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a b s t r a c t
The maximum matching width is a width-parameter that is defined on a branch-
decomposition over the vertex set of a graph. The size of a maximum matching in the
bipartite graph is used as a cut-function. In this paper, we characterize the graphs of
maximum matching width at most 2 using the minor obstruction set. Also, we compute
the exact value of the maximummatching width of a grid.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Treewidth and branchwidth are well-knownwidth-parameters of graphs used in structural graph theory and theoretical
computer science. Based onCourcelle’s theorem [4],which states that every property on graphs definable inmonadic second-
order logic can be decided in linear time on a class of graphs with bounded treewidth, many NP-hard problems have been
shown to be solvable in polynomial time by dynamic programming when the input has bounded treewidth or branchwidth.

Vatshelle [20] introduced a new graphwidth-parameter, called themaximummatching width (mm-width in short), that
uses the size of a maximum matching as a cut-function in its branch-decomposition of the vertex set of a graph. Maximum
matching width is related to treewidth and branchwidth as shown by the inequality mmw(G) ≤ max(brw(G), 1) ≤

tw(G) + 1 ≤ 3mmw(G) for every graph G [20] where mmw(G), tw(G), and brw(G) are the maximum matching width, the
treewidth, and the branchwidth of G respectively. This implies that bounding the treewidth or branchwidth is qualitatively
equivalent to bounding themaximummatching width. Maximummatching width gives amore efficient algorithm for some
problems. For a given branch-decomposition of a graph G of maximum matching width k, we can solve the Minimum
Dominating Set Problem in time O∗(8k) [8], which gives a better runtime than O∗(3tw(G))-time algorithm in [19] when
tw(G) > (log38)k. Note that the Minimum Dominating Set Problem cannot be solved in time O∗((3 − ε)tw(G)) for every
ε > 0 unless the Strong Exponential Time Hypothesis fails [10].

The Robertson–Seymour theorem [13] states that every minor-closed class of graphs has a finite minor obstruction set.
In the other words, a graph G is in the class if and only if G has no minor isomorphic to a graph in the obstruction set.
Much work has been done to identify the minor obstruction set for various graph classes, especially for graphs of bounded
width-parameters [2,5,9].

Let Kn, Cn, and Pn be the complete graph, the cycle graph, and the path graph on n vertices, respectively. The graphs K3 and
K4 are the unique minor obstruction for the graphs of treewidth at most 1 and 2 [21], respectively. The minor obstruction
set for the class of graphs having treewidth at most 3 is {K5, K2,2,2, K2 × C5,M8} where K2 × C5 is the Cartesian product of K2
and C5, andM8 is the Wagner graph, also called the Möbius ladder with eight vertices [1,16].

Robertson and Seymour [12] gave a characterization for the classes of graphs of branchwidth at most 1 and at most 2.
The graphs K3 and P4 are forbidden minors for the graphs of branchwidth at most 1. For the class of graphs of branchwidth
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at most 2, its minor obstruction is the same as treewidth, which is K4. The graphs of branchwidth at most 3 have four minor
obstructions; {K5, K2,2,2, K2 × C4,M8} [3].

One of the main results of this paper is to find the minor obstruction set for the class of graphs of mm-width at most 2.
Note that the class of graphs with bounded mm-width is closed under taking minor, as shown in Corollary 2.3. Our main
result is the following.

Theorem 3.17. Let O = O3 ∪ O4 ∪ O5 ∪ O6 be the set of 42 graphs in Figs. 1, 5–7. A graph G has mm-width at most 2 if and
only if G has no minor isomorphic to a graph in O.

The exact value of some width-parameters for grid graphs is well known. For an integer k ≥ 1, the branchwidth
and treewidth of the k × k-grid are k [12,17], and the rank-width of the k × k-grid is k − 1 [7]. From the inequality
rw(G) ≤ mmw(G) ≤ max(brw(G), 1) [20], the mm-width of the k × k-grid is either k − 1 or k. Our second result is that
the latter is the right answer when k ≥ 2.

Theorem 4.7. The k × k-grid has mm-width k for k ≥ 2.

Section 2 lists some of the definitions, including a tangle, and provides preliminaries for the maximum matching width.
In Section 3 we identify the minor obstruction set for graphs with mm-width at most 2. Section 4 gives the result for the
precise mm-width of the square grids.

2. Preliminaries

Every graph G = (V , E) in this paper is finite and simple. For a set X ⊆ V (G) ∪ E(G), we write G \ X to denote the graph
obtained from G by deleting all vertices and edges in X . If X ⊆ E(G), we write G/X to denote the graph obtained from G by
contracting the edges in X . If X = {x}, then we write G \ x and G/x instead of G \ X and G/X , respectively. If a subgraph G′ of
Gwith V (G′) = X contains all the edges of Gwhose both ends are in X , then we call G′ induced by X and write G′

:= G[X]. For
a graph G and disjoint subsets X, Y ⊆ V (G), let EG[X, Y ] (or E[X, Y ]) denote the set of all edges e = uv where u is in X and v
is in Y , and let G[X, Y ] = G(X ∪ Y , E[X, Y ]). A graph G is k-connected if |V (G)| ≥ k and G \ X is connected for every X ⊂ V (G)
with |X | < k. A bridge is an edge e such that G \ e has more components than G. A block is either a bridge as a subgraph or a
maximal 2-connected subgraph.

We say that a tree is ternary if all vertices have degree 1 or 3. A branch-decomposition of a finite set X is a pair (T ,L) of a
ternary tree T together with a bijection L from the leaves of T to X . Note that an edge ab of T partitions the leaves of T into
two parts, say A and B. We say an edge e induces the partition (A, B). A function f : 2X

→ Z is symmetric if f (A) = f (X \ A)
for all A ⊆ X , and the function f is submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for all A, B ⊆ X . For each edge e of T ,
and a symmetric, submodular function f , the f -value of e is equal to f (A) = f (B) where (A, B) is the partition induced by e.
The f -width of a branch-decomposition (T ,L) is the maximum f -value of an edge of T , and the f -width of X is the minimum
value of the f -width over all possible branch-decompositions of X . This notion of f -width provides a link between several
width parameters.

For A ⊆ E(G), let br : 2E(G)
→ Z be the function so that br(A) is the number of vertices that are incident to both an edge

in A and an edge in E(G) \ A. The branchwidth of G, denoted by brw(G), is the br-width of E(G).
For A ⊆ V (G), let r : 2V (G)

→ Z be the function such that r(A) is the rank of the adjacency matrix between A and V (G) \ A
over F2. The rank-width of G, denoted by rw(G), is the r-width of V (G).

Let mmG : 2V (G)
→ Z be the function such that mmG(A) is the size of amaximummatching in G[A, V (G)\A]. Note that the

function mmG is symmetric and submodular [15]. We use mm instead of mmG if the host graph G is clear from the context.
Themaximum matching width of G, denoted by mmw(G), is the mm-width of V (G).

A graph H is a minor of a graph G if H can be constructed from G by deleting edges, deleting vertices, and contracting
edges. We call a graph G minor-minimal with respect to a property P if G has P but no proper minor of G has P . A graph G
is a forbidden minor of a graph class C if H ̸∈ C whenever H has a minor isomorphic to G. Robertson and Seymour [13] state
that the collection of minor-minimal graphs outside a minor-closed graph class is finite. The collection is called the minor
obstruction set.

A graph is chordal if every induced cycle in the graph has length 3. A chordalization of a graph G is a chordal graph H such
that V (H) = V (G) and E(G) ⊆ E(H). An intersection graph G over a family {Ai} of sets is the graph with V (G) = {Ai} and
E(G) = {AiAj : Ai ∩ Aj ̸= ∅}. Remark that a graph is chordal if and only if it is the intersection graph of the edge sets of
subtrees of a tree [6].

2.1. Maximum matching width

Jeong, Sæther, and Telle [8] gave a new characterization of graphs of mm-width at most k as an intersection graph by the
following theorem. A tree is called nontrivial if it has at least one edge and a tree is subcubic if all vertices have degree at
most 3.

Theorem 2.1 ([8]). The maximum matching width of a graph G is at most k if and only if there exist a subcubic tree T and a set
{Tx}x∈V (G) of nontrivial subtrees of T such that
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(1) if uv ∈ E(G), then the subtrees Tu and Tv have at least one vertex of T in common,
(2) for each edge e of T there are at most k subtrees in {Tx}x∈V (G) containing e.

Note thatwe can replace a subcubic tree T to a ternary tree T in Theorem 2.1 becausewe can add an edge to each degree-2
vertex of T .

A tree-representation of G having width at most k is a pair (T , {Tx}x∈V (G)) where T is a ternary tree and a set {Tx}x∈V (G) of
nontrivial subtrees satisfying the properties (1) and (2). Theorem 2.1 says that a graph G has a tree-representation of width
at most k if and only if mmw(G) ≤ k.

For a tree-representation (T , {Tx})x∈V (G) ofG, the intersection graphGT of the family {Tx}x∈V (G) is chordal andG is a subgraph
of GT . Since G and GT have the same tree-representation (T , {Tx})x∈V (G), every graph has a chordalization with the samemm-
width.

It is easy to check that, for a graph G and its vertex or edge x,

mmw(G \ x) ≤ mmw(G).

The same holds for contracting an edge.

Lemma 2.2. Let G be a graph. For every edge uv of G,mmw(G/uv) ≤ mmw(G).

Proof. Let (T , {Tx}x∈V (G)) be a tree-representation of G having width mmw(G). Let Tuv be the subtree of T with vertex set
V (Tu) ∪ V (Tv) and edge set E(Tu) ∪ E(Tv). Then (T , {Tx}x∈V (G)\{u,v} ∪ {Tuv}) is a tree-representation of G/uv having width at
most mmw(G). By Theorem 2.1, mmw(G/uv) ≤ mmw(G). □

Corollary 2.3. Let k be an integer. The set Mk = {G : mmw(G) ≤ k} is closed under the minor operations.

By Corollary 2.3 and Robertson–Seymour theorem [13], Mk has a finite minor obstruction set for each k. We can easily
find the minor obstruction set when k = 1.

Proposition 2.4 ([14]). A graph G has mm-width at most 1 if and only if G does not contain C4 as a minor.

Proof. Suppose that G contains C4 as a minor. We can find four vertices v1, v2, v3, v4 of G and four paths P12, P23, P34, P41 in
G such that each path Pij is a path from vi to vj and the four paths are pairwise internally vertex-disjoint. For every branch-
decomposition (T ,L) of V (G), there exists an edge e in T that induces a partition (A, B) of V (G) such that two vertices from
v1, v2, v3, v4 are in A and the other two are in B. Thus, there exist two vertex-disjoint paths from A to B. This implies that the
mmG-value of e is at least 2, and therefore G has mm-width at least 2.

Now let us suppose that G does not contain C4 as a minor. It is easy to see that every block of G is either K2 or C3. The
mm-width of G is the maximum value among the mm-widths of blocks of G. Since both K2 and C3 have mm-width 1, G has
mm-width at most 1. □

2.2. Tangle

Before proving our main theorems, we shall introduce the notion of tangle, which is useful in investigating the lower
bounds of width-parameters.

Let f be an integer-valued symmetric submodular function on the subsets of a finite set X . An f -tangle of order k + 1 is a
collection T of subsets of X satisfying that

(T1) for all S ⊆ X , if f (S) ≤ k, then one of S and X \ S is in T ,
(T2) if S1, S2, S3 ∈ T , then S1 ∪ S2 ∪ S3 ̸= X ,
(T3) for each x ∈ X , X \ {x} ̸∈ T .

Robertson and Seymour [12] proved the following theorem. We use it in both Sections 3 and 4.

Theorem 2.5 ([12]). Let f be an integer-valued symmetric submodular function on subsets of a finite set X. The f -width of X is
larger than k if and only if there exists an f -tangle of order k + 1.

The k× k-grid, denoted by Gk, is the graph with vertex set V (Gk) = {(i, j) : 1 ≤ i, j ≤ k} and edge set E(Gk) = {(i, j)(i′, j′) :

|i − i′| + |j − j′| = 1}. Using Theorem 2.5, we show that the 3 × 3-grid has mm-width 3, as an example.

Lemma 2.6. The 3 × 3-grid G3 has anmm-tangle of order 3.

Proof. Let us considerG3 to be a part of an integer grid in the real plane and let {(i, j) : 1 ≤ i, j ≤ 3} be the vertex set ofG3. Let
Abe a set of all subsets ofV (G3)with size atmost 2. LetB = {{(1, 1), (1, 2), (2, 1)}, {(1, 2), (1, 3), (2, 3)}, {(2, 3), (3, 2), (3, 3)},
{(2, 1), (3, 1), (3, 2)}}. We claim that A ∪ B is an mm-tangle of order 3. It is trivial that (T3) holds. If S1 ∪ S2 ∪ S3 = V (G3),
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then the sets S1, S2, S3 must be in B. However, no set in B has (2, 2) and thus (T2) follows. Now we check (T1). Note that for
every subset S ⊆ V with |S| = 4, we have mm(S) ≥ 3. Since A contains all subsets of size at most 2, we need to consider
subsets of V (G3) of size 3. The elements in B are the only subsets of size 3 having mm(S) ≤ 2. Hence (T1) holds too and A∪ B
is a mm-tangle of order 3. □

By Lemma 2.6 and Theorem 2.5, the 3 × 3-grid has mm-width at least 3. It is easy to see that the 3 × 3-grid has
mm-width at most 3 since it has 9 vertices and K9 has a tree-representation of width 3. Thus the 3 × 3-grid has mm-width
3. In this paper, we use a similar argument to verify that the graphs in the minor obstruction set for mm-width at most 2
have mm-width 3. Note that the 3 × 3-grid is also in the minor obstruction set for the graphs of mm-width at most 2. See
Fig. 6(b).

3. Minor obstruction set for maximummatching width at most 2

Note that ifG is not 2-connected, thenmmw(G) is themaximumofmmw(H) whereH is amaximal 2-connected subgraph
of G. Thus the graphs in the minor obstruction set are 2-connected.

In Section 3.1 we identify the 3-connected graphs that are minor-minimal with respect to mm-width ≥ 3. And then we
consider the minor-obstructions with 2-cuts in Section 3.2. We shall show that each 2-cut separates the graph into at most
three components, where all but one component is small (a full characterization is given after Lemma 3.7). We show that
the obstructions are obtained from a 3-connected graph with ≤6 vertices by replacing some edges with small components
mentioned above. What remains is to check all the candidates.

3.1. 3-connected graphs

In this subsection, we give five 3-connected graphs that have mm-width 3 and whose proper minors have mm-width 2.

Lemma 3.1. For each ternary tree T , one can find an edge of T whose removal divides the set of leaves into two subsets, each
having at least 1/3 of all the leaves.

Proof. Let e = uv be an edge that induces a partition (A, B) of the leaves where u is on the side of A. Suppose that A contains
more than 2/3 of the leaves. Then u has degree 3 and the other two edges at u induce leaf partitions, namely (A1, B1) and
(A2, B2) where we assume u to be on the side of A1 and A2 respectively. We choose the edge, say e′, with larger |Ai|. If both A1
and A2 contain at most 2/3 of the leaves then e′ will be the edge we are after. Otherwise, we have a partition with smaller
difference |Ai| − |Bi| than |A| − |B| and we iterate until we find a working edge. □

By Lemma 3.1, a ternary tree with at least 7 leaves has an edge dividing the leaves into two sets such that both have size
at least 3.

Lemma 3.2. If a graph G is 3-connected and G has at least 7 vertices, thenmmw(G) ≥ 3.

Proof. By the argument above, for every branch decomposition (T ,L) of V (G), we can find an edge e in T inducing a partition
(A, B) with |A|, |B| ≥ 3. Since G is 3-connected, by Menger’s theorem, G has three vertex-disjoint paths between A and B.
These paths give a matching of size 3 in G[A, B], which means that the mmG-value of e is at least 3. Thus, every branch-
decomposition of V (G) has mmG-width at least 3. □

It is easy to find a tree-representation of K3n with width n. In particular, K6 has mm-width 2 and hence every graph on
6 vertices has mm-width at most 2. In other words, the forbidden minors for mm-width at most 2 have at least 7 vertices.
We use Tutte’s wheel theorem stated below. In the following statement we assume pairwise parallel edges occurring from
contractions are all removed but one to keep the graph simple.

Theorem 3.3 (Tutte’s Wheel Theorem [18]). If a graph G is 3-connected, then G has an edge e such that either G/e or G \ e is
3-connected unless G = K4.

Lemma 3.4. Let O3 be the set of the five graphs in Fig. 1. A 3-connected graph is minor-minimal with respect to maximum
matching width at least 3 if and only if it is in O3.

Proof. By Tutte’s wheel theorem, a 3-connected graphwith at least 8 vertices has a proper 3-connectedminorwith at least 7
vertices, which hasmm-width at least 3 by Lemma 3.2. Thus aminor-minimal 3-connected graphwith respect tomm-width
at least 2 has precisely 7 vertices. By [11], the five graphs in Fig. 1 are precisely the edge-minimal 3-connected graphs on 7
vertices, and hence it is enough to show that the proper minors of these graphs all have mm-width at most 2.

Observe that all edges of a graph in O3 are incident with a vertex of degree 3. Thus by taking out the edge we have a
graph on 7 vertices with at least one vertex of degree 2, say v. Starting from a tree-representation of G \ v with width 2, by
rearranging the leaves if needed, we can easily add a vertex v of degree 2 without increasing mm-width, so such a graph
must have mm-width 2. □
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Fig. 1. The minor-minimal 3-connected graphs on 7 vertices.

Fig. 2. Another tree-representation of the same graph where Ta and Tb share an edge.

3.2. 2-connected graphs

Now we find 2-connected minor-minimal graphs with respect to mm-width 3 that are not 3-connected. Let O2 be the
set of all graphs G such that G is not 3-connected and G is minor-minimal with respect to mm-width at least 3. Note that the
graphs in O2 are 2-connected.

We say that a tree-representation of G is good if there exist two vertices a and b such that the subtrees for a and b share an
edge and thewidth of the tree-representation is 2. A pair (G, {a, b}) is good if it has a corresponding good tree-representation
with vertices a and b, and bad if none exists.

Lemma 3.5. Let G be a graph and let a, b ∈ V (G). Let H be the graph obtained from G by adding two new vertices, say c and d,
and edges ac, cd and db, followed by removing the edge ab if ab ∈ E(G). If (G, {a, b}) is bad, thenmmw(H) ≥ 3.

Proof. We prove by contradiction. Suppose mmw(H) ≤ 2, that is, H has a tree-representation T = (T , {Tv}v∈V (H)) of width
at most 2. We shall use T to find a good tree-representation of Gwith a and b, yielding a contradiction.

From T we may obtain three tree-representations of G with width at most 2 by replacing the subtree for a and b
respectively with (1) Ta ∪ Tc ∪ Td and Tb, (2) Ta ∪ Tc and Td ∪ Tb, and (3) Ta and Tc ∪ Td ∪ Tb. Since (G, {a, b}) is bad, for all three
choices the subtrees for a and b intersect at precisely one vertex in the new tree-representations. Therefore, E(Ta)∩E(Tb) = ∅

and T has two distinct vertices v1 and v2 such that Ta ∩ Tc = {v1} and Td ∩ Tb = {v2}.
Let e = v1u be the first edge in the unique path P in T from v1 to v2. Because of the path acdb inH , the first few consecutive

edges of P (possibly zero) are in Tc and the others are in Td. We assume that Tc contains e. The following manipulation can
be done likewise when Td contains e.

Let x ̸= c be a vertex of G such that Tx contains e. If there is no such x we ignore x in the following. Let T ′ be the tree
obtained from T by subdividing e, and adding a path v3v4v5 of length 2 at the new vertex v3 obtained from the subdivision;
see Fig. 2. Let {T ′

v}v∈V (H) be a collection of subtrees of T ′ such that

• T ′
c and T ′

d have only one edge v4v5,
• T ′

a is obtained from Ta by adding the edges v1v3 and v3v4,
• T ′

b is obtained from Tb by adding v3v4 and the edges on the path from v3 to v2, and
• T ′

v = Tv for all other v ∈ V (H).
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Fig. 3. New tree-representation from two tree-representations.

Note that for each pair of vertices u, v in V (H) \ {c, d}, if Tu ∩ Tv ̸= ∅ then T ′
u ∩ T ′

v ̸= ∅. Since c and d are adjacent to only
a and b in H , the pair T ′

= (T ′, {T ′
v}v∈V (H)) is a tree-representation of H of width 2. Hence, by removing v5, we obtain a good

tree-representation of G with a, b having width 2, a contradiction. □

Lemma 3.6. Let G be a graph and let c be a vertex of G with precisely two neighbors a and b. If ab ∈ E(G) and mmw(G) ≥ 3,
thenmmw(G \ ab) ≥ 3.

Proof. We prove by contradiction. Suppose H = G \ ab has a tree-representation T = (T , {Tv}v∈V (H)) of width at most 2.
Since mmw(G) ≥ 3 the subtrees Ta and Tb are vertex-disjoint. Let v1 ∈ V (Ta) and v2 ∈ V (Tb) be the vertices of T such that
the unique path P in T from v1 to v2 have no edge in neither Ta nor Tb. As c is a common neighbor of a and b, every edge
of P is in Tc . Now we do the same as in the proof of Lemma 3.5 and Fig. 2, except that here we set d = c. The resulting
tree-representation of G has width at most 2, a contradiction. □

A 2-cut in G is an inclusion-wise minimal subset S ⊂ V (G) such that |S| = 2 and G \ S is disconnected. Given a graph G
and its 2-cut {a, b} with a component S of G \ {a, b}, we denote by S̃ the induced subgraph G[V (S) ∪ {a, b}]. As {a, b} is the
unique 2-cut having S as a component, we may say simply S̃ is good or bad, if respectively the pair (S̃, {a, b}) is good or bad.

Lemma 3.7. Let G be a graph inO2. If a 2-cut {a, b} separates G into two components A and B, then ab ̸∈ E(G) and one of Ã or B̃
is isomorphic to either P3 or P4.

Proof. We start with showing that one of Ã and B̃ is bad. Suppose for contradiction that both are good. From their good
representations, say (T A, {Tx}x∈V (A)) and (T B, {Ty}y∈V (B)), we can construct a tree-representation of G of width 2 as follows.We
choose an edge from each of T A and T B shared by Ta and Tb, and then subdivide those two edges and connect the new vertices
by an edge; see Fig. 3. Thenewsubtrees T ′

a and T ′

b will be clear fromFig. 3. It is easy to see that the resulting tree-representation
has width 2.

Now we assume B̃ is bad. Suppose |A| ≥ 2. Since G is 2-connected, there exists a path from a to b in Ã whose length is at
least 3. Thus, Ã contains P4 as a minor. Let H be a graph obtained from B̃ and P4 by identifying a and b in B̃ with two ends of
P4 respectively. By Lemma 3.5, H has mm-width at least 3. If P4 is a proper minor of Ã, then a graph H is a proper minor of G.
It contradicts that G is in O2. Therefore, Ã is isomorphic to P4.

Suppose A = {c}. Since G is 2-connected, c is adjacent to both a and b and by Lemma 3.6, Ã is the path acb, which is
isomorphic to P3. □

To consider the 2-cuts with more than two components, we use the following lemma. The proof of Lemma 3.5 can be
modified to prove the following.

Lemma 3.8. Let G be a graph and let a, b ∈ V (G). Let H be the graph obtained from G by adding two new vertices, say c and d,
and edges ac, bc, ad and bd, followed by removing the edge ab if ab ∈ E(G). If (G, {a, b}) is bad, thenmmw(H) ≥ 3.

Let G ∈ O2. Suppose that a 2-cut {a, b} separates G into at least three components, namely D1,D2, . . . ,Dk. Since we can
combine arbitrary number of good tree-representations as in Fig. 3 while preserving goodness, one of the D̃i’s, say D̃1, is
bad. If k > 3, we construct G′ by contracting each of D2, . . . ,Dk into a single vertex, and leaving just two of those. Then by
Lemma 3.8, mmw(G′) ≥ 3. Therefore, G cannot contain G′ as a proper minor. Also by Lemma 3.7, D̃i is isomorphic to either
P3 or P4 for 2 ≤ i ≤ k. As a result, one of the following holds:

1. k = 2 and D̃2 = P3.
2. k = 2 and D̃2 = P4.
3. k = 3 and D̃2 = D̃3 = P3.

We summarize the above discussion as follows.

Corollary 3.9. Let G be a graph in O2. If {a, b} is a 2-cut of G, then G \ {a, b} has a unique component Bab such that
B̃ab = G[V (Bab) ∪ {a, b}] is bad. Moreover, ab ̸∈ E(G) and G \ Bab is one of the following:
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Fig. 4. Three ways of replacing an edge ab.

• a path of length 2 between a and b,
• a path of length 3 between a and b, or
• a K2,2 where a and b are non-adjacent.

Following Corollary 3.9, for each 2-cut {a, b} of G ∈ O2, we call G\Bab the good-side of {a, b}. Hence the good-side of {a, b}
contains at most two vertices other than a and b.

We shall show below that every graph in O2 can be constructed from a small 3-connected graph by replacing some of
its edges by some of the three graphs in Fig. 4. To state this precisely, we call the replacement of an edge ab with P3 = acb,
P4 = acdb and K2,2 = acb ∪ adb, respectively, as 1-subdivision, 2-subdivision and 11-subdivision where c, d are adjacent to
no other vertices; see Fig. 4. We call these three operations as good-subdivisions.

Lemma 3.10. Every graph inO2 is obtained from a 3-connected graph on 4, 5, or 6 vertices by good-subdividing some of its edges.

Proof. Let us consider the inclusion-wisemaximal good-sides of 2-cuts. Wewould like to replace each of themwith an edge
between the vertices in its 2-cut. To make this operation valid, we begin with showing that if two good-sides intersect, then
both of them are contained in a good-side that is P4, or the intersection is a single vertex contained in both of their 2-cuts.
Note that if Ã is bad then A has at least 5 vertices, as K6 has a good tree-representation for every pair of its vertices.

Let G be a graph in O2. Let {a, b} be a 2-cut in G and let Bab be the unique component of G \ {a, b}, by Corollary 3.9, such
that B̃ab = G[V (Bab) ∪ {a, b}] is bad. Let {c, d} be another 2-cut in G and suppose that c is in G \ B̃ab. By Corollary 3.9, c has
only two neighbors in G and is in a path connecting a and b of length 2 or 3. We claim that if d is in Bab, then either

• {a, d} is a 2-cut of Gwith its good-side being the path acbd, or
• {b, d} is a 2-cut of Gwith its good-side being the path bcad.

That is, if the good-sides of {a, b} and {c, d} intersect nontrivially, then both are contained in a larger good-side of another
2-cut.

Nowwe prove the claim. Suppose that d is in Bab. Note that c is a cut-vertex of G \ d and c has only two neighbors in G \ d
(same as in G), one is connected to a and the other is connected to b. Hence the graph G\ {c, d} does not have a path between
a and b, so that its subgraph B̃ab \d does not have one either. Thus d is a cut-vertex of B̃ab separating a and b. Moreover, B̃ab \d
has precisely two components, whose vertex sets we call Da and Db with a ∈ Da and b ∈ Db; otherwise G is not 2-connected.

By Corollary 3.9, ab ̸∈ E(G) and cd ̸∈ E(G). Suppose that Da = {a}. Since B̃ab contains at least seven vertices, the set
{d, b} must be a 2-cut of G. The good-side of {d, b}, by counting the vertices, must be the component containing c and by
Corollary 3.9 we deduce that dacb is an induced path in G and a, c have no other neighbors, which is what we claimed.
Similarly we can settle the case when Db = {b}.

Thus we may assume that |Da| ≥ 2 and |Db| ≥ 2. Since {c, d} is a 2-cut of G, by Corollary 3.9, we have either |Da| = 2
or |Db| = 2. We assume |Db| = 2. As Da ∪ Db ∪ {d} constitutes B̃ab, we have |Da| + |Db| + 1 ≥ 7, so that |Da| ≥ 4. Now we
consider the 2-cut {a, d}. The component containing c and b has at least three vertices, so this component must be Bad. But
|Da| ≥ 4 implies G \ B̃ad having at least three vertices, a contradiction to Corollary 3.9. This proves the claim.

For a 2-cut {a, b} of G, we denote by Cab = G \ Bab the good-side of {a, b}. What we showed above is that, if Cab ∩ Ccd ̸= ∅

for some {c, d} then either (1) Cab ⊆ Ccd, (2) Ccd ⊆ Cab, or (3) the intersection consists of a single vertex which is one of
a, b, c, d.

Now we replace the good-sides at once by edges between their cuts. Formally, let C = {Cab : is a 2-cut of} {a,b} G. Let
C∗

⊆ C be the subset of inclusion-wise maximal elements. For each Cab ∈ C∗, we remove Cab \ {a, b} from G and add an
edge ab to G. This operation is well-defined because of the above discussion. Let H be the resulting proper minor of G. If H
has a 2-cut, then we construct G back from H and the 2-cut still remains in G, which is impossible since for each 2-cut S, we
remove all but one component of G \ S while producing H . That is, H is either 3-connected or isomorphic to K2 or K3.

If H has at least 7 vertices, then H has a minor in O3 so that G ̸∈ O2. Thus H has at most 6 vertices. If H is K2, then H is
constructed by connecting several good-sides in parallel, which hasmm-width atmost 2 as shown in the proof of Lemma 3.7,
especially Fig. 3. If H is a triangle abc , then G is obtained from abc by good-subdividing all three edges ab, bc and ca. To find
a tree-representation of G with width 2 in this case, we start from a K1,3 where its three edges are labeled respectively by
ab, bc and ca. Then we can add the good-sides for the edges ab, bc and cawithout increasing the width. Hence H has 4, 5, or
6 vertices and is 3-connected. □

The obstructions obtained from a 3-connected graph on 4, 5, and 6 vertices respectively are listed in Figs. 5, 6 and 7. The
respective proofs are given in Lemmas 3.14, 3.15 and 3.16. Note that Lemmas 3.5 and 3.8 imply the following.
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(a) O1
4 . (b) O2

4 . (c) O3
4 .

(d) O4
4 .

Fig. 5. The graphs in O4 = O1
4 ∪ O2

4 ∪ O3
4 ∪ O4

4 .

(a) O1
5 . (b) O2

5 . (c) O3
5 .

(d) O4
5 . (e) O5

5 .

Fig. 6. The graphs in O5 = O1
5 ∪ O2

5 ∪ O3
5 ∪ O4

5 ∪ O5
5 .

Lemma 3.11. Let G be a graph with an induced path acdb such that c and d are non-adjacent to other vertices. Let H be the graph
obtained from G − {c, d} by adding two new vertices c ′, d′ and paths ac ′b and ad′b. Then G ∈ O2 if and only if H ∈ O2.

Hence in the following discussion we do not consider 11-subdivisions. The obstructions obtained by replacing 2-
subdivisions with 11-subdivisions shall be added to the list without mentioning.

We shall use the following lemma often when we show a graph has mm-width at most 2.

Lemma 3.12. Let G be a graph. If {V1, V2, V3} is a partition of V (G) and G has six vertices ai, bi for i = 1, 2, 3 such that for each
i,

(1) ai, bi ∈ Vi,
(2) {ai, bi} separates Vi from V (G) \ Vi, and
(3) (G[Vi], {ai, bi}) has a good tree-representation,

thenmmw(G) ≤ 2.

Proof. For each i, we consider a good tree-representation of G[Vi] such that the subtrees for ai and bi share an edge whose
one end has degree 1. We combine the three tree-representations by identifying those degree 1 vertices to obtain a tree-
representation of Gwith width at most 2. □

The way we use Lemma 3.10 to show a graph has mm-width ≤ 2 is that, we try to cover the graph with either three
good-sides or two good-sides and a set of at most two vertices. If we do so, the sets become V1, V2 and V3 in the statement
and Lemma 3.10 applies.

For convenience, we state here at once that the graphs in the following Lemmas 3.14–3.16 all have mm-width at least 3.
Lemma 2.6 is a corollary of the following lemma.
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(a) O1
6 . (b) O2

6 . (c) O3
6 . (d) O4

6 .

(e) O5
6 .

(f) O6
6 .

Fig. 7. The graphs in O6 = O1
6 ∪ O2

6 ∪ O3
6 ∪ O4

6 ∪ O5
6 ∪ O6

6 .

Lemma 3.13. Let O4, O5 and O6, respectively, be the set of graphs in Figs. 5–7. Every graph in O4 ∪ O5 ∪ O6 has maximum
matching width at least 3.

Proof. By Theorem 2.5, it is enough to give a tangle of order 3. We shall explain how to find a tangle of order 3 for each of
those graphs.

Let G be a graph and let X be a subset of V (G) such that mm(X) ≤ 2 and |X | ≥ 3. In other words, the bipartite graph on
V (G) with all the edges in E(G) having one end in X and the other not in X has maximum matching size 2. Thus we can find
a set {a, b} that is a 2-cut of G and G \ {a, b} has a component, say S, such that S̃ contains either X or V (G) \ X .

Therefore, for each graph G ∈ O4 ∪ O5 ∪ O6, we set SG to be the collection of all vertex subsets of the following three
types:

• a set of size at most 2
• a good-side of a 2-cut
• if G has a 11-subdivision made of the paths aub and avb, then SG contains both {a, u, b} and {a, v, b}.

Nowwe consider the tangle axioms (T1), (T2) and (T3) in Section 2.2 to verify that SG is a tangle. (T1) follows immediately
from the above discussion, and (T3) is also easy to check for all graphs in G ∈ O4 ∪ O5 ∪ O6. For (T2), we can check that no
three good-sides cover the whole graph and it remains to see that there are no two good-sides that cover all but at most two
vertices. We leave the details to the reader. □

Nowwe consider the case when the 3-connected graph in Lemma 3.10 has four vertices. The only 3-connected graph on
four vertices is K4.

Lemma 3.14. Let O1
4,O

2
4,O

3
4,O

4
4 be the sets of graphs in Fig. 5. If a graph G is obtained from K4 by good-subdividing some of its

edges, then G ∈ O2 if and only if G ∈ O4 = O1
4 ∪ O2

4 ∪ O3
4 ∪ O4

4 .

Proof. By Lemma 3.13 the graphs inO4 have mm-width at least 3. It can be easily checked that all their proper minors have
mm-width at most 2 using Lemma 3.12.

Now we consider the graphs obtained from K4 by good-subdivisions. We divide the cases via the number of good-
subdivisions. Recall that by Lemma 3.11, we only consider 2-subdivision and not 11-subdivision.

If G has no 2-subdivision and has at most four 1-subdivisions, then mmw(G) ≤ 2 by Lemma 3.12. The unique graph with
no 2-subdivision and five 1-subdivisions is in O1

4 .
If G has one 2-subdivision and at most three 1-subdivisions, then mmw(G) ≤ 2 by Lemma 3.12 unless G is the first graph

in O2
4 . If G has one 2-subdivision and four 1-subdivisions, then G contains the graph in O1

4 as a minor.
If G has two 2-subdivisions and at most two 1-subdivisions, then either G has mm-width 2, G contains a graph in O2

4
as a minor, or G is the first graph in O3

4 . The rest of O3
4 is obtained by replacing 2-subdivisions with 11-subdivisions; see

Lemma 3.11. If G has more than two 1-subdivisions, then G contains the graph in O1
4 as a minor.
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If G has three 2-subdivisions and no 1-subdivision, then mmw(G) ≤ 2 by Lemma 3.12 unless G is the first graph in O4
4 . If

G has three 2-subdivisions and at least one 1-subdivision, then G contains a graph in O2
4 ∪ O3

4 as a minor. □

Lemmas 3.15 and 3.16, respectively, characterize the graphs in O2 that are obtained from a 3-connected graph on five and
six vertices.

Lemma 3.15. Let O1
5,O

2
5,O

3
5,O

4
5,O

5
5 be the sets of graphs in Fig. 6. If a graph G is obtained from a 3-connected graph on 5

vertices by good-subdividing some edges, then G ∈ O2 if and only if G ∈ O5 = O1
5 ∪ O2

5 ∪ O3
5 ∪ O4

5 ∪ O5
5 .

Proof. By Lemma 3.13 the graphs in O5 have mm-width at least 3. Their proper minors have mm-width 2 by Lemma 3.12
and hence they are in O2.

Now we consider the graphs that are also obtained from a 3-connected graph on 5 vertices by good-subdivisions. There
are three 3-connected graphs on 5 vertices, namely the wheelW5, W5 plus an edge (sayW ′

5), and K5.
Let us begin withW5. Let G be a graph obtained fromW5 by good-subdividing some edges.
Suppose that G has no 2-subdivision and has three 1-subdivisions. If the to-be-subdivided edges of W5 contain two

independent edges, then Lemma 3.12 implies mmw(G) ≤ 2. Thus G ∈ O2 if and only if G ∈ O1
5 . If G has no 2-subdivision and

has four 1-subdivisions, then it has mm-width 3; a tangle of order 3 can be found in each case as in Lemma 3.13. So in this
case G ∈ O2 if and only if it does not have a graph in O1

5 as a minor. These are the graphs in O2
5 .

If the number of 1-subdivisions and 2-subdivisions in G is at least 4, then G contains a graph in O1
5 ∪ O2

5 as a minor.
Suppose G has one 2-subdivision and two 1-subdivisions. If the good-side of the 2-subdivision does not intersect with one
of the other two good-sides, then Lemma 3.12 implies mmw(G) ≤ 2. Thus both good-sides of the 1-subdivisions intersect
with the good-side of the 2-subdivision. If the 2-subdivision happens at an edge incident with the vertex of degree 4 inW5,
then G ∈ O2 if and only if G is one of the top two graphs inO4

5; other cases contain a graph inO1
5 as a minor. The bottom two

graphs inO4
5 are obtained by replacing the 2-subdivision with a 11-subdivision. If the 2-subdivision is not incident with the

degree-4 vertex ofW5, then we get the graphs in O3
5 .

If G has at least two 2-subdivisions, then either mmw(G) ≤ 2 or it contains a graph in O1
5 ∪ O2

5 ∪ O3
5 ∪ O4

5 as a minor. It
completes the graphs obtained fromW5.

Now we consider the graphs G ∈ O2 obtained from W ′

5 by good-subdivisions. The graph W ′

5 has three edges whose
removal results in W5. Suppose one of these three edges, say e, is not good-subdivided in G. If G has at least four good-
subdivisions, then G − e contains a graph in O1

5 ∪ O2
5 ∪ O3

5 ∪ O4
5 as a minor. If G has at most three good-subdivisions and

G − e does not contain a graph in O1
5 as a minor, then Lemma 3.12 implies mmw(G) ≤ 2. Hence all three edges ofW ′

5 in the
triangle of degree-4 vertices must be good-subdivided in G. Since the graph in O5

5 is in O2, it is the unique graph obtained
fromW ′

5 in O2.
The last 3-connected graph on five vertices is K5. Let G be a graph obtained from K5 by good-subdivisions. Using an

argument similar to above we can show that every edge of K5 must be subdivided. Hence G ̸∈ O2 and O5 is the precise set
of obstructions obtained from a 3-connected graph on five vertices. □

Lemma 3.16. Let O1
6,O

2
6,O

3
6,O

4
6,O

5
6,O

6
6 be the sets of graphs in Fig. 7. If a graph G is obtained from a 3-connected graph on 6

vertices by good-subdivisions, then G ∈ O2 if and only if G ∈ O6 = O1
6 ∪ O2

6 ∪ O3
6 ∪ O4

6 ∪ O5
6 ∪ O6

6 .

Proof. Let H be a 3-connected graph on six vertices and let G be a graph obtained from H by good-subdividing some edges.
If two adjacent edges of H are good-subdivided in G, then we can find a tangle of order 3 in G and hence mmw(G) ≥ 3;
all graphs in O6 are of this type. If there is no such pair in H , then the good-subdivisions happened at a matching of H and
Lemma 3.12 implies mmw(G) ≤ 2. We leave it to the reader to check that the proper minors of the graphs in O6 have
mm-width at most 2.

If H is minimally 3-connected, then all the graphs obtainable from H by good-subdividing two adjacent edges are in O6;
O1

6 for K3,3, O4
6 for the prism and O6

6 for the wheelW6.
Suppose that H is not minimally 3-connected and G ∈ O2. Let e be an edge of H such that H − e is still 3-connected. If e is

not subdivided in G, then by the above discussion G − e has two adjacent good-sides and mmw(G − e) ≥ 3, a contradiction.
Thus e must be good-subdivided in G and H has at most two edges whose removal does not affect its 3-connectivity. Note
that if H has two such edges, then they should be also adjacent.

If H is K3,3 plus an edge, then the additional edge must be subdivided and we need another adjacent edge to subdivide.
But independently of this choice the resulting graph is isomorphic to the graph in O2

6 . There is a unique way of adding two
adjacent edges to K3,3 and the graph in O3

6 is the result of subdividing both.
If H is the prism plus an edge, then we have three non-isomorphic choices of another adjacent edge to subdivide. They

are in O5
6 . There is again a unique way of adding two adjacent edges to the prism but it contains a graph in O6

6 as a minor.
There is a unique (up to isomorphism) way to add an edge toW6 but it already has three edges that are removable while

maintaining 3-connectivity. Thus the list is complete. □

By Lemma 3.4, a graph is in the obstruction set and 3-connected if and only if it is inO3. IfG is in the obstruction set but not
3-connected, then it should be obtained from a 3-connected graph on 4, 5, or 6 vertices by Lemma 3.10. Lemmas 3.14–3.16
show that G ∈ O4 ∪ O5 ∪ O6. Therefore, the following theorem holds:
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Theorem 3.17. Let O = O3 ∪ O4 ∪ O5 ∪ O6 be the set of 45 graphs in Figs. 1, 5–7. A graph G has maximum matching width at
most 2 if and only if G has no minor isomorphic to a graph in O.

4. k × k -grid

The k × k-grid, denoted by Gk, is the graph with a vertex set V (Gk) = {(i, j) : 1 ≤ i, j ≤ k} and an edge set
E(Gk) = {(i, j)(i′, j′) : |i − i′| + |j − j′| = 1}. In this section, we show mmw(Gk) = k for k ≥ 2.

Vatshelle [20] showed the following inequality. Recall that rw(G) and brw(G) respectively denote the rank-width and the
branch-width of G.

Theorem 4.1 ([20]). If G is a graph, then

rw(G) ≤ mmw(G) ≤ max(brw(G), 1).

It is known that brw(Gk) = k [12] and rw(Gk) = k − 1 [7]. Hence mmw(Gk) is either k − 1 or k. We shall show
mmw(Gk) > k − 1 by finding a tangle of order k; see Section 2.2. We assume k ≥ 2 throughout this section.

Let Ci = {(i, j) : 1 ≤ j ≤ k} and Rj = {(i, j) : 1 ≤ i ≤ k} be the set of vertices on the i-th column and the j-th row
respectively. Recall that for a vertex set X ⊆ V (G), mmG(X) denotes the size of a maximum matching in G[X, V (G) \ X]. We
omit Gk in mmGk and write mm(X) = mmGk (X) in this section. Let X c

= V (Gk) \ X for X ⊆ V (Gk).

Lemma 4.2. If X ⊆ V (Gk) and mm(X) < k, then Ri ⊆ X for some i if and only if Cj ⊆ X for some j.

Proof. Suppose that Ri ⊆ X for some i. Then each Cj intersects with X . If Cj ̸⊆ X for every j, each G[Cj] contains an edge
with one end in X and the other end in X c . Since these edges form a matching of size k, we have mm(X) ≥ k which is a
contradiction. Thus Cj ⊆ X for some j. The converse follows from the symmetry. □

For X ⊆ V (Gk), we say that X is small if mm(X) < k and Ri ̸⊆ X for all i = 1, 2, . . . , k. Note that, by Lemma 4.2, Cj ̸⊆ X for
all j = 1, 2, . . . , k if X is small.

Lemma 4.3. Let X ⊆ V (Gk). If mm(X) < k, then one of X and X c is small.

Proof. Suppose that neither X nor X c is small. Then we can choose i1, i2 with 1 ≤ i1, i2 ≤ k such that Ri1 ⊆ X and Ri2 ⊆ X c .
Now we may choose an edge from each column of Gk with endpoints one in X and the other in X c . Since these edges form a
matching of size k, we have mm(X) ≥ k, a contradiction. □

Lemma 4.4. If X ⊆ V (Gk) is small, then there exist i, j such that Ri ∩ X = Cj ∩ X = ∅.

Proof. Suppose that |Ri ∩ X | > 0 for all i. Since X is small, Ri ∩ X c
̸= ∅. Thus, G[Ri] contains an edge between X and X c for

every i. These edges show that mm(X) ≥ k, a contradiction. Likewise, Cj ∩ X = ∅ for some j. □

Lemma 4.5. If X1 ∪ X2 ∪ X3 = V (Gk), then one of X1, X2, and X3 is not small.

Proof. We prove by induction on k. The lemma is trivial when k = 2. Assume that k > 2 and the lemma is true for k − 1.
To prove by contradiction, let us suppose that all of X1, X2, and X3 are small. Note that each row or column intersects at least
two of X1, X2 and X3.

Firstly we suppose that Rk∪Ck intersects Xt for all t ∈ {1, 2, 3}. We consider the (k−1)× (k−1)-grid Gk−1 = Gk \ (Rk∪Ck)
with sets X ′

t = Xt \ (Rk ∪ Ck) for each t ∈ {1, 2, 3} so that X ′

1 ∪ X ′

2 ∪ X ′

3 = V (Gk−1). By the induction hypothesis, we may
assume that X ′

1 is not small in Gk−1. That is, mmGk−1 (X
′

1) ≥ k − 1 or X ′

1 contains a row of Gk−1. If mmGk−1 (X
′

1) ≥ k − 1, then
Gk−1 has a matching of size k − 1 between X ′

1 and V (Gk−1) \ X ′

1. Since Gk has an edge in Gk[Rk ∪ Ck] with one end in X1 and
the other in X c

1 , we obtain a matching of size k in Gk[X1, X c
1 ] showing that mm(X1) ≥ k and X1 is not small. Hence we may

assume that mmGk−1 (X
′

1) < k−1 and X ′

1 contains a row R′ of Gk−1. Since we assumed X1 to be small, one of the columns of Gk
does not intersect X1 by Lemma 4.4 but it must be Ck; all other columns intersect with R′. On the other hand, by Lemma 4.2,
X ′

1 also contains a column of Gk−1 and Rk does not intersect X1. Thus (Rk ∪ Ck) ∩ X1 = ∅, a contradiction to our assumption
that Rk ∪ Ck intersects all of X1, X2 and X3.

Therefore we may assume that for every choice i, j ∈ {1, k}, Ri ∪ Cj does not intersect all Xt at the same time. Since each
row and column intersects at least two of X1, X2 and X3, if R1 ∪ Rk meets all Xt , then either R1 ∪ Ck or Rk ∪ Ck meets all Xt so
that we assume each of R1 and Rk intersects X1 and X2 but not X3. It follows also that each of C1 and Ck intersects X1 and X2 but
not X3.

We shall show mm(X1) + mm(X2) ≥ 2k by proving that each column of Gk contains either two independent edges
from one of E[X1, X c

1 ] and E[X2, X c
2 ], or one edge from each set. Those edges form two matchings in G[X1, X c

1 ] and G[X2, X c
2 ]

respectively whose sizes sum up to at least 2k. Thus we get mm(X1) ≥ k or mm(X2) ≥ k and one of X1 and X2 is not small.
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If a column has an edge with one end in X1 \ X2 and the other in X2 \ X1 then we are done. Thus C1 and Ck are fine. If all
columns are as such then we are done. Otherwise, there is a column Ci such that Ci ∩ X2 ⊆ Ci ∩ X1. Since Ci ̸⊂ X1, we have
|Ci ∩ (X3 \X1)| > 0. If |Ci ∩ (X3 \X1)| ≥ 2 then Ci has two independent edges in E[X1, X c

1 ]. Thus we assume |Ci ∩ (X3 \X1)| = 1,
that is, |Ci ∩ X1| = k − 1. By Lemma 4.4 we choose a column Cj not intersecting with X1, and between Ci and Cj we can find
k−1 independent row-edges in E[X1, X c

1 ]. Since C1 and Ck are not in this area, wemay choose an edge from G[C1]∩G[X1, X c
1 ]

and G[X1, X c
1 ] has a matching of size k, showing that mm(X1) ≥ k and X1 is not small. This final contradiction completes the

proof. □

Lemma 4.6. Let T be the set of all small subsets of V (Gk). The set T is a tangle in Gk of order k.

Proof. The first and second axioms follow from Lemmas 4.3 and 4.5 respectively. For each x ∈ V (Gk), the set V (Gk) \ {x}
contains a row and thus not in T . □

By Theorem 2.5, Lemma 4.6 implies mmw(Gk) > k − 1. Since the branchwidth of Gk is k, by Theorem 4.1, mmw(Gk) is at
most k.

Theorem 4.7. The k × k-grid has maximum matching width k for k ≥ 2.
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