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Abstract 

Purpose 

Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model 

relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication 

impacts at the endpoint level. This paper introduces a method to calculate spatially explicit characterization factors (CF) 

at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine 

eutrophication impacts, modelled for 5,772 river basins of the world. 

Methods 

The proposed method combines environmental fate factors (FF) integrating (i) DIN-removal processes in soils and 

rivers, based on the NEWS 2-DIN model, and in coastal waters, based on water residence time, (ii) coastal ecosystem 

exposure (XF) to N enrichment, based on biological cycling processes, and (ii) effect factors (EF) based on species 

sensitivity to hypoxia. Three emission routes are discriminated as N from soil, N in emissions to river and to coastal 

waters. Damage factors (DF) are also estimated, based on endpoint metrics conversion from potentially affected to 

potentially disappeared fractions of species (i.e. PAF- to PDF·m
3
·yr·kgN

-1
) and harmonization across coastal 

ecosystems based on spatially explicit density of demersal species, to further express CF as species·yr·kgN
-1

.  

Results and discussion 

Endpoint CFs show 6 orders of magnitude (o.m.) spatial differentiation among the river basins for the soil emission 

route, 4 for the river, and 2 for emissions to coastal waters. Damage CFs vary 7, 5 and 3 o.m. for the same routes. After 

aggregation at the level of continents, maximum CFs and DFs are consistently found in Europe, but the aggregation 

reduces spatial differentiation to 1 o.m. for each route in both factors. The FFNsoil and species density terms are 

responsible for most of the spatial differentiation of the damage model. Uncertainty is higher for the residence time term 

used in the FF model, due to scarcity and inconsistency of data sources, the assumptions of representativeness of DIN 

persistence and removal rates.  

Conclusions 

Major contributions to the current state-of-the-art of marine eutrophication characterization modelling are: (i) full 

pathway coverage, thus reaching damage level, (ii) significant increase in geographic coverage, (iii) mechanistic 

modelling of exposure and effect factors, and (iv) application of spatially explicit damage to ecosystems factors based 

on species densities. Application of the developed CFs in life cycle impact assessment is recommended at a river basin 

scale, provided that emission location is known. 
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1 Introduction 

Nitrogen (N) is often a limiting growth factor for crops and forage species (Laegreid et al. 1999; Keeney and Hatfield 

2001). Organic (manure) and inorganic (synthetic) fertilizers are widely used to supplement N to secure crop yields 

(Keeney and Hatfield 2001; Brady and Weil 2007). The increasing production of food and feed through fertilizer use in 

crops cultivation, and the increased energy production through fossil fuel combustion with associated emissions of 

nitrogen oxides, has resulted in a more than10-fold increase of reactive nitrogen creation in the last 150 years (Galloway 

et al. 2008). Human interventions currently mobilize more than twice the amount of reactive nitrogen than natural 

processes (Galloway et al. 2004), and river basins export 4-6 fold more dissolved inorganic nitrogen (DIN) than in the 

pre-industrial period (Galloway and Cowling 2002; Green et al. 2004). Riverine transport of such environmental 

emissions increases the N availability in coastal waters where they may cause impacts. 

 Marine coastal eutrophication refers to the syndrome of ecosystem responses to the increase in supply of organic 

matter (Nixon 1995; Cloern 2001). This definition encompasses all possible causes for such supply, e.g. increased algal 

growth following inorganic nutrients enrichment (an autochthonous source for organic carbon) or organic material 

loading (an allochthonous source), reduced grazing pressure on primary producers, and changes in water turbidity, 

residence time, circulation, stratification, or mixing. Any of these can, directly or indirectly, be affected by human 

interventions, but the increased supply of inorganic nutrients to coastal waters from anthropogenic sources (i.e. nutrient 

enrichment) has been identified as a clear link between human activities and ecosystem impacts (Smith et al. 1999; 

Gray et al. 2002; Rabalais 2002). The cascading effects of nutrient enrichment point to a variety of ecosystem impacts 

(Rabalais et al. 2009); one being the benthic oxygen depletion. This may lead to the onset of hypoxic waters, and if in 

excess, to anoxia and ‘dead zones’ – one of the most severe and widespread causes of disturbance to marine ecosystems 

(GESAMP 2001; Diaz and Rosenberg 2008). Other impact, like harmful algal blooms formation, hydrogen sulphide 

release from sediments, alterations in ecological community structure and functioning, and more – see e.g. Smith et al. 

(1999); Cloern (2001); Rabalais et al. (2009), are outside the scope of this study, but important nonetheless. 

https://link.springer.com/article/10.1007/s11367-017-1271-5
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 The increased availability of growth-limiting nutrients in the well-lit upper layers of the ocean (euphotic zone) is 

an important trigger for eutrophication impacts as it promotes planktonic growth. Nitrogen is assumed to be this 

limiting nutrient in marine waters – a necessary and justified simplification in ecosystems modelling when considering 

average spatial and temporal representative conditions – see also Vitousek et al. (2002), Howarth and Marino (2006), 

Cosme et al. (2015). The Redfield ratio is usually adopted to describe the nutrients ratio assimilation by phytoplankton, 

i.e. C:N:P ratios of 106:16:1 (Flemming 1940; Redfield 1958). Nutrients assimilation and consequent particulate 

organic carbon export to bottom strata induces oxygen-consuming aerobic respiration by heterotrophic bacteria (Graf et 

al. 1982; Ploug et al. 1999; Cosme et al. 2015). The exposure of marine species to hypoxic conditions beyond their 

sensitivity thresholds threatens success and survival (Davis 1975; Diaz and Rosenberg 1995; Gray et al. 2002; Vaquer-

Sunyer and Duarte 2008; Cosme and Hauschild 2016), with ecological impacts extending to mass mortality or fisheries 

decline (Diaz and Rosenberg 1995; Wu 2002; Levin et al. 2009; Middelburg and Levin 2009; Zhang et al. 2010). 

 Life cycle impact assessment (LCIA) has been used as a tool to characterise the impacts of the environmental 

emissions originated throughout the entire life cycle of products and services in the economy (Hauschild 2005). Current 

LCIA methods typically model eutrophication impacts at a midpoint between emissions and damage to ecosystems. A 

consistent cause-effect link from emissions to the endpoint of the cascade of effects caused by the N-enrichment 

(impact pathway) is yet not available (Hauschild et al. 2013; Henderson 2015). To the knowledge of the authors, only 

the LCIA methods ReCiPe (Goedkoop et al. 2013; Huijbregts et al. 2016)and LIME (Itsubo and Inaba 2012) 

specifically model midpoint impacts for marine eutrophication, although restricted to European coverage and to a 

limited number of Japanese bays, respectively. Other methods, like EDIP2003 (Hauschild and Potting 2005), EPS 

(Steen 1999), LUCAS (Toffoletto et al. 2007), TRACI (Norris 2003), CML 2002 (Guinée et al. 2002) – also used in 

IMPACT 2002+ (Jolliet et al. 2003) and MEEuP (Kemna et al. 2005), showing a combined aquatic eutrophication 

indicator, are based on Redfield ratio’s stoichiometric equivalencies to distinguish N and phosphorus (P) flows and 

model (with different degrees of environmental relevance) the fate of emitted substances (including N forms) based on 

e.g. air and water transport models, except in CML 2002 method. At the endpoint level, ReCiPe lacks the model work 

for marine eutrophication (EC-JRC 2010; Hauschild et al. 2013; Huijbregts et al. 2016) and LIME shows limited 

extrapolation beyond local Japanese application (Henderson 2015). The method IMPACT 2002+ distinguishes N- and 

P-limited waters but the endpoint model work is incomplete, has low relevance for marine systems, and is scoped to 

European conditions (Hauschild et al. 2013). In all cases, both at mid- and endpoint levels, spatial differentiation at a 

global scale is not modelled (generic or global indicators are used in CML 2002, EPS, MEEuP), or is at a coarse 

resolution (e.g. European countries in EDIP2003 and ReCiPe, U.S. states in TRACI) (Hauschild et al. 2013; Henderson 

2015). Considering the importance of marine eutrophication in many regions of the world, an endpoint indicator that is 

consistent with the LCIA framework and spatially-explicit at a relevant resolution and global scale, would be a useful 

improvement to current impact assessment methodologies in LCA. 

 The goal of this study is to develop spatially-explicit characterization factors, at the levels of endpoint and 

damage to ecosystems, for waterborne nitrogen runoff from soils, and direct emissions to rivers and coastal waters. The 

factors represent the ability of those emissions to cause hypoxia-related eutrophication impacts. Firstly, the 

environmental fate of waterborne N emissions is modelled by accounting for the removal rates at the river basin scale 

and in the marine compartment. Secondly, the exposure of receiving ecosystems to N is mechanistically modelled by 

https://link.springer.com/article/10.1007/s11367-017-1271-5


Cosme N and Hauschild MZ / Int J Life Cycle Assess (2017) 22:1558–1570 

doi: 10.1007/s11367-017-1271-5 

 

4 

 

translating surface uptake of DIN into benthic oxygen depletion. Thirdly, the sensitivity of marine species to hypoxia is 

used to estimate potentially affected fractions of species using a species sensitivity distribution (SSD) method. Finally, 

species density is applied to estimate spatially explicit factors for damage to ecosystems. The resulting characterization 

factors have global coverage and are available for emission locations at a river basin spatial resolution, and also as 

emission-weighted continental and global aggregated factors. The importance of the contribution of each of the fate, 

exposure, effect, and damage factors is evaluated and the most important assumptions and uncertainties are discussed in 

support of LCIA application. 

2 Methods 

2.1 Framework 

2.1.1 Nitrogen sources 

Waterborne nitrogen emissions, as used here, refer to dissolved inorganic nitrogen (DIN) forms. These include nitrate 

(NO3
-
), nitrite (NO2

-
), and ammonium (NH4

+
). The term DIN is generically applied in the text to refer to any of these 

forms.  

 The N-emission routes to the aquatic ecosystem include diffuse emissions from agricultural and natural soils 

(Nsoil) to freshwater systems, point (direct) emissions to rivers (Nriv) and marine coastal waters (Nmar), and atmospheric 

deposition. The latter (airborne) is not modelled here, however, a quantified mass of nitrogen oxides (NOx) or ammonia 

(NH3) deposited on soil, river, or marine water can be characterized using the factors for the emission routes for these 

compartments. The environmental emissions from soil correspond to the N-surplus of the soil balance, which is defined 

as the difference between inputs and outputs for a certain given surface area. For that balance, inputs to natural and 

agricultural soils include biological fixation (i.e. the fixation of atmospheric N2 to, mainly, NH4
+
) and atmospheric 

deposition, and in agricultural soils also the application of N-containing manure and synthetic fertilizers; outputs 

include NH3 volatilization, denitrification, and removal of N in plant biomass through harvesting and animal grazing 

(Bouwman et al. 2005; Bouwman et al. 2009). The soil balance modelling is considered part of the life cycle inventory 

(LCI) phase. 

2.1.2 Characterization factors in life cycle impact assessment 

The impact assessment phase in LCA applies characterization factors (CFs) to translate the quantified environmental 

emissions and consumption flows, identified in the inventory phase, into potential impacts on the chosen indicator for 

the impact category (Hauschild and Huijbregts 2015). The present work introduces CFs for DIN emissions from 

anthropogenic sources that contribute to eutrophication-induced hypoxia in coastal waters. The overall impact pathway 

for hypoxia-related eutrophication in coastal waters, illustrated in Fig. 1.A, covers the cause-effect chain from DIN 

inputs. These promote planktonic growth and eventually lead to the export of organic carbon to bottom waters where it 

is respired. This results in dissolved oxygen consumption and to potential loss of marine species richness and ecosystem 

damage.  

 The modelling work of the proposed characterization method is consistent with the LCIA framework for 

emission-related impact indicators (Udo de Haes et al. 2002; Pennington et al. 2004b) by including (i) an environmental 

https://link.springer.com/article/10.1007/s11367-017-1271-5
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fate model of DIN emissions in watersheds and river systems, aggregated at a river basin scale (Vörösmarty et al. 2000) 

and in coastal waters at large marine ecosystem (LME) scale (Sherman and Alexander 1986), (ii) an ecosystem 

exposure model for DIN uptaken by primary producers (phytoplankton) in coastal waters and the biological processes 

that result in oxygen depletion, and (iii) an effect model based on sensitivity of marine species to hypoxia. The factors 

derived from these models were multiplied to yield the endpoint CF ([(PAF)·m
3
·yr·kgN

-1
]), as summarised in Eq. (1): 

𝐶𝐹𝑖,𝑗𝑙 = 𝐹𝐹𝑖,𝑗𝑙 × 𝑋𝐹𝑙 × 𝐸𝐹𝑙      (1) 

where FFi,jl [yr] is the fate factor for emission route i in river basin j to receiving ecosystem l, XFl [kgO2·kgN
-1

] the 

ecosystem exposure factor and EFl [(PAF)·m
3
·kgO2

-1
] the effect factor in ecosystem l. The latter is expressed as a 

Potentially Affected Fraction (PAF) of species to represent the impact dimension of species richness loss. PAF is 

included in the notation for informative purposes as it is in itself a dimensionless quantity (fraction) (Heijungs 2005). 

The CF and FF subscript notations show coupled jl because each river basin exports to a single LME. The FF expresses 

the persistence of the exported fraction of the original N-emission in each receiving coastal ecosystem (Cosme et al. 

2017b). The XF represents the ‘conversion’ potential of N in the euphotic zone of coastal waters into oxygen depletion 

in bottom layers of the continental shelf (Cosme et al. 2015). The EF represents the average effect of hypoxic stress on 

demersal (benthic and benthopelagic) ecological communities exposed beyond the sensitivity threshold of the individual 

species (Cosme and Hauschild 2016). Each factor is further detailed in the next sections. 

 

 

Fig. 1.A – Schematic representation of the impact pathway of waterborne nitrogen (N) to hypoxia-related marine eutrophication 

impacts, showing the modelling components of the fate factor (FF), ecosystem exposure factor (XF), effect factor (EF) and damage 

factor (DF). Indication of endpoint and damage levels of impact indicators modelling. The fate modelling of airborne emissions from 

source to deposition is excluded. Adapted from (Cosme et al. 2017a). B – Representation of the key modelling points (coloured 

ovals) and their location in the model structure (refer to text for nomenclature used). Waterborne N-emissions sources (black arrows) 

identified by as diffuse (e.g soil, route “N from soil”) and point (e.g. direct emissions to river, route “N to river”, and to marine 

coastal waters, route “N to marine waters”) 
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2.2 Fate factors 

 The fate factor (FF, [yr]) is composed of an inland fate component (fN) and a marine fate component (λ), as 

shown in Eq. (2). 

𝐹𝐹𝑖,𝑗𝑙 =
𝑓𝑁𝑖,𝑗

 𝜆𝑙
       (2) 

where i is the emission route and j the river basin that exports to the respective receiving LME (l). 

 The inland component was estimated by Cosme et al. (2017b) from the DIN-removal processes described in the 

second generation of the Global Nutrient Export from WaterSheds model (NEWS 2-DIN) (Seitzinger et al. 2010; 

Mayorga et al. 2010). Watershed export fractions (FE, dimensionless) were extracted from NEWS 2-DIN, 

corresponding to (i) calibrated runoff functions from land to streams (FEsoil) expressing the retention within 

soils, groundwater and riparian areas during transport to streams (treated as a permanent land sink) (Mayorga et al. 

2010), and (ii) riverine DIN losses (FEriv) involving transformation to unreactive forms, long-term but temporary 

storage, and permanent loss, by means of denitrification, retention, and water consumption (Dumont et al. 2005; 

Mayorga et al. 2010) – see also Fig. 1.B. Cosme et al. (2017b) applied combinations of these export fractions to 

estimate river basin-dependent fate coefficients (f) for two emission routes: 𝑓𝑁𝑠𝑜𝑖𝑙
= 𝐹𝐸𝑠𝑜𝑖𝑙 × 𝐹𝐸𝑟𝑖𝑣  and 𝑓𝑁𝑟𝑖𝑣

= 𝐹𝐸𝑟𝑖𝑣 . 

Direct emissions to marine waters have no watershed component, therefore 𝐹𝐸𝑚𝑎𝑟 = 1 and  𝑓𝑁𝑚𝑎𝑟
= 1. The f-values 

correspond to fractions of the original N-emission that are exported as DIN by each of the modelled 5,772 watersheds, 

which were further linked to a receiving LME by means of river mouth’s geographic location. Considering the three 

emission routes the possible number of fNi,j amounts to 17,316. 

 The marine fate component was estimated based on the sum of DIN-removal rates (λ, [yr
-1

]) in each LME (l), 

assuming first order removal processes as described by Cosme et al. (2017b). Removal processes refer to advection 

(λadv), estimated as the inverse of the surface water residence time, and denitrification (λdenitr), estimated with an 

empirical relationship between the fraction of N denitrified and the water residence time in lakes, river reaches, 

estuaries and continental shelf (Seitzinger et al. 2006). The use of residence time to derive an advective transport 

removal has been described elsewhere for lakes, estuaries, and coastal waters (see e.g. Vollenweider 1976; Andrews 

and Müller 1983; Nixon et al. 1996; Dettmann 2001; Monsen et al. 2002; Seitzinger et al. 2006). Denitrification is a 

generic process in aquatic systems and found independent of salinity (Fear et al. 2005; Magalhães et al. 2005). 

Therefore, the modelling approaches for both the advection and denitrification removals were deemed adequate to 

represent N-losses in marine coastal waters. See Cosme et al. (2017b) for full method description and estimated FFs. 

Factors for the 5,772 river basins of the world are given in Table S.1. 

2.3 Exposure factors 

The ecosystem responds to the input of a growth limiting nutrient by increasing its uptake rate by primary producers 

(phytoplankton) in the euphotic zone of coastal waters. The resulting planktonic growth fuels the organic carbon cycles 

that eventually contribute to the vertical carbon export to bottom water layers. There, aerobic respiration of organic 

material by heterotrophic bacteria consumes dissolved oxygen. The biological processes of N-limited primary 

production (PP), metazoan consumption, and bacterial degradation, were modelled by Cosme et al. (2015) in four 

https://link.springer.com/article/10.1007/s11367-017-1271-5
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distinct carbon sinking routes to derive ‘conversion’ potentials of DIN-uptake into organic carbon and into oxygen 

consumption (Fig. 1.B). Such ‘conversion’ potentials were defined as ecosystem exposure factors (XF, [kgO2·kgN
-1

]). 

Model and results are available in Cosme et al. (2015) as spatially-explicit XFs for 66 LMEs worldwide, varying from 

0.45 kgO2·kgN
-1

 in the central Arctic Ocean to 15.9 kgO2·kgN
-1

 in the Baltic Sea. Factors for all 66 LMEs are shown in 

Table S.2. 

2.4 Effect factors 

Another component of the ecosystem response to N-inputs is the effect on biota. The sensitivity to hypoxia of 91 

demersal marine species (including fishes, crustaceans, molluscs, echinoderms, annelids, and cnidarians) was used to 

model effect factors (EF, [(PAF)·m
3
·kgO2

-1
]) for application in LCIA in model work described in Cosme and Hauschild 

(2016). There, species sensitivity distribution (SSD) statistical methodologies (Posthuma et al. 2002) were applied to 

integrate specific sensitivity data and estimate the average effect of hypoxia on demersal communities as an HC50 

indicator, which represents the stressor intensity , i.e. dissolved oxygen (DO) depletion, that affects 50% of the exposed 

population above their individual sensitivity thresholds. The EFs were then calculated as the average variation of the 

effect on ecological communities occurring in demersal habitats (as a dimensionless ΔPAF) due to a variation of the 

stressor intensity (as ΔDO in [kgO2·m
-3

]) in receiving ecosystem l, Eq. (3), according to an average gradient approach 

and consistent with the current scientific consensus (Pennington et al. 2004a; Larsen and Hauschild 2007). 

𝐸𝐹𝑙 =
∆𝑃𝐴𝐹𝑙

∆𝐷𝑂𝑙
=

0.5

𝐻𝐶50𝑙
      (3) 

 Sensitivity thresholds to hypoxia and species representativeness are critical aspects. The species sensitivity 

dataset used by Cosme and Hauschild (2016) represent a best estimate available, with a reasonable coverage of distinct 

taxonomic groups but acknowledging the variability of experimental results and biological endpoints. They further 

apply an ambient water temperature-dependent function to the species sensitivity data to increase both the 

representativeness and the environmental relevance of the method. The EF estimation assumes that those species can 

sufficiently represent the demersal animal communities in each climate zone. ‘Average conditions’ were modelled there 

to reconcile temporal and spatial variations. The EFs are available at a five climate zone (CZ) scale as of 218 

(PAF)·m
3
·kgO2

-1
 in the polar CZ, 242 (PAF)·m

3
·kgO2

-1
 in the subpolar CZ, 278 (PAF)·m

3
·kgO2

-1
 in the temperate CZ, 

275 (PAF)·m
3
·kgO2

-1
 in the subtropical CZ, and 306 (PAF)·m

3
·kgO2

-1
 in the tropical CZ (Cosme and Hauschild 2016). 

Although produced at a CZ scale, EFs can be disaggregated for the LMEs composing each CZ, as a function of the 

mean benthic water temperature, as described in Cosme and Hauschild (2016) and given in Table S.2.  

2.5 Spatially explicit damage factors 

The terms ‘endpoint’ and ‘damage’ are used interchangeably in LCA/LCIA literature. In the present context, ‘endpoint’ 

refers to the location on the cause-effect chain (environmental pathway), whereas ‘damage’ refers to the consequences 

on the area of protection (AoP) ‘ecosystems’ (the value that society wants to protect). In practice, both terms refer to the 

loss of biodiversity (quantified as species richness loss). For communication and clarity purposes, we distinguish 

between PAF- or PDF-based units (labelled as endpoint) and species-based units (labelled as damage). The conversion 

https://link.springer.com/article/10.1007/s11367-017-1271-5
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of the marine eutrophication endpoint CF from the PAF-based metric to a PDF-based metric aims at harmonization of 

the endpoint scores in the LCIA framework. 

 Given the seasonality of the planktonic production and other biologically-mediated processes, water temperature 

and stratification, and nutrient emission flows, for an annual integration of marine eutrophication impacts to the 

ecosystem, a conversion factor of 0.5 was chosen, as discussed in Cosme et al. (2016a). This assumption means that one 

half of the species affected above their sensitivity to hypoxia threshold (expressed in the PAF-integrated metric) would 

disappear (and be expressed in the PDF-integrated metric). Spatially explicit damage factors (DF, 

[(PDF/PAF)·species·m
-3

]), based on demersal marine species density (SD), were thus applied to translate a relative 

metric of PAF-based endpoint indicator to an absolute metric of [species·yr]. These conversions are summarised in Eq. 

(4) for any receiving ecosystem l: 

𝐷𝐹𝑙 = 0.5 (𝑃𝐷𝐹) · (𝑃𝐴𝐹)−1 ∙ 𝑆𝐷𝑙      (4) 

 A similar approach is taken in the ReCiPe method (Huijbregts et al. 2016) but adopting a site-generic SD 

estimate. Spatially explicit SD values were estimated for the 66 LMEs (Table S.2) based on species distribution models 

(SDMs) (Jones and Cheung 2015; Cosme et al. 2017a) and applied here to calculate the marine eutrophication damage 

factors of the N-emissions for each of the three emission routes. An ensemble of multiple species distribution models 

(SDM) was use to (i) estimate species occurrences and richness, (ii) increase the robustness of the estimation method, as 

suggested by Jones and Cheung (2015), and (iii) minimize representativeness concerns and data-related uncertainty of 

estimating LME-dependent SDs based on fisheries catch statistics. 

 The harmonization with species densities is introduced because PDF-based units of indicators for different 

impact categories represent distinct biotic components of the respective ecosystems. As an example, freshwater and 

marine eutrophication impact scores, both expressed as a PDF-integrated metric, refer to a fraction of a necessarily 

distinct set of species, namely the freshwater and the marine biota. The aggregation of these un-matching indicator 

scores in a common AoP score would lead to a meaningless result and there is thus need for harmonization. In the 

present method, this is achieved by applying LME-dependent SDs in order to determine the absolute number of relevant 

species that the PDF refers to. Such species-based metric, ideally representative, can then be aggregated with equivalent 

results for other indicators contributing to the same AoP in a harmonized and meaningful damage score. 

 In order to understand the influence of spatial variability in environmental mechanisms in the variability of the 

damage model results, the contribution of each parameter (FF, XF, EF, SD) to the spatial variation of DF was assessed 

for each emission route by means of simple regression analysis on a log scale. Indications of lack of correlation are 

slopes far from 1.0, low coefficients of determination (R
2
), high sum of squares (SS), mean square (MS, the variance 

estimated from the residual sum of squares), and high standard error (SE). 

 Spatial aggregation of endpoint and damage CFs over regions, e.g. continents or world, for each N-emission 

route i, were calculated by emission-weighted averages (see calculation method in Section S.3). Regional factors 

(CFi,reg, [(PDF)·m
3
·yr·kgN

-1
] and [species·yr·kgN

-1
]) aggregate all emissions, with non-zero CFi,jl, belonging to region 

reg, with a corresponding emission in the respective route i. Emission data used refer to year 2000 and were extracted 

from the NEWS 2-DIN model (Mayorga et al. 2010). 
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3 Results and discussion 

3.1 Characterization factors 

River basin-dependent endpoint characterization factors were calculated for the three emission routes according to Eq. 

(1) as the product of fate, exposure and effect factors. Table 1 shows these factors and the resulting CFs for the 12 

largest rivers in the world in catchment area and for the emission route ‘N from soil’ (Nsoil). Results for the 5,772 river 

basins and the three emission routes are given in full in Table S.1. 

 Fig. 2 shows the distribution of the CFs for the emission route ‘N from soil’ (Nsoil) for the river basins of the 

world. Distribution maps of the endpoint CFs for the other two emission routes are presented in the Electronic 

Supplementary Material (Figs. S.1 and S.2). 

 

 

Fig. 2 Global distribution of the marine eutrophication endpoint characterization factors (CFNsoil, [(PDF)·m3·yr·kgN-1]) for emissions 

of nitrogen (N) from soil as DIN at a river basin scale. Note the non-linear scale. Similar distribution maps for the remaining 

emission routes can be found in the Electronic Supplementary Material 1 

 

 The endpoint CFs range from 1.7×10
-3

 to 1.9×10
3
 (for Nsoil emission route), 3.1×10

-1
 to 3.3×10

3
 (for Nriv), and 

2.3×10
1
 to 5.3×10

4
 (for Nmar) (units in (PDF)·m

3
·yr·kgN

-1
) (Table S.3). These results correspond to spatial 

differentiations of 6 orders of magnitude for soil emissions, 4 for point emissions to river, and 2 for emissions to coastal 

waters. Higher CFs tend to occur in river basins discharging to LMEs with higher primary productivity and longer 
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residence time, such as the Baltic Sea (LME #23), Bay of Bengal (#34), Sulu-Celebs Sea (#37), Mediterranean Sea 

(#26), Black Sea (#62) and Hudson Bay Complex (#63). Mean CF values, as well as spatially determined variation, 

decrease from emissions to coastal waters over river emissions and to soil emissions reflecting the increase in both N-

removal and spatial differentiation obtained by modelling riverine and watershed processes in the fate modelling. 

 The damage CFs [species·yr·kgN
-1

] show an 10-fold increase in spatial differentiation when compared to 

endpoint CFs [(PAF)·m
3
·yr·kgN

-1
] due to the introduction of LME-dependent species densities (extract of the results in 

Table 1 and in full in Table S.1 for the 5,772 river basins and the three emission routes; global distribution exemplified 

in Fig. 3 for the Nsoil emission route, and given in Figs S.3 and S.4 for the remaining routes). Species density varies by 3 

orders of magnitude among LMEs (Cosme et al. 2017a). Although studies have shown that water temperature variations 

may induce correlated changes in species occurrence (roughly poleward) (Cheung et al. 2008; Jones et al. 2012), this 

does not necessarily translate in a correlation between species density and temperature. 

 

 

Fig. 3 Global distribution of the marine eutrophication characterization factors in damage level units (CFNsoil, [species·yr·kgN-1]) for 

emissions of nitrogen (N) from soil as DIN at a river basin scale. Note the non-linear scale. Similar distribution maps for the 

remaining emission routes are available in the Electronic Supplementary Material 1 

 

The damage CF values range from 4.7×10
-16

 to 7.0×10
-9

 (for Nsoil), 6.1×10
-14

 to 1.2×10
-8

 (for Nriv), and 5.1×10
-12

 to 

1.9×10
-8

 (for Nmar) (units in species·yr·kgN
-1

) (Table S.4). Such results correspond to 7 orders of magnitude of spatial 

differentiation for the soil emissions, 5 for the riverine emissions, and 3 for emissions to coastal waters, mostly given by 

the variation of the minimum values. Results decrease from coastal to river waters and to soils, i.e. towards upstream of 
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the hydrological cycle flow. Comparing to the distribution pattern of the CFs at endpoint, damage CFs tend to show an 

intensification of the eutrophication potential towards river basins discharging to LMEs with denser species occurrence, 

namely in the Northeast and Southeast U.S. Continental Shelves (LME #7 and #6, respectively), Gulf of California (#4), 

Gulf of Thailand (#35), Iberian Coastal (#25), Scotian Shelf (#8), and Yellow Sea (#48) (Cosme et al. 2017a). 

 

Table 1 Extract of the results of the modelled fate, exposure and effect factors (FF, XF, and EF, respectively) and resulting 

characterization factors (CF, both in endpoint and damage level units) for the 12 rivers with the largest catchment area, and the 

emission route ‘N from soil’ (Nsoil). Species density (SD) per Large Marine Ecosystem (LME) was used to estimate damage factors. 

Full results for the three emission routes and 5,772 river basins are given in Table S.5. Sources: FF (Cosme et al. 2017b), XF (Cosme 

et al. 2015), EF (Cosme and Hauschild 2016), SD (Cosme et al. 2017a) 

River basin Receiving LME FFNsoil XF EF CFNsoil (endpoint) SD CFNsoil (damage) 
  yr kgO2·kgN-1 (PAF)·m3·kgO2

-1 (PAF)·m3·yr·kgN-1 (PDF)·m3·yr·kgN-1 species·m-3 species·yr·kgN-1 

Amazon 17. North Brazil Shelf 0.023 5.3 310 37 19 2.3E-12 4.4E-11 
Ob 58. Kara Sea 0.032 6.2 220 44 22 2.8E-13 6.2E-12 

Lena 57. Laptev Sea 0.039 7.5 220 64 32 5.2E-13 1.7E-11 

Yenisei 58. Kara Sea 0.040 6.2 220 55 28 2.8E-13 7.9E-12 
Mississippi 05. Gulf of Mexico 0.0083 4.5 310 12 5.8 1.7E-12 9.6E-12 

Nile 26. Mediterranean 0.00021 3.5 280 0.20 0.10 1.2E-12 1.2E-13 

Zaire 28. Guinea Current 0.042 4.3 270 49 25 6.6E-13 1.6E-11 
Mackenzie 55. Beaufort Sea 0.038 5.9 220 49 25 2.8E-13 6.8E-12 

Parana 14. Patagonian Shelf 0.016 11 240 45 22 1.7E-12 3.7E-11 

Amur 52. Sea of Okhotsk 0.037 10 240 89 45 7.0E-13 3.1E-11 
Niger 28. Guinea Current 0.031 4.3 270 36 18 6.6E-13 1.2E-11 

Chang Jiang 47. East China Sea 0.062 6.4 310 120 62 5.6E-12 3.5E-10 

 

3.2 Regional aggregation 

Endpoint CFs aggregated at the continental scale consistently show a maximum for Europe, followed by South Asia and 

Oceania for soil emissions, and North and South Asia for direct emission to river and marine waters (Table 2). The 

spatial variation of endpoint CFs aggregated at the level of continents (1 order of magnitude) is much lower than what is 

observed at the level of river basins, accompanied by little distinction between emission routes. Given the low spatial 

differentiation among continents (or large continental regions) those results suggest that, similarly to CFs generated by 

‘older’ methods, or extrapolated from specific regions, the present model is unable to capture any significant 

differentiation and specificity of the impact pathway beyond a factor 10, at the spatial resolution of continents for these 

emission routes. Still, the estimation of the present CFs holds a mechanistic (and site-dependent) explanation and 

differentiation beyond site-generic factors. The intra-regional comparison shows slightly higher variability in the soil 

emissions (maximum in North and South America), than in the riverine (maximum in North America) and marine 

emissions (maximum in South Asia). In any case, a reduction of ca. 5, 3, and 1 order of magnitude is noticeable for the 

soil, riverine and marine emissions, respectively, when compared to the spatial differentiation obtained at the river basin 

scale. Such observations suggest a recommended use of the characterization factors at the river basin resolution for 

application in LCIA whenever the emission location is known. When only coarse spatial information on the emissions 

is available, regionally aggregated endpoint CFs may be used, noting the variability within the concerned continents. 

The global site-generic endpoint CF values can be used when such spatial information is not available or not relevant.  

 The analysis of the aggregated damage CFs shows similar observations (Table S.5). Europe consistently shows 

higher results at the level of continents and across the three emission routes. At this aggregation level, the spatial 

differentiation is modest, ca. 1 order of magnitude, with no relevant differences between emission routes. The intra-
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regional variability shows maximum differentiation for the soil emissions and decreasing towards river and marine 

emissions. North and South America consistently show higher variability in every emission route, although much 

smaller for marine emissions. Comparing the damage CFs at continental and river basin scales, spatial differentiation is 

reduced by 6, 4, and 2 orders of magnitude. As noted earlier for the endpoint CFs, and depending on the available 

information on the emissions location, damage CFs at a river basin scale are recommended for LCIA application, 

continental aggregation may be useful when only coarse spatial information is available (acknowledging the respective 

variability in each emission route), and the global site-generic value when emission location is unknown. 

 

Table 2 Regional endpoint characterization factors CF [(PDF)·m3·yr·kgN-1] at the level of continents obtained by emission-weighted 

aggregation per emission route. Intra-regional variability (var) and inter-regional variability (Spatial variability of Ni) factors shown 

Aggregation scale Characterization Factor [(PDF)·m3·yr·kgN-1] per emission route 

Nsoil var Nriv var Nmar var 

Africa 2.3E+01 1E+04 7.9E+01 7E+02 3.8E+02 2E+01 

Europe 1.4E+02 1E+03 5.1E+02 1E+02 1.4E+03 4E+01 

North America 3.1E+01 9E+04 7.8E+01 2E+03 2.2E+02 2E+01 

South America 2.3E+01 1E+05 6.3E+01 8E+02 2.1E+02 1E+01 

North Asia 4.8E+01 2E+02 2.6E+02 8E+00 7.5E+02 5E+00 

South Asia 1.3E+02 5E+03 2.3E+02 3E+02 9.0E+02 8E+01 

Oceania a 1.0E+02 4E+03 1.5E+02 3E+01 3.3E+02 3E+01 

Australia 1.4E+01 7E+02 4.7E+01 8E+00 1.1E+02 3E+00 

Spatial variability 1E+01 -- 1E+01 -- 1E+01 -- 

World 8.6E+01 -- 2.0E+02 -- 6.7E+02 -- 
a (excluding Australia) 

 

3.3 Sources of spatial differentiation 

The results of the regression analysis of the variation of the parameters contributing to the variation of the damage 

model CFs, at a river basin scale, are shown in Table S.6 for each of the three emission routes. The analysis shows low 

explained variance of the XF and EF (and XF×EF), slopes deviating from 1.0, and relatively high mean square (MS) 

and standard error (SE). These results suggest a poor correlation to damage CF variability, which means that neither the 

XF nor the EF alone are able explain the spatial variability of the damage model for any of the emission routes. 

 The soil-related fate factors (FFNsoil) show stronger correlation to damage CF. Overall, higher correlations in 

tests involving the FFs are observed for that emission route, suggesting that this factor is responsible for most of the 

spatial differentiation of the damage model results. Moreover, the SD variation shows reasonable correlation with 

damage CF variation, which can also be supported by the determinant application of the SD data in the damage factors 

estimation.  

3.4 Sensitivity and uncertainties 

The model sensitivity to the four primary input parameters, i.e. FF, XF, EF, and SD, was assessed by means of 

sensitivity ratios (SR) calculated as the ratio between the relative change in the model output and the relative change in 

the model input. As the damage CF calculation is a linear function of the parameters combination, i.e 

CF=FF×XF×EF×0.5×SD, each of the primary parameters shows an expected SR=1.0 (Table 3). Secondary parameters 

contributing to these were identified from the respective source modelling work and compared: 
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– Soil and riverine export constants (FEsoil and FEriv) contributing to soil and river FFs, and LME-dependent water 

residence time (τLME) contributing to marine DIN removal (in FFNmar), all assessed by Cosme et al. (2017b); 

– LME-dependent primary production rates (PPLME), secondary producers assimilation fraction (fSPassimil), and 

primary producers sinking fraction (fPPsink), i.e. the three parameters contributing to XF with highest SRs, assessed 

by Cosme et al. (2015); and 

– Species sensitivity to hypoxia (as a lowest-observed-effect-concentration, LOEC) determining the EF, for which 

SRs were estimated from the model work by Cosme and Hauschild (2016). 

 

Table 3 Sensitivity ratios (SRs, unitless) of the primary and secondary input parameters for the damage factor estimation model. See 

text for parameters description  

Parameter Type, contribution to SR Source 

FFNi Primary, to CFNi and DFNi 1.0 This work 

XFj Primary, to CFNi and DFNi 1.0 This work 

EFj Primary, to CFNi and DFNi 1.0 This work 

SDj Primary, to DFNi 1.0 This work 

FEsoil Secondary, to FFNsoil 1.0 Cosme et al. (2017b) 

FEriv Secondary, to FFNsoil and FFNriv 1.0 Cosme et al. (2017b) 

τLME Secondary, to FFijl 0.64 Cosme et al. (2017b) 

PPLME Secondary, to XFj 0.92 Cosme et al. (2015) 

fSPassimil Secondary, to XFj -0.59 Cosme et al. (2015) 

fPPsink Secondary, to XFj 0.51 Cosme et al. (2015) 

LOEC Secondary, to EFj 0.001–0.027  Using the model work by Cosme and Hauschild (2016) 

 

 The XF parameter PPLME shows a relatively higher contribution among the secondary parameters. The estimation 

of PP rates is associated with low uncertainty – the rates integrate monthly records from a 12-year period of satellite 

data, applies validated algorithms, and shows low variability (Cosme et al. 2015). The uncertainty of the FF parameter 

τLME may be a key issue in the damage modelling work, considering (i) the assumption that surface water residence time 

is representative of DIN persistence in LMEs (Cosme et al. 2017b), (ii) the concerns about the inconsistency and 

scarcity of literature sources in reporting LME-integrated water residence time reported (Cosme et al. 2017b), (iii) the 

empirical relationship linking N-removal by denitrification and water residence time (R
2
=0.56), identified as a 

significant source of uncertainty (Cosme et al. 2017b), and (iv) that the parameter is applied in all three emission routes 

as an essential term in the marine compartment losses estimation. Ensuring its quality and consistency across LMEs 

seems essential. This is also supported by the analysis of the statistics of the distribution of endpoint CFs (Table S.3) – 

the marine fate component (λLME), based on the τLME term, contributes with 2 orders of magnitude variation to the Nmar 

route. The variation of the residence time parameter (almost 3 orders of magnitude) (Cosme et al. 2017b) is attenuated 

by the modest variation of XF (factor 35) (Cosme et al. 2015) and negligible variation of the EF (Cosme and Hauschild 

2016) when composing the CFNmar. The variation of the FEriv and FEsoil terms add 2 orders of magnitude each to the 

spatial variability. 

 The validation work of the NEWS 2-DIN model, from which the specific DIN-removal fractions in the soil and 

river compartments were extracted, points to a reasonably robust model, as discussed in Mayorga et al. (2010). The 

NEWS 2-DIN calibration against observed DIN yields at the mouths of 66 basins (catchment areas from 28 to 5,847 
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×10
3
 km

2
) across the world shows reasonable robustness – explained variance R

2
=0.54 in predicted vs. observed DIN 

yields, and an absolute model error of 6% (Mayorga et al. 2010). Only the removal fraction constants are applied here, 

so the model error is likely to be smaller as the emission data necessary to estimate riverine yields in NEWS-2 DIN, and 

their inherent uncertainty, are not used. The NEWS 2 models suite is based on regression models that aggregate the 

environmental processes into export constants at a river basin scale, and thus miss the non-linearity of biogeochemical 

processes of N sinks in soil and groundwater, as discussed in Beusen et al. (2015). These fate processes are modelled in 

the IMAGE-GNM model (Beusen et al. 2015) also at a 0.5°×0.5° grid cell resolution. Its adoption could be a model 

improvement, providing that the relevant removal constants can be extracted. Nevertheless, the river basin scale 

modelling given by the NEWS 2-DIN model seems adequate and sufficient for the present purpose, as discussed in 

Cosme et al. (2017b). 

 The geographic distribution pattern of the CFs at endpoint (Fig. 2, Fig. S.1 and Fig. S.2) and damage levels (Fig. 

3, Fig. S.3 and Fig. S.4) shows these factors’ tendency to increase towards LMEs with higher primary productivity and 

longer residence time, justifying the attention given above to the quality of the PPLME and τLME parameters. 

 In the EF model, the variability of the input data for the individual species sensitivity to hypoxia is minimised by 

the estimation method recommended by Cosme and Hauschild (2016), i.e. GMtaxon or the geometric mean at taxonomic 

groups level of the geometric means of the species LOECs. 

 The PAF to PDF conversion applied in the DF estimation is based on an arbitrary site-generic 0.5 factor. 

Conversion coefficients based on species vulnerability, recoverability, ecological function, or on ecosystems resilience 

or services, can be used to estimate LME-dependent conversions – see discussion in Cosme et al. (2017a) and work by 

Curran et al. (2011), Verones et al. (2013) and Verones et al. (2015). While methods for such conversions are not 

widespread for demersal marine species in particular, the fixed 0.5 factor conversion holds, as proposed here.  

 The dataset used to estimate LME-dependent SDs is based on fisheries catch statistics, which may raise 

representativeness concerns and data-related uncertainty – see discussion in Cosme et al. (2017a). The use of a multiple 

species distribution models (SDM) ensemble increases the robustness of the species occurrence estimation, essential for 

the SD calculation. The SD estimation method described by Cosme et al. (2017a) seems the best estimate available and 

a valid addition to the indicators metrics harmonization effort. 

 Regional aggregation of CFs based on emission-weighted averages uses emission data from year 2000. The 

emission data may vary significantly over time and scale (Seitzinger et al. 2010; Beusen et al. 2016), requiring periodic 

update. However, when averaging up to the continental level, it is likely that the uncertainty of these data is of minor 

importance. 

4 Conclusions and outlook 

Impact assessment of human activities in a life cycle context is supported by characterization of the inventoried 

environmental emissions. Completeness and relevance of the underlying modelling work in the characterization phase 

are essential features for the model analysis (Hauschild et al. 2013). The marine eutrophication impact pathway defined 

in the present method (Fig. 1.A), aiming at the hypoxia-related impacts on demersal animal communities, covers the 

entire cascade of critical processes involved in this phenomenon; other pathways, with equally important impacts, fall 

outside the scope of the present work. Further, the sub-models applied in composing this particular damage indicator for 
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marine eutrophication, i.e. environmental fate, ecosystem exposure, and effect factors, are based on documented state-

of-the-art scientific knowledge, and their applicability and limitations are identified and discussed in the respective 

publications.  

 Major contributions to the current state-of-the-art of this impact category indicator resides in (i) the full pathway 

coverage reaching damage level, (ii) the significant increase in geographic coverage of both endpoint characterization 

and damage to ecosystem factors, (iii) the mechanistic modelling of ecosystem exposure and effect factors, and (iv) the 

application of spatially explicit species densities in the damage to ecosystems estimation. 

 Up to six and seven orders of magnitude spatial differentiation were verified for the characterization factors at 

endpoint and damage levels, respectively. In both cases, this differentiation is reduced to only 1 order of magnitude 

after aggregation to the level of continents. The application of the characterization factors, at both levels, is therefore 

recommended at a river basin scale, provided that emission location is known. 

 The transparency, relevance, and completeness of the method, advocate for its application in the characterization 

of waterborne nitrogen emissions in LCIA. The need for further work to implement environmental fate of airborne 

nitrogen emissions is acknowledged in order to achieve full coverage of the relevant environmental mechanisms 

involved in the marine eutrophication phenomenon. As such, deposition fractions of airborne nitrogen forms, as done by 

e.g. Dentener et al. (2006) or Roy et al. (2012), may be coupled to the present characterization factors. 
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