Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

Published in:
Stem Cell Research

Link to article, DOI:
10.1016/j.scr.2016.10.011

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lab Resource: Stem Cell Line

Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

Kai Xiong a,1, Yan Zhou b,1, Poul Hyttel a, Lars Bolund b, Kristine Karla Freude a,⁎, Yonglun Luo b,⁎

a Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
b Danish Regenerative Engineering Alliance for Medicine (DREAM), Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark

A R T I C L E I N F O

Article history:
Received 22 June 2016
Received in revised form 19 October 2016
Accepted 25 October 2016
Available online 17 November 2016

A B S T R A C T

Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes.

Resource table.

<table>
<thead>
<tr>
<th>Name of stem cell construct</th>
<th>SAM iPSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td>Department of Biomedicine, Aarhus University</td>
</tr>
<tr>
<td>Person who created resource</td>
<td>Kai Xiong, Yan Zhou</td>
</tr>
<tr>
<td>Contact person and email</td>
<td>Yonglun Luo, alun@biomed.au.dk</td>
</tr>
<tr>
<td>Origin</td>
<td>normal human dermal fibroblast</td>
</tr>
<tr>
<td>Type of resource</td>
<td>Biological reagent: iPSC stably expressing two CRISPR-based SAM effectors (dCas9-VP64 and MS2-P65-HSF1)</td>
</tr>
<tr>
<td>Key transcription factors</td>
<td>Oct4, Sox2, cMyc, Klf4</td>
</tr>
<tr>
<td>Link to related literature</td>
<td>NA</td>
</tr>
<tr>
<td>Information in public databases</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Resource details

To establish fibroblasts expressing the CRISPR-based synergistic activation mediator (SAM) effectors, normal human dermal fibroblasts (NHDF) were transduced with lentiviral vectors expressing dCas9-VP64 and MS2-P65-HSF1 (Konermann et al., 2014) and selected with blasticidin and hygromycin for 7 days. The survived fibroblasts that expressed SAM were subsequently transduced with a polycistronic lentiviral vector expressing four reprogramming transcription factors (OCT4, KLF4, SOX2, and C-MYC) and a red fluorescent marker gene (dTOMATO). Four days after transduction, cells were re-seeded to mitomycin C-inactivated mouse embryonic fibroblasts (MEFs) and cultured in iPSC medium as illustrated in Fig. 1A. ES-like colonies appeared at 12–16 days after transduction (Fig. 1B). Two clones (denoted as SAM iPSC clone 1 and clone 2), with typical ES-like morphology, were manually picked and expanded for further characterizations. First, we validated that both SAM-iPSC lines carry the insertion of SAM expression cassettes in their genome and expressed SAM effectors as shown by PCR-based analysis of genomic DNA and mRNA, respectively (Fig. 1C). Secondly, we investigated whether the reprogramming cassette was silenced in the SAM iPSCs by fluorescent imaging. The polycistronic expression cassette used for reprogramming contains a red fluorescent marker gene (dTOMATO), which allows the examination of transgene silencing by fluorescent imaging. Expression of dTOMATO was detected at day 14 under reprogramming of SAM fibroblasts into iPSCs. No dTOMATO expression was detected in both SAM iPSC lines at passage 7 (Fig. 2), which indicates that the reprogramming cassette has been silenced in the iPSC lines. Thirdly, we characterized the expression of pluripotency genes in the SAM iPSCs by qPCR and immunofluorescence staining. Our qPCR analysis showed that transcription of the endogenous pluripotency genes OCT4, KLF4, SOX2, LIN28 and GDF3 in SAM-iPSCs were activated as compared to fibroblasts and at a similar levels as a control iPSC line previously established by us (Kang et al., 2015) (Fig. 3A). Expression of the pluripotency genes OCT4, SSEA4 and TRA-1-60 were further validated by immunofluorescence staining (Fig. 3B). Fourthly, we characterized the differentiation potential of these two SAM iPSC clones. Embryoid bodies (EB) were generated through suspension culture in ultra-low attachment plate followed by spontaneous differentiation for 21 days. Our results showed that both SAM iPSC lines can give rise to the three germ layers by staining with marker antibodies.

⁎ Corresponding authors.
E-mail addresses: kkk@sund.ku.dk (K.K. Freude), alun@biomed.au.dk (Y. Luo).
1 These authors contribute equally to this work.
against beta-III tubulin (TUJ1) for ectoderm, smooth muscle actin (SMA) for mesoderm, and alpha-fetoprotein (AFP) for endoderm (Fig. 4A). Finally, karyotyping analysis confirmed that each SAM iPSC clone maintained the normal euploid karyotype after reprogramming (46, XX) (Fig. 4B). Our results collectively confirmed that the two novel iPSC clones express the CRISPR synergistic activation mediators, are positive for the expression of the investigated pluripotency genes, capable of giving rise to all three germ layers, and karyotypically normal. These two SAM-iPSC clones provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation in the future.

Methods and materials

Lentivirus production

HEK293T cells (Life Technologies) were cultured in DMEM medium (LONZA) supplemented with 10% FBS (Sigma), 1% Glutamax (Life technology) and 1% penicillin/streptomycin (Life Technologies). 1 × 10^7 cells were seeded on 15 cm plates in 20 ml medium 1 day before transfection. Cells were transfected on the next day when they had reached 80–90% confluence. 31.5 μg of lentiviral plasmid containing the gene of interest, 31.5 μg of pMD2.G and 7.26 μg of pRSV-REV were diluted in 1089 μl ddH2O and mixed with 121 μl of 2.5 M calcium chloride solution and 1210 μl of 2 × HBS solution. After incubation at room temperature for 20 min, the solution mixture was added drop-wise directly to cells. Medium was renewed 24 h after transfection. Virus supernatant was harvested twice at 48 h and 72 h post transfection, and then filtered with a 0.45-mm PVDF filter (Millipore). Concentrated lentiviral supernatants were generated when needed by ultracentrifugation for 2 h at 25,000 rpm, 4 °C, and stored at −80 °C.

Lentiviral transduction and SAM-iPSC generation

Normal human dermal fibroblasts (anonymous donor, generously provided by Prof. Thomas G. Jensen from the Department of Biomedicine, Aarhus University) were cultured in DMEM (LONZA) supplemented with 10% FBS (Sigma), 1% Glutamax (Life technology) and 1% penicillin/streptomycin (Life Technologies) and passaged at a 1:3 ratio when cells reached 70–80% confluence. Cells were transduced with crude lentivirus containing dCas9-VP64 (a gift from Feng Zhang’s lab, Addgene #61425) and MS2-P65-HSF (a gift from Feng Zhang’s lab, Addgene #61426). 7.5 × 10^5 cells were plated in a T75 flask one day before virus transduction. 15 ml of crude virus with 8 μg/ml polybrene (Sigma) were added to the cells. 48 h after transfection, lentiviral supernatant was harvested twice at 48 h and 72 h post transfection, and then filtered with a 0.45-mm PVDF filter (Millipore). Concentrated lentiviral supernatants were generated when needed by ultracentrifugation for 2 h at 25,000 rpm, 4 °C, and stored at −80 °C.

![Fig. 1. Generation of SAM iPSCs. A. Illustration of SAM complex and flow-chart of SAM-iPSC generation. B. Typical ES-like colonies of SAM-iPSCs emerged 14 days after transduction. Scale bars: 400 μm. C. PCR detection of integration and expression of SAM activator components in two SAM-iPSC clones.](image1)

![Fig. 2. Evaluation of reprogramming cassette expression and silencing based on fluorescent imaging. Representative phase-contrast and red fluorescent images taken from iPSCs clones during reprogramming (at day 14 after transduction), and the two SAM iPSC clones at passage 7. Magnification: 100x.](image2)
at a density of 9×10^4 cells per well. The cells were then transduced by 2 ml crude lentivirus expressing OCT4, SOX2, KLF-4 and MYC. Medium was changed every other day. Four days after transduction, transduced cells were harvested and re-seeded in 6-well plates coated with mitomycin C inactivated MEFs at 1:3 splitting ratio. 24 h later, culture medium was changed to iPSC medium, consisting of Knockout DMEM, 20% knockout serum replacement (Life Technologies), 2 mM Glutamax (Gibco), 1% non-essential amino acids (NEAA, Life Technologies), 1% penicillin/streptomycin (P/S, Sigma), and 10 ng/ml of bFGF (Life technologies). The iPSC medium was changed every day. Two ES-like clones were isolated and cultured in E8 medium in a feeder-free culturing system with 0.5 μg/ml blasticidin and 50 μg/ml hygromycin. The SAM-iPSCs were passaged manually or by means of 0.5 m EDTA.

Quantitative PCR analysis

Total RNA was isolated from SAM-iPSCs using RNeasy Mini Kits (Qiagen) following the manufacturer’s instructions. Relative RNA expression levels were quantified by reverse transcription using iScript cDNA Synthesis Kit (Bio-Rad) (Promega, San Luis Obispo, US) and quantitative PCR (qPCR) using SYBR Green I Master Kit (Roche). Primers are listed in Table 1. Data were analyzed by the ΔΔCt method. Target Ct values were normalized to GAPDH Ct values, and fold change in target gene expression was determined by comparison to fibroblasts. Quantitative PCR analysis was performed in triplicate for each sample.

Immunofluorescence staining

Cells were washed once with PBS and fixed for 20 min with 400 μl of 4% paraformaldehyde. After fixation, cells were washed with PBS containing 2% FBS, and then permeabilized for 30 min with 0.5% Triton-X100. Subsequently, cells were blocked for 30 min with 5% donkey serum, and then incubated with primary antibodies diluted in PBS containing 0.1 Triton-X100 and 1% donkey serum. Primary antibodies were the following: OCT4 (Abcam, ab27985, goat polyclonal, 1:300 dilution), SSEA4 (Abcam, ab16287, mouse monoclonal, 1:300 dilution) and TRA-1-60 (Abcam, ab16288, mouse monoclonal, 1:300 dilution) at 4 °C overnight. The following day, cells were washed 3 times with PBS containing 2% FBS and afterwards incubated with secondary antibodies for OCT4 (Alexa-594 donkey anti goat, 1:500), SSEA4 (Alexa-594 goat anti mouse, 1:500), TRA-1-60 (Alexa-594 goat anti mouse, 1:500) respectively at room temperature for 2 h. Cells processed identically at all steps but without adding primary antibodies were used as control.

Embryoid body (EB) formation and differentiation

Embryoid body-mediated spontaneous differentiation was performed as previously described (Rasmussen et al., 2014) with small modifications. Briefly, iPSCs were dissociated with PBS-EDTA (0.5 mM) for 5 min at 37 °C, and 100,000 cells were re-plated per well onto 24-well ultra-low attachment plates (Corning), and cultured in E8 medium for one week with medium change daily. EBs with round
and aggregated morphology were transferred to 0.1% gelatin coated 4-well chamber slides and cultured with differentiation medium (high glucose DMEM medium supplemented with 10% FBS, 2 mM L-glutamine and 1% pen/strep) for three weeks. The medium was changed every 2–3 days. The differentiated cells were fixed with 4% PFA for immunostaining analysis against TUJ1 for ectoderm (A25532, life technologies, 1:500 dilution), AFP for endoderm (A008, DAKO, 1:500 dilution) and SMA for mesoderm (M0851, DAKO, 1:500 dilution). Nuclei were visualized by DAPI staining for 10 min.

Karyotyping analysis

Karyotyping analysis was conducted using DAPI-based banding as described previously (Zou et al., 2013). Briefly, iPSCs were cultured until they reach 70% confluent in a 35 mm dish. KaryoMAX® Coleanid™ Solution (Gibco, 15212) were added to the culture medium with a final concentration of 0.1 μg/ml and incubated for 2.5 h at 37 °C. The iPSCs were harvested by 0.5 mM EDTA-PBS, followed by swollen with pre-warm 0.56% KCL for 15 min and fixed with freshly-made and cold fixative solution (methanol: acetic acid, 3:1) for 30 min on ice. Small droplets of fixed iPSCs were spread onto glass slides and allowed to dry without disturbing. The slides were mounted DAPI antifate solution and analyzed by DAPI banding. Metaphases were examined and analyzed by Quips CGH software.

Acknowledgements

We are grateful to Lin Lin, Yong Liu, Trine Skov Petersen and Bettina Hansen (Department of Biomedicine, Aarhus University) for their kind technical advice and support. This project is supported by grants from Det Frie Forskningsråd (Danish Council for Independent Research) - DFF-1337-00128, DFF-1335-00763 [Y.L.], Lundbeckfonden (Lundbeck Foundation) - R173-2014-1105 [Y.L.], R151-2013-14439 [L.B.], European Union Seventh Framework Programme (PIAP-GA-2012-324451-STEMMAD) and Innovation Fund Denmark “Brainstem” (4108-00008B). K.X. and Y.Z. are financially supported by the China Scholarship Council. Y.Z. has financial support from a PhD scholarship from the HEALTH faculty of Aarhus University. K.X. is further supported by the programme of excellence 2016 (Copenhagen as the next leader in precise genetic engineering CDO2016: 2016CDO04210) from the University of Copenhagen.

Table 1
Primer used in this study.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>hOCT4</td>
<td>CTCCTGTCATGCGACATTCAAGA</td>
<td>CAGGTTTCTTTCTCCTAGGCT</td>
</tr>
<tr>
<td>hSOX2</td>
<td>CCGGTGGAGCAGTCTCAGTGT</td>
<td>CCTCCATTTCTCTGTTTT</td>
</tr>
<tr>
<td>hLIN28</td>
<td>ACGGCTGCAATCTGAAAGG</td>
<td>ATGTGCTGACATCTTGCC</td>
</tr>
<tr>
<td>hNANOG</td>
<td>TCTAATACTGCAACTGACG</td>
<td>ACCATTGCTATTCTCGGCC</td>
</tr>
<tr>
<td>hGDF3</td>
<td>CTCCCTGAGACTTATGAGG</td>
<td>AGTGAGGACTTCTGAGG</td>
</tr>
<tr>
<td>hAPENH</td>
<td>TGGATATCTGGAAGATCTCAGG</td>
<td>ATCCCAAGTACCTCTGTCAGG</td>
</tr>
<tr>
<td>dCas9-VP64</td>
<td>GAAGAGAATGCTGGCCTCTG</td>
<td>CAGGTTTCTTTCTCCTAGG</td>
</tr>
<tr>
<td>MS2-P65-HSF</td>
<td>CGAGGGGACTCTGAGTGAAG</td>
<td>AGCATTGCTTTGCTGACT</td>
</tr>
</tbody>
</table>

Fig. 4. EB-mediated three germ layer differentiation and karyotyping. A. Embryoid bodies were generated from both SAM iPSC clones (day 7 Ebs after culture in EB medium and ultra-low attachment plate) and subjected to spontaneous differentiation into all three germ layers for 21 days (phase contrast image of the differentiated cells). Three germ layers are detected by antibodies against beta-III tubulin (TUJ1, green) for ectoderm, smooth muscle actin (SMA, green) for mesoderm, and alpha-fetoprotein (AFP, green) for endoderm. DAPI nuclear DNA counterstaining (blue) was also performed. B. Representative normal euploid karyotype of the two SAM iPSC clones.

References

