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Abstract Optimal analytical Michell frame structures
have been extensively used as benchmark examples in
topology optimization, including truss, frame, homoge-

nization, density and level-set based approaches. How-
ever, as we will point out, partly the interpretation of
Michell’s structural continua as discrete frame struc-

tures is not accurate and partly, it turns out that lim-
iting structural topology to frame-like structures is a
rather severe design restriction and results in struc-

tures that are quite far from being stiffness optimal.
The paper discusses the interpretation of Michell’s the-
ory in the context of numerical topology optimization

and compares various topology optimization results ob-
tained with the frame restriction to cases with no design
restrictions. For all examples considered, the true stiff-

ness optimal structures are composed of sheets (2D) or
closed-walled shell structures (3D) with variable thick-
ness. For optimization problems with one load case,

numerical results in two and three dimensions indi-
cate that stiffness can be increased by up to 80% when
dropping the frame restriction. For simple loading situ-

ations, studies based on optimal microstructures reveal
theoretical gains of +200%. It is also demonstrated how
too coarse design discretizations in 3D can result in un-
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intended restrictions on the design freedom and achiev-
able compliance.12

Keywords Topology optimization · Michell struc-
tures · Layout optimization · Variable thickness sheets ·
Optimal microstructures

1 Introduction

Michell’s optimal frame structures (Michell, 1904) have
been intensively used as benchmark problems in topol-
ogy optimization. For one load case, optimized struc-

tures are often quite beautiful and consist of advanced
networks of frame elements crossing each other at right
angles. For aesthetic reasons Michell-like structures have

also been used in architectural relations, c.f. Beghini
et al (2014).

For the development of numerical tools for optimal
structural design the comparison with analytical so-
lutions based on Michell theory has been invaluable.

Especially George Rozvany and co-workers (e.g. Zhou
and Rozvany (1991); Rozvany (1998)) deserve a lot
of honor for urging the community to benchmark nu-
merical schemes with classical results. Michell-theory is

based on fine nets of beam elements, so-called structural
continua, however, in the low volume fraction limit a)
optimized truss structures; b) topology optimization

based on homogenization of rank-n laminates (Bendsøe,
1989) and c) even generalized shape of perforated plates
(Rozvany et al, 1987; Allaire and Kohn, 1993; Bendsøe

and Haber, 1993) become Michell-like. Therefore, com-
parison with analytical solutions has become a standard

1 Preliminary results of this study were orally presented at
WCSMO-11, June 7-11, 2015, Sidney, Australia.
2 This paper is dedicated to George Rozvany (1930-2015) -

see more in the acknowledgement.
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in the field and one can often read statements like “as

expected, the optimized structure resembles Michell-
like frame structures”. Lately, similar statements have
been given concerning 3D topology optimization results

although analytical solutions for the 3D case are very
scarce.

Michell’s frame structures can be understood in a
continuum sense as structures built from a 2D mate-
rial with rather peculiar properties, i.e. as structures

made from a material that only has stiffness in two
orthogonal directions (corresponding to the principal
strain directions); where the directional densities are

proportional to the absolute value of the correspond-
ing principal stress values; and who’s total density is
equal to the sum of the directional densities. This cor-

responds to an orthotopic material with zero Poisson’s
ratio, zero shear modulus and density proportional to
the sum of the directional stiffnesses, i.e. a density twice

that (or even more) of a conventional isotropic material
as will be demonstrated in this paper. Such a material
can directly be realized as a truss structure but is only

achieved in the limit of infinitesimal local volume frac-
tion for frame, rank−n or perforated plate structures
(c.f. Bendsøe and Haber (1993); Bendsøe and Sigmund

(2004)). With this definition, it is obvious that one only
can expect to be able to compare numerical results with
the analytical solutions if one considers problems with

very low volume fractions. Here volume fraction should
not only be interpreted in the usual global sense, but
also in a local sense where no finite local region in an

optimized structure is allowed to become fully solid any-
where in the design domain.

Interestingly, all the above discussions and analyt-
ical solutions (as also mentioned in Michell’s original
work) assume that one is dealing with frame- or truss-

like structures or perforated plates. This is also pointed
out by Rozvany (1998) in connection with the advo-
cation of Michell structures as benchmark examples:

“These can be used for qualitative, and possibly quan-
titative, verification of discretized solutions in truss lay-
out optimization and in generalized shape optimization

of perforated plates in plane stress”.

The goal of being able to compare with analytical

solutions was one of the reasons for introducing the
SIMP (Solid Isotropic Material with Penalization) ap-
proach. The SIMP approach ensures (almost) discrete,

solid-void solutions in density-based topology optimiza-
tion approaches (Zhou and Rozvany, 1991; Bendsøe,
1989). As an alternative to the penalization approach,

a relaxation allowing microstructure to exist in each el-
ement (i.e. a rank-n or micro-truss structure) through a
homogenization approach (Bendsøe and Kikuchi, 1988)

ensures point-wise 0-1 or solid-void solutions. Much later,

phase-field and level-set approaches to topology opti-

mization have aimed at solid-void designs resembling
Michell structures as well. However, two interesting ques-
tions are the following: “what is the optimal struc-

ture if we don’t prescribe frame-like or perforated so-
lutions?” and the follow-up question “how much does
the compliance improve for this case?”. The answer to

the former question is straight forward and probably
not that unexpected although it seems to be largely ig-
nored by practitioners: the optimal structure is a plate-

or shell-like structure of varying thickness. The answer
to the latter question is highly dependent on the prob-
lem considered. In this paper practical examples con-

sidered point to improvements in stiffness of more than
80% and much more if considering (theoretically) sim-
ple loading conditions.

For 2D problems the true optimal3 structure (with-
out the frame requirement) can be achieved by a sim-
ple interpolation model where stiffness in an element is

directly proportional to the design variable, i.e. the so-
called “variable thickness sheet” problem (Rossow and
Taylor, 1973). It has correctly been argued that this

approach does not work in 3D. Here one must use the
usual power law (SIMP) approach with an exponent of 3
or more (Bendsøe and Sigmund, 1998) to get solid-void

solutions that make physical sense. It turns out, how-
ever, that even in 3D, the optimized solid-void structure
is plate or shell like if the mesh is fine enough. Hence, if

previously published results for 3D topology optimiza-
tion were Michell-like, it is most probably either due to
an on-purpose imposed minimum length-scale or due

to lack of mesh refinement, i.e. an artificially imposed
length scale originating in a too coarse finite element
discretization.

The findings of this paper are not revolutionary and
should actually be quite obvious to the theoretically
well-founded readers. Nevertheless, we find it appropri-

ate and timely to remind the community about this
insight - especially considering the increasing amount
of papers appearing on 3D topology optimization solu-

tions and 3D printed micro-truss-based structures.

That optimal structures are close-walled and not
open-walled (i.e. truss-like), can also be concluded from

the theory of optimal composites. Here, the optimal
lamination for 3D compliance minimization is a rank-
3 structure or a Vigdergauz type (Vigdergauz, 1994)

microstructure which both are closed-walled cell struc-
tures built from sheets of varying thickness. That closed-

3 We note that the term “optimal”is grossly overused in
the discussion of numerical topology optimization results in
the literature, however, the variable thickness sheet problem
is indeed a convex problem and hence convergence to global
optima can in this case be guaranteed.
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walled structures are non-optimal was elaborated on

also by Sigmund (1999) in connection with a discussion
of the optimality of bone structure. Here it was shown
that closed-walled structures are significantly stiffer than

open-walled ones and hence the reason for most bone
structure being open-walled must stem from other cri-
teria than pure stiffness optimization.

This paper demonstrates its points by examples and
some simplified microstructural analytical studies. Sec-

tion 2 considers a 2D cantilever problem where results
from variable thickness sheet, homogenization approach
with optimal microstructures, SIMP approach, homog-

enization approach with optimal isotropic microstruc-
tures and truss topology optimization are compared to
the analytical Michell solution. Section 3 considers the

same cantilever problem in 3D as well as the Michell 3D
torsion ball and a regular torsion rod example. Section 4
studies theoretical savings in closed-walled (sheet-like)

versus open-walled (Michell-like) periodic microstruc-
tures and discusses how these results can be used to
predict potential gains in stiffness for closed-walled as

opposed to open-walled finite structures. Finally, Sec-
tion 5 discusses the overall results and their implica-
tions for topology optimization.

2 2D cantilever study

As a test problem in 2D we use a 1 by 2 cantilever fixed
at its bottom4 and loaded with a unit horizontal load

distributed over the central 20% of the top edge. The
goal of the optimization problem is to minimize struc-
tural compliance by distributing a certain volume frac-

tion f of isotropic material within the design domain.
The test problem is run with different approaches and
algorithms as explained below. Common for all cases is

the Young’s modulus for the solid material E0 = 1 and
Poisson’s ratio ν0 = 0 (0 to comply with the analyti-
cal solution). Objective values and optimized topologies

do not change significantly for other values of Poisson’s
ratio. The following paragraphs briefly list background
and specific settings for the various approaches.

Simplified Isotropic Material with Penalization (SIMP):

Uses the simple density interpolation scheme

E(ρ) = Emin + (E0 − Emin)ρ
p (1)

4 Note that the analytical Michell solution is pin-supported
at the lower corners but this would cause stress singularities
when modeled using a continuum formulation. We have found
that reducing the line support to the lower three rightmost
and leftmost elements, mimicking a pinned support does not
change the conclusions of this study.

to model the relation between element-wise constant

Young’s modulus and element density ρ. Here, Emin =
0.001 and p = 1 for the variable thickness sheet case
and p = 4 for the penalized case. The basic code is the

99-line Matlab code (Sigmund, 2001). To ensure (near)
optimal solutions, we use a continuation approach with
a (sensitivity) filter size of 1.2 elements. The penaliza-

tion is initialized to p = 1 and gradually increased in
steps of 0.2 every 50 iterations (or upon convergence)
up to its final value. At the end, the filter is switched

off to ensure convergence to (near) discrete solutions.
With this problem formulation (and p = 4) we seek the
solution to the 0-1 topology optimization problem for a

given mesh with no other restrictions than a minimum
filter size that just avoids the checkerboard problem but
does not provide mesh-independency. We note here that

the variable thickness sheet problem (p = 1) is a convex
problem and hence convergence to the global optimum
is guaranteed.

Optimal microstructure: Here we use Allaire and co-
workers homogenization-based, rank-2 code (download-

able from:
www.cmap.polytechnique.fr/∼allaire/freefem.html).
This code is run with a continuation approach for sta-

bility reasons, starting with ρmin = 0.01 and after 100

iterations this value is reduced to ρmin = 0.001. With
this problem formulation we seek the solution to the
relaxed topology optimization problem where an opti-

mal, infinitely fine microstructure is introduced in each
element, hence ensuring existence of a solution.

Optimal isotropic microstructure: Again we use the 99-
line Matlab code but with the usual SIMP interpolation
(1) exchanged with an interpolation scheme based on

the Hashin-Strikhman upper bounds where bulk and
shear moduli are interpolated independently

κ(ρ) = ρκ0+ (1−ρ)κmin − ρ(1−ρ)(κ0−κmin)
2

(1−ρ)κ0 + ρκmin + µ0
, (2)

µ(ρ) = ρµ0+ (1−ρ)µmin −
ρ(1−ρ)(µ0−µmin)

2

(1−ρ)µ0 + ρµmin + κ0µ0

κ0+2µ0

,

(3)

where κ0 = E0/(2(1 − ν0)) and µ0 = E0/(2(1 + ν0))

and similar with the min values. The isotropic Hashin-
Strikhman bounds are realized by a Vigdergauz-like tri-
angular structure (Vigdergauz, 1999; Sigmund, 2000).

This scheme is also run with Emin = 0.001 but without
continuation and, as for the SIMP scheme, the filter is
switched off for the final iterations. With this problem

formulation we seek the solution to the relaxed topology
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Table 1 Compliance results for 2D cantilever test case

f=0.125 f=0.25 f=0.50 f=0.75
a Thickness 42.11 44.95 51.88 61.52
b Rank-2 50.88 52.40 56.73 63.56
c SIMP (p = 4) 54.71 54.55 58.14 64.28
d HS 54.30 55.13 57.96 63.84
e TTO 8 52.04

TTO 18 50.31
TTO 392 49.39
Chan 49.35

optimization problem as for the “Optimal microstruc-
ture” approach above, however, the infinitely fine mi-

crostructure is not optimal and existence of a solution
in not ensured.

Truss topology optimization: Here we use a public truss
optimization code published by Martinez et al (2007).
The method combines a heuristic element insertion and

division strategy with gradient-based shape and topol-
ogy optimization. Although no proof of optimality of
resulting structures exists, the methods seems to con-

verge towards analytical Michell solutions for a wide
range of examples.

All the above approaches, except for the SIMP with

p = 1, yield solution to the 0-1 problem, i.e. deter-
mine the distribution of material or no material that
minimizes compliance. Hence the outcome of these ap-

proaches satisfy the same constraint as the Michell so-
lution. In contrast, the SIMP p = 1 case allows close-
walled, sheet-like, non-porous 2D structures as a result
but does not hinder porous solutions in forming. Hence,

the p = 1 case has more design freedom than the other
approaches.

Analytical solution: The analytical Michell frame solu-
tion (for a point load) was first derived by Chan (1960)
and the normalized compliance value can be read from a

table in Graczykowski and Lewiński (2010). This value
is Φ = C/(fa) = 7.0247078292 = 49.35, where a = 2
is the cantilever aspect ratio, f is the volume fraction

and C is the compliance.
In the following we employ the five different topol-

ogy optimization approaches and compare their result-

ing structures with the analytical solutions. The five
approaches are run for various volume fractions and
the resulting topologies are shown in Figure 1 and the

corresponding compliance values are compared to the
analytical solution in Table 1.

The truss code is run until 8, 18 and 392 bar ele-

ments have been introduced, respectively. First we note
that the normalized compliance of the truss optimized
structures in Figure 1e is independent on volume frac-

tion and only depends on connectivity. The normalized

a)

c)

d)

b)

e)

Fig. 1 Topology optimized 2D cantilever structures. a) Vari-
able thickness sheet (SIMP with p = 1), b) homogenization
approach with optimal rank-2 microstructure, c) SIMP with
p = 4, d) optimal isotropic micro structures and e) opti-
mized truss structures for various numbers of members de-
noted TTO 8, TTO 18 and TTO 392 in Table 1, respectively.
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compliance converges as expected to the Chan solution

as the connectivity gets finer and finer.

The rank-2 solutions (Figure 1b) also converge to

Chan’s analytical solution for smaller and smaller vol-
ume fractions. When even the densest element has a
density much smaller than one, the homogenization-

based solution will correspond exactly to the Michell/Chan
solution, c.f. Bendsøe and Sigmund (1998).

The solutions obtained using optimal isotropic com-
posites, i.e. using the interpolations based on the Hashin-

Strikhman upper bounds are shown in Figure 1d. Here
it is interesting to note that: a) the optimized topologies
are almost entirely black-and-white indicating that the

isotropy requirement actually imposes a severe penalty
on intermediate densities and b) the obtained compli-
ance values lie from 10% to 30% above the Chan solu-

tion.

The solutions obtained for penalization power p = 4

in Figure 1c are very similar to the ones obtained for
the Hashin-Strikhman interpolation (Figure 1b). This
is not surprising since the physically admissible p = 4

value for perforated composites is determined to satisfy
the same Hashin-Strikhman upper bounds, c.f. Bendsøe
and Sigmund (1998). It should here be noted that the

number of bars in the obtained topologies is restricted
by the mesh resolution. For the low volume fraction case
the optimized solution corresponds to an 8-bar truss

structure. Increasing the resolution from the consid-
ered 100x200 elements results in more (and extremely
thin) bars, will ultimately converge to the infinitely fine

Michell grid solution since no other length scale con-
straint than the mesh size is imposed on the problem.

Finally, we note that the normalized compliance val-
ues for the variable thickness sheet case (Figure 1a)

are considerably (up to 20%) better than the Chan
solution for the small volume fraction cases and sig-
nificantly better than the homogenization, SIMP and

Hashin-Strikhman solutions in all cases. The most ex-
treme case is the comparison between the variable thick-
ness sheet solution and the SIMP (p = 4) solution for

volume fraction f = 0.125, where the compliance of the
truss-like structure is 29% higher than for the sheet so-
lution. As for the cases above, the unconstrained prob-

lem, i.e. where no thicknesses reach the upper bound
has the solution closest to the theoretical value, explain-
ing the deterioration of normalized compliance value for

higher volume fractions.

We may from this simple 2D study conclude that

the frame restriction imposed by the Michell solutions
results in significant reductions in achievable stiffnesses.
Hence, the true compliance optimal 2D structure is a

sheet-like structure with varying thickness.

Table 2 Compliance results for 3D cantilever test case with
mesh refinement

Fig. 2 a b c d e f
h 1/16 1/32 1/48 1/64 1/80 1/96

Φf=0.15 63.60 54.53 51.38 49.43 47.94 47.44

3 3D studies

In this section we extend the study to 3D. First we
consider a 3D version of the cantilever beam studied

above and thereafter we study two different 3D torsion
examples.

3.1 3D cantilever study

The first 3D example considers the same cantilever as

in the previous 2D case but extruded 1/4 in the third
direction. Except for Poisson’s ratio of the base ma-
terial now being ν0 = 0.3 and the applied load also

being distributed in the third direction everything is
the same as for the 2D case. The volume fraction is
fixed to f = 0.15 and results and compliance values are

shown in Figure 2 and Table 2, respectively. The code
is a 3D version of the 99-line Matlab code making use of
advanced multi-scale pre-conditioners as presented by

Amir et al (2014). Again we use a minimum filter size
of 1.2 times the element size to prevent checkerboard-
ing and hence the only length-scale imposed is the one

given by the mesh resolution. At the final iterations
the filter is switched off to allow for completely black
and white solutions. Figure 2a-f shows the optimized

topologies for increasing mesh refinement. Resolution
is refined from 16x32x4 in Figure 2a to 96x192x24 in
Figure 2f. The left column shows a smoothed 3D view

of the designs and the right column shows projected
2D grayscale pictures where the grayscale indicates the
relative density in the out-of-plane directions. Due to

symmetry in the out-of-plane direction and discrete-
ness of the obtained 3D designs, this means that the
grayscale only takes three discrete values in Figure 2a

(i.e. 0, 1/2 or 1 corresponding to 0, 2 or 4 element width
in the out-of-plane direction) and 12 discrete values in
Figure 2f.

Studying Figure 2 it is clear that the optimized
topologies go from being truss-like for the coarse meshes
to being sheet-like for the fine meshes. Also, we note

that the obtained compliance values for the two finest
meshes are better than the Chan value and that the
compliance value of the finest mesh solution is 34% bet-

ter than for the coarse mesh.
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a)

c)

d)

b)

e)

f)

Fig. 2 Optimized cantilevers for f = 0.15 and varying mesh
refinement (from coarse a) to fine f)).

Table 3 Compliance results for 3D cantilever test case for
varying volume fractions

f 0.1 0.15 0.2 0.3 0.4 0.5
Φ 53.31 51.38 50.31 50.30 52.51 55.14

Next we fix the discretization to 48x96x12 elements
and vary the volume fraction. Results and compliance
values are shown in Figure 3 and Table 3, respectively.

Studying Figure 3 we note that the optimized topolo-
gies go from truss-like to sheet-like with increasing vol-
ume fraction.

The two cases studied in this subsection show that
optimized 3D topology is strongly dependent on mesh
resolution and volume fraction. Clearly, the true optima

are sheet-like structures which exhibit significantly bet-
ter compliance values for the considered examples. Put
in other words, if one observes Michell-like structures as

result of 3D numerical topology optimization studies it
is probably either due to an on-purpose introduced reg-
ularization that prevents small details (i.e. thin sheets)

or large surfaces (c.f. perimeter control) or it is due to
an artificial length-scale imposed by a too coarse mesh
resolution.

3.2 3D torsion ball

As the second 3D case we consider Michell’s “torsion

ball example”. The design domain is illustrated in Fig-
ure 4. The torsional load is here applied as point forces
to a rigid part of the domain (Erigid = 103E, shown as

light gray disks in Figure 4). The rigid domain is intro-
duced to avoid stress singularities, and corresponds to
applying a distributed load. Two void domains, shown

as dark gray disks in Figure 4), are included to hin-
der material in attaching to the inner sides of the solid
disks. This constraint ensures that the results can be

compared to the analytical solution but has an insignif-
icant influence on the overall design.

To solve the optimization problem, we use the topol-

ogy optimization framework provided by Aage et al
(2015). To achieve a black-and-white solution we ex-
tend the filtering with a projection method (Guest et al,

2004; Xu et al, 2010; Sigmund, 2007) in order to in-
troduce a minimum length scale and hence enforce a
frame-like solution.

The symmetry of the problem allows us to con-
sider only 1/8 of the domain in Figure 4 with appropri-
ate boundary conditions. This part is discretized with

160× 192× 192 ≈ 6M cubic elements, the volume frac-
tion is 0.02 (excluding the passive parts of the domain),
filter radius is 0.025, threshold parameter is η = 0.5,

and the projection steepness parameter β is gradually
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a)

c)

d)

b)

e)

f)

Fig. 3 3D cantilever optimized for volume fractions a)-f):
f = 0.1, 0.15, 0.2, 0.3, 0.4, 0.5.

Fig. 4 Design domain for torsion ball. Blue arrows indicate
loads, light gray disks represent passive, rigid parts of the
domain (Erigid = 103E) and dark gray disks indicate void
domains. The disks have a radius of 0.3 and a thickness of
0.025 and 0.3, respectively.

increased from 1 to 64, c.f. Wang et al (2011). The
resulting design is shown in Figure 5a. Interestingly,

the result does not correspond to the Michell ball com-
posed of perpendicularly crossing frame elements that
one could be tempted to deduct from graphical render-

ings in the literature, but rather resembles a spherical
closed shell which becomes thinner towards the center
and thicker towards the applied torques.

The classical Michell ball, if interpreted as a coarse
frame solution, can only be recovered by either using
a coarse mesh that does not allow the thin shell as a

solution or by enforcing a strict minimum length scale
on the design. To demonstrate the latter, we rerun the
example using the robust projection approach (Wang

et al, 2011) with: ηd = 0.4, ηi = 0.5, ηe = 0.6 and a filter
radius of 0.065. The resulting design (for η = 0.5) re-
covers the spherical frame structure as a coarse scale re-

alization of Michell’s ball solution as seen in Figure 5b.
Cross sections of the two spheres are compared in Fig-
ure 6, where it can be seen how the two spheres overlap

almost perfectly but are based on a thin shell and a
frame structure, respectively.

The theoretically predicted compliance for the Michell

ball example (Michell, 1904) is

Φ =
16T 2 log (cot(Θ0/2))

2

EV
, (4)

where Θ0 is the angle between the torque axis and the
mid-point on the load-applying disks and T is the ap-

plied torque. Inserting numbers, the analytically pre-
dicted compliance value is 255T 2, the closed sphere
value is 142T 2 (for ν = 0) and 184T 2 (for ν = 0.3),

whereas the compliance for the frame-like structure is
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(a) (b)

Fig. 5 Optimized designs for the problem in Figure 4, where
(a) is without a minimum length scale and (b) is with a min-
imum length scale. The rows show - from top to bottom - an
eight of, half, and the full structures.

276T 2. Hence, the compliance value for the frame-like
structure is fairly close to the analytical prediction al-
though somewhat higher due to the rather coarse frame

structure achieved and the finite volume fraction. The
compliance value for the closed shell structure is close
to half that of the compliance of the open structure

(ν = 0) and two thirds for the case of ν = 0.3. That
is, the closed sphere is 80% stiffer than the open sphere
for ν = 0 and 39% stiffer than the open sphere for

ν = 0.3! Remark also that the numerically optimized
topology is independent on the Poisson’s ratio used but
that the choice of Poisson’s ratio does influence the ob-

tained compliance value.

To further compare with the analytical solution we
include Figure 7 where we plot the numerically obtained
thickness variation of the closed shell (averaged over the

ball circumference) with the analytical solution. Sup-

Fig. 6 Overlaid slices of the optimized designs in Figure 5 at
1/8, 1/4 and 1/2 of the total sphere length. The slices of the
frame structure (in gray) are overlaid the slices of the closed
structure (in black).
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Fig. 7 Cross-sectional view of the numerically obtained
thickness variation from Figure 5 compared to an analytical
solution.

ported by theoretical studies, one can compare the orig-
inal Michell expression for the thickness variation over
the ball with an analytical solution obtained for an equi-

shear-stressed sphere with varying thickness and made
from isotropic material and get exactly the same result
for the optimal thickness variation. The only difference

lies in the compliance which is a factor of 2/(1 + ν)
higher for the peculiar Michell structural continuum
compared to a simple isotropic material (see Chapter

4 for the analytical derivation of this factor).
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Fig. 8 Design domain for rod subject to pure torsion. Blue
arrows indicate loads, and gray region represent passive, rigid
part of the domain (Erigid = 103E). The gray annulus have
an outer radius of 0.5, inner radius of 0.45, and a thickness
of 0.05. Opposite cylinder face is fully fixed.

3.3 3D torsion rod

Finally, we consider the simple problem of optimizing

a rod subject to pure torsion. The cylindrical design
domain is illustrated in Figure 8, where we specify a
passive, rigid part of the domain (the gray annulus) to

which the torsional load is applied as four point loads
but no void domains. The opposite face is fully fixed.
The cylindrical domain has a radius r = 0.5 and is dis-

cretized with 2 million cubic elements (the symmetry of
the problem is not exploited). Material parameters are
the same as in the previous examples and the imposed

volume fraction is 0.136.
As a reference, the theoretical compliance for a con-

stant thickness tube with inner radius ri = 0.465 (yield-

ing an effective volume fraction of 0.136) can be com-
puted as (see e.g. Sundström, 2010)

Φ =
T 2L

JG
, (5)

where T is the torque, L is the length, G is the shear
modulus, and J is the polar moment of inertia com-
puted as

J =
π

2
(r4 − r4i ). (6)

Inserting the numbers yields a theoretical compliance of
314T 2. For the Michell solution, the similar analytical
compliance value is 483T 2.

Running an optimization with the above given vol-
ume constraint and without a minimum length scale
constraint, using the same approach as in Section 3.2,

results in the design in Figure 9a. This design is, not
unexpectedly, a simple closed tube and has the compli-
ance 326T 2, which is within a few percent of the the-

oretical value discussed above. Enforcing a minimum
length scale using the robust approach with: ηd = 0.3,
ηi = 0.5, ηe = 0.7 and a filter radius of 0.1, results in

the design (for η = 0.5) in Figure 9b. This design has a

(a) (b)

Fig. 9 Optimized designs for the problem in Figure 9, where
(a) is without a minimum length scale and (b) is with a min-
imum length scale.

Fig. 10 Comparison of strain energy distribution in the two
torsional rod designs. The color scale is the same for both
designs, where blue indicates a low strain energy density and
red indicates a high strain energy density.

compliance of 580T 2, which makes it far inferior to the
closed tube design in Figure 9a. Figure 10 compares the

strain energy distribution for the two structures.

Again, we observe a good agreement with theoret-
ical predictions where most of the discrepancy is ex-

plained by the following. Due to the imposed length
scale, the optimization is forced to put some material
closer to the centerline of the design domain. In the

limit, where the thickness of the tube and frame mem-
bers are negligible compared to the radius of the design
domain, we expect the shell design to be 54% stiffer

than the frame design. The reason for this will be ex-
plained in Section 4.1.

Similar torsion examples have been studied by other
researchers although for square cross sections. Nguyen

et al (2012) obtained an open-walled frame-like struc-
ture which must be attributed to the coarse mesh used
for the study. Villanueva and Maute (2014) studied the

same problem and found that with mesh refinement the
optimized structure goes from being frame-like to being
closed-walled – fully in agreement with the findings of

the present paper.
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4 Optimal microstructures

The previous sections considered structural examples
with complex and spatially varying stress distributions.
The considered cases demonstrated potential improve-

ments in compliance of more than 30% when removing
the Michell frame restriction and allowing thin-walled,
variable-thickness-sheet-like structures. Obviously, the

gains will be dependent on the local stress situations
and hence one may be able to find examples where the
gains are either smaller or larger. Examples of the latter

will be demonstrated in the following. In particular, we
will investigate the difference in stiffness of open-walled
and closed-walled periodic microstructures subjected to

uniform far field stresses.

The open-walled or truss-like microstructures dis-
cussed in this chapter can be seen as realizations of
Michell’s structural continua, i.e. materials with the pe-

culiar properties of zero Poisson’s ratio and zero shear
stiffness. Similarly, the closed-walled or sheet-like mi-
crostructures correspond to the sheet like structures

obtained in the previous chapters. Since analytical so-
lutions exists for both kinds of microstructures in the
small volume fraction limit, the study and comparison

of these analytical results cast more light and provide
exact bounds for the potential gains in dropping the
frame constraint.

The search for optimal microstructure has been go-
ing on for a long time and examples of stiffness op-
timal structures include rank-n laminates (Francfort

and Murat, 1986; Lurie and Cherkaev, 1984; Milton,
1986; Norris, 1985), Hashin’s coated spheres construc-
tions (Hashin, 1962), Vigdergauz structures (Vigder-

gauz, 1989; Grabovsky and Kohn, 1995) and mixtures
thereof (Sigmund, 2000; Gibiansky and Sigmund, 2000).
All these examples consider mixtures of two or more

materials and hence do not allow “variable-thickness-
sheet” type solutions. This means that in 2D, opti-
mal microstructures are restricted to perforated plate

type solutions, i.e. a Michell-type restriction. In 3D,
microstructures may be plate-like (c.f. Vigdergauz and
rank-n laminated) and hence do not suffer from the

same restrictions.

In Sigmund (1999) the author discussed the opti-
mality of bone microstructure. It had long been specu-
lated that human bone structure is optimized with re-

spect to the local stress situation, explaining the intri-
cate patterns of bone structure that follow dominating
stress lines. However, bone structure is mostly open-

walled whereas optimal 3D microstructures seemed to
be closed-walled. In order to investigate this discrep-
ancy in detail, Sigmund (1999) optimized the bulk mod-

ulus of 3D periodic microstructures using topology op-

timization and found optimized square symmetric or

isotropic microstructures with bulk moduli very close to
the theoretical limit. However, they were always closed-
walled. Only if including a constraint for openness in

the form of a conductivity constraint (mimicking the
need for openness of bone structure in order to allow
for transport of nutrition), the structures became open-

walled. The openness, however, was achieved based on
a significant sacrifice of up to 57% in the achievable
bulk modulus. Hence, the study concluded that bone

microstructure is not optimal with respect to stiffness
alone but other factors such as e.g. permeability must
play a role as well.

The conclusions by Sigmund (1999) are also rele-
vant for the present study. Open-walled, “locally peri-

odic Michell-like frame microstructures” are not opti-
mal with respect to stiffness. If one allows plate-like
microstructures, much stiffer material structures are

achieved. The theoretically achievable stiffness improve-
ments are studied for 2D and 3D microstructures in the
following.

4.1 Optimal 2D microstructures

The bulk modulus for a square 2D truss microstructure
can in the small volume fraction limit be found as

κ2D,truss =
fE

4
. (7)

The Hashin-Strikhman bound for the bulk modulus

of a perforated microstructure is

κ2D,HS =
fE

2[(2− f(1 + ν)]
, (8)

which in the limit of f → 0 corresponds to (7). This
means that square grid (as well as triangular and hexag-

onal) truss and frame microstructures are optimal in
the small volume fraction limit since they attain the
theoretically possible bulk modulus for perforated ma-

terials.

The bulk modulus for a thin sheet is

κ2D,sheet =
fE

2(1− ν)
. (9)

The ratio between the bulk modulus for a thin sheet
(9) and the truss microstructure (7) is

κ2D,sheet

κ2D,truss
=

2

1− ν
, (10)

i.e. for the common Poisson’s ratio of ν = 1/3 the bulk
modulus of the sheet is three times bigger than for the

truss microstructure!
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A similar study for the shear case gives

µ2D,truss =
fE

4
(11)

and the shear modulus for a thin sheet is

µ2D,sheet =
fE

2(1 + ν)
. (12)

The ratio between the shear modulus for a thin sheet

and the truss microstructure is

µ2D,sheet

µ2D,truss
=

2

1 + ν
, (13)

i.e. for the common Poisson’s ratio of 1/3 the shear
modulus of the sheet is 1.5 times bigger than for the
truss microstructure.

The latter result explains the numerical observa-
tions for the torsion ball and simple torsion examples
discussed in Section 3.2 and 3.3. In both these cases,

the outer shell (or frame) structure is loaded in perfect
shear, meaning that the expected theoretical gain for
the closed shell structure should be 54% (for the Pois-

son’s ratio of 0.3 used in the examples or 100% for the
ν = 0 case. The ball example actually achieves gains
of 39 and 80%, respectively, which must be said to be

quite close to the theoretical prediction when consid-
ering various disturbing factors such as finite volume
fraction, coarseness of discretization and non-uniform

(shear) stress distribution of the complex geometry.
The simple torsion example achieves a gain of 48%
which is closer to the theoretical value of 54%. We are

convinced that in both cases, further mesh-refinement
and smaller volume fractions will make the gain num-
bers converge to the theoretical predictions.

4.2 Optimal 3D microstructures

The bulk modulus for an open-walled cubic microstruc-
ture in 3D can in the small volume fraction limit be
found as

κ3D,open =
fE

9
(14)

by calculating the axial stress resulting from an axial
unit strain and assuming 1/3 of the cell material pro-

vides stiffness as truss structure (i.e. independent on
Poisson’s ratio) in each direction and dividing by 3.
Likewise, the closed-walled bulk modulus can be found

as

κ3D,closed =
2fE

9(1− ν)
(15)

by summing axial and transversal stress from an ax-

ial unit strain and assuming 2/3 of the material as a

thin plate structure in each direction and dividing by 3

(and using plane stress assumption for the transversal
contraction of the sheets).

The Hashin-Strikhman bound for the 3D bulk mod-

ulus is

κ3D,HS =
2fE

3[(3(1− ν)− f(1 + ν)]
, (16)

which, in the limit of f → 0, corresponds to (15). This
means that box-like, closed-walled microstructures (and
tetragonal closed-walled microstructures as well) are

optimal in the small volume fraction limit since they
attain the theoretically possible bulk modulus for the
3D bulk modulus.

The ratio between the bulk modulus for the closed
(15) and the open-walled (14) microstructure is

κ3D,closed

κ3D,open
=

2

1− ν
, (17)

i.e. for the common Poisson’s ratio of 1/3 the bulk mod-

ulus of the closed cell is 3 times bigger than for the open
cell – the same as in the 2D case. In other words: low
volume fraction truss microstructures as e.g. often used

as in-fill in 3D printing are up to or even more than
three times less efficient than their closed-walled coun-
terparts!

4.3 3D numerical verification

Above theoretical observations have been verified with
3D numerical homogenization (see e.g. Guedes and Kikuchi,

1990; Hassani and Hinton, 1998). For our experiments
we have used a 3D numerical homogenization code very
similar to the 2D homogenization code provided by An-

dreassen and Andreasen (2014), but utilizing the par-
allel solvers available in PETSc (Balay et al, 2015).

We consider a cubic unit cell and a closed-walled

box microstructure with wall-thickness given by one el-
ement size. Then we consider the same unit cell but
with the material confined to square cross-section frame

elements at the 12 edges of the cube as illustrated in
Figure 11.

Using the numerical homogenization code we calcu-

late the effective bulk modulus of the closed and open
cells for decreasing volume fractions and compare them
with the theoretical bounds in Table 4. Remark, even

for a mesh consisting of 1203 = 1, 728, 000 elements the
lowest possible volume fraction still capable of produc-
ing a closed unit cell is around five percent (explaining

the dash in the κH
closed-column for f = 8 · 10−4).

From the table it is observed that the bulk mod-
ulus of the closed-walled cell structures indeed attains

the theoretical bound value and that the ratio of the
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Fig. 11 Left: Closed box unit cell (thickness illustrated by
showing it with front side cut off). Right: Unit cell with same
amount of material in an open cell configuration.

Table 4 Results for 3D homogenization study

Mesh f ≈ κHS κH
closed κH

open
κH
closed
κH
open

803 0.1 0.0325 0.0324 0.0160 2.03
1203 0.05 0.0161 0.0160 0.00667 2.40
1203 8·10−4 2.61·10−4 - 9.40·10−6 2.61

bulk modulus of the closed-walled and the open-walled
structures indeed approaches 3 in the low volume frac-

tion limit as predicted by the theory in the previous
subsection.

5 Discussion

This paper has shown how the restriction of topology
optimization results to be frame-like or to be perfo-

rated plates, either by penalization in 2D or by use of
regularization or too coarse discretizations in 3D, re-
sults in structures that are far from being optimal with

respect to pure stiffness objectives. By allowing thin
sheets or closed-walled cells instead of enforcing perfo-
rated plates or open-walled microstructures gives theo-

retical improvements of more than 200% or more than
30% in the practical cases considered.

This conclusion holds for pure stiffness optimiza-

tion. Obviously other optimization criteria or the addi-
tion of other constraint may or will change this conclu-
sion. Some of these options are briefly discussed in the

following:

– Structural stability: It is obvious that a very thin
plate or sheet is more prone to buckling than a com-
pact bar with the same material volume. Hence,

buckling load criteria may favor Michell-like solu-
tions from sheet or plate-like ones at the cost of the
achievable stiffness. Ideally, buckling loads should

be included in practical topology optimization. At
present problems of limited size and complexity are
solvable. This is partly due to the heavier compu-

tational burden of solving eigenvalue problems and

partly due to huge number of multiple eigenvalues

that are expected to appear for complex 3D prob-
lems.

– Microstructural stability: As for structural sta-

bility, open-walled and closed-walled microstructures
are expected to behave differently with respect to
buckling stability. Which are better should be stud-

ied in more detail and depends on the scale of the
microstructures (since buckling loads scale non-linearly
with size).

– Porosity: As for the case of bone-microstructure,
other requirements than structural stiffness may fa-
vor open-walled from close-walled structures. One

should keep in mind though that the imposing of
open walls or perforated plates is very costly as
demonstrated throughout this paper.

– Manufacturing: Very small details and thin plates
and sheets may be impossible to manufacture. As
demonstrated, imposing a minimum length scale,

either systematically through some regularization
scheme or less systematically and not recommend-
able through the use of too coarse meshed will re-
sults in Michell-like instead of sheet-like structures

at the cost of structural stiffness.
– Transparency: Obviously, it is not relevant to look

for the theoretically stiffest highrise if this implies

that the structure will be closed walled without any
windows. Hence, requirements to transparency will
favor Michell-like instead of closed-walled stiffness

optimal structures.
– Elegance/Aestatics: Michell structures are inar-

guably beautiful and also the very popular com-

plete or partial micro-truss structures produced by
many 3D printers look elegant and efficient. Fol-
lowing the recommendation in this paper will re-

sult in closed-walled, and from the outside, boring
looking structures. Hence, elegance or aesthetics cri-
teria may favor Michell-like structures and open-

celled microstructures from stiffness optimal closed-
cell ones.

We have shown how variable thickness sheet-like or
closed-walled microstructures are considerably stiffer
than Michell-like and open-walled ones. Other crite-

ria like stability, porosity, manufacturing, transparency
or aesthetics may favour Michell structures to be opti-
mal after all. However, we emphasize that the outcome

of minimum compliance-type continuum topology opti-
mization studies should always be of sheet type unless
other constraints (like the afore mentioned) that favor

Michell-like structures have been explicitly stated. The
most general violation of this rule is seen in papers that
use coarse finite element meshes and conclude that op-

timized 3D structures are truss-like. This is most likely
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due to the artificial length-scale imposed by the mesh

and hence this (artificial and non-recommendable) type
of length-scale control should be avoided or at least ac-
knowledged when presenting algorithms and results.
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