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ABSTRACT 

  Based on the linear theory of wave interaction with an array of circular 

bottom-mounted vertical cylinders, systematic calculations are made to investigate the 

effects of the wave directionality on wave loads in short-crested seas. The 

multi-directional waves are specified using a discrete form of the Mitsuyasu-type 

spreading function. The time series of multi-directional wave loads, including both 

the wave run-up and the wave force, can be simulated. The effect of wave 

directionality on the wave run-up and wave loading on the cylinders is investigated. 

For multi-directional random waves, as the distribution of wave spreading becomes 

wider, the wave run-up at some points around the cylinders is found to increase. This 

suggests that multi-directional wave run-up tends to be larger than unidirectional 

wave run-up. In addition, the wave directionality has a significant influence on the 

transverse force. The biggest transverse force is found to occur on the rear cylinder 

rather than the front one. This is quite different from the results in unidirectional 

waves and should be paid much more attention in the design of offshore structures. At 

last, the possibility of the near-trapping under the multi-directional random waves is 

investigated. It is found that the near-trapping also occurs for multi-directional wave 

conditions. 

Key words: Multi-directional random wave; cylinders; wave run-up; wave force; 

wave directionality; near-trapping 
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Nomenclature 

a 

A 

A0 

d 

D 

fx 

fy 

Fx 

Fy 

G(f, θ) 

H1/3 

i 

k 

L 

m0 

N 

k 

R 

s 

S(f) 

S(f, θ) 

T1/3 

Tp 

α 

β 

γ 

λ 

σθ 

ω 

 

cylinder radius 

wave amplitude for calculated waves 

incident wave amplitude 

water depth 

cylinder diameter 

normal wave force 

transverse wave force 

non-dimensional significant normal wave force 

non-dimensional significant transverse wave force 

directional spreading function 

significant wave height 

imaginary unit, i
2
=-1 

wave number 

distance between two adjacent cylinders 

 zeroth moment of wave spectrum 

number of cylinders 

wave number 

non- dimensional wave run-up 

directional spreading parameter 

wave frequency spectrum 

wave directional spectrum 

significant wave period 

peak wave period 

angle around cylinder 

angle for the incident wave 

peak enhancement factor of JONSWAP spectrum 

wave length 

standard deviation of directional spreading 

wave angular frequency 
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1. Introduction 

Circular cylinders are often used in offshore engineering and many offshore 

structures are comprised of arrays of cylinders. Examples include bridges, wind 

turbine foundations, offshore platforms and floating airports. In ocean engineering 

design, wave loading is an important factor. There are two regimes for calculating the 

wave loads on a cylinder, depending on the slenderness parameters D/λ, with D is the 

diameter of a cylinder and λ is the wave length. If D/λ>0.15, wave diffraction is 

important and should be considered, otherwise it can be ignored.  

For wave loads on a large cylinder, a superposition eigenfunction expansion 

method was used by MacCamy and Fuchs (1954) to obtain a linear solution, based on 

the assumption that the incident wave has a small steepness. For the case of waves 

acting upon an array of cylinders, the effect of a given cylinder on the incident wave 

will produce a scattered wave which will in turn be scattered by adjacent cylinders. 

Thus the computation of the velocity potential must account for the diffraction of the 

incident wave field by each body and the multiple scattering from other bodies. An 

exact solution for the diffraction of linear water waves by arrays of bottom-mounted, 

vertical circular cylinders was first given by Spring and Monkmeyer (1974) using a 

direct matrix method. It represented an extension of the single cylinder case presented 

by MacCamy and Fuchs (1954). Further, an approximate solution to this problem was 

given by McIver and Evans (1984) in which they assumed that the cylinders were 

widely spaced. An accurate algebraic method was developed by Kagemoto and Yue 

(1986) to calculate the hydrodynamic properties of a system of multiple 

three-dimensional bodies in water waves. Subsequently, a simplified expression for 

the velocity potential in the vicinity of a particular cylinder was developed by Linton 

and Evans (1990) which led to simple formulae for the first-order and mean 

second-order wave forces on multiple cylinders as well as the free surface profile. 

Based on wave tank experiment and numerical methods, a number of researchers 

have studied wave interaction with an array of cylinders. Ohl et al. (2001a, 2001b) 

studied regular and irregular wave interaction with an array of cylinders, and a very 

good agreement between the theory and the laboratory results was found. Ma et al. 

(2001a, 2001b) studied fully nonlinear wave diffraction around a pair of fixed 

cylinders in a numerical wave tank based on the finite element method (FEM). A 

semi-analytical solution was developed by Huang (2004) for second-order wave 

diffraction by an array of cylinders in monochromatic waves. It was found that at 

relatively high frequencies, the enhancement of the second-order component in the 

wave run-up was much more general than on the forces. Wang and Wu (2010) 

developed a fully nonlinear numerical wave tank to simulate three-dimensional waves 

and wave-structure interactions by the finite element method. The effect of the tank 

wall on waves and forces was investigated, and the nonlinear features of waves and 
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forces were also discussed. Govaere et al. (1999, 2001) derived linear wave 

transformation due to the presence of an impermeable cylindrical pile protected by a 

series of submerged permeable structures and wave loads on the pile were studied. 

Zhao et al. (2010) investigated the diffraction of waves by an array of porous circular 

cylinders based on the linear wave theory and model test. 

On the other hand, some researchers focused on the phenomenon of near trapping. 

Maniar and Newman (1997) considered a long array of cylinders (up to 101 cylinders). 

They found that when the wave number was close to the nearly trapped mode, a very 

large hydrodynamic force could arise on the cylinders in the middle of the array. 

Evans and Porter (1997, 1999) found that for the wave forces on circular arrays of 

four, five and six cylinders, the near trapping phenomenon also existed. Maleniča et al. 

(1999) further showed that similar behavior could occur for the second-order result. 

Duclos and Clèment (2004) extended this work to consider arrays of unevenly spaced 

cylinders, displaced randomly from a regular array according to a disordering 

parameter. They focused on two effects of this spacing irregularity, reduction of peak 

forces associated with the trapped mode phenomena, and regularization of the 

transmission coefficient for waves propagating through the arrays. Kagemoto et al. 

(2013, 2014) studied the second-order resonance among an array of two rows of 

cylinders by experiment and theoretical calculation. This work found that large 

free-surface displacements could be induced for special wave conditions. 

However, most of the research associated with wave interaction with arrays of 

cylinders has been focused on unidirectional waves. But in reality, sea waves are 

multi-directional waves. In multi-directional sea condition, the wave directionality 

could lead to quite different wave-structure interaction results compared with the 

unidirectional wave fields. Yu et al. (1996) investigated the wave force due to 

multi-directional random waves on a small vertical cylinder by experiment. The 

variation of various hydrodynamic coefficients with KC number and wave directional 

spreading was investigated. Lee et al. (2007) used a numerical model to predict the 

interaction of multi-directional random surface waves with rectangular submarine pits. 

Liu et al. (2010, 2012) solved the modified Boussinesq equations based on a finite 

element model with unstructured triangular elements, and considered the effects of 

wave directionality on the wave run-up on a group of cylinders. Ji et al. (2013, 2014, 

and 2015) systematically investigated the multi-directional random wave forces and 

run-up on a large cylinder by experimental and numerical methods. It was found that 

a small directional spreading parameter (high directionality), gives rise to a large 

transverse force which should not be ignored. The dynamic response of a 

mini-Tension Leg Platform under multi-directional wave conditions was studied by 

Niedzwecki et al. (2001). Li et al. (2012, 2014) studied the interaction of 

multi-directional focused waves with a vertical cylinder by experiment. The effect of 
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a multi-directional focused wave on wave loads was investigated. The interaction of 

waves with porous circular cylinder and cylinders were studied theoretically by Silva 

et al. (2002, 2003), and then it was extended to unidirectional and multi-directional  

waves, it was found that as the spectrum broadens in frequency and angle, the 

modulation around the structure damps faster. 

In the present paper, the superposition method is used to study the 

multi-directional random wave loads on an array of large-scale bottom-mounted 

vertical cylinders. Linton and Evans’ method is used as the transfer function, which is 

combined with multi-directional random waves to predict the interactions with arrays 

of cylinders. Considering that there are rather few references in the literature about 

real sea wave loads on an array of cylinders, our main concern in this paper is focused 

on the effect of the wave directionality on the multi-directional wave run-up and the 

force loading on a cylinder array. The goal is that these results will provide a 

reference to improve the design of offshore structures. 
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2. The model of multi-directional random wave loads on cylinders 

2.1 Wave interaction with cylinders in regular wave conditions 

Under the assumption of linear wave theory, the incident wave velocity potential 

can be described as: 

cosh( )
( , , , ) Re ( , )

cosh

i t

inc

igA z d
Ф x y z t x y e

kd




 
  

 
            (1) 

where A represents the amplitude of the incident wave, d the water depth, and the 

wave number k and the wave frequency ω should satisfy the dispersion relation 

2 tanhgk kd                                  (2) 

in which g is the gravitational acceleration.  

A sketch of the situation is shown in Fig.1, which shows an array of 

bottom-mounted vertical cylinders with an incident wave with an angle β. We assume 

that there are N (N ≥ 1) fixed vertical circular cylinders，so N+1 coordinate systems 

will be used: (r, θ) are polar coordinates in the (x, y)-plane centered at the global 

origin whilst (rj, θj), j= 1,…, N are polar coordinates centered at (xj, yi) which is the 

centre of the jth cylinder. The various parameters relating to the relative positions and 

sizes of the N cylinders are also shown in Fig.1. 

 

 

Fig.1 Sketch of the wave interaction with array of bottom-mounted vertical 

cylinders 

 

In the global coordinate, the incident wave can be written as  

( cos sin ) cos( )ik x y ikr

inc e e                              (3) 

while in the (rj, θj) coordinates, it can be expressed as  
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j
( )cos( ) 2( )j j

inikr in

inc j j n j

n

I e I J kr e e


  


  



                 (4) 

where jI =
( cos sin )j jik x y

e
 

 is a phase factor associated with cylinder j. 

 The radiating wave emanating from cylinder j is  

( ) jinj j j

d n n n j

n

A C H kr e







                        (5) 

where j

nA are unknown coefficients, ' '( ) / ( )j

n n j n jC J ka H ka and ( )= ( ) ( )n n nH x J x iY x . 

The total potential can be written as 

cos( )

1 1

( ) j

N N
inj ikr j j

inc d n n n j

j j n

e A C H kr e
   




  

               (6) 

and Eq.(6) should satisfy the boundary conditions for each cylinder 

0
kr





     (

k kr a , k=1,…, N）                  (7) 

Using Graf’s addition theorem for Bessel functions 

( )
( ) ( ) ( )j jk jk k

in i m n im

n j n m jk m k

m

H kr e H kR J kr e e
   


 





    (
kr < jkR )           (8) 

Then the following infinite system of equations can be obtained 

( ) ( /2 )

1

( )jk

N
i n mk j j im

m n n n m jk k

j n
j k

A A C e H kR I e
  


 



 


              (9) 

In order to solve for the coefficients j

nA , the superposition number n is truncated at 

M, and the infinite sum in Eq. (9) is turned into N×(2M+1) equations with N×(2M+1) 

unknowns j

nA . 

The wave potential near cylinder k shown in Fig.1 is 

( /2 )

( ) ( )

1

( , ) ( ) ( )

( ) ( )

j k

jk k

in ink k

k k k n k n n n k

n

N
i m n imk k

n n n m jk m jk

j n m
j k

r I J kr e A Z H kr e

A C H kR J kR e e

   

  

 


 



 
  



  


  
 





 
    ( kr < jkR )   (10) 

For the final term in Eq.(10), replacing m by -m allows us to write this term as
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( )

1

( ) ( )jk k

N
i n m imj j

n n n m jk m k

m j n
j k

A C H kR e J kr e
 

 




  


 
 
 
  

   

Using Eq. (9), a simple formula for the wave potential is  

( , ) ( ) ( ) kink k

k k n n n k n k

n

r A C H kr J kr e
 





         (
kr < jkR )             (11) 

and the wave potential on cylinder k reduces to  

'

2
( , )

( )
k

kM
inn

k k

n Mk n k

Ai
a e

ka H ka

 
 

                       (12) 

The wave force loads on cylinder k can be given by integrating the pressure over 

the surface of the cylinder 

1 12 '

1

2 tanh
( )

1 ( )

k

x k k

k

ky

f i gA kd
A A

k H kaf




      
      

     

.                   (13) 

The wave elevation can be written as 

   '

0, , |z
i

r A r
g


      

        

c o s ( )

1

( ( ) )j

N
inikr j j

n n n j

j n

A e A C H kr e
 




 

  .             (14) 

The wave force and wave elevation for unit wave amplitude can be expressed as 

1 12 '

1

2 tanh
( )

1 ( )

k

fx k k

k
kfy

T i g kd
A A

k H kaT




      
      

     

                 (15) 

  cos( )

1

, ( ) j

N
inikr j j

n n n j

j n

T r e A C H kr e
 

 




 

 
           

(16)  

 

2.2 Wave interaction with cylinders in multi-directional random wave conditions  

To simulate the multi-directional random wave loads on an array of cylinders, the 

multi-directional random wave is generated by the superposition method. The above 

solution for regular wave interaction with cylinders can be regarded as a transfer 

function. 

For multi-directional waves, the directional spectrum S(f, θ) can be written as the 

product of a frequency spectrum S(f) and a directional spreading function G(f, ), i.e., 

 , ( ) ( , )S f S f G f                         (17) 

The frequency spectrum used in the paper is the JONSWAP spectrum suggested by 

Goda (1999): 
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2 2exp ( 1) /22 4 5 4

1/3 1/3( ) exp 1.25(T )
pT f

J pS f H T f f


 
                    (18) 

where 

       

1/3

0.5591.0 0.132( 0.2)
p

T
T

 


 
 

0.07

0.09

p

p

f f

f f



 



 

here, H1/3 and T1/3 are the significant wave height and the significant period, 

respectively, Tp and fp are the peak period and the corresponding peak frequency, and 

γ is the peak enhancement factor, which takes a value of 3.3 in this paper.  

 For a multi-directional wave, the total wave energy m0 should be consistent with 

a unidirectional wave. This means that the frequency spectrum and the directional 

spectrum should satisfy the following equation: 

max

min
0

0 0
( ) ( , )m S f df S f d df




 

 

                            (19) 

where [θmin, θmax] is the directional distribution range. So, the directional spreading 

function G(f, ) must satisfy: 

 , 1
max

min

G f d



                                   (20) 

The Mitsuyasu-type spreading function is adopted here for the directional 

spreading function, defined by Longuet-Higgins et al. (1963) as 

  2 0
0( , ) cos

2

sG f G s
 


 

  
 

                         (21)
 

where s is the directional spreading parameter. Clearly, the larger the parameter s, the 

wider the directional distribution, s= means the unidirectional waves. θ0 is the 

principal wave direction, in present paper, θ0=0° is specified. Because Eq. (21) must 

satisfy the condition of Eq. (20), G0(s) can be solved as follows: 

 
max

min

1

2 0
0 cos

2

sG s d




 




   
   

  
                       (22) 

where [θmin, θmax] takes [−90°, 90°] in the study described in this paper. For 

convenience, s is taken as independent of the frequency.  

For the purpose of numerical applications, the incident wave spectrum must be 

discretized into a finite number of wave components in order to obtain the incident 

wave spectrum. An adequate discretization in both frequency and direction is essential 

to simulate the surface of multi-directional wave. In the present work, the number of 

component frequencies is denoted by Mf while wave direction will be divided into N 

parts. The frequency range is well-discretized and each frequency band has an equal 

interval, then the bandwidth dω associated with the mth frequency is defined by 

1

0.06238
[1.094 0.01915ln ]

0.230 0.0336 0.185(1.9 )
J 

  
  

  
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H L

f

d
M

 



                                  (23) 

1

1
( )

2
m m m

  


                                (24) 

where, ωH and ωL means the maximum and minimum angular frequency of 

multi-directional random waves. Similarly,  

max mind
N

 



                                 (25) 

Several directional wave models can be used for the multi-directional wave 

simulation. In this paper, the improved single direction per frequency model (Yu et al. 

1991) was used. The surface elevation η1(x, y, t) at the point (x, y) can be expressed as 

 
1 1

1( , , ) 2 ( , ) cos ( cos sin )
fM N

m n

m n

mn mn n n mnx y t S d d t k x y


        
 

          (26) 

1
( 1 )

2
mn m mn

d
d n RAN

N


                             (27) 

where εmn means the random phase, uniformly distributed in the range [0, 2]; RANmn 

is a random number that distribute evenly in the range of [0, 1], which is introduced to 

impart a random component to ωmn. The phase locking can be avoided by this method 

to simulate the multi-directional random wave.  

With the combination of Eq.(16) and (26), the time series of multi-directional 

wave surface elevation η(x, y, t) at any point in the domain with an array of large 

cylinders can be expressed as: 

 
1 1

( , , ) 2 ( , ) ( , , , ) cos ( ( cos sin )
fM N

m n

m n

m n mn mn n n mnx y t S d d T x y t k x y


          
 

   

(28) 

 Similarly, the wave force time series fj (t) on the cylinder can be written as 

follows considering Eq.(15) and (26) 

1 1

2 ( , )( ) ( , ) cos ( ( cos sin ) +
f

m n

M N
j j

j f m n mn mn n n mn mn

m n

S d df t T t k x y


          
 

     

                                                           

(29) 

where 
Re( ( ))

arctan
,

Im( ( , ))

m

j

fj

mn j

n

m nf

T

T

 

 
  . 

 In the following simulation, Mf=450 and N=350 are used. The component waves 

are enough to represent the distribution of the wave energy with the frequency and 

direction. The calculated multidirectional waves can be spatially uniform and the 
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waves are ergodic (Yu et al. 1991). That means though the simulated wave field 

clearly depends on the selected random phases, the statistical properties with the 

simulated waves should be independent of them. 
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3. Verification and calculated result analysis  

3.1 Multi-directional wave parameters and the definition of the wave run-up and 

wave forces 

Table.1 shows the parameters of the multi-directional waves used in the 

calculation. In the table, kp denotes the wave number that corresponds to the peak 

wave period Tp. The values of the directional spreading parameter s are chosen as 5、

10、20、80 and 200. 

 

Table.1. Parameters of the multi-directional waves  

H1/3 (m) Tp (s) kpa kpd  s 

0.04 0.8 1.25  3.12  5、10、20、80、200 

0.04 0.9 1.01  2.52  5、10、20、80、200 

0.04 1.0 0.83  2.08  5、10、20、80、200 

0.04 1.1 0.71  1.77  5、10、20、80、200 

 

As shown in Eq.(21), the directional spreading parameter s describes the degree of 

concentration of the directional distribution of the waves. Fig. 2 shows a comparison 

of directional distribution functions for different values of the directional spreading 

parameter s. The figure shows that as the parameter s increases, the directional 

distribution becomes narrower. It can be seen that for large s, it does not represent the 

variation of the directional spreading width very well. To show the wave directionality 

quantitatively, the standard deviation σθ of the directional distribution will be also 

used in the following analysis. This standard deviation of a directional spreading is 

defined as 

          

  

1

2
2

2
0

2

,G f d




    



 
 
 
 
  .                      

(30)
 

The relationship between the directional spreading parameter s and the standard 

deviation σθ is shown in Fig. 3. It shows that the standard deviation changes rapidly 

for small value of s. But when s is large, for example, s > 80, the standard deviation 

changes slowly. If the spreading parameter is large enough, the multi-directional wave 

can be assumed to be unidirectional. 
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Fig. 2 The value of directional distribution functions for different directional 

spreading parameter s 

 

 

Fig. 3 The relationship of directional spreading parameter s with the standard 

deviation σθ 

 

From Eq. (28) and Eq. (29), the time series of wave surface elevation and wave 

force on cylinders can be calculated with given incident wave parameters. In the 

present simulation, 16384 data points are collected at a sampling rate of 50 Hz in each 

case. The sampling data are statistically analyzed to obtain the significant wave height 

and the wave forces on the cylinder array. For these calculations, the cylinders are of 

equal diameter 0.4m and the water depth is kept constant at 0.5m. 

 The wave run-up and wave force are important factors in the design of the marine 

structures. To show the phenomenon of multi-directional waves acting on large scale 

vertical cylinder arrays more clearly, the following dimensionless form will be used to 

describe the wave run-up. i.e., 

0

0

A A
R

A


                                 (31)

 

where A0 is the significant amplitude of the incident wave, and A is the calculated 

significant amplitude at different locations around the cylinders. Similarly, the 

non-dimensional normal force Fx and transverse force Fy are defined in a 
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dimensionless form as 

2 2

0 0

;
yx

x y

ff
F F

gH a gH a 
                       (32) 

where fx and fy are the significant normal and transverse wave forces, respectively, on 

the cylinders and H0 is the significant wave height of the incident waves.  

It should be noted that, the purpose of this paper is to investigate the effect of 

wave directional spreading on multi-directional wave loads on an array of cylinders. 

Because the significant values are more stable and reliable, they are used to 

investigate the effect of the wave directionality on the multi-directional wave run-up 

and force on the cylinders. In fact, because we use the linear transfer function to 

calculate the multi-directional wave loads, the wave force and run-up are the linear 

output results for the incident waves and therefore the characteristic value of the 

maximum and the significant value for wave loads are similar with the incident wave 

pattern. 

 

3.2 Model verification 

To investigate the validity of the numerical model, the calculated results are 

compared with the experimental data about the multi-directional wave interaction 

with a square array of cylinders. The laboratory experiment was carried out in a wave 

basin at the State Key Laboratory of Coastal and Offshore Engineering (SLCOE), 

Dalian University of Technology, China. The basin is 55.0m long, 34.0m wide and 

0.7m deep. A multi-directional wave-maker system was installed on one side of the 

basin. The wave-maker system included 70 segments, each 1.0m high and 0.40m wide, 

resulting in a system with a total length of 28.0m. To adapt the infinite extent of the 

fluid for the wave-structures interaction, wave absorbers were arranged along the 

other three sides of the basin to absorb incoming waves and prevent the wave 

reflections from the boundary of the wave basin.  

Fig.4 shows the layout of the square array with four cylinders with the same 

diameter D=0.4m. In the experiment, the principal wave direction θ0=0°, therefore the 

layout is symmetrical along the main wave direction. So the wave loads on cylinder 1 

and cylinder 4 are used on behalf of the front and back cylinders, respectively. Eight 

wave gauges were arranged around the cylinder 1 and cylinder 4 to measure the wave 

run-up on the cylinder. The angles α, which represents the point for the calculation of 

the wave run up on the cylinder, in the front and back cylinder are 0°, 45°, 90°, 135°, 

180°, 225°, 270° and 315°. The water depth was kept constant at 0.5m in the 

experiment. Fig.5 displays the sketch of experiment for the multi-directional random 

wave loads on the square array of large-scale cylinders in the wave basin. 
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Fig.4 Layout for the square array with four cylinders 

 

 

Fig.5 Sketch of the experiment for multi-directional irregular wave loads on 

large-scale cylinders in the wave basin 

 

 Fig.6 and Fig.7 present the comparison of the numerically calculated wave run-up 

and wave force with the experimental results for multi-directional wave (Tp=0.9s, 

kpa=1.01, H1/3=0.04m; L=1.5D) interaction with the array of cylinders with different 

directional spreading s. It can be seen that good agreement for the wave loads on the 

cylinders was found in spite of the fact that the experimental values are a little bigger 

than the calculated results. The difference between the calculated results and the 

experimental results may be caused by two facts. The first is that the calculation 

theory is based on linear theory, but the experimental waves include nonlinear effects 

in some extent. Secondly, the irregular waves include different frequency waves. For 

the lower frequency wave components, the dimension of the cylinder may belong to 

small scale cylinder, the diffraction theory may cause some errors. 

The compared results are identical to that given by Kriebel (1992, 1998), who 
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investigated the wave run-up and wave force carried out in 22 laboratory experiments. 

He found that both the measured and the predicted maximum forces exceeded the 

predictions of the linear theory by 5–15%, and the measured maximum wave run-up 

exceeded the predictions of the linear theory by 44%. 
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(a) s=10 
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(b) s=20 
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(c) s=80 

Fig. 6 The comparison of the numerically calculated wave run-up with experimental 

results for different directional spreading parameters s (L=1.5D, Tp=0.9s, kpa=1.01, 



17 
 

H1/3=0.04 m; the left part for the front cylinders and the right ones for the back 

cylinders) 
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(a) The variation of the wave force on the front cylinders with the variance of the 

wave directional spreading 
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(b) The variation of the wave force on the back cylinders with the variance of the 

wave directional spreading 

Fig. 7 The comparison of the numerically calculated wave force with experimental 

results for different wave directionality (L=1.5D, Tp=0.9s, kpa=1.01, H1/3=0.04 m; the 

left part for the normal force, the right part is the transverse force) 

 

3.3 Analysis of the calculated multi-directional wave run-up 

Damage to the lowest deck of multi-column platforms has been reported, as for 

example discussed in Swan et al. (1997), and such cases could be due to 

underestimation of the prevailing wave condition and the unreliable prediction of the 

wave elevation and upwelling during the design of the platforms. To investigate the 

effect of wave directionality on multi-directional wave run-up and wave forces on an 

array of cylinders, the attention is focused on the wave loads on two cylinders and 

four cylinders.  
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3.3.1 Multi-directional random wave interaction with 2 cylinders 

 The layouts of the two cylinders are presented in Fig.8 for the cylinders in 

parallel and in tandem, respectively. The gap L between the two cylinders varies from 

1.5D up to 5.0D.  

 

(a) Parallel layout                  (b) Tandem layout 

Fig.8 Different layouts of two cylinders 

 

 Fig.9 shows the multi-directional wave run-up on two cylinders in the parallel 

arrangement. Since the two cylinders are symmetrical along the principal wave 

direction, as expected, the wave run-up on the symmetrical points has similar results. 

It should be noted that in some points the values have a little difference. The reason is 

that the incident wave is a multi-directional random wave. There are therefore some 

asymmetries to the waves in space during the calculation because the time series are 

calculated with the summation model. The errors may be dependent on the extent of 

the uniformity of the random phases εmn in Eq.(28). Anyway, for this symmetrical 

layout, only one cylinder’s result is chosen to investigate the effect of 

multi-directional random wave on wave run-up. 
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 (a) L=1.5D, Tp=0.9s, s=10             (b) L=1.5D, Tp=0.9s, s=40 
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 (c) L=3.0D, Tp=0.9s, s=20             (d) L=3.0D, Tp=0.9s, s=80 

Fig.9 Wave run-up on two cylinders in parallel 

 

 As our attention is focused on real sea wave interaction with cylinders, we mainly 

discuss the effect of wave directionality on the wave run-up and forces. Fig.10 (a)~(d) 

shows the multi-directional wave run-up on two parallel cylinders with different 

spacing(L=1.5D、2.0D、3.0D and 5.0D) for various directional spreading parameters s. 

It can be found that the effect of the wave directionality on the wave run-up depends 

on the position on the cylinder. In the front parts of the cylinders and at α = 180°, the 

wave run-up increases as the directional spreading parameter s becomes lager. On the 

other hand, at the back parts, as the directional distribution becomes wider, the wave 

run-up increases. In the range α= [0°, 180°], the wave run-up parameter R decreases 

as α increases. However, the minimum value of the wave run-up is dependent on the 

directional spreading parameter. When the directional spreading parameter s is small, 

this minimum value occurs at 180° or 135°. The result is quite similar with the 

multi-directional run-up on a single cylinder that was shown by Ji et al. (2015). 
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(a) L=1.5D 
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(b) L=2.0D 

0 45 90 135 180 225 270 315
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R



 s=5

 s=20

 s=80

 s=200

0 45 90 135 180 225 270 315
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R



 s=5

 s=20

 s=80

 s=200

 

(c) L=3.0D 
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(d) L=5.0D 

Fig.10 The multi-directional wave run-up on cylinders in a parallel layout with 

different spacing (the left ones for Tp=0.8s, ka=1.26, the right ones for Tp=1.0s, ka= 

0.83) 

 

In Fig.11, the multi-directional random wave run-up on the cylinders in tandem 

is presented. For this kind of layout, as expected, the values of the wave run-up on a 

cylinder at symmetrical positions are basically identical to each other. It can be found 
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that the front cylinder has the cover effect to the back one. As the gap L increases, the 

cover effect becomes weakened. The effects of wave directionality on the two 

cylinders are different. For the front cylinder, at the front parts, the wave run-up 

increases as s becomes larger, while it is opposite at the back part. But for the back 

cylinder, the wave run-up increases as the directional spreading parameter s decreases, 

i.e., the directional spreading become wider. As discussed above, in the case of s=200, 

the directional spreading is very narrow and the waves tend to be unidirectional waves. 

This means that the wave run-up for a multi-directional wave condition is larger than 

that for unidirectional waves. The reason may be because the diffracted and scattered 

waves for multi-directional waves from the array of cylinders, that may increase the 

wave run-up on the cylinders. In the process of designing marine structures, the 

standards based on unidirectional waves may not give a conservative estimate. 
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(a) L=1.5D 

0 45 90 135 180 225 270 315
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R



 s=5

 s=20

 s=80

 s=200

 

0 45 90 135 180 225 270 315
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

R



 s=5

 s=20

 s=80

 s=200

 

(b) L=2.0D 
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(c) L=3.0D 
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(d) L=5.0D 

Fig. 11 Multi-directional wave run-up on cylinders for the tandem layout with 

different spacing (Tp=0.8s, kpa =1.26; the left ones for the front cylinder, the right 

ones for the back cylinder) 

 

 An array of cylinders is often used in practical engineering, as for example in the 

case of a Tension Leg Platform or the foundation for a floating offshore airport. In the 

present paper, the typical cylinder array with four cylinders is used to investigate the 

effect of wave directionality on the wave run-up. The sketch of the layout for a square 

array can be found in Fig.5. The diameter D for the cylinders is 0.4 m. The angles α in 

the front and back cylinder are 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°. Since 

the layout is symmetrical along the main wave direction, the wave run-un on cylinder 

1 and cylinder 4 are used on behalf of the front and back cylinders, respectively. 

As an example, Fig.12 gives the perspective view of the wave surface near the 

cylinders at the time of t=100s for multi-directional random waves (H1/3=0.04m, 

Tp=0.8s and L=2D) with different directional spreading parameter s. It is obvious that 

different from the unidirectional wave situation, the wave directionality should have 

special effect on wave loads due to the short-crested properties. As the directional 
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spreading parameter increases, the wave energy distributes concentrated in direction 

domain and the wave crest line becomes longer. Wave surface for the case s=200 is 

very close to unidirectional.  

 Fig.13~15 shows the multi-directional wave run-up around the square array of 

cylinders with different spacing (L=1.5D、2.0D、3.0D). It clearly shows that at most of 

the points, similar to the results for two cylinders in tandem, for the small spacing 

(Fig.13), at the front part of the front cylinders, the wave run-up increases as s 

becomes larger, while it is opposite at back part. But for the back cylinders, the wave 

run-up increases as the directional spreading parameter s decreases. As the spacing L 

increases, the cover effect of the front cylinder for the back cylinder decrease and the 

multi-directional wave run-up on the front and back cylinders are similar to that on a 

single cylinder that shows in Ji et al. (2015).  

 

 

(a) s=5 

 

(b) s=20 
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(c) s=80 

 

(d) s=200 

 

 

(e) s=∞ 

Fig.12 Perspective view of the wave surface elevation at t=100s for different 

directional spreading parameter s (H1/3=0.04m, Tp=0.8s, kpa=1.26; L=2.0D) 
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(a) L=1.5D, Tp=0.8s, kpa=1.26 
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(b) L=1.5D, Tp=1.0s, kpa=0.83 

Fig. 13 The multi-directional wave run-up on four cylinders with L=1.5D for different 

directional distribution spreading parameter s (The left part for the front cylinder, the 

right for the back cylinder) 
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(a) L=2.0D, Tp=0.8s, kpa=1.26 
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(b) L=2.0D, Tp=1.0s, kpa=0.83 

Fig. 14 The multi-directional wave run-up on four cylinders with L=2.0D for different 

directional distribution spreading parameter s (The left part for the front cylinder, the 

right for the back cylinder) 
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(a) L=3.0D, Tp=0.8s, kpa=1.26 
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(b) L=3.0D, Tp=1.0s, kpa=0.83 

Fig. 15 The multi-directional wave run-up on four cylinders with L=3.0D for different 

directional distribution spreading parameter s (The left part for the front cylinder, the 

right for the back cylinder) 

 

3.3.2 The multi-directional wave forces on cylinders 

 Wave force is one of the most important parameters for the design of reliable 
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offshore structures. In this part, the effect of the wave directionality on 

multi-directional wave forces is investigated.  

 Fig. 16 shows the multi-directional wave force on two cylinders in tandem as 

shown in Fig.8. In the figure, the wave force on a single cylinder is also presented for 

comparison. The figure shows that for the normal wave forces, as the width of wave 

directional spreading become wider (smaller s), the normal wave forces for the front 

and back cylinder tend to decrease slightly. For the transverse forces however, the 

tendency is opposite. The effect of the wave directionality on the transverse forces is 

more significant. Generally, as for the normal forces, the front cylinder always has a 

shielding effect on the back one. But for the transverse force, especially for the layout 

with a small gap between the two cylinders, it can be seen that the transverse force on 

the back cylinder are always larger than those on the front cylinder. This phenomenon 

is different for the results with unidirectional waves and should be paid much 

attention in real design.  
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 Fig.16 Multi-directional wave forces on two tandem cylinders (Tp=0.8 s, ka=1.26, 

the left part for the normal force, the right part is the transverse force)  

 

In order to further clarify the effect of wave directionality on the transverse force 

for the multi-directional wave interaction with an array of cylinders, two tandem 

cylinder arrays with 3 and 6 cylinders, respectively are considered. The diameter of 

the cylinders and the space between adjacent cylinders are keeping the same. Fig.17 

shows the transverse force on each cylinder for the 3 cylinders and 6 cylinders cases. 

It is obvious that these results are similar to those described above, with the largest 

transverse force occurring on the last cylinder. The reason should be attributed to the 

properties of multi-directional waves. Multi-directional random waves are composed 

of different directional waves. For a long tandem cylinder array, when the waves 

propagate with the main direction along the tandem cylinders, the directional waves 

propagate from one side of the array to the other side. The cylinders will block the 

wave propagation. That will cause a non-uniformity of the waves on the two sides of 

the tandem cylinders, especially at the back part of the array.   
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       (a) 3 cylinders array                (b) 6 cylinders array 

Fig.17 The transverse forces on the cylinders in tandem arrays with 3 and 6 cylinders 

(L=1.5D, Tp=0.8 s, ka=1.26) 

 

   Fig.18 gives the multi-directional wave force on a square array of cylinders (see 
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Fig.4). As discussed above, the wave directionality has an obvious effect on wave 

forces, especially, on the transverse force. It can be seen that as the directional 

distribution becomes wider (smaller s), the transverse force Fy increases significantly. 

For example, the transverse force on the front cylinders (Cylinder 1) for the wider 

directional distribution σθ=33.63 (s=5) is around 1.6 times the transverse force for the 

narrower directional distribution σθ=5.72 (s=200), whilst it is about 3 times larger for 

the back cylinders (Cylinder 4). Thus in real engineering design, the wave 

directionality should be considered since a unidirectional assumption may 

substantially underestimate the wave loading. 
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       (a) the normal force                (b) the transverse force 

Fig.18 Multi-directional wave forces on a square array of cylinder 

 

3.3.3 Near-trapping in multi-directional random wave condition 

Trapping and near-trapping by array of cylinders in regular waves has been 

investigated by some researchers. To show the effect of the wave directionality on the 

near-trapping by array of cylinders, the trapping and near-trapping by array of 

cylinders in multi-directional random waves are investigated in the present paper. 

Fig.19 shows the layout for the square array of cylinders that the trapping and 

near-trapping might occur (the same as Evans and Porter, 1999). The water depth is 

0.5m. Fig.20 shows the normal and transverse force on the array with spacing 

L=1.25D varying with ka under the regular wave condition. The forces are normalized 

with the normal regular wave force on an isolated cylinder. It can be seen that peak 

values for the normal and transverse forces occur at ka=4.0875 (T=0.44397s). The 

forces are about 55.3 and 54.7 times the force on an isolated cylinder for the normal 

force on cylinder 1 and cylinder 4, respectively and 54.6 times the forces on an 

isolated cylinder for the transverse force on cylinder 2 and cylinder 3. This can only 

be due to a near-trapping wave at the wave number of ka=4.0875. 
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Fig. 19 Layout for the square array of cylinder 
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   (a) the normal force             (b) the transverse force 

Fig. 20 The wave forces on four cylinders against wave number ka (H=0.04m, F is the 

wave force on a single cylinder) 

 

To investigate the possibility of the trapping and near-trapping by array of 

cylinders under the multi-directional random waves, multi-directional random wave 

interaction with the array shown in Fig.19 with spacing L=1.25D are considered. In 

the calculation, the peak period Tp=0.44397s (kpa=4.0875), H1/3=0.04m is used to be 

consistent with the above regular wave condition. The principal wave direction θ0=0°. 

The energy of the incident wave is mainly distributed around the peak period and the 

principal wave direction. Also, during the simulation, the component waves are 

carefully selected to assure that the component wave with kpa=4.0875 and the incident 

angle θ=0° is included. 

The variations of the maximum wave forces with the variance of the directional 

spreading are presented in Fig.21. Similarly, the forces are normalized with the 

normal regular force on an isolated cylinder. It can been seen that the normal forces 

on cylinder 1 and cylinder 4 and the transverse forces on cylinder 2 and cylinder 3 are 
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bigger than the force on an isolated cylinder, it is similar as the regular results shown 

in Fig.20. That means the near-trapping also occurs in multidirectional waves. But the 

wave directionality has a definite effect on the phenomenon of the near-trapping. The 

near-trapping decreases with the variance of the wave directional spreading increasing. 

That means the wave directionality can restrain the occurrence of near-trapping. In 

addition, at =0°, which means the unidirectional random wave, the near trapping is 

the most apparent. But the wave forces are much smaller than that in regular wave 

because of the effect of wave randomness. 
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  (a) normal force                         (b) transverse force 

Fig.21 The ratio for the maximum wave force varying with the variance of the wave 

directional distribution (H1/3=0.04m, Tp=0.44397s, kpa=4.0875) 
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Conclusions 

 In the present paper, the multiple-cylinder diffraction solution is applied to 

multi-directional random wave interaction with several representative arrays of 

cylinders. The calculated results compare well with the related experimental results, 

and it was proved to be valid for the calculation for multi-directional wave action on 

arrays of cylinders. Generally, in the process of designing offshore structures, the 

standards are always based on unidirectional waves. In order to investigate real sea 

wave interaction with arrays of cylinders, a systematic set of calculations were made 

to study the effects of wave directionality on the wave run-up and wave forces on the 

cylinders. At last, the possibility of the near-trapping under the multi-directional 

random waves is investigated. 

The effect of the wave directionality on the wave run-up depends on the position 

on the cylinder and the layout of the array. For the front cylinders, the wave run-up 

increases as s becomes larger at the front parts, while it is opposite at the back part. 

But for the back cylinders, the wave run-up increases as the directional spreading 

parameter s decreases. This means that the wave run-up for a multi-directional wave 

condition is larger than that for unidirectional waves. 

 A similar effect of the wave directionality is found for both the normal and 

transverse force on an array of cylinders compared with a single cylinder. The effect 

of wave directionality on the transverse force is more pronounced than on the normal 

force. As the standard deviation σθ increases, i.e., the wave directional distribution 

becomes wider, the transverse force Fy increases significantly. Furthermore, it should 

be noted that the largest transverse force occurs on the last cylinder of a tandem array. 

This result is quite different from what is found in unidirectional waves, and should 

be paid much attention during the design of offshore structures. Generally, the normal 

force would be overstated based on the unidirectional waves, while the transverse 

force is underestimated. In the real sea condition, the waves are multi-directional, to 

forecast the wave force accurately and reasonably, especially for the transverse force, 

the wave directional distribution should be measured and considered.  

When the near-trapping occurs, there would have very large force on cylinders, 

but the condition is strict. The possibility of the near-trapping under the 

multi-directional random waves is investigated. It is found that the near-trapping also 

occurs in multi-directional random wave conditions. But the wave directionality has a 

definite effect on the wave force. The narrower the wave directional distribution, the 

larger the wave force on special cylinder for the near-trapping. That means the wave 

directionality can restrain the occurrence of near-trapping in some extent. 
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