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The present work investigates the corrosion resistance of Ni and Ni2Al3 coated 

austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired 

boiler with an outlet steam temperature of 540ºC for 6757 h. The Ni2Al3 coating 

was produced by electroplating Ni followed by low temperature pack cementation. 

After exposure, microstructural investigations were performed by light optical and 

electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in 

straw firing power plants and exhibited similar corrosion morphology as uncoated 

tubes. For Ni2Al3 coatings, the nickel aluminide layer was no longer adherent to 

the tube and was only found within the deposit. However, Ni2Al3 coatings had 

provided some protection compared to uncoated and Ni coated tubes. The 

formation of nickel chloride binds aggressive chlorine and slows down the active 

oxidation mechanism. In local areas, sulphidation corrosion attack of Ni was 

detected.  

Keywords: high temperature corrosion; biomass firing; Ni2Al3 coatings; plant 

testing; KCl  

 

 

 

 

 



Introduction  

The fireside environment in biomass boilers is more corrosive than in coal-fired boilers 

since hot-section components within  biomass boilers are surrounded by corrosive species 

such as reactive alkali salts (NaCl and KCl), HCl and SO2 [1]. To avoid excessive 

corrosion rates, the outlet steam temperature in biomass plants has to be limited to 540 

ºC [2]. However, if a corrosion resistant coating could be applied, this would allow an 

increase in steam temperature resulting in comparable efficiencies to coal firing.  

In recent years, there have been promising achievements for corrosion resistant 

coatings in simulated biomass combustion environments. Hussain et al. [3] evaluated the 

performance of a thermal sprayed FeCrAl coating in simulated coal-biomass co-fired 

combustion gases at 700, 750 and 800 ºC for 1000 h. They reported that the FeCrAl 

coating provided good protection to the steel substrate at 700 ºC but suffered from 

aggressive corrosion damage at 750 and 800 ºC. It must be noted that coal-biomass co-

firing results in conversion of KCl to potassium aluminium silicates and/or potassium 

sulphate in the combustion zone, and therefore the corrosiveness of the environment is 

reduced [4]. Vokal et al. [5] investigated the corrosion performance of Fe2Al5, (Fe,Ni)Al 

and Ni2Al3 aluminide coatings in air with KCl/K2SO4 deposits at 650 oC for 300 h. The 

results showed that the Fe2Al5 coating was largely unaffected, while the other two 

coatings were significantly corroded. They attributed the intergranular corrosion of the 

two coatings to chromium enrichment along the grain boundary. Kiamehr et al. [6] 

investigated the performance of two pack aluminised iron-based coatings (Fe1-xAl and 

Fe2Al5) and one nickel based coating (Ni2Al3) at 600 ºC for 168 h in static lab air with a 

KCl deposit. It was reported that Ni2Al3 showed no sign of attack, however, Fe1-xAl 

showed local attack and Fe2Al5 suffered heavily from selective aluminium removal. After 

testing for 168 hours at 560˚C in an atmosphere simulating flue gas from a straw-firing 



plant (6 vol. % O2, 12 vol. % CO2, 400 ppmv HCl, 60 ppmv SO2, balance N2 on dry basis; 

the dry gas being led through a heated humidifier resulting in a final H2O content of 13.4 

vol. %) localised aluminium depletion was found for an Ni2Al3 diffusion coating [7].  

    The present investigation evaluates the corrosion performance of Ni, Ni2Al3/Ni coated 

and uncoated reference tube sections welded into the superheater of a biomass 

combustion boiler and exposed for 6757 h. Testing in the actual boiler environment 

allows evaluation of parameters that are difficult to simulate simultaneously in the 

laboratory such as thermal cycling, thermal stability, corrosive environment, flue gas 

dynamics and temperature, heat fluxes and deposition formation. The evaluation of plant 

exposed coatings gives invaluable input as to the actual degradation mechanisms, and the 

information can be used to modify the coatings to avoid specific failure mechanisms as 

well as to design future laboratory experiments to replicate the relevant failure 

mechanisms.   

Experimental procedure 

 Coating preparation  

    The austenitic stainless steel TP347H (Fe-18Cr-12Ni-2Mn-0.07C-<1.2(Nb+Ta)-

<0.75Si wt. %) was used as substrate material. Tube sections (Outer diameter (OD) 32 

mm, inner diameter (ID) 19 mm, length of 200 mm) were cut from a TP347H tube and 

were coated with a) electrolytical Ni b) Ni2Al3 coating. The Ni coating was electroplated 

using a Watts nickel-plating solution. The plating was performed at 45 oC with a current 

density of 6 A/dm2 for 100 minutes. The Ni plated tubes were heat-treated (650 ºC + 1 h, 

Ar+H2) to strengthen the bonding between the steel and the nickel layer. The Ni2Al3 

coating was prepared by a two-step process where nickel was first electroplated as 

previously described followed by low temperature pack aluminising. For aluminising, the 



Ni coated tube sections were then embedded in pre-mixed pack powders (10 wt. % Al + 

8 wt. % AlCl3 + 82 wt. % Al2O3), which were put into a cylindrical metal crucible and 

inserted into a tube furnace with argon flow. The furnace was heated to 650 ºC with a 

heating rate of 18 ºC/min, and held for 6 h. Afterwards, the samples were cooled inside 

the furnace by switching off the power while maintaining the argon flow.  

     After processing, the Ni and Ni2Al3 coated tube sections were cleaned with ethanol. 

To make the tube sections ready for welding, the coatings were removed by machining 

a 2 cm wide area from both ends of the Ni and Ni2Al3 coated tube sections. The coated 

Ni, Ni2Al3 and uncoated reference tubes are shown in Figure 1.  

 

Figure 1. Morphology of (a) Ni coated, (b) Ni2Al3 coated and (c) uncoated tubes  

Power plant exposure  

  Tube sections coated with Ni, Ni2Al3 and uncoated were welded into one of the leading 

tubes of the outlet superheater of a Danish straw-fired biomass boiler located at Maribo 

Sakskøbing with an outlet steam temperature of 540ºC and were exposed for  6757 h 

before removal for investigations. 



Sample preparation and characterization 

   The exposed tubes after removal from the power plant are shown in Figure 2. Prior to 

removal of the tubes, the superheater had to be cleaned and this resulted in removal of 

deposit and some of the surface corrosion products. The Ni2Al3 coated tube was covered 

with a thick layer of corrosion product together with deposit in most areas. Some of the 

corrosion product and deposit was scraped off the tube and prepared for analysis. Lesser 

amounts of deposit were present for the Ni coated tube and uncoated tube.   

  

 

 

Figure 2. Morphology of (a) Ni coated, (b) Ni2Al3 coated and (c) uncoated tubes after 

boiler exposure  

 

    The tube sections were cut into thin rings (5-7mm) from the middle of each tube section 

in dry condition, and were embedded in epoxy resin. In order to reduce dissolution of 

water-soluble compounds, grinding and polishing were performed using absolute ethanol 

as lubricant. Grinding was performed using SiC paper, while polishing was done with 

diamond slurry until a final step of 1 µm diamond. The cross-sections were examined 

using a scanning electron microscope (FEI Quanta 200 ESEM FEG) equipped with 

energy dispersive X-ray Spectroscopy (Oxford Instruments 80 mm2 X-Max) for chemical 

analysis. Image acquisition was performed in back-scattered electron (BSE) mode with 

high vacuum.   



Results  

Ni and Ni2Al3 coatings before exposure   

    The Ni and Ni2Al3 coatings were uniform with smooth interfaces and surfaces (Figure 

3). The Ni-Al coating consisted of an outer Ni2Al3 layer (thickness variation between 50 

and 70 µm) and an inner Ni layer (100 µm) and was adherent to the steel. The Ni2Al3 

layer was identified by XRD (not shown). A very thin (<5 µm) layer of intermediate 

phases could be seen at the interface between Ni and Ni2Al3. Porosities could be observed 

at the Ni/steel interface. The Ni coating consisted of a single Ni layer with a thickness of 

about 125 µm. 

   

Figure 3. BSE-SEM micrograph of cross-section of (a) Ni2Al3 coated and (b) Ni coated 

tube sections 

Ni and Ni2Al3 coatings and reference tube after exposure 

   Metal loss thickness was measured around the circumference of the tubes. The thickness 

varied greatly as shown in Table 1, and this can depend on the varying initial thickness 

of the tube (wall thickness 5.6 mm and production tolerances ±10%) but also the 

positioning of the tube with respect to flue gas direction. It was therefore decided to focus 

on the morphology of attack to gain increased understanding on the breakdown of the 

coating. The morphology of uncoated, Ni coated and Ni2Al3 coated tubes after exposure 

are described in the following sections.  

 



 

 

Table 1. Residual metal thickness around the circumference of the tubes  

Residual metal thickness (mm) 

 Min Max Average 

Uncoated tube  4.498 5.250 4.922 

Ni coated tube  4.749 5.142 4.976 

Ni2Al3 coated tube 4.545 5.341 5.057 

 

 

Microscopy analysis of uncoated tube 

Different corrosion morphologies were evident on the exposed uncoated tube. In some 

areas, an oxide layer was present with limited underlying grain boundary attack (Figure 

4), while deep grain boundary attack was observed in other areas (Figure 5). The 

corrosion product consisted of an outer oxide, an inner selective corrosion area and grain 

boundary attack. The oxide located in the outermost corrosion product was rich in iron, 

and the oxide below was rich in chromium. There was selective corrosion attack beneath 

the oxide, and chromium depletion was detected together with nickel enrichment (EDX 

results in Figure 4). Enrichment of chlorine was identified close to the corrosion front in 

the selective corrosion area. The indications of silicon enrichment close to the selective 

corrosion area were probably due to use of SiC papers in the grinding process. 

 



 

 

Figure 4. SEM/BSE image of the corrosion morphology and EDX chemical element 

distribution for the uncoated tube after boiler exposure 

 

Figure 5. SEM/BSE image of corrosion morphology showing deep grain boundary 

attack in the uncoated tube after boiler exposure.  



Microscopy analysis of Ni coated tube  

The morphology of corrosion products and chemical element distribution are given in 

Figure 6. The pure Ni layer was no longer present on the Ni coated tube after exposure. 

A voluminous corrosion product was formed at the outermost surface. The corrosion 

products were rich in iron and nickel in the outer part and rich in chromium in the inner 

part. Clear enrichment of chlorine was observed close to the underlying metal.  

 

 

 

Figure 6. SEM/BSE image of corrosion morphology and EDX chemical element 

distribution for Ni coated tube after boiler exposure 

 



Localised grain boundary attack could be seen in locations with voluminous outer 

oxide, while deeper grain boundary attack was apparent in areas with thinner corrosion 

products (Figure 7), similar to the findings for the uncoated tube.  Since the KCl was not 

revealed on cross-sections, some surface oxide could have spalled during tube removal 

and handling. 

 

Figure 7. SEM/BSE image of a location with severe grain boundary attack for Ni coated 

tube after boiler exposure 

Microscopy analysis of Ni2Al3 coated tube  

After boiler exposure, the Ni2Al3 coated tube exhibited two distinct corrosion 

features, a) where there were no remnants of the coating and only the TP347H tube was 

present and b) where the electroplated Ni layer was still present. Areas where the Ni 

layer was absent were similar to the attack on the uncoated TP347H tube, see Figures 4-

7. Where the electroplated Ni layer was present, it is assumed that the Ni2Al3 layer had 

peeled off as no evidence of aluminium was observed within the corrosion products 

(Figure 8). Remnants of the Ni2Al3 layer could be found in the deposit (described later 

in this section), further supporting this assumption. Figure 8 reveals an area where the 

nickel layer is present above the stainless steel tube material (shown in the maps as Cr 

and Fe rich). At locations above the Ni-layer, SEM/EDX revealed the presence of both 



potassium and chlorine within the deposit indicating the presence of potassium chloride, 

and therefore no spallation of corrosion products during handling. 

 

 

Figure 8. SEM/BSE image of corrosion morphology and element distribution on the 

Ni2Al3 coated tube after boiler exposure at a location where the Ni layer was present. In 

the SEM image, location of EDX measurements was reported in Table 2. 

    SEM-EDS analysis shows that the external oxides are rich in nickel only (Table 2). A 

large area with chlorine enrichment could be identified below the nickel enriched outer 

oxide. Above the nickel coating-TP347H interface, the chlorine species are associated 

with nickel (region 2 and 3), however within the TP347H layer, the Cl species are 

associated with Ni, Fe and Cr (region 1). The morphology of the Cl species seems to 

indicate that they have emerged from the metallic material after polishing and that they 



are sitting on top of the polished section. The EDX analysis could therefore include both 

the compound sitting on the surface and the underlying polished surface.  

Table 2. Elemental composition of selected regions in Figure 8. 

Elemental composition (wt. %) 

region Cl Ni O Fe Cr 

1 35.1 24.5  35.0 5.4 

2 26.7 40.1 24.0 8.9 0.4 

3 30.5 47.0 18.7 3.8  

4  84.6 15.4   

5  79.4 20.6   

6  84.8 15.2   

 

   At other locations, where the nickel layer was still present, a large part of the original 

nickel layer remained with a thickness of about 70 µm (Figure 9a). In some areas, a thick 

zone of mixed corrosion products could be found above the nickel layer (Figure 9b).  

SEM/EDX (Figure 9a and Table 3) show a local area of Cr-rich oxide close to the 

surface (region 3) and sulphur enrichment in the outer surface (regions 5 and 6) as well 

as within sulphur rich phases in the nickel layer. The absence of K and Cl on the surface 

could indicate that the surface corrosion products have been removed during removal and 

handling of the tubes. Cl enrichment as well as severe grain boundary attack were 

observed in the underlying TP347H metal. Cl was distributed everywhere where there 

was grain boundary attack and enriched in localised places (regions 1 and 2).  

 

 

 

 



 

 

  

 

 Figure 9. SEM/BSE of corrosion morphology on the Ni2Al3 coated tube after boiler 

exposure for locations with (a) nickel layer and (b) nickel layer with outer corrosion 

product and EDX chemical element distribution corresponding to (a). Compositions of 

selected areas in (a) and (b) are shown in Table 3. 

 

 

 

 

 



 

Table 3. Elemental composition of selected regions in Figure 9a and 9b. 

elemental composition (wt. %) 

region Cl Ni O Fe Cr Mn S 

1 11.4 13.9 14.6 48.2 10.5 1.4  

2 10.3 16.8 11.0 52.1 9.8   

3   23.7 17.4 58.9   

4   15.8 41.1 43.1   

5  77.9     22.1 

6  80.1     19.9 

7  49.4 14.1 32.7 3.8   

 

Microstructure and element distribution in the deposit for Ni2Al3 coated tubes  

Within the deposit, remnants of the Ni2Al3 coating could be found, and their analysis 

can give further information as to how the attack progressed on the Ni2Al3 coated tubes. 

The corrosion morphology and the distribution of chemical elements in the deposit are 

shown in Figure 10. The top part of the micrograph was closest to the flue gas 

environment. The coating element aluminium, which was absent at the tube surface 

locations, was observed in the deposit of Ni2Al3 coated tubes. A multi-layered oxide scale 

that must have spalled from the tube surface could be found intact in the deposit. The 

oxide scale had a porous nickel-rich oxide scale at both sides and an aluminium-rich oxide 

in between. A number of blocky structured potassium chloride particles are dispersed on 

the top of the multi-layered oxide scale.  

 

 

 



 

 

 

 

Figure 10. Corrosion morphology and element distribution of the deposit on Ni2Al3 

coated tube after boiler exposure. 

   A composition profile measured by EDS shows that the concentration of aluminium is 

around 30 wt. % in the centre of the spalled scale, which should still be sufficient for the 

formation of protective aluminium oxide (Figure 11).  The two peaks in the aluminium 

profile lie on each side of a Ni-rich band, which is visible as a white layer within the 

aluminium-rich oxide.  



 

Figure 11. Composition profiles measured by EDS of the deposit on Ni2Al3 coated tube 

after boiler exposure. 

 

Discussion  

Uncoated tube  

   The corrosion morphology on the uncoated TP347H tube was similar to previously 

published research results from both laboratory and field testing [8–10]. The corrosion 

product was composed of an outer iron-rich oxide closest to the flue gas environment and 

chromium-rich oxide below this. A region of selective corrosion was found beneath the 

oxides with grain boundary attack penetrating into the steel at the corrosion front. In 

biomass combustion, the corrosion mechanism due to the aggressive alkali chlorides has 

been extensively investigated [11–15]. The initiation of corrosion is based on breakdown 

of protective oxide due to reaction of KCl with the oxide [6], and the propagation of 

corrosion is due to reaction with Cl species [16,17]. However even in environments with 



high HCl content, increased corrosion is also observed [16,17] which indicates that a 

protective oxide is vulnerable when other Cl species are present. The observed corrosion 

morphologies in this study can be explained by the widely used active oxidation 

mechanism [17], after  the initial breakdown of the protective oxide either by HCl or KCl 

attack. In the active oxidation mechanism, chlorine species penetrate the oxide layer and 

form metal chloride within the bulk metal. At high temperatures, the volatile metal 

chlorides sublime and diffuse outwards to form oxides where the partial pressure of 

oxygen is higher. The conversion of chromium chloride to oxides occurs at low partial 

pressures of oxygen, and therefore chromium rich oxides are found at the inner part of 

the oxide scale, while iron rich oxides are found in the outer part. The cyclic reaction 

continues with the chlorine released from the formation of oxides. 

     According to the element distribution in Figure 4, potassium was not present at the 

corrosion front. Thus, Cl species must have been released, which could be due to reactions 

between KCl and metal oxides or sulphation of KCl. Cl- ions could also be generated by 

reaction of HCl and oxygen [13] or via reaction 1.  

2𝐾𝐶𝑙 + (
1

2
) 𝑂2(𝑔) + 𝐻2𝑂(𝑔) + 2𝑒− = 2𝐾𝑂𝐻(𝑔) + 2𝐶𝑙−        (1) 

   The released chlorine can then react with chromium, iron and nickel with preferential 

reaction with chromium due to its high affinity for chlorine. In this way, areas of selective 

attack with chromium depletion are formed.    

Ni coated tube 

   The Ni coated tube shows similar corrosion morphology as the uncoated tube. The pure 

nickel layer is no longer present, indicating that the nickel layer was not protective during 

the biomass boiler exposure. In fact, the corrosion attack is more severe than on the 

uncoated tube, however it is not known how much corrosion product has spalled during 

removal of the tube from the plant. In laboratory investigations by Jonsson et al. [18] the 



corrosion rate of pure Ni was not affected by the addition of small amounts of KCl, which 

probably indicates that the increased complexity of the exposure environment plays a role 

in the failure of the Ni-plated tubes. Okoro et al. [16] investigated the corrosion 

performance of Ni-coated Esshete 1250 under more complex conditions mimicking 

biomass combustion with addition of sulphur. Under these conditions, Ni was attacked 

and a porous Ni-rich oxide was formed after exposure. Cl species as well as S rich 

precipitates were identified, which indicated both chlorination and sulphidation attack. It 

was speculated that mechanical failure of the Ni coating led to easy migration of sulphur 

to the coating/metal interface. In the present case, such mechanical failure of the layer 

could easily happen during start/stop procedures. Ansey [19] exposed tubes electroplated 

with nickel in waste incineration plants and suggested that  the nickel layer recrystallised 

on heating to 560 ºC and therefore gave paths for intergranular attack of Ni.  It is 

suggested that the nickel is also attacked and therefore itself is not a barrier against attack. 

However, since no remnants of the Ni-layer were present, the exact mode of attack 

remains unclear, and after removal of the Ni layer the stainless steel tube was attacked. It 

must however be assumed that thermal cycling was not a main reasons of failure, since 

the Ni layer was still present in many areas on the Ni2Al3 coated specimen.   

Ni2Al3 coated tube section   

   The corrosion morphology of the Ni2Al3 coated tube is different from the Ni coated 

tube in many places, which indicates that the Ni2Al3 coating did not spall immediately at 

the start of exposure. However, the nickel aluminide layer was no longer adherent to the 

tube and was only found within the deposit (Figure 10), while remnants of a nickel layer 

(up to 70 µm) were present in many locations (Figures 8 and 9) with varying depths of 

attack of the underlying tube. From previous laboratory isothermal interdiffusion testing 

at higher temperatures, it was noted that porosities developed at the interface of the Ni-



Al/Ni and expanded with time [7]. For the coatings exposed in real superheater tubes, the 

formation of porosities would be more serious in combination with thermal cycling, 

which would probably lead to spallation of the nickel aluminide layer. The spalled coating 

reveals further interesting findings. The surface of the Ni2Al3 spalled coating is nickel 

rich, which indicates that Al has been depleted. Thus, a single layer of protective alumina 

has not been formed giving protection, but instead the aluminium has gradually and 

selectively been consumed during exposure. The Al content within the middle of the 

spalled coating is still high, which could indicate that had it adhered to the tube, it could 

have given some protection until the Al was totally consumed. However, it is not known 

whether the compact aluminium-rich oxide only formed in the middle part of the scale 

whilst it was still adherent to the tube or only after spallation. If protective Al2O3 formed 

whilst it adhered, this could indicate that it was not the corrosion but instead spallation 

and possibly interdiffusion that led to coating failure.  

Despite the absence of the nickel aluminide layer on the investigated tube cross 

sections, the Ni2Al3 coating still provided protection of the substrate metal at some tube 

locations, compared to uncoated and the Ni coated tubes.  At the location shown in Figure 

8 with thick corrosion products, the underlying metal has only been slightly attacked.  

Presence of Cl species at the corrosion front 

After spallation of the coating, the nickel layer is attacked. Again, it is difficult to know 

whether the Ni was attacked whilst the Ni2Al3 coating was present but had become 

porous. One of the interesting features, which was only observed for the Ni2Al3 coated 

tubes, is that there is a strong indication of the presence of metal chlorides at the corrosion 

front (Figure 9). This is observed both within the nickel layer and in the underlying alloy. 

For the nickel layer, the nickel is first oxidised with the formation of NiO(s). Then Cl 

species may penetrate the nickel oxide scale into the metal as the oxide is a not a barrier 



against Cl diffusion. Underneath the oxide scale, the oxygen potential is low and virtually 

all of the Cl can be converted to NiCl2. In some places, the NiCl2 (g) will diffuse out and 

react with oxygen to form NiO(s) [20]. However, nickel chloride is not as easily oxidised 

and is not as volatile as chromium or iron chloride. Accordingly, nickel chloride is trapped 

in the metal in locations far from the corrosion surface (region 1 in Table 2), which 

indicates that nickel and chlorine rich corrosion products are more stable. It is thus 

suggested that nickel binds the aggressive chlorine and slows down the active oxidation 

mechanism. In this way, only slight attack occurs in the underlying metal. However, there 

is attack of the underlying metal, and again metal chlorides are trapped beneath the nickel 

layer and not oxidised (region 1 in Table 2). This strongly indicates that transport of the 

Cl species is more likely than transfer of oxygen species and evaporation of metal 

chlorides. This could indicate that in this case transfer of Cl is mainly via an 

electrochemical reaction proposed in [13].  Without the coating, the metal chlorides 

migrate to locations with higher partial pressures of oxygen and are oxidised by the 

incoming oxygen, but this mechanism is hampered by the Ni/Ni2Al3 layers.   

Presence of sulphide within Ni layer  

 The nickel and sulphur rich layer indicates the formation of nickel sulphide (Ni3S2) on 

the outer surface and within the nickel layer (regions 5 and 6 in Table 3). The performance 

of nickel in sulphur containing atmospheres has been widely investigated [21–25]. In the 

temperature range between 480oC and 620oC, NiO is thermodynamically preferred over 

Ni3S2, even under oxidising SO2 atmospheres. However, when the gas atmosphere tends 

to more reducing conditions, the sulphur attack becomes more prevalent [21]. This leads 

to the formation of  Ni3S2 by the reaction in equation 4 [26]. 

7𝑁𝑖 + 2𝑆𝑂2 = 4𝑁𝑖𝑂 + 𝑁𝑖3𝑆2                                   (2) 



   It is speculated that the formation of Ni2S3 is because of the presence of a corrosion 

product above the sulphide layer, as the partial pressure of oxygen must be low to form 

nickel sulphide. The corrosion product could have been lost during preparation, which is 

substantiated by the lack of KCl as was observed in Figure 8. As shown in Figure 9(b), 

there were also areas with thick corrosion products above the nickel layer. The formation 

of nickel sulphide (Ni3S2) could have detrimental effects on the material properties, 

possibly leading to crack formation. The cracks can then act as channels for both sulphur 

and chlorine species to diffuse to the underlying metal [19]. The chlorine can react with 

chromium, iron and nickel to form metal chlorides. The chromium chloride can then 

migrate out to an area of higher oxygen partial pressure and convert to chromium oxide.  

 

Conclusions  

1. Ni coatings do not provide protection in straw firing biomass plants at 540 oC. 

The Ni coated tube shows similar corrosion morphology as the uncoated tube and 

the pure nickel layer is no longer present after exposure.  

2. Some protection is observed for Ni2Al3 coatings as Ni2Al3 coatings do not spall 

in the initial exposure. However, the nickel aluminide layer is no longer adherent 

to the tube and is only found within the deposit. Spallation of the nickel aluminide 

layer is probably due to the formation of porosities.  

3. The presence of a Ni2Al3 coating hinders evaporation of metal chlorides from the 

corrosion front, but does not prevent Cl species to diffuse to the corrosion front. 

Although KCl may break down the oxide, this highlights that it is Cl that 

propagates the corrosion reaction and is present at the corrosion front.  

4. The formation of trapped nickel chloride hampers the corrosion process by 

binding the aggressive chlorine.  
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