Aqueous two-phase systems for extractive enzymatic hydrolysis of biomass

Bussamra, Bianca Consorti; Azzoni, Sindelia Freitas; Mussatto, Solange I.; da Costa, Aline Carvalho; van der Wielen, Luuk A. M.; Ottens, Marcel

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
AQUEOUS TWO-PHASE SYSTEMS FOR EXTRACTIVE ENZYMATIC HYDROLYSIS OF BIOMASS

Bianca Consorti Bussamra1,2, Sindelia Freitas Azzoni2, Solange I. Mussatto3, Aline Carvalho da Costa2, Luuk van der Wielen1, Marcel Ottens*1

1Delft University of Technology. Van der Maasweg 9, 2629HZ. Delft, The Netherlands.
3Technical University of Denmark. Kemitorvet, Building 220, 2800. Kongens Lyngby, Denmark.

Sugars derived from lignocellulosic materials are the main carbon sources in bio-based processes aiming to produce renewable fuels and chemicals. One of the major drawbacks during enzymatic hydrolysis of lignocellulosic materials to obtain sugars is the inhibition of enzymes by reaction products (cellobiose and glucose). This effect is even more pronounced in hydrolysis containing high solid content (15-20\% or higher water-insoluble solids – WIS), which is desired in order to obtain hydrolysates containing high total reducing sugar concentration and reduced water usage1. The aim of this project is to develop a new process for sugarcane bagasse hydrolysis using aqueous two-phase system. This system will be applied as \textit{in situ} extraction aiming to remove the reaction products as they are released. As a consequence of product removal, enzymes tend to maintain their maximum activity2. The phase-components of the systems will be chosen taking into account their costs, viscosity, capacity of regeneration, melting point, solubility and partition of sugars and proteins. The pre-selected components will be studied and tested in high-throughput experiments3, in order to determine their partition coefficients of sugars and enzymes, phase diagrams and volumetric ratios. The results of this project will make possible to design a process that enables high sugar concentration during the hydrolysis reaction, overcoming one of the biggest drawbacks regarding the production of second-generation ethanol: the enzymatic inhibition. The achievement of the project’s goal can lead to, but not limited to, three consequences: enhancement of sugarcane mills productivity; reduction of fossil fuels usage, which can accelerate the energetic independence in many countries; and contribution to a more sustainable economy. This paper will present optimal aqueous two-phase systems for the separation of sugars and enzymes, which allow the development of an improved second-generation ethanol process.

References

Posters:

(P1) DESIGN AND OPERATION OF A CONTINUOUS SEPARATOR FOR AQUEOUS TWO-PHASE SYSTEMS
B.A. Andrews#, E.C. Huenupi and J.A. Asenjo
Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile.

(P2) AQUEOUS TWO-PHASE SYSTEMS FOR EXTRACTIVE ENZYMATIC HYDROLYSIS OF BIOMASS
Bianca Consorti Bussamra1,2, Sindelia Freitas Azzoni2, Solange I. Mussatto3, Aline Carvalho da Costa4, Luuk van der Wielen5, Marcel Ottens6
1Delft University of Technology. Van der Maasweg 9, 2629HZ. Delft, The Netherlands.

(P3) ENHANCED CATALYTIC ACTIVITY AND STABILITY OF CYTOCHROME C IN BIO-IONIC LIQUIDS
Meena Bisht7, Dibyendu Mondal8, Matheus M. Pereira9, Mara G. Freire9, P. Venkatesu9 and A. P. Coutinho6
7Department of Chemistry, University of Delhi, Delhi 110 007, India
8Departamento de Quimica, CICECO, Universidade de Aveiro, Aveiro, Portugal

(P4) PARTITION BEHAVIOR OF LACCASE IN IONIC-LIQUID-BASED AQUEOUS BIPHASIC SYSTEMS
Ana P.M. Tavares1, Oscar Rodriguez1, Joao A.P. Coutinho1, Ana Soto1, Mara G. Freire1
1CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal, e-mail: optavares@ua.pt
2Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

(P5) THE HYDROGEN BOND BASICITY OF IONIC LIQUIDS AS A TOOL FOR PREDICTING THE FORMATION OF AQUEOUS BIPHASIC SYSTEMS
Helena Passos1, Teresa B. V. Dinis1, Ana Filipa M. Claudio1, Mara G. Freire1 and Joao A.P. Coutinho1
1CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal

(P6) FACTORS DRIVING SOLUTE PARTITION IN IONIC-LIQUID-BASED AQUEOUS BIPHASIC SYSTEMS
Helena Passos1, Teresa B. V. Dinis1, Emanuel V. Capela1, Maria V. Quental1, Joana M. Gomes2, Judite Resende1, Pedro P. Madeira1, Mara G. Freire1 and Joao A. P. Coutinho1
1CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal

ADDSORPTION OF NON-VOLATILES FROM FOOD PRODUCTS
Monica Moreno-Gonzalez1, Nienke Hylkema2, Guilherme Ferreira2, Hilde Wijngaard3, Marcel Ottens4
1Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
2DSM Food Specialties, Alexander Flemminglaan1, 2613 AX Delft, The Netherlands
3Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands

(P8) BIOPROCESSING OF INTERFERON ALPHA 2B USING IONIC-LIQUID-BASED SYSTEMS
Augusto Q. Pedro1, Joana Antunes1, Patrícia Pereira2, Luís A. Passarinha3, Fani Sousa3, João A. P. Coutinho1, Mara G. Freire1