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ABSTRACT 

Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin 

and arteries, and comprises 30-57 % of the aorta by dry mass. The monomeric precursor, 

tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic 

fibers. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo 

from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH 

formation in the inflamed artery wall, and a role for this species in the development of human 

atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion 

rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in 

extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-

nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-

dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive 

Tyr modification with up to two modified Tyr per protein molecule, and upto 8% conversion 

of initial ONOOH to 3-nitroTyr. These effects were modulated by bicarbonate, an alternative 

target for ONOOH. Inter- and intra-protein di-tyrosine cross-links have been characterized by 

mass spectroscopy. Examination of human atherosclerotic lesions shows colocalization of 3-

nitroTyr with elastin epitopes, consistent with TE or elastin modification in vivo, and also an 

association of 3-nitroTyr containing proteins and elastin with lipid deposits. These data 

suggest that exposure of TE to ONOOH gives marked chemical and structural changes to TE 

and altered matrix assembly, and that such damage accumulates in human arterial tissue 

during the development of atherosclerosis.  

 

Graphical abstract 
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Abbreviations 

ABTS, -azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); BSA, bovine serum albumin; 

DOPA, 3,4-dihydroxyphenylalanine; ECM, extracellular matrix; mAb, monoclonal antibody; 

3-nitroTyr, 3-nitrotyrosine; ONOOH, the physiological mixture of peroxynitrous acid and its 

anion; pAb, polyclonal antibody; PBST, phosphate-buffered saline with Tween 20; TE, 

tropoelastin. 

Keywords:  Extracellular matrix; peroxynitrous acid; peroxynitrite; tropoelastin; elastin; 

protein oxidation; 3-nitrotyrosine; nitration; cross-links; di-tyrosine 
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INTRODUCTION 

 

Elastic fibres are large extracellular matrix (ECM) macromolecules composed of microfibrils 

and elastin. These structures are highly abundant and responsible for the resilience and recoil 

capabilities of tissue and organs [1], with elastin constituting 30-57% of the aorta and 28-32% 

of major vascular vessels by dry mass [2-4]. Elastin is predominantly expressed during 

embryogenesis and tissue development and has a low turnover rate in healthy tissues. 

However, if elastic fibers are subject to injury, tissue repair mechanisms are initiated and 

synthesis of new elastin can be rapidly activated [5]. 

 Impaired elastogenesis contributes to a number of human pathologies (e.g. 

supravalvular aortic stenosis [6], cutis laxa [7], Hurler disease [8], and Costello syndrome 

[9]). Disruption of the elastin gene, by targeted inactivation, indicates that elastin plays an 

essential role in arterial morphogenesis [10,11]. Homozygous elastin-deficient mice die of 

obstructive arterial disease after birth [10], whereas heterozygote mice with one allele for 

elastin show increased elastic lamellae in their arteries [11]. It is known that arterial 

development is associated with an increase in the number of elastic lamellae [11]. These 

changes are perturbed during the development of atherosclerotic plaques [12], as a result 

of flow-induced dilatation [13], and non-atherosclerotic intimal thickening [14,15]. A number 

of stimuli linked with atherosclerosis can evoke elastogenesis [16,17], with duplication of 

elastic lamellae detected in healed arteritis and some atheroma. The structure and integrity of 

elastin within the artery wall is known to change with age [18,19] and it has been reported 

that elastin fragments can stimulate the development of atherosclerosis through modulation of 

immune signalling pathways (Neu1-PI3K-gamma) [20]. 

 The precursor protein of mature elastin, tropoelastin (TE), is encoded by a single 

gene, with 11 different isoforms reported to date [21]. Elastogenic cells such as smooth 
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muscle cells, fibroblasts and macrophages, express and release monomeric TE in the 

extracellular space where it forms clusters bound to integrins and glycosaminoglycans on the 

cell surface [22,23]. Elastogenesis, the secretion, coacervation and deposition of TE onto 

elastic fibres, and crosslinking of elastin monomers is a multistep process involving 

interaction with other matrix proteins including fibrillin-1, fibulins-4 and -5 and perlecan [24-

26]. Coacervation, the self-assembly of monomeric tropelastin to spherical globules, is an 

entropically-driven reversible process [4]. Increasing temperature supresses clathrate-like 

associated water from hydrophobic domains and allows these domains to align and aggregate 

[21,27]. TE-spherols are deposited onto a scaffold of microfibrils and are cross-linked 

[28,29]. Lysine residues are oxidised by the enzyme lysyl oxidase to form allysine, with 

spontaneous condensation of two allysine molecules, or an allysine, with an another Lys 

residues giving rise to irreversible crosslinks and elastic fibre growth [21,30].  

 It has been shown that there are significant changes in elastin content within the artery 

wall during the development of cardiovascular disease and particularly atherosclerosis 

[31,32]. Elastic fibre content within the plaque area has been reported to increase with this 

associated with increased lipid deposition and binding of calcium ions, with up to 40% of the 

total calcium content of lesions reported to be bound to elastin [33]. In contrast, elastin levels 

within the fibrous cap of lesions appears to decrease during lesion development, and this is 

believed to play a role in the weakening of this structure making it more prone to rupture 

[34], a major cause of heart attacks and strokes [35,36]. 

 Macrophages are known to accumulate at sites of inflammation, including within the 

artery wall, with these cells reported to play a key role in ECM remodelling via altered 

excretion and activation of matrix metalloproteinases (MMPs) and their inhibitors (tissue 

inhibitors of metalloproteinases, TIMPs) [37], with the finely-tuned balance between these 

activities appearing to be altered during the development and progression of atherosclerosis 
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[38,39]. Activated macrophages are also known to release a battery of reactive oxidants via 

the activities of NADPH oxidases (which generate superoxide radicals, O2
-., and hydrogen 

peroxide, H2O2) and inducible nitric oxide synthase, which generate nitric oxide, NO. [40]. 

The rapid (diffusion-controlled) reaction of O2
-. with NO. yields the powerful oxidant 

peroxynitrous acid (ONOOH), which exists at physiological pH values in equilibrium with its 

less-reactive anion form, peroxynitrite (ONOO-, pKa 6.7) [41,42]. ONOOH can undergo both 

direct (2-electron) oxidation reactions, as well as undergo limited homolysis to give hydroxyl 

radical (HO.) and nitrogen dioxide (NO2
.) radicals [43,44]. In the presence of physiological 

concentrations of CO2 (which is in equilibrium with ~25 mM HCO3
-), the adduct species 

peroxynitrosocarbonate, ONOOCO2
-, is formed that can also induce direct oxidations and 

give rise to the radicals CO3
-. and NO2

. as a result of homolysis [43]. Both ONOOH and 

ONOOCO2
- can give rise to nitrated products from biological targets, with these including 3-

nitrotyrosine (3-nitroTyr), a product of protein-bound tyrosine, and 6-nitrotryptophan, a 

product of protein-bound tryptophan [43,45]. These stable products are believed to arise via 

the initial formation of Tyr-derived phenoxyl radicals, and Trp-derived indolyl radicals, and 

subsequent reaction with NO2
.  to give nitrated products. 3-NitroTyr has been reported to be 

present at elevated levels in all grades of human atherosclerotic lesions and present on 

multiple proteins [46], including high- and low-density-lipoproteins [47], and the ECM 

materials perlecan [48], laminin [49] and fibronectin [50]. Furthermore, immunoglobulins 

against 3-nitroTyr epitopes have been detected in human atherosclerotic lesions and the 

circulation of subjects with coronary artery disease, linking oxidant production and activation 

of the immune system [51]. The role of oxidants in modifying ECM and its consequences has 

been reviewed [52-54]. ECM modification by ONOOH can result in changes in cell function, 

including altered cell adhesion and proliferation and changes in gene regulation and cytokine 

expression [54]. Elastin isolated from plaques has been reported to have an altered amino acid 



 
 

7 

composition and this is thought to be a prerequisite for the binding of cholesterol esters (from 

low-density lipoproteins) within plaques, a process that does not appear to occur to a 

significant extent with normal elastin [34,55]. Vascular remodeling, a major feature of 

atherosclerotic plaque development, has also been reported to be characterized by elastin 

fragmentation, a decrease in overall elastin content, and an increase in both collagen content 

and collagen crosslinking. These processes have been associated with increased arterial 

stiffness and calcification [19,31,56-58]. 

 As elastin is present in many tissues in close proximity to other ECM proteins that are 

oxidised by ONOOH (e.g. perlecan [26,48]), we hypothesized that elastin would also be a 

likely target, and due to its high abundance in major vessels might consume a major portion 

of ONOOH or ONOOCO2
- generated in vivo.  Previous studies using very high levels of 

ONOOH support this assertion [59,60]. Furthermore due to its unusual amino acid 

composition (TE contains no Met, Trp, His or free Cys residues, which are all favoured 

targets of ONOOH [61,62]), and a relatively high content of Tyr residues (15), it might be 

expected that this protein would give rise to particularly high yields of 3-nitroTyr. Such 

modifications might affect both the structure and biological activity of this protein. As 

previous studies have suggested that exposure of cells to modified ECM can alter gene 

expression [63] and promote inflammation [64], the effects of TE modification have also 

been examined in vivo in mice. 

 

MATERIALS AND METHODS 

 

Materials 
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Recombinant full-length TE was expressed and purified from an E. coli expression system as 

described previously [65]. All other chemicals were from Sigma-Aldrich unless stated 

otherwise. Milli-Q grade water (Millipore Advantage A10; Merck-Millipore, Billerica, MA, 

USA) was used to prepare buffers, and all reaction mixtures were treated with Chelex-100 

resin (Bio-Rad, Hercules, CA, USA) to remove trace metal ions. ONOOH was synthesized 

using a two-phase system from isoamyl nitrite and H2O2, as described previously [66], with 

residual H2O2 removed by treatment with MnO2. Stock solutions of the ONOOH were stored 

at -80°C until use, and used immediately after thawing, with unused material discarded. The 

concentration of ONOOH solutions was determined spectrophotometrically using an 

extinction coefficient of 1705 M-1 cm-1 [67]. Decomposed oxidant solutions (indicated as 

dONOOH) were used as controls for any residual materials from the synthesis, with these 

being prepared by overnight incubation at 37°C in 0.1 M phosphate buffer, pH 7.4. Stock 

solutions of ONOOH were prepared in freshly prepared 0.1 M NaOH just before use in 

experiments, with low volumes of the oxidant added to strongly buffered solutions (100 mM 

phosphate buffer, pH 7.4) to prevent significant changes in pH. Reaction mixtures were 

prepared by rapidly adding ONOOH to centrifuge tubes with vortexing to ensure rapid 

homogenous reaction. 

 

SDS-PAGE and Western blotting 

 

TE was diluted in 100 mM phosphate buffer, pH 7.4, and exposed to ONOOH in either the 

absence or presence of NaHCO3 (25 mM final concentration, to give physiological levels of 

CO2), for 20 min at 21 °C. With this incubation time complete consumption of ONOOH 

occurs [68]. Samples for analysis were prepared using NuPAGE® LDS Sample Buffer (4x) 

and NuPAGE® Sample Reducing Agent (10x) as described by the manufacturer (Invitrogen), 
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with reduction carried out for 10 min at 70 °C. Protein samples were loaded at 1.5  

-stained protein standards (31  460 kDa) used as a reference and to 

indicate approximate masses. SDS-PAGE was carried out on 1 mm NuPAGE® NOVEX® 3-

8% Tris-Acetate Gels using NuPAGE® Tris-Acetate SDS Running Buffer at 150 V (40-55 

mA/gel) for 1 h. After electrophoretic separation, proteins were visualized using either 

Coomassie® R-250 or silver staining, or subjected to Western blotting.  

 For Coomassie staining, the gels were fixed and stained using 0.1% (w/v) Coomassie 

R-250 in 40% (v/v) ethanol and 10% (v/v) acetic acid and microwaved for 1 min on high 

power followed by 15 min incubation at 21 °C on an orbital shaker. The staining solution was 

then removed and the gels were destained using 10% (v/v) ethanol and 7.5% (v/v) acetic acid 

in water with microwave exposure for 1 min. Gels were then incubated on an orbital shaker 

until a colorless background was achieved, and scanned using a standard flat bed scanner 

[49,50]. 

 For silver staining, the gels were fixed in a solution containing 50% (v/v) methanol 

and 10% (v/v) acetic acid for 30 min, then incubated in 5% (v/v) methanol for 15 min and 3 

times for 5 min in H2O to rehydrate the gels. The gels were then incubated in freshly prepared 

0.02% (w/v) sodium thiosulfate for 2 min, washed for 2 min with H2O and stained with 0.2% 

(w/v) silver nitrate for 25 min. Unbound silver nitrate was removed by washing for 5 min 

with H2O. Gels were developed in a solution containing 3% (w/v) sodium carbonate, 

0.0004% (w/v) sodium thiosulfate and 0.05% (v/v) formaldehyde until the desired staining 

intensity was achieved, with development terminated by treatment with 1.4% (w/v) EDTA 

[49,50]. 

 For Western blotting experiments, proteins were electroblotted onto nitrocellulose 

membranes using an iBlot® transfer apparatus (Invitrogen). Membranes were blocked with 

1% (w/v) casein in phosphate buffered saline with Tween 20 (PBST) for 1 h and then probed 
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with primary monoclonal (mAb) or polyclonal antibodies (pAb) diluted in blocking solution 

overnight at 4 oC (mouse anti-elastin mAb [C-terminal domain 36, 1:1000 dilution]; mouse 

anti-elastin mAb [BA-4 clone, Sigma-Aldrich, 1:2000 dilution]; rabbit anti-3-nitroTyr pAb 

[Merck-Millipore, 1:2000 dilution]). Membranes were rinsed 3 times for 5 min with PBST 

before incubation with an appropriate secondary HRP-conjugated IgG antibodies (1:5000 

dilution) for 1 h (anti-rabbit pAb [NA934, GE]; anti-mouse pAb [sc-2005, Santa Cruz, Dallas, 

TX, USA]). In order to reduce background, unbound HRP was removed by extensive 

washing, 4 times for 10 min with PBST and twice with water for 10 min followed by 

detection of immune complexes with Western Lightning Plus ECL reagent (Perkin Elmer). 

Chemiluminescent images were acquired using an Image Quant LAS 4000 system (GE 

Healthcare), reference protein markers were visualized in normal brightfield and aligned to 

chemiluminescent images. 

 

High performance/Ultra high performance liquid chromatography (HPLC/UHPLC) 

 

Loss of parent amino acids and formation of 3-nitroTyr was quantified using two different 

UHPLC/HPLC methods. For analysis of total amino acids (method (a)) control and modified 

protein was carried out using acid hydrolysis with methanesulfonic acid as described 

previously [69], using commercially available amino acid mixtures to generate standard 

curves and pre-column derivatization with the fluorescent tag o-phthaldialdehyde. The tagged 

amino acids were separated on a Shimadzu Nexera UHPLC system and eluted by gradient 

elution with buffer A consisting of 100 mM sodium acetate, pH 5.3, in water with 2.5% (v/v) 

tetrahydrofuran and 20% (v/v) methanol, and buffer B (100 mM sodium acetate, pH 5.3, in 

water with 2.5% (v/v) tetrahydrofuran and 80% (v/v) methanol). The gradient protocol 

consisted of an increase from 100% buffer A to 25% buffer B over 6 min, elution with this 
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mixture for 1 min, then a gradient to 62% buffer B over 0.5 min, elution with 62% buffer B 

for 2.5 min, then a gradient to 100% buffer B over 2 min, elution with 100% buffer B for 

1 min, then a gradient to 100% buffer A over 0.5 min, and re-equilibration with buffer A for a 

further 3.5 min. The tagged amino acids were detected with a Shimadzu, RF-20A 

Ex=340 Em=440 nm.  

 3-NitroTyr generation on oxidant-treated and control protein (prepared as described 

above) was examined (method (b)) using samples containing 100   M 

PBS. These were incubated with 20 (1 mg mL-1; protein/enzyme ratio 

5:1) and incubated for 24 h at 50 °C in an incubator to release free amino acids. Undigested 

peptides and remaining enzyme were removed by filtration (Nanosep® 3K cut off centrifugal 

filtration devices, 13300 g, 30 min). Control samples containing only pronase were also 

prepared to determine the contribution of pronase auto-digestion to the free amino acid pool; 

these values are reported, but not subtracted, as they may over-estimate the extent of auto-

digestion in the presence of substrate. Standard stock solutions of parent Tyr and 3-nitroTyr, 

(either 100  mM) were also prepared then diluted as required. The filtrates from 

protein digestion were injected onto a Kromasil C18, 5 µm, 250×4.6 mm column together 

with a Pelliguard LC 18 guard column and components separated using a gradient elution 

system on a Shimadzu HPLC system (SIL-20AC HT, LC-10AT, CTO-10AS; Shimdazu, 

Kyoto, Japan) equipped with a UV VIS detector (SPD-10A) connected in series with a multi-

channel Coularray electrochemical detector (5020 guard cell, 6210 Hi-E four sensor 

assembly; ESA, Chelmsford, MA, USA) with the column maintained at 30 °C with a flow 

rate of 1 mL min-1. The elution gradient consisted of 100% buffer A (50 mM citric acid in 

water, pH 2.3, with 2% [v/v] acetonitrile) for 3 min, then a gradient to 70% buffer B (50 mM 

citric acid in water, pH 2.3, with 20% [v/v] acetonitrile) over 17 min, a gradient to 100% 

buffer B over 5 min, 100% buffer B for 10 min, then re-equilibration to 100% buffer A over 
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10 min. Detection and quantification of tyrosines (o-Tyr, m-Tyr, p-Tyr) was carried out using 

their UV absorption at 280 nm. These compounds were also detected electrochemically using 

a 12-channel Coularray electrochemical detector, but only 3-nitroTyr was quantified using 

this method. Electrode potentials were adjusted (50, 150, 250, 300, 350, 450, 500, 550, 620, 

700, 810, 840 mV respectively) to achieve stepwise oxidation of compounds, with the 

integrations carried out on the peak intensities for three channels (dominant channel, and the 

channels before and after this) summed. Under these condition 3-nitroTyr was detected solely 

in channels 10 12, with a retention time of ~30 min. 

 

Mass spectroscopic detection of protein cross-links   

20 µg of TE (control or exposed to ONOOH as described above) was dissolved in 20 µL 8 M 

urea, 50 mM Tris-HCl at pH 8.0. Two microliters of dithiothreitol (DTT, 450 mM) was then 

added and incubated for 45 min at 21oC. Alkylation was carried out adding iodoacetamide 

(IAM, 4 µL, 500 mM), followed by incubation for 60 min at 21oC in the dark. The sample 

was then divided into two fractions, for trypsin digestion in 16O- and 18O-water, respectively, 

followed by solid-phase extraction on activated StageTip C18 reversed-phase discs as 

reported elsewhere [70]. The 16O- and 18O-labelled samples were then dried down 

(SpeedvacTM concentrator, 3 mins) and re-suspended in 10 µL H2
16O and H2

18O, respectively. 

These samples were mixed at a 1:1 ratio immediately prior to analysis [70].   

Mass spectrometric analysis of peptide samples was carried out on an EASY nLC 1000 

chromatograph (Thermo Fischer Scientific) with an EASY-spray column (Pepmap Thermo 

Fischer Scientific; 3 µm, C18 15 cm x 75 µm) coupled online to an Orbitrap Fusion mass 

spectrometer (Thermo Fischer Scientific). Separation was performed with a flow rate of 250 

nL min-1 and gradient of solvents A (0.1% FA) and B (80% ACN and 0.1% FA) and data 

acquisition was performed as previously described [70], with high-energy collisional 
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dissociation fragmentation (28% collision energy and 120000 resolution, Orbitrap detection). 

MassAI (version April 2017, University of Southern Denmark) was used for identification 

and verification of cross-linked peptides in MS/MS with the following settings: fixed 

(cysteine carbamidomethylation) and variable (methionine oxidation, tyrosine oxidation) 

modifications; maximum number of missed cleavages 2; parent mass tolerance 10 ppm; MS2 

peak tolerance 0.02 m/z. The search criteria included intra-protein and xlink modified 

peptides. Positive candidates were re-evaluated manually by score and spectral analysis. 

Quantification of the selected cross-linked peptides was performed manually based on the ion 

intensities originating from the corresponding peptide spectrum matches in three 

experimental replicates. 

 

Immunohistochemical staining of human atherosclerotic lesions 

 

Arteriae femuralis and aortae abdominalis samples were obtained within 12 h from 3 subjects 

who died of cerebral haemorrhage. Lesion severity was classified according to Stary and 

coworkers [71] and ranged here from microscopically normal to thickened intima (type II-

III). Samples were immediately frozen in a cryostat (Microm HM500 OM; Microm, 

Walldorf, Germany), supported by tissue freezing medium (Tissue Tec OCT-compound; 

Miles, Elkhard, Ind., USA) [72]

air-dried (2 h, 21 °C), fixed in acetone (5 min, 21 °C and stored at -70 °C until analysis. 

Approval of the institutional ethics committee was obtained for this study (Medical 

University Graz, EK-number: 29-464 ex 16/17). All methods were performed in accordance 

with the relevant guidelines and regulations. 

For immunohistochemistry and double immunofluorescence, sections were thawed, 

fixed in acetone (21 °C, 5 min), then rehydrated in PBS followed by blocking using Ultra V 
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block for 10 min (Lab Vision, Fremont, CA, USA). For immunohistochemistry, sections were 

incubated (21 °C, 30 min) with either mouse anti-elastin mAb (clone 10B8, Abcam, 1:100 

dilution) or with rabbit anti-3-nitroTyr pAb (IgG; Merck-Millipore, 1:100 dilution). Detection 

of the signal was performed with the UltraVision system from LabVision, based on a 

peroxidase-labelled biotin-streptavidin system. Control experiments were performed by 

omission of the primary Ab or by preincubation of rabbit anti-3-nitroTyr with a 12.5  25 fold 

molar excess of nitrated tropoelastin or native tropoelastin. The competitor was preincubated 

with the primary antibody for 60 min before adding to the section. The slides were developed 

ions was 

performed as described [72]. Pictures were taken with a Leica CM 6000B microscope 

equipped with an Olympus DP72 camera. For double immunofluorescence, sections were 

incubated with mouse anti-elastin mAb (clone 10B8, Abcam, 1:100 dilution) followed by 

goat anti-mouse cyanine-2 (Cy-2)-labeled pAb (mouse IgG, Jackson Dianova, 1:300 

dilution). Afterwards slides were incubated with rabbit anti-3-nitroTyr pAb (rabbit IgG; 

Merck-Millipore, 1:100 dilution) followed by goat anti-rabbit Cy-3-labeled pAb (IgG, 1:300 

dilution) [73]. Sections were mounted with Moviol (Calbiochem-Novabiochem, La Jolla, 

USA) and analyzed using a confocal laser-scanning microscope operating in sequential mode 

(Leica SP2; Leica Lasertechnik GmbH, Heidelberg, Germany), with the 488 nm laser line 

used for Cy-2 excitation, and the 543 nm line for Cy-3. Emission detection used 500-540 nm 

(green staining) for Cy-2, and 560-620 nm (red staining) for Cy-3. Controls were performed 

by omitting of the primary antibodies or by replacing them with non-immune rabbit IgG 

(Sigma-Aldrich) or non-immune mouse IgG (Sigma-Aldrich). PBS was used for all washing 

steps between the incubations and Dako antibody diluent for antibody dilutions. All 

incubation steps were performed in dark moisture chambers at 21 °C.  
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Statistics 

 

Statistical analyses were performed using GraphPad Prism (version 5.0f; GraphPad Software, 

San Diego, CA, USA). One-

test 

for cell adhesion data. Two-

compare samples with and without HCO3 /CO2. Data are representative of at least three 

independent experiments, with p < 0.05 considered significant. Details of the tests used in 

particular analyses are given in the appropriate figure legends. 

 

RESULTS 

Effect of ONOOH and ONOOCO2
- on tropoelastin (TE) structure  

 

250 fold over protein  1.25 mM) for 20 mins at 21 °C, before being loaded on to 

SDS-PAGE gels. After separation, the gels were developed with Coomassie® R-250, or 

silver staining, and subsequently imaged. Under these conditions, exposure of TE to high 

molar ratios of ONOOH resulted in a decrease in staining of the parent protein band at ~ 60 

kDa, and a dose-dependent detection of bands assigned to dimers and higher oligomers (Fig. 

1A; Coomassie-stained gels not shown). The apparent masses of these species do not 

correspond to exact multiples of that of the parent protein, consistent with increased 

interactions with SDS; this is a well-established phenomenon with proteins of high 

hydrophobicity (e.g. membrane proteins [74]). Significant dimer formation was detected with 

equimolar or higher levels of oxidant (i.e. an average of a single modification event per 

protein molecule). With increasing oxidant doses, formation of trimers, tetramers and 
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smeared bands at even higher masses were detected. With very high oxidant excesses, 

significant amounts of the protein did not enter the gel from the loading wells, resulting in a 

decreased extent of total staining, though there was an increase in staining at lower molecular 

masses (< 60 kDa) indicative of protein fragmentation. Decomposed ONOOH even at the 

highest concentrations used (250-fold excess; indicated as 250x dec.) did not induce any 

significant changes compared to the untreated controls (Fig. 1).  

 Western blotting of separated protein samples, exposed to oxidant in an identical 

manner, was carried out using two mAbs that recognize well-defined elastin epitopes. The 

first of these recognizes the C-terminal domain 36 [75], the second mAb (clone BA-4), 

recognises a repeat sequence (Val-Gly-Val-Ala-Pro-Gly), which is a chemoattractant for 

fibroblasts and monocytes. Both mAbs recognized native TE at a molecular mass of ~60 kDa 

(Fig. 1B,C), but the staining intensity of the TE band decreased with increasing ONOOH 

concentration, indicating significant perturbation of the protein structure and loss of the 

specific epitopes recognised by these antibodies. The decomposed oxidant at the highest 

concentration used, did not show any significant differences compared to the control, 

untreated protein (Fig. 1B,C). In contrast to the data obtained with silver staining (Fig. 1A), 

no significant staining was detected at higher molecular masses with either antibody (Fig. 

1B,C), suggesting that the dimer and higher oligomers formed in response to oxidant 

treatment have significantly perturbed structures compared to the monomer.  

 The effect of ONOOCO2
-, relative to identical concentrations of ONOOH on TE, was 

examined by including 25 mM HCO3
- in the reaction buffers to give physiological levels of 

CO2. As shown in Fig. 2A, the presence of HCO3
- decreased the extent of loss of parent 

protein as detected by Coomassie-staining, and also against the loss of epitope recognition by 

the antibody BA-4 (Fig. 2B), consistent with ONOOCO2
- inducing less marked damage and 

alterations to the protein. As expected the presence of HCO3
- had no effect of the behaviour 
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of the decomposed oxidant (dONOOH) (data not shown). Western blotting using a mAb 

against the nitration product 3-nitroTyr showed a dose-dependent increase in staining of the 

parent protein band with increasing ONOOH levels, with significant staining detected at a 10-

fold or higher molar excess of ONOOH over protein (Fig. 2C). No staining was detected with 

decomposed ONOOH (data not shown). This detection of 3-nitroTyr on the parent protein 

was accompanied by increased staining of material at both higher masses (detected as broad 

smearing), and also on specific fragments at lower mass. In particular three discrete bands 

with approximate molecular masses of ~50, ~35 and ~15 kDa were detected (Fig. 2), 

consistent with selective cleavage of TE by ONOOH at particular sites in the protein 

sequence. These fragments were less readily observed with either Coomassie staining or 

Western blotting experiments using the BA-4 mAb. The presence of HCO3
- appeared to 

decrease the extent of 3-nitroTyr detection both on the parent protein band and on the 

observed fragments. These data indicate significant modification of Tyr residues present on 

TE, with formation of 3-nitroTyr, but the concentration of these species cannot be determined 

from these gels.   

  

Quantification of amino acid residues in recombinant human TE on ONOOH exposure 

 

In order to determine the extent of modification of Tyr residues, and 3-nitroTyr formation, as 

well as potential modification at other residues, amino acid analysis was carried out using 

HPLC with either acid (data not shown) or enzymatic hydrolysis (Fig. 3A). This technique 

allows quantification of all of the common amino acids with the exception of cysteine/cystine 

and proline residues, with the pairs of glutamine/glutamic acid and asparagine/aspartic acid 

eluting as single peaks as a result of hydrolysis of the amide to the corresponding carboxylic 

acids. The resulting data were normalized against isoleucine to compensate for any protein 
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loss during sample preparation and variable efficiency of hydrolysis. For the non-modified 

samples, comparison of this experimental data with the theoretical amino acid content of TE 

(Supplementary Table 1), gave identical ratios (within experimental error) of each amino 

acids (relative to isoleucine) to that expected, the exception of aspartic acid which elutes very 

close to the void volume, and whose quantification was affected by this. These data confirm 

the high purity of the protein, and the absence of any Trp and Met residues in the protein. 

Comparison of the data obtained from the untreated samples compared to those treated with 

ONOOH, in either the absence or presence of HCO3
-, indicated that Tyr was the only amino 

acid whose concentration was significantly affected by ONOOH treatment, with a significant 

loss of this amino acid detected with a 25-fold or greater molar oxidant excess over protein 

using the enzymatic method (Fig. 3A), or with a 50-fold, or greater, molar oxidant excess 

using the acid hydrolysis technique (data not shown). No significant difference was detected 

in the extent of Tyr loss between the samples exposed to ONOOH in the absence or presence 

of HCO3
-, though there was a trend towards a greater loss in the absence of HCO3

- (Fig. 3A). 

 The extent of 3-nitroTyr formation was examined using the enzymatic hydrolysis 

method (Fig. 3B), with a dose-dependent increase in the yield of this protein modification 

product detected with increasing levels of ONOOH, in the absence of HCO3
-, up to a 50-fold 

or greater molar oxidant excess over protein. At higher molar excesses of ONOOH the levels 

of this product reached a plateau, and then subsequently decreased with very high oxidant 

concentrations. A significant extent of formation of this material, relative to the control 

(untreated) or decomposed oxidant-treated samples, was detected with a 5-fold molar excess 

of oxidant. For experiments carried out in the presence of ONOOH and HCO3
-, significant 

levels of 3-nitroTyr were also detected, with this becoming significant with a 10-fold molar 

excess of oxidant over protein, with a plateau concentration of 3-nitroTyr detected at a 25-

fold or higher levels of oxidant. However, the absolute levels of 3-nitroTyr detected in the 
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presence of HCO3
- were significantly lower than those detected in its absence, consistent with 

the gel data (Fig. 2C). These data are consistent with Tyr residues being the major target of 

ONOOH in TE, with near 100% loss of parent Tyr detected at very high ONOOH levels. 

 

Identification of protein cross-links in recombinant human TE on ONOOH exposure 

 

The detection of higher mass species of TE after exposure to ONOOH on the gels (Fig. 1A) is 

consistent with the presence of covalent non-reducible bonds between TE molecules. The 

significant consumption of Tyr residues and the known formation of cross-linked species 

from this amino acid (e.g. di-tyrosine, and cross-links involving quinones derived from Tyr 

[76]) prompted an examination of the nature of the cross-links formed in ONOOH-treated 

TE.  The presence of cross-links was investigated by making use of the addition mass 

differences present in cross-linked peptides containing two carboxyl termini after protein 

digestion by trypsin in H2
18O compared to H2

16O [70,77]). Thereby distinctive peaks differing 

by 4 Da appear in the mass spectra (i.e. +8 Da for H2
18O digested samples for cross-linked 

species, compared to +4 Da for non-cross-linked peptides as a result of the incorporation of 4 

18O atoms at the two C-termini of the cross-linked peptide compared to 2 18O atoms at the 

single terminal carboxylate of non-cross-linked species). Using this approach evidence has 

been obtained for inter- and / or intra-molecular Tyr-Tyr species in the treated TE.  

With TE samples exposed to 1, 2.5 and 25-fold molar excess of ONOOH consistent 

evidence was found for a Tyr-Tyr (Y-Y) cross-link between the peptides 

LPGGYGLPYTTGK   LPYGYGPGGVAGAAGK (cross-link #1, Fig. 4A), with the cross-

linked residues highlighted in bold. This cross-linked peptide displayed the expected - 2.01 

Da difference compared to the sum of the two parent peptides due to formation of a Y-Y 

crosslink, with the theoretical mass (2754.407) matching closely to the experimental mass 
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(2754.405; 2.49 ppm mass error). The intensity of this cross-linked peptide increased 

significantly from 1- to 25-fold molar excess of ONOOH (Supplementary Figure 1). The 

MS/MS spectrum of this species (Fig. 4A) revealed several fragment ions that retain the 

cross-link site (y5-y10  and y14-y15, b5-b9 , providing 

strong evidence for the presence of the Y-Y cross-link. This cross-linked peptide comprises 

sequential sections of the protein sequence (i.e. the amino acid sequence is 

LPGGYGLPYTTGKLPYGYGPGGVAGAAGK, with tryptic cleavage occurring after the K 

residue in the middle of this sequence. It is unclear (due to the absence of a high resolution 

structure of the protein) whether this is an intra-molecular cross-link arising from a close 

spatial alignment of the two Tyr residues as a result of a loop in the secondary structure, or 

whether this is an inter-molecular cross-link.  

Strong evidence was also obtained for a cross-link between Tyr (Y) residues in two 

peptides with sequence LPYGYGPGGVAGAAGK (i.e. LPYGYGPGGVAGAAGK   

LPYGYGPGGVAGAAGK, cross-link #2, Fig. 4B,C). This Y-Y link appears in two sets of 

cross-linked peptides containing different modifications on the second (non cross-linked) Tyr 

residue (i.e. at Y in LPYGYGPGGVAGAAGK). In the first species (Fig. 4B) this Tyr is 

subjected to oxidation (+15.99, i.e. hydroxylation to give DOPA) and nitration (+44.985, 3-

nitroTyr), respectively, in the two peptide chains (experimental mass 2926.429 Da compared 

to theoretical value of 2926.43 Da; 2.77 ppm mass difference). In the second species (Fig. 

4C) the corresponding Tyr residue is nitrated in both peptide chains (experimental mass 

2955.408 Da compared to theoretical value of 2955.414 Da; 2.03 ppm mass difference). The 

intensity of both cross-linked peptides was highest in the sample treated with 25-fold molar 

excess (Fig. S4). As both these species contain two copies of the same peptide, it is concluded 

that these must correspond to an inter-molecular cross-link.  
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A cross-link was also detected between AGYPTGTGVGPQAAAAAAAK   

LPGGYGLPYTTGKLPYGYGPGGVAGAAGK (cross-link #3, Fig. 4D). This species 

(experimental mass 4481.285 Da compared to theoretical mass 4481.272 Da; 6.3 ppm mass 

difference) was detected with oxidation (+ 15.99, hydroxylation) at the second Tyr in the 

second peptide (i.e. at Y in LPGGYGLPYTTGKLPYGYGPGGVAGAAGK), a residue 

involved in cross-link #2. The MS/MS spectrum of this cross-linked peptide shows that the 

b5-b8 -links, as well as 

the b6-b7 - or intra-

molecular cross-link species remains to be established, due to the absence of a high-resolution 

structure of this protein. The abundance of this cross-linked peptide is highest in 25-fold 

molar excess of ONOOH, followed by 1- and 2.5-fold molar excess (Fig. S4). 

 

In vivo detection of 3-nitroTyr and modified elastin in human arterial and aortic lesions 

 

As elastin is highly abundant in major arteries and evidence has been presented for changes in 

this protein during atherogenesis [31,32], and to be associated with areas of lipid deposition 

[33,34,55], we examined in human atherosclerotic lesions, the potential colocalization of both 

elastin and 3-nitroTyr epitopes and lipid pools (as evidenced by Oil Red staining).  

 Fig. 5 (A-C) shows an arteria femuralis with a heavily thickened intima. Pronounced 

staining for elastin is present in the media, in particular in elastic membranes, while faint 

staining for elastin is present deep in the intima close to the borderline of the media (Fig. 5A). 

Faint staining for 3-nitroTyr is present at the endothelial layer (Fig. 5B). While no staining for 

3-nitroTyr was found in the media, abundant staining for 3-nitroTyr occurs in the deeper 

intima region as well as in the middle portion of the intima (Fig. 5B). The latter area is 

heavily invaded with foam cells detected by oil red staining (Fig. 5C). These cells 
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(monocytes/macrophages) primarily account for the pronounced 3-nitroTyr staining (Fig. 

5B). To confirm the specificity of the anti 3-nitroTyr for nitrated epitopes in human arterial 

and aortic material (Fig. 5B, 5D), the pAb was preabsorbed with an excess of either nitrated 

tropoelastin or native (unmodified) tropoelastin before use with serial sections of human aorta 

abdominalis. While nitrated tropoelastin diminished immunoreactivity to background staining 

levels (Fig. 5E), native tropoelastin, used as a competitor, did not affect staining for 3-

nitroTyr epitopes (Fig. 5F vs. Fig. 5D). 

 Sections were also examined by double immunofluoresecence for the presence of 

elastin using the mAb 10B8, which recognises human elastin, and 3-nitroTyr epitopes using a 

rabbit anti-3-nitroTyr pAb (Fig. 6). The anti-elastin antibody, as expected, provided evidence 

for the presence of high levels of elastin underneath the endothelial layer (Fig. 6A). The 

staining for elastin shows the characteristic layered structure of elastic laminae. Limited 

fluorescence was detected deeper in the tissue sections. Corresponding experiments 

examining the presence of 3-nitroTyr epitopes also provided evidence, in line with previous 

observations [46,48-50], for significant levels of this material underneath the endothelial layer 

(Fig. 6B). Merging of these images (Fig. 6C) showed pronounced staining for elastin and 3-

nitroTyr epitopes in close proximity with partial colocalization within tissue sections from the 

lesions. This data are consistent with damage to both elastin, and other matrix components, 

with damage particularly localized to the lamina closest to the luminal surface. Control 

experiments using non-immune mouse or rabbit IgG showed no artifactual staining.  

 

 

DISCUSSION 
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The studies reported here examined the hypothesis that TE the precursor of the major ECM 

elastin, would be a major target for modification by the major inflammatory oxidants 

ONOOH and ONOOCO2
- due to its unique amino acid composition, that this would result in 

the formation of high yields of 3-nitroTyr, and that these modifications would result in altered 

structural and functional properties of the protein, with the latter tested both in vitro and in 

vivo. These studies complement previous studies on this protein (which used very high 

excesses of oxidant [59,60]), other isolated ECM proteins (perlecan, laminin, fibronectin [48-

50,78]), as well as basement membrane extracts, cell culture-derived materials and tissue 

extracts which contain mixtures of these species [63,78]. 

 It has been shown that exposure of TE to ONOOH has a dramatic effect on the 

composition and structure of the protein, with significant levels of 3-nitroTyr detected with 

very low levels of ONOOH, and formation of modified forms of the protein (both aggregates 

and fragments) as detected by silver staining, Western blotting with two different antibodies 

and also by MS analysis. These changes are detected with molar excesses of ONOOH in the 

range 1-5 fold, or greater, thus even single hits (i.e. equimolar amounts of ONOOH to target) 

appear to be capable of inducing significant changes to the structure of this protein. Of 

particular interest was the observed loss of recognition of the C-terminal domain of TE, by 

the corresponding antibody, as this region has been linked with a number functional 

properties including elastin-fibre assembly and cell binding [4,21,22,75,79]. However, 

sequence data for TE indicates that there are no Tyr residues in the protein near the C-

terminus (the closest is approximately 50 residues away; Fig. 8), but this does not preclude a 

close spatial alignment of a critical Tyr residue that is far removed from the C-terminus. 

Resolution of this issue awaits a high-resolution structure of the protein. It should however 

also be noted that this C-terminal region contains the sole disulfide (cystine) cross-link in the 

protein and it is known that ONOOH can oxidize such residues ([62,80]; L. Carroll, M. 
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Ignasiak, unpublished data) and this may give rise to the decreased antibody recognition. 

Protein bound 3-nitroTyr was detected on both the main parent TE band, and also on 

fragments with distinct molecular mass. The masses of these fragments are similar to those 

that arise from thrombin and kallikrein cleavage [81]. Kallikrein and thrombin are serum 

proteases capable of degrading TE with thrombin cleaving at Arg 515 (and to lesser extent at 

Lys 152) whereas kallikrein recognises Arg 515 (at the end of domain 25) and Arg 564 

(within domain 26) [82,83]. Such enzymatic cleavage gives three major fragments with 

masses of 45, 31 and 13 kDa. The region of TE between these cleavage sites contains domain 

26, which is known to play a major role in coacervation and correct elastic fibre assembly 

[83]. 

 The sensitivity of TE to modification by ONOOH is likely to arise, at least in part, 

from the unusual parent amino acid composition of this protein, which contains no free Cys 

residues (though it does contain 2 Cys residues that form an intrachain disulfide bond [84]), 

Met, Trp, or His residues. Each of these species, together with Tyr, is a known, or potential, 

target for the inflammatory oxidants ONOOH and ONOOCO2
- [62,85]. The absence of these 

other reactive residues was predicted to result in Tyr residues being quantitatively the most 

important major target, though limited reaction at the single disulphide (cystine) may also 

occur [62,85]. This has not been quantified, but is likely to account for only a modest amount 

of the added ONOOH (see also below). The amino acid analysis confirms the marked 

selectivity for Tyr residue modification, with this being the only amino acid, of those 

analysed (i.e. excluding cystine) depleted significantly on ONOOH exposure. The loss of Tyr 

was mirrored by the formation of 3-nitroTyr residues (detected both by UPLC analysis and by 

MS to a more limited extent), with both Tyr loss and 3-nitroTyr formation occurring to a 

lower extent in the presence of HCO3
-. This is likely to be due to the formation of 

ONOOCO2
- via reaction of ONOO- with CO2, with this species being less efficient at both 
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oxidising Tyr, and generating 3-nitroTyr. This decreased reactivity of ONOOCO2
- is 

consistent with previous data with other matrix proteins [48-50], but may be specific to such 

materials as previous studies have reported increased levels of nitration in the presence of 

CO2 [86,87]. In both the absence or presence of HCO3
-, a dose-dependent increase in 3-

nitroTyr was observed, followed by a plateau, and a decrease in the case of ONOOH alone. 

These data suggest that 3-nitroTyr is modified or lost via additional reactions, with this 

potentially involving formation of 3,5-dinitroTyr, an established secondary oxidation product 

of 3-nitroTyr. Reaction at Phe residues, of which there are 16 in TE, is also a possibility at 

these high oxidant levels, with this giving 4-nitrophenylalanine as well as p-, m- and o-

tyrosine [88,89], but this does not appear to be a major fate of the added ONOOH, as no 

significant loss of parent Phe was detected. The possible formation and quantification of 3,5-

dinitroTyr has not been examined, as this is only likely to be of relevance with high oxidant 

excesses, that are of limited, or no, biological relevance.     

 Further information as to the significance of 3-nitroTyr formation in the modification 

of TE has been obtained by determining the percentage conversion of Tyr to 3-nitroTyr (Fig. 

7A), and the percentage conversion of ONOOH to 3-nitroTyr (Fig. 7B). With regard to the 

former it can be seen that up to 15% of the Tyr residues present in TE are converted to 3-

nitroTyr at a 50-fold molar ratio of ONOOH to TE. As there are 15 Tyr residues per mole of 

TE this equates, on average, to a total of 2 modified Tyr residues per protein molecule with 

this damage likely to be spread over multiple Tyr residues, when exposed to ONOOH, and a 

total of 1 modified Tyr per protein with a similar molar excess of ONOOCO2
- (i.e. ONOOH 

in presence of HCO3
-). Similar analyses indicate that approximately a 12-fold molar excess of 

ONOOH over TE results on average to one modified Tyr per protein. These values are likely 

to overestimate the amount of ONOOH needed to induce these levels of modification, as a 

result of secondary loss of 3-nitroTyr as outlined above. 
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 With regard to the extent of conversion of ONOOH to 3-nitroTyr, the maximum 

extent of conversion of oxidant to this product peaks at approximately 8% for the system in 

the absence of HCO3
-, and 5% in its presence (Fig. 7B). As with Fig. 7A, this plot shows a 

high oxidant concentrations. Whilst these percentage conversion values may initially appear 

low, it should be noted that this is a very high value when compared to data for reaction of 

this oxidant with other biological targets [48-50,61,62,78]. A low percentage conversion is 

typically detected for this oxidant as a result of the occurrence of the rapid spontaneous 

conversion of ONOOH to nitrite (NO2
-) and nitrate (NO3

-) and, where Tyr residues are the 

target, the requirement for two successive reactions to generate 3-nitroTyr, via initial 

formation of the Tyr phenoxyl radical, and then subsequent reaction of this species with NO2
.. 

This results in a low overall product yield. Clearly the extent of these (and other) competing 

pathways for ONOOH are highly dependent on the reaction conditions and reactant 

concentrations, but the high detected levels of conversion with the relatively modest 

concentrations of TE used in these experiments (10 M) suggest that 3-nitroTyr formation 

from Tyr is a quantitatively important reaction. Furthermore, given the very high level of 30-

55% of mature elastin in the aorta, it may also be a major process in vivo; this is currently 

being examined.  

 The detection of aggregates of TE with low levels of ONOOH exposure by SDS-

PAGE and also MS is consistent with oxidation of Tyr residues to Tyr phenoxyl radicals. 

Subsequent reaction of these radicals with NO2
. are likely to be the major route to 3-nitroTyr, 

however dimerization of two phenoxyl radicals to give di-tyrosine also appears to be a major 

fate of these species, with this pathway proposed to be the major route to (irreversible) cross-

link formation. The MS data has provided evidence consistent with both inter- and intra-

molecular cross-links. Although two of the detected cross-links can be attributed to either 
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inter- or intra-molecular linkages, the detection of a cross-link between the Tyr residues of 

two identical peptides of sequence LPYGYGPGGVAGAAGK provides convincing evidence 

of covalent inter-molecular protein cross-links.  

 Of particular interest is the observation that the two Tyr residues involved in cross-

link #1 (i.e. the two Tyr residues highlighted in bold in the sequence 

LPGGYGLPYTTGKLPYGYGPGGVAGAAGK) are also involved in both the other cross-

links that have been detected. Furthermore, oxidation and nitration (to give 3-nitroTyr) were 

also detected within this sequence (at Y in the above sequence). 

All of these cross-links occur within one part of the protein sequence (Fig. 8; Tyr 

residues involved in cross-links are Y217, Y221, Y228 and Y244, with oxidation / nitration 

also detected at Y221 and Y230; numbering using the complete protein sequence from 

UniProtKB entry P15502) suggesting that this section of the molecule must both react readily 

and rapidly with the oxidant, and be a highly accessible (or flexible) region on the protein 

surface, in order to allow rapid cross-linking and oxidation / nitration to occur. This 

suggestion is supported by the detection of cross-links with very low levels of ONOOH 

(equimolar or greater concentrations). The Tyr residues involved in these cross-linked 

peptides and the oxidations / nitrations are indicated in Fig. 8. 

 The ability of TE to self-assemble (coacervate), is a critical factor in its biological 

function, and it is clear that exposure to even low levels (equimolar concentrations) of oxidant 

can modulate this process. This may arise from rapid and efficient modification at a limited 

number of Tyr residues within the protein with this resulting in efficient inter-protein cross-

links. The formation of intra-protein cross-links may also alter coacervation via modification 

of the 3-dimensional structure of the monomer protein. Experiments performed by Akhtar et 

al [59,60] indicate that ONOOH affects elastic fibre assembly and cell binding, with 

abnormal coacervation behaviour of oxidised TE detected at low temperatures when 
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compared to native TE. Furthermore, human retinal pigment endothelial cells incubated with 

oxidised TE were unable to incorporate the oxidised material into existing fibres [59]. 

Disorganized elastic fibre composition and reduced artery wall integrity (as evidenced by a 

greater extent of fragmented internal elastic laminae)  is a known feature in cardiovascular 

disease in both humans [37] and many mouse strains [90] (though not apparently elastin 

heterozygous knockout mice [91]), and together these data suggest that this might be due to 

either modification by ONOOH of newly-synthesised TE, which then does not incorporate (or 

incorporates incorrectly) into existing fibres, or ONOOH-induced changes to mature elastin. 

A previous study has also reported elevated levels of 4-hydroxynonenal-modified elastin in 

human atherosclerotic lesions, consistent with elastin being modified by material derived 

from oxidized lipids [19]. 

 The data reported here for the human atherosclerotic lesions is consistent with the 

presence of significant levels of 3-nitroTyr, with the staining for this epitope appearing to 

occur primarily in the vicinity of lipid-laden macrophage cells. This is consistent with 

previous data [48], and suggests that activated macrophages are a major (though not 

necessarily the only) source of ONOOH in such lesions, and implicates the inducible nitric 

oxide enzyme of these cells as a major driver of oxidant damage. The colocalization of the 3-

nitroTyr epitopes with (at least in part) elastin and elastic lamina structures is consistent with 

the previous reports (see above) of elastin modification in human atherosclerotic lesions, and 

a potential role for such elastin (and other ECM) modifications in the accumulation of lipid 

deposits within the artery wall [34,55]. One limitation of the current data is that the time 

course (i.e. sequence) of these events cannot be established, due to the difficulty in obtaining 

material from the earliest stages of human lesion development. Thus, it remains to be 

established whether lipid accumulation in macrophages is a driver of subsequent matrix 

modifications, or whether activation of macrophages induces modification to elastin (and 
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other matrix materials) with these modified matrix molecules enhancing subsequent ingress, 

retention and modification of lipid-containing particles (e.g. low-density lipoproteins) in the 

artery wall, with subsequent uptake by macrophages, via scavenger receptors to give foam 

cells.   

 In conclusion, these data indicate that isolated TE is a major and highly susceptible 

target for the inflammatory oxidant ONOOH, with this resulting in marked and selective 

conversion of the Tyr residues in this protein to 3-nitroTyr and dityrosine cross-links. This 

selectivity appears to arise from the absence of other ONOOH-reactive residues, and gives 

very high extents of conversion of Tyr to 3-nitroTyr (with up to 2 Tyr residues modified per 

mole of protein), and ONOOH to this product (up to 8% conversion), as well as significant 

cross-link formation. These levels of conversion of Tyr to 3-nitroTyr are much higher than 

detected with other matrix proteins studied to date (e.g. perlecan, fibronectin and laminin [48-

50], though whether the extent of modification correlates strongly with functional effects and 

biological consequences has yet to be determined. Furthermore, extrapolation of this in vitro 

data to in vivo situations is unlikely to be sensible. Exposure of TE to ONOOH also generates 

inter- (and possibly intra-) molecular cross-links, as well as the formation of specific 

fragments that contain 3-nitroTyr residues; these changes occur with very low levels of 

oxidant (1-5 fold molar excesses), consistent with a possible pathological relevance. This 

conclusion is supported by the detection of 3-nitroTyr in human atherosclerotic lesions and its 

co-localization with both lipid pools and elastin. 
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Highlights 

 The extracellular matrix determines tissue structure and function  

 Peroxynitrous acid (ONOOH) is formed at inflammatory sites including within the artery 

wall 

 ONOOH induces Tyr nitration and crosslinking of tropoelastin (TE), and alters TE 

structure and function  

 Extensive modification of TE occurs with equimolar and higher ONOOH concentrations 

 Nitrated Tyr and elastin epitopes colocalize with macrophages in human atherosclerotic 

lesions  
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FIGURE LEGENDS 

 

Fig. 1.  Structural modifications to human recombinant tropoelastin (TE) induced by 

ONOOH. Recombinant TE (

ONOOH (or 250 M decomposed oxidant 0x dec.  at the molar ratios 

indicated for 20 min at 22 °C followed by separation on 3-8% Tris-acetate gels under 

(Panels B,C) Western blotting on nitrocellulose membranes probed using the following mAbs 

raised against (B) TE C-terminal region, or (C) anti-elastin (clone BA-4). The positions of 

molecular mass markers (HMW) are shown for reference. Representative gel images are 

presented from multiple independent experiments. 

 

Fig. 2.  Structural and chemical modifications to human recombinant tropoelastin (TE) 

induced by ONOOH in the absence or presence of HCO3
-. Recombinant TE ( in 0.1 M 

phosphate buffer pH 7.4 was exposed to ONOOH at the molar ratios indicated, in the absence 

(-) or presence (+) of 25 mM HCO3
-, for 20 min at 22 °C followed by separation on 3-8% 

Tris-acetate gels under reducing conditions. (A) Protein staining using Coomassie Blue. (B,C) 

Western blotting on nitrocellulose membranes probed using (B) the anti-TE mAb (clone BA-

4), or (C) a anti-3-nitroTyr pAb (#10189540). The position of the molecular mass markers 

(HMW) are shown for reference. 

pretreated with SDS to unfold the protein, before treatment with a 100-fold molar excess of 

ONOOH. These lanes therefore represent maximal epitope exposure / staining. 

Representative gel images from multiple independent experiments. 
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Fig. 3. Quantification of the loss of parent tyrosine, and formation of 3-nitroTyr, on treatment 

of human recombinant tropoelastin (TE) with ONOOH in the absence or presence of HCO3
-, 

as assessed by HPLC. TE (

ONOOH or decomposed oxidant (500 , 

in the absence (black bars) or presence (grey bars) of 25 mM HCO3
-
 for 20 min at 22 °C. The 

protein was then digested enzymatically using pronase, and subjected to HPLC analysis as 

described in the Materials and methods. Tyr levels resulting from the autodigestion of 

pronase in the absence of substrate are also reported, but not subtracted from the experimental 

values. Panel (A), loss of Tyr; panel (B), formation of 3-nitroTyr. Values are expressed as 

ere analyzed by 1-way ANOVA 

(with *, ** and *** indicating a significant difference compared to the controls at the p < 

0.05, 0.01 and 0.001 levels respectively), or 2-way ANOVA (to examine the effect of the 

presence of NaHCO3; with # indicating a significant difference compared to the absence of 

NaHCO3). 

 

Fig. 4. MS/MS spectra of Tyr-Tyr cross-linked peptides: A) triply charged cross-linked 

peptide LPGGYGLPYTTGK LPYGYGPGGVAGAAGK, with precursor m/z of 934.138; B) 

triply charged cross-linked peptide LPYGY GPGGVAGAAGK  LPYGY*GPGGVAGAAGK 

with precursor m/z of 976.484; C) triply charged cross-linked peptide 

LPYGY*GPGGVAGAAGK  LPYGY*GPGGVAGAAGK with precursor m/z of 986.144; D) 

quintuply charged cross-linked peptide AGYPTGTGVGPQAAAAAAAK 

LPGGYGLPY TTGKLPYGYGPGGVAGAAGK, with precursor m/z of 897.265. Red y and 

b fragments correspond to the  (longer) peptide, while blue y and b fragments correspond to 

the  (shorter) peptide, and the y and b ions in black correspond to fragments that have the 

same mass for both  and  peptides. Fragments in purple refer to neutral losses. * Indicates 
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the presence of a nitrated Tyr residue, and  indicates the presence of an oxidized Tyr residue 

(DOPA).  

 

Fig. 5. Detection and localization of elastin (A), 3-nitroTyr epitopes (B) and lipid deposits 

(C) in human type II-III atherosclerotic lesions. Five 

atherosclerotic lesions of arteria femuralis (A-C, autopsy material of a 80-year-old female 

patient) and aorta abdominalis (D-F, autopsy material of a 74-year-old male patient) were 

incubated with anti-elastin mAb (clone 10B8, Abcam, dilution 1:100, A) or rabbit anti-3-

nitroTyr pAb (rabbit IgG, Merck-Millipore, dilution 1:100, B, D-F). Preincubation of the pAb 

was performed with a 25-fold molar excess of either nitrated tropoelastin (E) or unmodified 

tropoelastin (F). Immunoreactive signals were detected with an UltraVision system as 

described in the Methods section. The dotted line (A and B) marks the border between intima 

(left) and media (right). Lipid staining was performed with Oil Red (C). 

 

Fig. 6.  Co-localization of elastin epitopes and 3-nitroTyr in human type II-III atherosclerotic 

lesions of arteria femuralis (see Fig. 5A-C). The images show double immunofluorescence 

staining for elastin (panel A), 3-nitroTyr (B), and merged images (C

of human lesions, which were incubated with anti-elastin mAb (clone 10B8; 1:100 dilution) 

or rabbit anti-3-nitroTyr pAb (rabbit IgG, Merck-Millipore, 1:100). Labelled secondary goat 

anti-mouse Cy-2- pAb (green), or goat anti-rabbit Cy-3 (red)-labelled pAb was used for 

detection. Images were acquired as described in the experimental section. The x/y dimensions 

of the scanned fields for A, B, and C are 100 µm each. 

Fig. 7.  Quantitative assessment of the absolute levels of (Panel A) conversion of Tyr residues 

in tropoelastin (TE) to 3-nitroTyr, and (Panel B) ONOOH conversion to 3-nitroTyr with 

increasing molar ratios of ONOOH to TE. Data are recalculated from the experimental data 
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presented in Fig. 3 using the absolute levels of oxidant and parent and modified residues 

(corrected for recovery), the abundance of Tyr residues in the parent TE (15), and the relevant 

injection volumes. In both plots, the black bars indicate data obtained in the absence of HCO3
-

, and grey bars data obtained in the presence of 25 mM HCO3
-. Values are expressed as 

analyzed by 1-way ANOVA 

(with * indicating a significant difference compared to controls at the p < 0.05 level and *** 

indicating p < 0.001), or 2-way ANOVA (to examine the effect of the presence of NaHCO3; 

with # indicating a significant difference compared to the absence of NaHCO3). 

Fig. 8. Primary sequence of human tropoelastin (TE) 

indicating sites of cross-links and modifications detected by MS analysis. Sequence data from 

UniProtKB, entry P15502, minus the N-terminal signal peptide (residues 1-26). The Tyr (Y) 

residues identified in inter- or intra-molecular cross-links are indicated in red text with yellow 

background, with the corresponding peptide sequences involved in these cross-links indicated 

by underscoring. The Tyr residue identified as either hydroxylated (probably DOPA) or 

nitrated (3-nitroTyr) species by MS analysis is indicated in blue text. Tyr residue (Y) 221, 

which is involved in these cross-links was also detected as an oxidized (+15.99; probably 

DOPA) species. The two Cys residues involved in the formation of the cystine disulphide 

bridge at the C-terminus are indicated in green text. 



 48 

Highlights  

 The extracellular matrix determines tissue structure and function  

 Peroxynitrous acid (ONOOH) is formed at inflammatory sites including within the artery 

wall 

 ONOOH induces Tyr nitration and crosslinking of tropoelastin (TE), and alters TE 

structure and function  

 Extensive modification of TE occurs with equimolar and higher ONOOH concentrations 

 Nitrated Tyr and elastin epitopes colocalize with macrophages in human atherosclerotic 

lesions  
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