LARS result in higher spar-
sity in the feature selection, while ensuring a reasonable fit which allows better interpretability
(Table 6.5). The selected features indicate that the nature of the chemical reaction contributes to
determine kcat.
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Relationship between catalytic rates and with the chemistry of
the reactions

To identify if there is any relationship between the chemistry (i.e., the process of chemical conver-
sion) and the catalytic rates, grouped our data by EC number. Because we do not need to know
the UniProt or chemical identifiers, we can use all entries with kcat (23293 measurements).

Enzymeswithmore than one ECnumberwere classified as complex (Figures S6.9, S6.10, S6.11
and S6.12). There are some distinct patterns. For example EC numbers 1.14.15, 1.14.17, 1.13.99 or
EC 4.99.1 tend to display a slower rate. Other enzymes, with EC numbers 1,3.99 or 1.10.99 show
a higher kcats.

We hypothesize that some catalytic rates might be limited by the chemistry of the reaction
they catalyze. It is possible to predict the impact of mutations in a single protein using machine-
learning (Carlin et al., 2016). Interestingly, the study byCarlin et al. Carlin et al. (2016) also found
that the hydrogen bonding energy of the substrate was a predictive feature.

With that in mind, we calculated Pearson correlation coefficients between EC numbers and
product features and EC numbers and substrate features. We observed that a some features corre-
late strongly with certain EC numbers. We also observed a low tomoderate correlations between
the substrate or product features andmost of the EC numbers (Figures S6.13 and S6.14). The top
10 EC numbers with the highest correlation coefficients with substrate or products features are
show in Table 6.6.

Using PCA we decomposed the subset of data corresponding to each EC number, using the
reaction features. We plotted the transformed data using the first two components and colored
the points with kcat values. In a few cases, we observed a good separation between high and low
kcats based on the PCA decomposition (Figures S6.15, S6.16 and S6.17).

Conclusions

Themajor challenge with the present study was creating a consistent dataset that links enzyme ki-
netic parameters with sequence and structural information. The kinetic data available in SABIO-
RK does not have consistent identifiers. The database lacks protein identifiers for approximately
half of the enzymes described in the entries. One reason for that is the lack of standards for pub-
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Table 6.6: Top EC numbers and correlated features ranked by Pearson correlation coefficient. The pairs with correlation

coefficient higher than 0.75 are shown.

EC Coefficient Feature
1.7.3 1.00 Products number of nitroso
1.1.3 1.00 Substrates number of peroxyde

3.4.21 0.96 Substrates number of generic amino acid (not glycine)
3.4.21 0.94 Products number of generic amino acid (not glycine)
1.11.1 0.91 Products number of peroxyde
3.1.1 0.88 Products number of anhydrides (except formic anhydride)
6.4.1 0.88 Substrates number of carbamate
6.3.4 0.88 Substrates number of carbamate
1.1.1 0.84 Products number of enanmine
5.3.1 0.81 Products number of aldehyde
4.1.2 0.76 Substrates number of aldehyde

lishing enzyme kinetics until the early 80’s. Still, despite the adoption of standards in the 90’s,
most of the articles on enzyme kinetics do not report EC numbers nor protein and reaction iden-
tifiers (Wittig et al., 2014). In some cases, SABIO-RK entries were reassigned in UniProt and the
identifiers were no longer valid.

Recent work has shown that machine-learning can be used to predict enzyme kinetic param-
eters of a single enzyme from sequence variant data using a training set of 100 mutants (Carlin
et al., 2016). To make a model capable of predicting kcats in general from sequence variation data
requires similar datasets for a large number of enzymes. Our data set collected from SABIO-RK
represents approximately 2% of the existing kcats. measurements and does not contain enough
cases where both wild type and mutant versions of the same enzyme have consistently measured
parameters. This limits our current ability to explore general approaches for predicting the effects
of sequence variation on enzyme kinetics.

Deep mutational scanning (DMS) provides a systematic way to create a sequence-to-fitness
landscapes for enzymeswhose activity can bemeasured by a high throughput assay (e.g. FACS) or
connected to cellular fitness (Fowler andFields, 2014). This type of data sets could beused to learn
more generally how sequence variation affects enzyme functions. Data from DMS experiments
is accumulating in the public domain, but these experiments have still only been performed for
a handful of enzymes. In addition the sequence diversity that can be spanned in DMS exper-
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iments is still a small fraction of the full sequence landscale. For example, a protein with 200

amino-acids has 1.048576E46 possible distinct sequences, so we would need to cherry-pick parts
of the proteins to study in more detail. In conclusion, our ability to quantitatively predict ef-
fects of sequence variation on enzyme kinetics is primarily limited by availability of relevant data
from consistently performed experiments. This also limits our ability to predict more complex
genotype-phenotype relationships such as how mutations discovered by resequencing ALE iso-
lates affect metabolic phenotypes.

Due to limitations in the data available to explore the enzyme sequence-kcat relationship, we
decided to instead focus on more broadly studying the determinants of kcat values including fea-
tures of the chemical reaction that is taking place as well as sequence and structure features. Previ-
ous studies show that the measurements of kinetic constants in vitro are close to in vivo expected
value for E. coli based on estimated metabolic fluxes and measurements of absolute protein lev-
els (Davidi et al., 2016). This could mean that evolution of has selected for the specific catalytic
efficiencies we observe, i.e. that the kcat values are not intrinsically limited by factors related to
reaction chemistry. We show that we can split some of our data into high and low kcats using
only information about the chemistry,. Moreover, the data we obtained shows that the catalytic
rate of some reactions depends on the chemistry itself. This hypothesis needs to be further in-
vestigated because this observation can be a result of lack of available kinetic measurements for
different groups of reactions.

Three questions arise from these observations. Can we identify physicochemical constraints
that limit the kinetics of biochemical reaction? Can we quantify complex interactions between
enzymes and reactions using machine-learning without structural modeling? Did we observe
enough reactions to identify the limits imposed by chemistry?

To address this questions we to solve three problems. First, we need more data, to make sure
we don’t collect artifacts from the data analysis itself. Second, we need to separate the reactions
using an unbiased method. While the first EC number separates the reaction by mechanism, the
nomenclature is artificial, incomplete and some times not consistent. Finally, we need to learn
more about the interaction of substrates and enzymes: what kind of bonds do they form and
what are the specific steps of the conversion.
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(a) E. coli clusters

(b) Yeast clusters

Figure 6.2: Variation in protein sequence conservation and kcat. The∆kcat values were scaled between -1 and 1 for plotting.
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Figure 6.3: Change in stability and kcat within protein clusters and reactions. Each subplot shows the∆∆G and change in

kcat between each element of the cluster against all other elements in the same cluster that catalyze the same reaction.229
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Figure 6.4: Distribution of enzymes per EC group. EC 1: Oxireductases; EC 2: Transferases; EC 3: Hydrolases; EC 4: Lyases;

EC 5 Isomerases; and EC 6 Ligases

Figure 6.5: Experimental and predicted log10(kcat). This scatter plot shows the experimental and predicted values. The data

was sorted by experimental value in ascending order.
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Supplementary Information

Table S6.1: Featureweight for protein features using differentmachine-learningmodels. We used for regressionmethods:

LASSO, ridge, LARS, LASSO-LARS

feature LASSO RIDGE LARS LASSO-
LARS

EC 1.1.1 Oxidoreductases acting on the ch-oh group
of donors<br>withnad(+) or nadp(+) as acceptor

-0.029 -2.646 0.000 0.000

EC 1.1.3Oxidoreductases acting on the ch-oh group
of donors <br> with oxygen as acceptor

0.000 1.728 0.000 0.000

EC 1.11.1Oxidoreductases acting on a peroxide as ac-
ceptor <br> peroxidases

1.158 -0.248 0.000 0.585

EC 1.3.5Oxidoreductases acting on the ch-ch group
of donors <br> with a quinone or related com-
pound as acceptor

0.000 0.394 0.000 0.000

EC 1.3.8Oxidoreductases acting on the ch-ch group
of donors <br> with a flavin as acceptor

0.000 -4.213 0.000 0.000

EC 1.7.3 Oxidoreductases acting on other nitroge-
nous compounds as donors <br> with oxygen as
acceptor

0.000 -1.760 0.000 0.000

EC 2.1.1 Transferases transferring one-carbon
groups <br> methyltransferases

0.000 -2.477 0.000 0.000

EC 2.2.1 Transferases transferring aldehyde or
ketonic groups <br> transketolases and transal-
dolases

0.000 -3.703 0.000 0.000

EC 2.3.1 Transferases acyltransferases transferring
groups other than amino-acyl groups

0.000 0.000 0.000 0.000

EC 2.3.3 Transferases acyltransferases acyl groups
converted into alkyl groups on transfer

0.000 -7.409 0.000 0.000
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Table S6.1 – continued from previous page

feature LASSO RIDGE LARS LASSO-
LARS

EC2.4.1Transferases glycosyltransferases<br>hex-
osyltransferases

0.000 -1.508 0.000 0.000

EC 2.4.2 Transferases glycosyltransferases <br>
pentosyltransferases

0.000 -1.161 0.000 0.000

EC 2.6.1 Transferases transferring nitrogenous
groups <br> transaminases

0.000 -3.791 0.000 0.000

EC 2.7.1 Transferases transferring phosphorus-
containing groups <br> phosphotransferases with
an alcohol group as acceptor

0.000 -1.107 0.000 0.000

EC 2.7.2 Transferases transferring phosphorus-
containing groups <br> phosphotransferases with
a carboxy group as acceptor

3.732 2.104 0.644 1.701

EC 2.7.3 Transferases transferring phosphorus-
containing groups <br> phosphotransferases with
a nitrogenous group as acceptor

0.000 -6.624 0.000 0.000

EC 3.1.1 Hydrolases acting on ester bonds <br> car-
boxylic ester hydrolases

1.012 -0.534 0.000 0.000

EC 3.1.2Hydrolases acting on ester bonds <br> thi-
olester hydrolases

0.000 -4.299 0.000 0.000

EC 3.1.3 Hydrolases acting on ester bonds <br>
phosphoric monoester hydrolases

-0.040 -4.226 0.000 0.000

EC 3.11.1 Hydrolases acting on carbon-phosphorus
bonds <br> acting on carbon-phosphorus bonds

0.000 -6.281 0.000 0.000

EC 3.2.1 Hydrolases glycosylases glycosidases, i.e.
enzymes hydrolyzing o- and s-glycosyl compounds

0.000 -3.429 0.000 0.000

EC 3.4.11 Hydrolases acting on peptide bonds (pep-
tidases) <br> aminopeptidases

0.000 -1.535 0.000 0.000
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Table S6.1 – continued from previous page

feature LASSO RIDGE LARS LASSO-
LARS

EC 3.4.13Hydrolases acting on peptide bonds (pep-
tidases) <br> dipeptidases

0.000 -6.667 0.000 0.000

EC 3.4.21Hydrolases acting on peptide bonds (pep-
tidases) <br> serine endopeptidases

0.000 -2.286 0.000 0.000

EC 3.5.1 Hydrolases acting on carbon-nitrogen
bonds, other than peptide bonds <br> in linear
amides

0.000 -5.764 0.000 0.000

EC 3.5.99 Hydrolases acting on carbon-nitrogen
bonds, other than peptide bonds <br> in other
compounds

0.000 -0.695 0.000 0.000

EC 3.6.1Hydrolases acting on acid anhydrides <br>
in phosphorus-containing anhydrides

0.000 2.272 0.000 0.000

EC 3.8.1Hydrolases acting onhalide bonds<br> in
c-halide compounds

0.000 -2.730 0.000 0.000

EC 4.1.1 Lyases carbon-carbon lyases carboxy-lyases 0.000 -5.351 0.000 0.000
EC 4.1.2 Lyases carbon-carbon lyases aldehyde-
lyases

0.000 -1.126 0.000 0.000

EC 4.1.3 Lyases carbon-carbon lyases oxo-acid-
lyases

0.382 -1.885 0.000 0.051

EC 4.2.1 Lyases carbon-oxygen lyases hydro-lyases -0.008 -2.076 0.000 0.000
EC 4.2.3 Lyases carbon-oxygen lyases acting on
phosphates

0.000 -4.873 0.000 0.000

EC 4.3.1 Lyases carbon-nitrogen lyases ammonia-
lyases

-3.297 -8.734 -0.840 -1.553

EC 4.3.2 Lyases carbon-nitrogen lyases lyases acting
on amides, amidines, etc

-0.226 -6.572 0.000 0.000
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Table S6.1 – continued from previous page

feature LASSO RIDGE LARS LASSO-
LARS

EC 4.4.1 Lyases carbon-sulfur lyases carbon-sulfur
lyases

0.000 -7.543 0.000 0.000

EC 5.1.1 Isomerases racemases and epimerases <br>
acting on amino acids and derivatives

0.000 -5.305 0.000 0.000

EC 5.1.3 Isomerases racemases and epimerases <br>
acting on carbohydrates and derivatives

0.000 -0.551 0.000 0.000

EC 5.3.1 Isomerases intramolecular oxidoreductases
<br> interconverting aldoses and ketoses

0.277 -4.889 0.000 0.000

EC 5.4.2 Isomerases intramolecular transferases
<br> phosphotransferases (phosphomutases)

0.000 -5.016 0.000 0.000

EC 5.4.4 Isomerases intramolecular transferases
<br> transferring hydroxy groups

0.000 -4.959 0.000 0.000

EC 6.3.4 Ligases forming carbon-nitrogen bonds
<br> other carbon–nitrogen ligases

-4.079 -1.725 0.000 -2.735

EC 6.4.1 Ligases forming carbon-carbon bonds
<br> forming carbon-carbon bonds

0.000 -1.725 0.000 0.000

ALA% 0.000 -4.542 0.000 0.000
CYS% 0.505 0.637 0.000 0.000
ASP% -1.020 -3.614 0.000 0.000
GLU% 0.000 5.881 0.000 0.000
PHE% 0.000 -1.869 0.000 0.000
GLY% 1.176 0.531 0.000 0.000
HIS% 0.000 -2.782 0.000 0.000
ILE% 0.510 1.589 0.000 0.000
LYS% 0.000 -2.409 0.000 0.000
LEU% 0.000 3.445 0.000 0.000
MET% -1.580 -3.093 0.000 0.000
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Table S6.1 – continued from previous page

feature LASSO RIDGE LARS LASSO-
LARS

ASN% 0.000 1.677 0.000 0.000
PRO% 0.000 0.982 0.000 0.000
GLN% 0.000 -1.704 0.000 0.000
ARG% 0.000 0.322 0.000 0.000
SER% 0.000 -1.231 0.000 0.000
THR% 0.000 2.595 0.000 0.000
VAL% 0.000 2.756 0.000 0.000
TRP% 0.645 5.808 0.000 0.000
TYR% -1.399 -3.940 -0.440 -1.440
Number of acidic amino-acids 0.000 2.302 0.000 0.000
aromaticity 0.000 -1.515 0.000 0.000
Backbone Clash Delta G 0.000 -0.600 0.000 0.000
Backbone H-bound Delta G 0.000 -3.744 0.000 0.000
Number of basic amino-acids -1.029 -3.645 0.000 0.000
charge 0.000 0.000 0.000 0.000
Cis Peptide Bond Delta G 0.000 5.393 0.000 0.321
AUC for coils disorder 0.000 2.998 0.000 0.000
Disulfide bonds Delta G 0.000 2.109 0.000 -0.060
Electrostatics Delta G 0.000 -3.110 0.000 0.000
Ionisation Energy Contribution 0.190 -0.785 0.000 0.000
Hydrophobic groups Contribution 0.000 3.066 0.000 0.000
Burying polar groups penalty 0.000 -4.030 0.000 0.000
Torsion Delta G -3.127 -2.143 -0.994 -2.030
VanderWaals Delta G 0.000 4.216 0.000 0.000
Energy penalization due to VanderWaals’ clashes 0.000 -1.501 0.000 0.000
Main chain Delta H 0.000 3.373 0.000 0.000
Side Chain Delta H 0.000 -4.776 0.000 0.000
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Table S6.1 – continued from previous page

feature LASSO RIDGE LARS LASSO-
LARS

Grand Average of Hydropathy 0.000 1.334 0.000 0.000
Helix Dipole electrostatic contribuition 0.000 -3.308 0.000 0.000
Hot Loops 0.000 2.268 0.000 0.000
Instability Index -1.011 -2.544 -0.255 -1.019
Electrostatic constant 0.000 -1.362 0.000 0.000
Mol Weight 0.000 -4.759 0.000 0.000
Non Polar 0.000 0.749 0.000 0.000
Number Of Products -0.106 -3.103 0.000 0.000
Number Of Substrates 0.000 -3.935 0.000 0.000
Number of polar amino-acids 0.000 -0.754 0.000 0.000
AUC for rem465 disorder 0.000 -4.267 0.000 0.000
Structural Active Site Charge 0.000 3.702 0.000 0.000
Sidechain H-bound Delta G 0.000 0.246 0.000 0.000
Total Delta G 0.000 2.318 0.000 0.000
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Table S6.2: Featureweight for enzymatic features using differentmachine-learningmodels. We used for regressionmeth-

ods: LASSO, ridge, LARS, LASSO-LARS
.

Feature LASSO RIDGE LARS LASSO-
LARS

Change in generic amino acid (not glycine) 0.000 -7.607 0.000 0.000
Change in aldehyde -1.393 -1.938 -3.895 -3.681
Change in alkyl carbon 0.000 3.227 0.000 0.415
Change in amide 0.000 3.131 0.000 0.000
Change in anhydrides (except formic anhydride) 0.000 -0.846 0.000 0.000
Change in Aromatic Bond 0.000 -0.408 0.000 0.000
Change in azole 0.000 1.915 0.000 0.000
Change in carbo-thioester 0.000 2.083 0.000 0.956
Change in carbamate 0.000 0.682 0.000 0.000
Change in carbamic acid 0.000 0.960 0.000 0.000
Change in carbamic ester 0.000 -1.237 0.000 0.000
Change in Carbon 0.000 1.918 0.000 0.000
Change in carbonic acid/acid-ester 0.000 1.666 8.304 5.893
Change in carbonic acid/ester 0.000 1.666 0.000 0.000
Change in carbonyl group 0.000 -1.599 0.000 0.000
Change in carboxylate ion 0.000 -2.096 0.000 0.000
Change in carboxylic acid/conjugate_base 0.000 3.506 0.000 0.000
Change in carobnyl with carbon 0.000 1.710 0.000 0.000
Change in carobnyl with nitrogen 0.000 -10.618 0.000 0.000
Change in carobnyl with oxigen 0.000 3.300 0.000 0.000
Change in charge 0.000 10.777 0.000 0.000
Change in Charged Atoms 0.000 -7.145 0.000 0.000
Change in dicarboximide 0.000 0.682 0.000 0.000
Change in Double Bond 0.000 1.251 0.000 0.000
Change in enanmine 0.000 1.597 0.000 0.000
Change in ether 0.000 -3.278 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Change in glycine 0.000 -6.462 0.000 0.000
Change in hydrogen-bond acceptor -2.060 -2.701 0.000 0.000
Change in hydrogen-bond donor 0.000 -5.695 0.000 0.000
Change in halide 0.000 -0.972 0.000 0.000
Change in halogen 0.000 -2.337 0.000 0.000
Change in Hydrogen Aceptors 0.000 -0.320 0.000 0.000
Change in Hydrogen Donors 0.000 3.851 0.000 0.000
Change in hydroxyl 0.000 1.341 0.000 0.000
Change in imine 0.000 0.055 0.000 0.000
Change in ketone 0.000 -2.778 0.000 0.000
Change in n-oxide 0.000 -2.357 0.000 0.000
Change in Negatively Charged Atoms 0.000 1.985 0.000 0.000
Change in nitrile 0.000 -1.296 0.000 0.000
Change in nitro 0.000 -1.760 0.000 0.000
Change in Nitrogen 0.000 2.060 0.000 0.000
Change in nitroso 0.000 1.760 0.000 0.000
Change in not monohydrogenated 0.000 3.455 0.000 0.000
Change in non-polar surface area 0.000 0.610 0.000 0.000
Change in Oxygen 0.000 -5.647 0.000 0.000
Change in peroxyde 0.000 -2.091 0.000 0.000
Change in Phosphate 0.000 2.344 0.000 0.000
Change in phosphoric acid 0.000 -1.756 0.000 0.000
Change in phosphoric ester 0.000 2.667 0.000 0.000
Change in Polarizability 0.000 5.706 2.509 4.666
Change in Positively Charged Atoms -0.568 -12.120 0.000 0.000
Change in primary or secondary amine 0.000 -1.895 0.000 0.000
Change in primary_amine 0.000 -2.963 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Change in polar surface area 0.000 1.593 0.000 0.000
Change in Rotatable Bonds 0.000 -0.726 0.000 0.000
Change in Single Bond 0.000 2.033 0.000 0.000
Change in sp2 aromatic carbon 0.000 -1.289 0.000 0.000
Change in sp3 nitrogen 0.000 0.969 0.000 0.000
Change in sulfide 0.000 2.083 0.000 0.000
Change in thiol 0.000 -2.083 0.000 0.000
Change in Triple Bond 0.000 -1.296 0.000 0.000
Change in vinylic carbon 0.000 2.002 0.000 0.000
Delta Metabolites 0.909 -0.831 0.346 0.027
Products number of generic amino acid (not
glycine)

0.000 6.761 0.000 0.000

Products number of acyl halide 0.000 0.510 0.000 0.000
Products number of aldehyde 1.286 1.580 0.355 0.882
Products number of alkyl carbon 0.000 -4.302 0.000 0.000
Products number of amide 0.000 1.768 0.000 0.000
Products number of anhydrides (except formic an-
hydride)

1.107 2.336 0.000 1.698

Products number Aromatic Bond 0.000 -0.717 0.000 0.000
Products number of azole 0.000 -1.960 0.000 0.000
Products number of carbo-thioester 0.000 3.084 0.000 0.000
Products number of carbamate 0.000 -1.237 0.000 0.000
Products number of carbamic acid 0.000 -1.237 0.000 0.000
Products number Carbon 0.000 -1.372 0.000 0.000
Products number of carbonic acid/acid-ester 0.000 -0.488 0.000 0.000
Products number of carbonic acid/ester 0.000 -0.488 0.000 0.000
Products number of carbonyl group 0.000 1.028 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Products number of carboxylate ion -1.563 -0.526 0.000 -0.676
Products number of carboxylic
acid/conjugate_base

0.000 -1.042 0.000 0.000

Products number of carobnyl with carbon 0.009 -4.427 0.000 0.000
Products number of carobnyl with nitrogen 0.000 6.692 0.000 0.000
Products number of carobnyl with oxigen 0.000 -0.458 0.000 0.000
Products charge 0.000 -1.758 0.000 0.000
Products number Charged Atoms 0.000 0.483 0.000 0.000
Products number Double Bond 0.000 1.780 0.000 0.000
Products number of enanmine 0.000 -3.394 0.000 0.000
Products number of ether 0.000 1.500 0.000 0.000
Products number of glycine 0.000 -1.081 0.000 0.000
Products number of hydrogen-bond acceptor 2.296 0.358 0.000 0.629
Products number of hydrogen-bond donor 0.000 0.996 0.000 0.000
Products number of halide 0.000 -2.541 0.000 0.000
Products number of halogen 0.000 -1.016 0.000 0.000
Products number Hydrogen Aceptors 0.000 3.062 0.000 0.000
Products number Hydrogen Donors 0.000 -1.079 0.000 0.000
Products number of hydroxyl 0.000 3.316 0.000 0.000
Products number of imine 0.000 1.348 0.000 0.000
Products number of ketone 0.973 6.403 0.000 0.000
Products number Negatively Charged Atoms 0.000 -0.076 0.000 0.000
Products number of nitrile 0.000 1.180 0.000 0.000
Products number of nitro 0.000 2.918 0.000 0.000
Products number Nitrogen 0.000 2.244 0.000 0.000
Products number of nitroso 0.000 -1.760 0.000 0.000
Products number of not monohydrogenated 0.000 -0.702 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Products number Npsa Mean 0.000 0.997 0.000 0.000
Products number Oxygen 0.000 2.805 0.000 0.000
Products number of peroxyde 0.000 4.001 0.000 0.000
Products number Phosphate 0.000 0.578 0.000 0.000
Products number of phosphoric acid -1.633 2.729 0.000 0.000
Products number of phosphoric ester -0.721 -3.484 0.000 0.000
Products number Polarizability Mean 0.000 -12.162 0.000 0.000
Products number Positively Charged Atoms 0.000 1.326 0.000 0.000
Products number of primary or secondary amine 0.000 -4.840 0.000 0.000
Products number of primary_amine 0.000 5.677 0.000 0.000
Products number Psa Mean 0.000 -5.482 0.000 0.000
Products number Rotatable Bonds 0.000 -1.184 0.000 0.000
Products number Single Bond 0.000 -1.228 0.000 0.000
Products number of sp2 aromatic carbon 0.000 0.638 0.000 0.000
Products number of sp3 nitrogen 0.000 2.570 0.000 0.000
Products number of sulfide 0.000 2.936 0.000 0.000
Products number Sulfur 0.000 2.666 0.000 0.000
Products number of thiol 0.000 -1.081 0.000 0.000
Products number Triple Bond 0.000 1.180 0.000 0.000
Products number of vinylic carbon 0.000 -1.712 0.000 0.000
Substrates number of generic amino acid (not
glycine)

0.000 4.563 0.000 0.000

Substrates number of acyl halide 0.000 0.510 0.000 0.000
Substrates number of aldehyde -0.040 -2.117 0.000 0.000
Substrates number of alkyl carbon 0.000 -3.461 0.000 0.000
Substrates number of amide 0.000 2.355 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Substrates number of anhydrides (except formic
anhydride)

2.096 0.644 0.000 1.537

Substrates number of Aromatic Bond 0.000 -0.953 0.000 0.000
Substrates number of azole 0.000 -0.763 0.000 0.000
Substrates number of carbo-thioester 0.000 3.625 0.000 0.000
Substrates number of carbamate 0.000 -0.555 0.000 0.000
Substrates number of carbamic acid 0.000 0.682 0.000 0.000
Substrates number of carbamic ester 0.000 -1.237 0.000 0.000
Substrates number of Carbon 0.000 -1.161 0.000 0.000
Substrates number of carbonic acid/acid-ester 6.044 2.845 0.000 4.421
Substrates number of carbonic acid/ester 0.000 2.845 0.000 0.000
Substrates number of carbonyl group 0.000 0.373 0.000 0.000
Substrates number of carboxylate ion -3.198 -4.980 -2.055 -2.279
Substrates number of carboxylic
acid/conjugate_base

0.000 2.464 0.000 0.000

Substrates number of carobnyl with carbon 0.000 -2.937 0.000 0.000
Substrates number of carobnyl with nitrogen 0.000 2.711 0.000 0.000
Substrates number of carobnyl with oxigen 0.000 2.842 0.000 0.000
Substrates charge 0.000 1.480 0.000 0.000
Substrates number of Charged Atoms 0.000 -0.467 0.000 0.000
Substrates number of dicarboximide 0.000 0.682 0.000 0.000
Substrates number of Double Bond 0.000 2.160 0.000 0.000
Substrates number of enanmine 0.000 -0.200 0.000 0.000
Substrates number of ether 0.000 -0.139 0.000 0.000
Substrates number of glycine 0.000 -3.235 0.000 0.000
Substrates number of hydrogen-bond acceptor 0.000 -0.468 0.000 0.000
Substrates number of hydrogen-bond donor 0.000 -0.597 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Substrates number of halide 0.000 -3.027 0.000 0.000
Substrates number of halogen 0.000 -1.600 0.000 0.000
Substrates number of Hydrogen Aceptors 0.000 3.021 0.000 0.000
Substrates number of Hydrogen Donors 0.000 -0.165 0.000 0.000
Substrates number of hydroxyl 0.000 4.038 0.000 0.000
Substrates number of imine 0.000 1.376 0.000 0.000
Substrates number of ketone 0.000 0.847 0.000 0.000
Substrates number of n-oxide 0.000 -2.357 0.000 0.000
Substrates number of Negatively Charged Atoms 0.000 0.407 0.000 0.000
Substrates number of nitrile 0.000 0.964 0.000 0.000
Substrates number of nitro 0.000 1.158 0.000 0.000
Substrates number of Nitrogen 0.000 2.506 0.000 0.000
Substrates number of not monohydrogenated 0.000 -0.173 0.000 0.000
Substrates number of Npsa Mean 0.000 1.323 0.000 0.000
Substrates number of Oxygen 0.000 1.350 0.000 0.000
Substrates number of peroxyde 0.000 1.728 0.000 0.000
Substrates number of Phosphate 0.000 1.164 0.000 0.000
Substrates number of phosphoric acid 0.000 2.217 0.000 0.000
Substrates number of phosphoric ester 0.000 -2.595 0.000 0.000
Substrates number of Polarizability Mean 0.000 -7.784 0.000 0.000
Substrates number of Positively Charged Atoms 0.000 -1.592 0.000 0.000
Substrates number of primary or secondary amine 0.000 -6.104 0.000 0.000
Substrates number of primary_amine 0.000 3.899 0.000 0.000
Substrates number of Psa Mean 0.000 -1.975 0.000 0.000
Substrates number of Rotatable Bonds 0.000 -1.434 0.000 0.000
Substrates number of Single Bond 0.000 -0.828 0.000 0.000
Substrates number of sp2 aromatic carbon 0.000 -0.007 0.000 0.000
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Table S6.2 – continued from previous page

Feature LASSO RIDGE LARS LASSO-
LARS

Substrates number of sp3 nitrogen 0.000 2.719 0.000 0.000
Substrates number of sulfide 0.000 3.978 0.000 0.000
Substrates number of Sulfur 0.000 2.666 0.000 0.000
Substrates number of thiol -0.478 -5.247 0.000 0.000
Substrates number of Triple Bond 0.000 0.964 0.000 0.000
Substrates number of vinylic carbon 0.000 -0.585 0.000 0.000
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Figure S6.1: Linearmodel predictions fittedwith LASSO. The x axis shows expected kcat values and y axis shows themodel

predictions
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Figure S6.2: Linearmodel predictions fittedwith ridge regression. The x axis shows expected kcat values and y axis shows

themodel predictions
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Figure S6.3: Linearmodel predictions fittedwith LARS. The x axis shows expected kcat values and y axis shows themodel

predictions
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Figure S6.4: Linearmodel predictions fittedwith LASSO-LARS. The x axis shows expected kcat values and y axis shows the

model predictions
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Figure S6.5: Top 20 coefficients resulting from LASSO.
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Figure S6.6: Top 20 coefficients resulting from ridge regression.
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Figure S6.7: Top 20 coefficients resulting from LARS.
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Figure S6.8: Top 20 coefficients resulting from LASSO-LARS.
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Figure S6.9: kcat and EC numbers. This box plot shows the different EC numbers (up to the third digit) and the distribution of

catalytic rate constants
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Figure S6.10: Continued. kcat and EC numbers. This box plot shows the different EC numbers (up to the third digit) and the

distribution of catalytic rate constants
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Figure S6.11: Continued. kcat and EC numbers. This box plot shows the different EC numbers (up to the third digit) and the

distribution of catalytic rate constants
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Figure S6.12: Continued. kcat and EC numbers. This box plot shows the different EC numbers (up to the third digit) and the

distribution of catalytic rate constants
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Figure S6.13: Pearson correlation coefficients (absolute values) between EC numbers and substrate features. The bars on

the top show the number of data points for each EC number.
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Figure S6.14: Pearson correlation coefficients (absolute values) between EC numbers and product features. The bars on

the top show the number of data points for each EC number.
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Figure S6.15: PCA decomposition of the data with EC number 4.1.2. On the left we show the coefficients of each feature in

the first component.
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Figure S6.16: PCA decomposition of the data with EC number 3.1.2. On the left we show the coefficients of each feature in

the first component.
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Figure S6.17: PCA decomposition of the data with EC number 1.1.3. On the left we show the coefficients of each feature in

the first component.
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A conclusion is the place where you got tired thinking.

Martin H. Fischer

7
Conclusions and perspectives
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Computer-aided design using genome-scale metabolic
models

Computer-aided design (CAD) software, like cameo, will enable more scientists to use state-of-
the-art algorithms and advanced models of metabolism. Cameo overcomes limitations of the
currently available software: it is easy to use and provides all the necessary algorithms for strain
design. The software is truly open-source and free. Wehosted the source code atGitHub (https:
//github.com), a platform that allows anyone to collaborate in the development of cameo. We
also used a very permissive license, the Apache License 2.0 that allows anyone to use cameo for
personal or commercial applications.

We implemented an easy-to-use predefined workflow in cameo to perform the strain design
task for a target metabolite. The workflowwill identify if the metabolite is native or not, identify
heterologous pathways if necessary, and run different algorithms to find genetic engineering tar-
gets. The current workflow will search design strategies using Escherichia coli and Saccharomyces
cerevisiae models, but one can provide their own GEM and still use the workflow. Users with
minimal knowledge of constraint-basedmodeling can get create strain designs without the effort
of running multiple different tools.

This softwarewill continue to be developed in order tomake cameomore complete and easier
to use. We want to integrate cameo with genome-editing tools to convert in silico strain designs
into laboratory protocols. We want to extend our database of heterologous reactions with new
pathways identified using retrobiosynthesis. Finally, the designs generated with cameo, including
the phenotypes, can be used to calculate strain performance (i.e., titers and productivity) when
combined with models of the fermentation processes. A great feature of cameo is its modular de-
sign. It is built to accommodate new technologies. When newmodels and modeling approaches
become available, we will be able to use them with cameo.

Cameo is already being use in-house to design strains and to teach students at the university.
We have shown some capabilities of our software in this thesis. In collaboration with my col-
leagues, we designed a S. cerevisiae strain that can produce more mevalonate. Mevalonate is par-
ticularly interesting intermediate given the high number of valuable chemicals that can be pro-
duced using the mevalonate pathway. The designed strain features a shift in redox balance from
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NADHtoNADPH implemented in a previously . Weused our strain designmethods to identify
key changes in the metabolic pathways and to test our hypothesis in silico.

In this thesis we also addressed a gap between academia and industry. With MARSI, our
new algorithm, we now support design of evolutionary engineering strategies such as classical
strain improvement (CSI) and adaptive laboratory evolution (ALE) that are widely used in in-
dustry. MARSI is an in silico strain design method that predicts metabolite targets, instead of
gene or reaction knockouts. Themetabolites can be targetedwith chemical analogues, such as an-
timetabolites, to force changes in microbial phenotypes. This solution does not require rDNA
technology to be implemented. This is a new step towards bringing constraint-basedmethods us-
ingGEMs to the food industry, that is highly restricted by geneticallymodified organism (GMO)
legislation in Europe.

We were able to find metabolite targets that can replace gene and reaction knockouts in pre-
viously published strain designs. This shows that our method is capable of finding relevant en-
gineering targets. Still, we lack experimental validation for new metabolite-based designs. The
next stepwould testing the design strategies andmetabolite analogues identified byMARSIusing
ALE. We have also already started the development of an advancedmathematical formulation to
predict the effects of metabolite and analogue competing for enzyme active sites. This method
will be able to simulate the effect of using chemical analogues for essential metabolites, such as
amino-acids.

MARSI can also identify candidate analogues from a chemical database containing known
drugs, analogues and toxic compounds. We successfully retrieved chemical analogues for a set
of chemicals with known analogues. The chemicals identified by MARSI are more similar to
the query chemicals than the known analogues. A limitation of our current database is the lack
of toxicity, dosage and price information for the chemicals. Adding that information would be
valuable for prioritization of possible analogues. First, pricing information can be used to exclude
chemicals that are not for affordable or readily available in the market. Second, it could help
identify the best chemical based on the toxicity and the experimental setup.

The next step to improve CAD is to create a good user interface. We described limitations
of the available software and address those with cameo. Indeed, we provide an easy to use pro-
grammatic interface and a command line interface for deployment in HPC infrastructures. And
while the methods are now available and within reach of many more users, work is still needed
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to improve the interaction between users and software. We need to eliminate the low level inter-
actions between users andmathematical programming, such as numerical precision, infeasibility,
etc. The ultimate goal is to provide a graphical user interface (GUI), where users can navigate
intuitively.

Implementing a strain design in vivo

We are in the process of building a S. cerevisiae strain with high mevalonate production based
on the design. Preliminary results suggest that our in silico designs are leading us in the right
direction. Still, building strains resulting from CAD methods is not a trivial task. Creating and
testing multiple hypothesis in the computer can be quickly and easily done. But the experimen-
tal work part poses challenges: cloning heterologous enzymes and overcome native regulatory
mechanisms.

While building our S. cerevisiae strain we encountered several bottlenecks. Finding the right
level of expression is something a GEM can calculate from the reaction stoichiometry. We need
to include protein abundance and enzyme kinetics to calculate the necessary levels of protein. We
also need to identify the optimal combination of promoters, copy numbers, ribosome binding
sites and terminators that yield the best expression and translation levels of our heterologous
pathways.

Another limiting step is the host native regulation on the pathway we are trying to optimize.
Themevalonate pathway is regulated by negative feedback, imposed by different products down-
stream of the pathway. Directed enzyme evolution or alternative heterologous enzymes can help
us overcome the native regulation.

To finish this projectweneed to validate the performance of this strain against previously pub-
lished and industrial strains. To do that, we are planning fed batch and continuous fermentation
experiments. Also, further in silico analysis can be done to identify optimal growth and produc-
tion rates and engineering strategies to increase the robustness of the strain (i.e., elimination of
alternative pathways and reduce carbon).
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Predictingkineticparametersfromsequence, structure
and reaction features

Retrieving the kkcat values for enzymes togetherwith correct sequence and structural information
proved to be a complex process. Despite the effort of creating standards for reporting enzymes, se-
quences, chemical compounds, and reactions, we observed a large amount of datawithout proper
identifiers even in the most curated of databases. Another problem is the quality of the data re-
ported such as the mutations registered in enzyme kinetics databases. We found a large number
of entries with correct protein identifiers but the mutations reported did not match the peptide
sequences.

Despite the problems identified in the data, we decided to explore the relationship between
sequence and catalytic rates using the limited dataset that we had assembled. We identified no
correlationbetweenpredicted effects ofmutations basedon sequence conservation and kkcat value
changes due to the mutations. However, when we used structural models, we found some cases
where predicted changes in protein stability correlatedwith changes in catalytic rates. Thatmeans
that we need to assess whether the protein concentration used in the experiments accounts for
the unfolded/non-active enzymes. The integration of kkcat and protein abundance into GEMs
has been shown to improve in silico predictions of metabolic phenotypes at least in yeast. Still,
consistently measuring the catalytic rates requires huge number of experiments, specially if we
want to include genetic variation in the experimental design.

As an alternative use of the dataset we had collected, we built linear model to predict kcats
using features from enzyme and the chemical reactions. We used 1012 samples, which represent
only 2% of the kinetics data in SABIO-RK! (SABIO-RK!). While this amount of data is not
enough to build a global predictive model, we observed that the chemical composition of certain
substrates and products can be used to separate high and low kkats. This is an interesting result as
it is not well understoodwhat determines kkats for enzymes - the actual chemistry that is catalyzed
by the enzyme or the cellular context of the enzyme (i.e. what rate is needed for the enzyme in
the organism where it functions).

We identified reaction features that are unique for different EC numbers and that makes our
feature matrix very sparse. We can now think about new approaches to analyze this data. We
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can consider spliting our data into EC groups (i.e., oxireductases, transferases, hydrolases, lyases,
isomerases and ligases) separately. Also, we can focus on addressing different parts of the problem
differently. For example, use a model to analyze the effect of the temperature and pH in the
enzyme stability. Then, using a different model, predict the interactions between enzymes and
substrates. In the end, a group of combined models can be a practical solution to predict effects
of different features including genetic variation on catalytic activities. Alternatively, we could
collect sufficient data to apply deep-learning methods. But while deep-learning has shown to
outperform simple models in different applications, it is very difficult to infer knowledge from
them.

Despite the approaches that come next, we took a step forward in analyzing enzyme kinet-
ics at a large scale and moved one step closer to connect the information encoded in the DNA
sequences with our mathematical models. Still, there is a long road ahead to allow quantitative
predictions of effects of sequence variation on metabolic phenotypes. For now, the focus of the
scientific community should be on obtaining more and better data that relate sequence changes
to functional changes in enzymes using approaches such as deep mutational scanning.
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Colophon

This thesis was typeset using LATEX, originally
developed by Leslie Lamport and based on Donald Knuth’s
TEX. The body text is set in 11 point Arno Pro, designed by

Robert Slimbach in the style of book types from the Aldine Press
in Venice, and issued by Adobe in 2007. A template, which can be
used to format a PhD thesis with this look and feel, has been
released under the permissive mit (x11) license, and can be found
online at github.com/suchow/ or from the author at
suchow@post.harvard.edu.
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