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Abstract. Poly(L-lactic acid) (PLLA) is a fully biodegradable bioplastic with promising market potential. 

The paper deals with systematic development and analysis of the modeling framework allowing direct 

mapping between PLLA production process conditions and rheological properties of the polymer melt. To 

achieve this, the framework builds upon three distinct elements that approach the production process from 

different scales: (i) macroscopic deterministic model of L,L-lactide ring opening polymerization taken from 

the literature, (ii) microscopic stochastic simulation of the polymerization process based on hybrid Monte 

Carlo approach, and (iii) mesoscopic public domain model of polymer chain reptation dynamics. Based on 

the input reaction conditions, the macro-scale model predicts L,L-lactide conversion and averaged molar 

mass of PLLA, while the micro-scale and meso-scale simulations allow prediction of full molar mass 

distribution and melt viscosity of the product. The developed predictive tool is validated by literature data, 

i.e. experimentally measured rheological characteristics of three commercial PLLA samples with different 

molecular architecture. Moreover, comprehensive global sensitivity analysis has been carried out to support 

exploration of the process conditions space in relation to target polymer melt properties. Computational 

efficiency of the developed model achieved so far foreshadows its potential use as soft sensor for molar mass 

distribution and melt viscosity in the optimization and control of PLLA production. 

 

Keywords: Poly(lactic) acid; Mathematical modeling; Monte Carlo simulation; Polymer melt rheology; 

Global sensitivity analysis; Identifiability analysis. 
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1 Introduction 

 

Poly(lactic acid) (PLA), or poly(lactide) is a fully biodegradable thermoplastic polyester that is produced 

from renewable resources and offers significantly reduced carbon footprint when compared to its petroleum-

based market competitors [1]. Although PLA was first synthesized more than 80 years ago, its use was 

limited only to biomedical applications due to its high cost. The breakthrough came in 1990s with the 

discovery of commercially feasible way of high molecular weight PLA production [2], enabling better 

control over the production process and extending the applications of PLA to packaging, textile industry, 

automotive parts, insulation foams and many others [3,4,5,6]. Nowadays, PLA is the most widely produced 

renewable and biodegradable polymer, having the third biggest market share among bioplastics (after the 

groups of cellulose-based and starch-based biopolymers) [7], and steep increase in worldwide production 

capacity predicted for near future [8].
 

Monomer for PLA – optically active lactic acid – is obtained by fermentation of simple 

carbohydrates [9]. The industrial production of high molecular weight PLA is usually carried out by the ring 

opening polymerization (ROP) of lactide, a cyclic diester of latic acid using a tin(II)octoate catalyst, Sn(Oct)2 

[10]. During the ROP process, molecular architecture of the polymer can be controlled via proper selection 

of the co-catalyst, addition of comonomers and/or grafting/cross-linking agents [11,12], and by modifying 

the reaction conditions, resulting in a product with improved technical properties [13]. Moreover, purity and 

chirality of the lactide monomer have direct impact on the polymerization kinetics and product chirality, 

respectively, affecting the manufacturing process and product properties: for instance, carboxylic acids 

present in lactide contribute to the catalyst deactivation and therefore decrease the initial rate of 

polymerization [14]; chirality of PLA determines its crystallization kinetics and thus thermal properties such 

as glass transition temperature Tg [15].  

Main objective of this paper is the development of a multi-scale integrated modeling 

framework and its computational implementation as in silico design tool for new PLA-based materials and 

tailoring of their rheological properties. Such computational tool is based on the following elements: (i) 
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mathematical model of poly-L-lactide (PLLA) production enabling mapping between polymerization 

conditions and product application (rheological) properties, (ii) set of reliable rheological experimental data 

for validation of the developed model, and (iii) model sensitivity analysis enabling thorough understanding 

of the model behavior and contribution of individual process/model parameters to the predicted polymer 

quality. Let us review information on these three subjects published in the literature. 

Mechanism of L,L-lactide ROP has been extensively discussed [14,16,17] and it is now widely 

accepted that the initiation of the reaction is carried out via the “alkoxide initiation mechanism”. According 

to this theory, stannous octoate Sn(Oct)2 reacts with protic (i.e., OH-bearing) species to form an alkoxide, 

which is the true species initiating the polymerization. Sn(Oct)2 and OH-bearing species (e.g., water or 

alcohol) are usually termed initiator and co-initator, or catalyst and co-catalyst, respectively [18]. The system 

exhibits the so-called living behavior, meaning that the equilibrium between dormant and active (growing) 

chains is established rapidly and the reaction proceeds at a constant number of growing chains, while their 

chain length (and molar mass) distribution is evolving during the process due to various elementary reactions 

(transesterification, chain scission etc.). The general scheme of elementary reactions involved in L,L-lactide 

ROP in the presence of Sn(Oct)2 and arbitrary alcohol (ROH) as presented by Kowalski et al. [17] is 

displayed in Figure 1. 
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Figure 1. Typical reactions involved in ring opening polymerization of L,L-lactide. Symbol “Oct” represents the octoate 

(2-ethylhexanoate) group, “LA” denotes molecule of monomer (L,L-lactide) while “la” represents the repeating (lactoyl) 

unit. Taken from [17]. 

 

Mathematical models of PLLA production using Sn(Oct)2 as a catalyst published in literature vary greatly in 

their complexity. Puaux et al. [19] presented relatively simple kinetic scheme (omitting chain transfer, 

transesterification and chain scission reactions) while receiving only poor agreement with experimental data 

for average polymer molar masses. Mehta et al. [20] developed model of similar complexity to Puaux, but 

compared two different models of termination: (i) chain transfer to monomer, and (ii) cationic ROP (inter- 

and intramolecular transfer). In a series of papers, Yu et al. [18,21] presented an experimentally validated 

model for L,L-lactide ROP using Sn(Oct)2 and dodecan-1-ol as a catalyst and co-catalyst, resp., providing 

predictions in a wide range of operating conditions. Notably, the model included reversible chain transfer, 

intermolecular transesterification and chain scission reactions. In the last paper of this series [22], the method 

of solving the population balances was extended from polymer moments to the computationally efficient 

method of “fractionated moments”, enabling approximate reconstruction of full molar mass distribution of 
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the polymer from moments calculated for two different categories of chains, based on the reaction steps they 

experienced. The kinetic scheme [21] was also used by other authors [23] to model their own batch ROP of 

L,L-lactide, obtaining agreement with experiments and similar estimated values of model parameters. 

Sosnowski et al. [24] studied an influence of the intermolecular transesterification (“redistribution”) 

reactions on PLA molecular weight using a simple Monte Carlo simulation and compared the predictions 

with measured MALDI-TOF spectra. Weng et al. [25] developed and experimentally validated model of L,L-

lactide and ε-caprolactam copolymerization at 140°C, while introducing parallel encounter pair model of 

diffusion limitation [26] for propagation and transesterification reaction rates at higher conversions, when the 

reaction mixture becomes more viscous due to high polymer chain length. Last but not least, group of 

Kiparissides developed probably kinetically most complex model for L,L-lactide ROP in the presence of 

water traces, which included several reaction steps neglected in other works (intramolecular 

transesterifications, formation of cyclic chains, ester end-group formation and others). The model was 

successfully applied to predict conversion and average molar masses in the case of polymerizations initiated 

by water [27] and various polyalcohols [28]. Recently, the model was extended by Monte Carlo simulation 

in order to predict full molar mass distribution (MMD) of PLA [29]. 

Rheology of PLA is important not only during the polymerization and for the product 

downstream processing (e.g., by extrusion, injection molding or fiber spinning), but also due to the fact that 

measurements of PLA melt viscosity can provide direct evidence for changes in the product quality (loss of 

molecular weight) due to improper stabilization against residual moisture present in polymer [30]. Therefore 

rheology of optically pure or mixed PLA polymers as well as their copolymers and blends has been studied 

extensively. Pioneering study of effect of molar mass and temperature on melt viscosity of PLLA was 

conducted by Cooper-White and Mackay [31], who concluded that – at a given temperature – PLLA requires 

significantly higher molecular weight to exhibit similar melt viscoelastic behavior as conventional polymers 

such as polystyrene. Concerning the rheological behavior of PLA, probably the most active research has 

been carried out by the group of Dorgan who investigated entanglement and chain architecture effects in 

PLA [32], rheology of commercial-grade samples [33], blends of PLA with different molecular architecture 
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[34] and solution and single-chain properties of homopolymers and copolymers spanning wide ranges of 

molecular weight and stereoisomer ratios [35]. 

With the increasing computational power, the uncertainty and sensitivity analyses of 

mathematical models are receiving increasing attention in science and engineering, since they can bring 

insight to the behavior of complex models, facilitate parameter estimation, and provide valuable (in some 

cases necessary) statistical information about the uncertainty in model predictions [36]. Unfortunately, in the 

field of polymer reaction engineering, the use of such methods is limited mainly to the “manual 

investigation”, i.e., observing effect of manual step change in the input parameter values on the simulation 

output. Among rigorous methods, only local sensitivity (also termed “one factor at a time”, OAT) analysis 

has been reported in the literature on polymerization modeling. Such works include for example batch 

polymerization of methyl methacrylate (MMA) [37], styrene/acrylonitrile copolymerization in a tubular 

reactor [38], reversible-deactivation polymerization [39], thermopolymerization of furfuryl methacrylate [40] 

or semi-batch emulsion polymerization of styrene [41]. In several works, OAT analysis has been also 

employed in model parameter estimation [42,43,44]. Apart from OAT approach, Bojarski et al. [45] carried 

out global sensitivity analysis of batch styrene emulsion polymerization model using Monte Carlo sampling. 

Surprisingly, as a measure of sensitivity they used standardized regression coefficients (SRCs), which are 

applicable only for linear models, although their results indicate that the model is far from being linear, 

especially in prediction of average polymer molar mass and polydispersity index. No other attempt to use 

rigorous global sensitivity analysis (GSA) methods in polymerization reaction modeling has been found in 

the literature so far. Note that here we strictly distinguish between the use of GSA as part of model 

development and model-based process optimization/control studies that can also bring insight into the 

influence of model inputs on its outputs, however at the expense of formulating and solving an optimization 

problem [46,47].  

 Motivated by recent advances in the online monitoring and model-based control of industrial 

polymerization processes [48,49,50], we aim at the development of robust and computationally efficient 

model of L,L-lactide ring opening polymerization for a potential use as a soft sensor for product MMD and 

melt viscosity in off-line and on-line optimization of the industrial production of PLA. For this purpose we 
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define a hybrid modular framework which is based on data flow between (i) macro-scale batch reactor model 

[21], micro-scale hybrid Monte Carlo (MC) simulation of the process, and (iii) a tool for estimation of 

rheological properties of polymer melt with general branch-on-branch molecular architecture [51]. Results of 

the simulations are validated by the experimental data on PLLA melt rheology taken from the literature. The 

developed modeling framework is accompanied by comprehensive global sensitivity analysis, and the speed 

and accuracy of the predictions is critically assessed.  

 

2 Framework for Modeling of PLLA Production 

 

Multi-scale modeling has become an important part of polymer science and polymer reaction engineering, 

helping to understand the existing polymerization processes, design new materials and clarify structure-

property relationships in polymeric materials [52,53,54]. The multi-scale computational framework for 

mapping between reaction conditions in batch ROP reactor and PLLA application properties presented here 

is based on three fundamental parts illustrated in Fig. 2: 

 

1. Macro-scale process model of ROP reactor is based on dynamic material and population balances 

represented by set of ordinary differential equations (ODEs). As the model inputs, initial and 

process conditions are provided (initial composition of the batch, reaction temperature). The model 

enables prediction of monomer conversion and average molar masses of polymer (Mn, Mw) in time. 

Moreover, it provides profiles dynamic profiles of (i) concentrations of both non-polymeric and 

polymeric species, and (ii) reaction rates of elementary reaction steps in polymerization kinetic 

scheme, which are then used by the subsequent Monte Carlo simulation.  

2. Micro-scale model of polymerization kinetics is following the well-known kinetic Monte Carlo 

(MC) simulation algorithm proposed by Gillespie [55], but in order to speed up the calculations, it 

utilizes profiles of some variables pre-calculated by macro-scale model (see previous paragraph). 

Therefore it can be called “Hybrid MC” simulation. Utilization of the pre-calculated profiles allows 
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MC model to focus only on dynamics of polymeric species (non-polymeric being already covered 

by macro-scale model) which leads to significant reduction in a number of simulated molecules and 

thereby shorter simulation time. Its output is provided in the form of a table representing molecular 

architecture (i.e., chain length in case of linear polymerization) of statistical number of polymer 

chains, which can be translated into full molar mass distribution or distribution averages (Mn, Mw). 

3. Model of polymer chain arm reptation and retraction is based on tube theory of macromolecular 

chain dynamics [51] and is freely available under the name “BoB”. Utilizing the information about 

structure of polymer chains predicted by MC model, BoB estimates typical rheological 

characteristics of viscoelastic polymer melts, such as shear rate dependency of loss and storage 

moduli. 

 

More detailed information about the individual parts of the modeling framework and data flow between them 

is provided in the following subsections. 

 

Figure 2. Illustration of three main pillars of the computational framework for modeling of PLLA production. The 

process/product characteristics that can be measured experimentally are marked by purple font. 

 

2.1 Deterministic Model 

 

For a deterministic simulation of L,L-lactide ring opening polymerization in a batch reactor we implemented 

the model of Yu et al. [21] due to reasonable degree of its complexity and versatility – it has been 
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experimentally validated over a wide range of operating conditions (temperatures from 130 to 180°C, 

monomer to catalyst ratio range of 1×10
4
–2×10

4
, co-catalyst to catalyst ratio between 0.5 and 100). In this 

work, Sn(Oct)2 and dodecan-1-ol are used as catalyst and co-catalyst, respectively. Let us briefly summarize 

the model in the following paragraphs. 

 The assumed polymerization kinetic scheme is presented in Fig. 3 using the following 

symbols: M for monomer (L,L-lactide) molecule, C for catalyst (tin(II)octoate) molecule, A for octanoic acid, 

and Rn, Dn, Gn represent the active (growing), dormant (OH-bearing) and terminated (dead) chains composed 

of n monomeric units, resp. Co-catalyst molecule (dodecan-1-ol) is formally denoted as D0. Note that the 

propagation step means a polymer chain length increase by 2 units, since opening of lactide ring results in 

addition of 2 lactoyl units in a chain. It is evident from Fig. 3 that chain transfer, transesterification and chain 

scission reactions are assumed to have the same rate coefficient (ks, kte, kde, resp.) regardless of the reaction 

direction or type of the chain involved. 

 

 

Figure 3. Kinetic scheme of L,L-lactide ROP according to [21]. 

 

The model equations are represented by material balances of monomer, catalyst, octanoic acid, and 

population balances of polymer moments of zero, first and second order for all three types of chains. System 
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of 12 ordinary differential equations (ODEs) is then integrated by convenient solver for stiff problems, in our 

case Fortran adaptation of ODEPACK [56]. 

 Given the value of initial concentration of monomer in the reaction mixture, there are 14 

independent input parameters of the model. Parameters of the reaction recipe involve reaction temperature T 

(isothermal reactor is assumed), initial concentration of catalyst, co-catalyst and octanoic acid (which acts as 

an impurity) in the system denoted as [C0], [D0] and [A0], respectively. 

Kinetic parameters have been estimated from experimental data [21] and include: rate 

coefficient of catalyst activation and chain transfer, ka1 and ks, resp. (independent of temperature), pre-

exponential factor of propagation, intermolecular transesterification and chain scission, kp0, kte0, kde0, resp., 

activation energy of propagation, intermolecular transesterification and chain scission, Ea,p, Ea,te, Ea,de. Note 

that the catalyst deactivation rate ka2 is evaluated as ka2 = ka1 / Keq,a, where activation equilibrium constant 

Keq,a is assumed to be dependent on the temperature. By regressing the ln(Keq,a) versus 1/T (given in K
-1

) 

measured dependency taken from [21] we arrived at the following expression for Keq,a (more information 

about the regression can be found in Supplementary Information) : 

 







+

−
= 943.11

3.6029
exp,

T
K aeq .    (1) 

Additionally, value of depropagation rate coefficient kd is evaluated as kd = kp[Meq]. Temperature dependency 

of the monomer equilibrium constant [Meq] introduces two additional fundamental input parameters not 

mentioned in [21]: heat and entropy of the polymerization, ∆Hlc, ∆Slc, respectively, via [57] 

 [ ] 






 ∆
−

∆
=

R

S

RT

H
M lclc

eq exp .    (2) 

 

2.2 Stochastic (Monte Carlo) Simulation 

 

Backbone of the MC simulation of L,L-lactide batch ROP is based on the well-known stochastic simulation 

algorithm (SSA) for dynamic modeling of coupled chemical reactions [55], which became extremely popular 
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in the polymer reaction engineering and initiated extensive use of Monte Carlo models in the field 

[58,59,60,61,62]. The algorithm can be briefly summarized in the following steps: 

(1) The initial macroscopic concentrations of chemical species in the reaction mixture are converted to 

the microscopic (i.e., number concentrations) via Avogadro number NA and the simulated volume V, 

which is related to the chosen number of simulated “particles” (molecules) Np (i.e., size of the 

statistical ensemble). The same is carried out for macroscopic deterministic kinetic rate coefficients 

kdet, which are transformed into microscopic rate coefficients kMC. Simulation time is set to zero. 

(2) In each iteration of the MC simulation, rates of elementary reaction steps are updated based on 

kinetic rates k
MC

 and current concentrations of species. Probability pi of i-th reaction step is then 

evaluated as 

∑ =

=
M

j j

i
i

R

R
p

1

,     (3) 

where Ri is the rate of i-th elementary reaction step and M is the total number of assumed elementary 

reaction steps. 

(3) The integer index j of the reaction to happen ( Mj ≤≤1 ) is randomly selected if the random 

number r1 from the uniform distribution and interval [0,1] lies in the range 

∑∑
=

−

=

≤<
j

i

i

j

i

i prp
1

1

1

1

.     (4) 

(4) The reaction selected using Eq. (4) is implemented, i.e., concentrations of the corresponding species 

and lengths of polymer chains are updated accordingly. 

(5) The simulation time increment ∆t is estimated using second random number r2 uniformly distributed 

from interval [0,1]: 

∑ =

−
=∆

M

i iR

r
t

1

2ln
.     (5) 

Based on the increment ∆t, the current simulation time is updated. 

(6) Steps (2)-(5) are repeated until the desired time or conversion is achieved. 
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In order to enhance the computational efficiency, hybrid methods are sometimes introduced, successfully 

combining stochastic (MC) calculations with solutions provided by deterministic (ODE) models. Recent 

examples of problems treated by such hybrid MC approach include for example distribution of functional 

groups in copolymerization [63], modeling of low-density polyethylene (LDPE) production in high pressure 

tubular and autoclave reactors [64], or production of methyl methacrylate (MMA) by free radical 

polymerization [65]. Here we develop our own hybrid model suitable for lactide ROP, based on the 

following assumptions: 

• In the range of experimental conditions investigated here, the equilibrium between active and 

dormant chains is achieved almost instantaneously after the beginning of the reaction. Therefore 

their concentration during the reaction is considered constant during the process and the catalyst 

activation/deactivation reaction steps are not considered in MC simulation. Total number of assumed 

reaction steps M is thus equal to 9. 

• Before the MC simulation is initiated, dynamic evolution of elementary reaction rates calculated by 

the macro-scale simulation is stored and converted into microscopic (MC) format (see Table 1). In 

each iteration of MC algorithm, values of reaction rates at current simulation time are extracted via 

linear interpolation between two neighboring points (in time series) generated by macro-scale model. 

 

The hybrid MC simulation thus relies heavily on data pre-calculated by macroscopic model and represents its 

extension, carrying out mainly topological operations with polymer chains. In this respect we derive benefit 

from the living behavior of the lactide ring opening polymerization (i.e., constant concentration of active and 

dormant chains). 

 Reaction rate functions ( )tR
MC

i  used to interpolate the actual reaction rates in each MC 

iteration, are presented in Table 1. Let us now explain relation between the deterministic rate coefficients 

used in the macro-scale model (denoted by superscript “det”) and their microscopic counterparts (with 
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superscript “MC”). For bi-molecular reactions (propagation, chain transfer, transesterification), the relation is 

as follows, 

 ( ) tespiVNkk
A

det

i

MC

i
,,, == ,    (6) 

while in the case of unimolecular reactions (depropagation, chain scission), the values of macroscopic and 

microscopic kinetic rates are equal: 

 dedikk det

i

MC

i
,, == .     (7) 

The rate functions in Table 1 depend on the dynamic profiles of monomer concentration [M] and (zero and 

first order) moments of active, dormant and terminated chains λ, µ, γ, respectively. All these quantities are 

accessible from the macro-scale simulation (as Xdet) and converted to their dimensionless microscopic 

counterparts (X
MC

) according to 

[ ] 10101,0 ,,,,,, γγµµλλMXVNXX A

detMC == .   (8) 

Following the definition of polymer moments, concentration of active and dormant chains is represented by 

zero order moments of the corresponding chains λ0 and µ0, respectively. Since their values are considered 

constant during MC simulation, only the final values from the macro-scale simulation λ0,f, µ0,f are used in the 

rate functions. It is evident from Table 1 that the rates of depropagation and of chain transfer are actually 

constant and can be therefore evaluated before the iterative part of the MC simulation starts. 

 

 

Table 1. Functions representing rates of elementary reaction steps implemented in the hybrid Monte Carlo simulation. 

Index Reaction step Corresponding rate function 
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The chain lengths are stored in arrays (R, D, G) with amount of elements in the array representing number of 

the respective type of chains (active, dormant, terminated) and the value stored in each array element 

denoting the chain length (i.e., degree of polymerization) of a given chain. Based on the number of chains 

assumed in the statistical ensemble Np, the simulated volume V is estimated with the aim of Avogadro 

number and final values of active, dormant and terminated chain concentrations (taken from the macro-scale 

simulation) as follows 

 
( )det

f

det

f

det

fA

p

N

N
V

,0,0,0 γµλ ++
= .     (9) 

At the beginning of the simulation (t = 0), the number of terminated chains is set to zero, while the ratio of 

active and dormant chains follows the (constant) value predicted by the macro-scale simulation. Also, the 

degree of polymerization for both active and dormant chains is set to 1 before the simulation is initiated. 

 After the reaction step (cf. Table 1) is selected based on Eq. (4), it is implemented, i.e., the 

chain-length distribution is updated. In the case of propagation and depropagation, this step is 

straightforward: the index of an active chain is randomly selected and its chain length is increased (or 

decreased) by 2. For the chain transfer step (index 3 in Table 1), both active and dormant chains are selected 

randomly and their chain lengths are simply interchanged. If the intermolecular transesterification is selected 

(index 4-6), the situation is a bit more complicated. In the case of reaction of two active chains (index 4), the 

two different chains are selected randomly and a portion (i.e., number of repeating units) of the attacked 

chain is randomly selected, subtracted from it, and added to the attacking chain. When two different types of 
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chain react (index 5-6), their selection procedure is different: the active chain (always the attacking one) is 

selected randomly, while the probability of selecting the attacked chain (dormant or terminated) is 

proportional to its chain length. This can be easily implemented via following condition [29] 

 ( )distrndDPselect max×≥ ,     (10) 

where DPselect represents the degree of polymerization of the selected chain, rnd is a random number from 

uniform distribution between 0 and 1, and max(dist) denotes the maximum chain length achieved so far in 

the distribution of the attacked chains. Originally, we did not use Eq. (10) for selecting the attacked chain 

during transesterification step. Instead, we used our own procedure which involved generation of normalized 

cumulative chain length distribution and a uniformly distributed random number from the interval [0,1] 

which was used to inversely obtain the selected chain length from the distribution. In this way higher 

probability of longer chains being selected can be naturally implemented. However, later we found Eq. (10) 

in the recent paper [29] and decided to test it in our model. Although we were not able to find or derive any 

theoretical support for its use, Eq. (10) allowed us to produce the same results as our own method, but in 

shorter computational time. Therefore we decided to keep the equation in the model, even though we see its 

use as a rather empirical approach to the problem. The condition expressed by Eq. (10) is also applied during 

selection of chain undergoing nonradical scission (index 7-9) with the length of a newly generated 

terminated chain being selected randomly from the original chain length. 

 The values of number and weight average molar masses of the actual MMD Mn and Mw can be 

evaluated during the MC simulation as 
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where MM denotes the molar mass of monomer (lactoyl) unit, NR, ND, NG represent total number of active, 

dormant and terminated chains, respectively, and DP(i) stands for the length of the i-th chain. 
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2.3 Prediction of Rheological Properties 

 

In addition to the prediction of full molar mass distribution of the produced PLLA by means of the hybrid 

Monte Carlo simulation, we use the predicted polymer molecular architecture to estimate its rheological 

properties in a molten state. By doing so, we (i) extend the palette of the product properties predicted by 

those important especially in polymer down-stream processing, and at the same time (ii) get a possibility of 

validating the developed modeling framework by experimental data on PLLA rheology published in the 

literature. 

 Flow properties of viscoelastic polymer melts are usually experimentally characterized by the 

so-called frequency sweep measurements, in which the sample is deformed in an oscillatory way with 

constant amplitude and varying frequency ω. Output of such experiments is then represented by the 

frequency dependencies of storage modulus G’(ω), and loss modulus G’’(ω), which represent elastic and 

viscous parts of the material undergoing deformation [66]. The storage and loss moduli can be also combined 

into the complex viscosity defined as [67] 
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The above mentioned rheological characteristics of polymer melts depend on many factors including 

temperature, polymer density and molecular architecture (molar mass distribution, branching, cross-linking, 

chain entanglement, etc.). 

When assessing the frequency dependency of storage and loss moduli, several important 

characteristics can be defined. For instance, crossover modulus Gc, i.e., point in frequency sweep plot where 

storage and loss moduli have equal value G’(ω) = G’’(ω), is sensitive to changes in polymer chain-length 

distribution [68,69,70]: horizontal position of Gc point in frequency sweep plot is sensitive to average chain 

length (or average molar mass), while its vertical position is associated with broadness of the chain-length 

distribution (or MMD). Another important rheological characteristics of polymer melts is the so-called 
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plateau modulus 
0

NG , which is proportional to the intensity of chain entanglement [71] and can be estimated 

as the value of storage modulus where loss modulus G’’(ω) exhibits local minimum and at the same time 

storage modulus G’(ω) has an inflection point. 

Various correlations for estimation of PLA melts complex viscosity have been published [30], 

but we use the “BoB” software for prediction of rheological properties of homopolymers with general 

branch-on-branch architecture. This can be viewed as a redundant work since here we present study of only 

linear (non-branched) PLLA. However, it is our plan to add chain branching (by means of multifunctional 

co-catalysts, e.g. diols) to the developed model in the future in order to allow for efficient in silico design of 

PLA-based materials with general molecular architecture and targeted rheological properties. 

“BoB” [51] represents state-of-the-art software tool for prediction of rheological behavior of 

branched polymers with general architecture, based on the tube theory of polymer chain entanglements 

[72,73]. BoB is a public domain software1, which has been employed notably in a pioneering study 

connecting molecular topology of low-density polyethylene (LDPE) samples of industrial-level complexity 

with their rheological behavior [74,75]. 

In our framework, we use the latest version of BoB 2.5. To perform calculations, it needs 

various input data. First, the molecular architecture of the polymer must be provided in a convenient form 

(for more details, see documentation of BoB 2.3 release). For the memory allocation, information about the 

maximum number of input polymer molecules Np and their segments (2Np for linear chains) must be 

provided. Physicochemical input parameters include dynamic dilation exponent α, molar mass of monomer 

unit MM, and temperature T and density ρ of polymer melt. Last but not least, two parameters need to be 

estimated from the experimental data: the number of monomer units in one entangled segment Ne, and the 

entanglement time τe, which represents relaxation time of the chain segment between two entanglement 

points. For the readers interested in the BoB software, simple example of its usage is available in 

Supplementary Information. 

                                                        
1 https://sourceforge.net/projects/bob-rheology/files/bob-rheology/ 
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G’(ω), G’’(ω) dependencies are provided by BoB in the form of table with discrete values of 

moduli over a wide range of frequency values (implicit range is 10
-6

–10
8
 s

-1
, but this can be modified by the 

user)  so the automatic evaluation of crossover and plateau moduli Gc,
0

NG , resp., had to be implemented. 

There are various approaches for evaluation of plateau modulus from frequency sweep plot [76]; we applied 

approach suggested by Wu [77], in which the plateau modulus is found as the value of storage modulus G’ at 

minimum of tan(δ) = G’’/G’ ratio: 

( )
mintan

0

→
′=

δ
ωGGN .     (14) 

At the cross over of both moduli, the value of tan(δ) = G’’/G’ should be equal to 1. Therefore the crossover 

modulus can be found as a minimum on the | tan(δ)−1| dependency: 

 ( ) ( )
min1tanmin1tan →−→−

′′=′=
δδ

ωω GGGc
.    (15) 

Illustration of localization of plateau and crossover moduli in the frequency sweep plot predicted by BoB is 

presented in Figure 4. Validity of Eqs. (14) and (15) has been successfully tested over several virtually 

generated polymer samples with wide range of MMD properties. 

 

Figure 4. Illustration of localization of crossover and plateau moduli Gc,
0

NG , respectively, in frequency sweep data 

predicted by BoB software. 
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2.4 Sensitivity Analysis 

 

In order to perform the parametric sensitivity analysis of the model presented above, one can start with the 

most widely used local methods, which are also called “one factor at a time” (OAT) methods. In this 

approach, each input parameter of a model is varied (i.e., perturbed) one at a time around its nominal value, 

and the resulting effect on the output is measured. The local sensitivity measures are typically defined using 

the first order derivative of a model output y = f(x), with respect to an input parameter x [78]: 

 absolute sensitivity: 
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where x0 and y0 represent the nominal value of model parameter and the corresponding model output y0 = 

f(x0), respectively. The relative sensitivity functions are non-dimensional with respect to units and are 

commonly used to compare the effects of model inputs among each other. The derivatives can be evaluated 

either analytically or numerically (using finite difference formulas), depending on the model complexity. 

Results of local sensitivity analysis are valid only in close proximity to the parameters 

analyzed and depend on their nominal values. The alternative possibility is to use regional or global methods, 

which expand the analysis from one point in the parameter space to a broader range, however at the expense 

of significantly higher computational cost. Here we are going to explore two of these methods: (i) the 

elementary effects method, and (ii) the variance-based method of Sobol. 

The elementary effects method (also known as Morris screening) is relatively simple and 

computationally effective approach for fast screening of input parameters importance on the model output 

[79]. Assuming model with k independent inputs xi, i = 1…k, its input space represented by the k-

dimensional unit cube is discretized into p-level grid ΩΩΩΩ. For a given value of input vector x, the elementary 

effect of the i-th input parameter is defined as 



  

20 

 

( ) ( )
∆

−∆+
= − kkii

i

xxxyxxxxxy
EE

,,,,,,,,, 21121 ………

,  (18) 

where symbol ∆ denotes the perturbation step, which is a function of p, and y is the scalar model output. 

Eq. (18) remarkably resembles the well-known forward difference formula and the Morris method can thus 

be characterized as an approach applying local sensitivity analysis in a global context by means of 

sophisticated sampling method. The sampling of the input parametric domain ΩΩΩΩ is carried out r times: each 

sampling run starts by random selection of a point x
*
 in the p-level grid of ΩΩΩΩ and the subsequent point on the 

sampling trajectory is generated by increasing one or more components of x
*
. The subsequent points differ 

from the previous only in one component i, which has been either increased or decreased by ∆. Each 

sampling procedure results in a trajectory of (k+1) points, therefore requiring r(k+1) model evaluations in 

total to obtain necessary model output for all input samples. Finally, the distribution of elementary effects 

among different sampling trajectories is assessed, providing three important measures of the i-th input 

parameter sensitivity: 
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Both computational cost and accuracy of the Morris method depend on the values of p, ∆ and r. For an even 

value of p, Morris recommends ∆ = p/[(2(p-1)]. Value of r should be proportional to p: it has been 

demonstrated that the choice of p = 4 and r = 10 produced valuable results [80,81]. These parameter settings 

were also applied in our study, results of which are presented in Section 3.3. 

 Another important class of global sensitivity analysis methods is aiming at measuring how 

variation in a given model input parameter contributes to variance in the model output. Among these 

variance-based methods, the state of the art is represented by the Monte Carlo method of Sobol [82], later 

extended by Saltelli and co-workers [83,84]. 
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 Having a mathematical model with k input parameters, the method starts by generating a (N × 

2k) matrix of random numbers from the input parametric space. N is called a base sample, typically on the 

order of hundreds or thousands. The matrix is then divided into two matrices A and B, each of them 

containing half of the sample. For i-th input parameter investigated, matrix 
i

BA  (alternatively 
i

AB ) is 

created, which is formed by all columns (representing individual parameters) of A except the i-th column, 

which is taken from matrix B. For all samples from the input space (i.e., for all rows of matrices A, B, and

i

BA ) the model output is evaluated, resulting in three vectors of length N: y(A), y(B) and y(
i

BA ). In order to 

investigate all k parameters, the method thus requires N + N + kN = N(k+2) model evaluations, which is 

much more efficient than N
2
 runs needed by the brute-force-method [36].  Three output vectors are finally 

used to calculate the two commonly used measures of parameter importance: (i) first order sensitivity index 

Si, representing the dominant (first order) contribution of the i-th input parameter to the variance of the 

output, and (ii) total sensitivity index STi, which accounts for the total contribution to the output variation due 

to the i-th input, i.e., its first plus higher order effects due to interactions with other inputs. There are various 

approaches for evaluation of the sensitivity indices, Saltelli et al. [85] recommend the following expressions 

originally proposed by Jansen [86]: 
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where symbol V(y) represents variance of the model output, 
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In Eqs. (22) and (23), subscript j denotes the j-th element of the output vectors. Thanks to the output variance 

occurring in denominators, both indices are normalized, so that  
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It has been demonstrated that the mean of the absolute values of the elementary effects
*

iµ , cf. Eq. (20), is a 

reasonable proxy of the total sensitivity index 
iTS  [87]. For more information on the global sensitivity 

analysis techniques we refer to the textbook by Saltelli et al. [36]. 

 In our study we employed Sobol’s method based on Monte Carlo sampling of the input space, 

in which the input samples were generated as scrambled quasi-random Sobol sequences [88,89] with uniform 

distribution. First order and total sensitivity indices were evaluated using Eqs. (22) and (23). 

 

3 Results and Discussion 

 

3.1 Model Validation 

 

A natural way to validate the developed model would be to compare its predictions of polymer molar mass 

distribution (MMD) and rheological characteristics with gel permeation (size exclusion) chromatography and 

frequency sweep data measured experimentally for various PLLA samples. However, due to the lack of 

experimental facilities we have to rely purely on data from the literature. Since we were not able to find any 

study that would involve both full MMD and rheological characterization of PLLA samples, we decided to 

use data from the well-known paper by Cooper-White and Mackay [31] in which three commercial PLLA 

samples (Resomers L206, L210, L214) produced by Boehringer Ingelheim are characterized by frequency 

sweep measurements and accompanied by information about their weight average molar mass Mw and 

polydispersity index PDI = Mw/Mn. Our approach to the model validation can be summarized in two steps: 

1. By manipulating the reaction conditions, namely temperature T, relative monomer and co-catalyst 

concentrations [M0]/[C0], [D0]/[C0], respectively, we use the macro-scale model to in silico generate 

polymer samples with Mw and PDI as close as possible to the commercial samples. 

2. Using BoB software, we evaluate the frequency dependencies of storage and loss moduli G’(ω), 

G’’(ω), respectively, for the artificially generated samples and compare them with those measured 
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[31]. For the rheological prediction, two input parameters need to be estimated: number of monomer 

units in one entangled segment Ne, and the entanglement time τe. 

 

The selected validation approach has two main limitations. First, the micro-scale model cannot be directly 

validated by experimental data, i.e. by comparing predicted and measured full molar mass distribution 

(MMD) of the produced polymer. In our approach, the micro-scale model is validated only indirectly via (i) 

its influence on the meso-scale (rheological) prediction, and by (ii) comparison of the averaged MMD 

characteristics (Mn, Mw) with those provided by macro-scale model. Second, having a possibility of lab-scale 

polymer synthesis of samples L206, L210 and L214 in vitro would very probably result in a revision (i.e. re-

estimation) of some model parameters. In this context, the reaction conditions leading to in silico production 

of the samples presented in Table 2 have somewhat limited validity, unless they are verified by real 

experiment. 

Mass-average molar mass Mw
exp

 and polydispersity PDI
exp

 of samples L206, L210 and L214 

published by Cooper-White and Mackay [31] are listed in Table 2 along with Mw
sim

 and PDI
sim

 of the samples 

generated in silico and model parameters manipulated to achieve the desired values. Besides the above 

mentioned model input parameters which affect the reaction conditions, other parameters of the macro-scale 

model retained their nominal values (cf. Table 3). Reaction time in all simulations was set to 12 min, 

corresponding to monomer conversion around 95%. Common inputs to the rheological property prediction 

performed by BoB were: dynamic dilation exponent α = 1.0, molar mass of monomer (lactoyl) unit MM = 

72.06 g/mol, temperature of the polymer melt (i.e., sample temperature during the frequency sweep 

measurement) Tm = 200°C and density of the polymer melt ρm = 1.090 g/cm
3
 (Tm and ρm taken from [31]). 

Broadly speaking, BoB inputs primarily determining the predicted rheological characteristics are polymer 

chain architecture (provided by micro-scale model), and two estimated parameters: average number of 

monomer units in one entangled segment Ne, and the entanglement time τe. Effect of other BoB inputs on the 

output is studied in Section 3.3. 
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(a)  

(b)  

 

 

 

(c)  
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Figure 5. Results of simulated production of samples (a) L206, (b) L210 and (c) L214 (cf. Table 2) by L,L-lactide ring 

opening polymerization. Left: Comparison of macro-scale model (ODE) and Monte Carlo (MC) predictions of dynamic 

evolution of number and weight average molar masses Mn, Mw, resp. Right: Final number chain length distribution 

(NCLD) predicted by traditional SSA algorithm by Gillespie and the Hybrid MC method presented in this paper. 

 

Comparison of outputs provided by macro-scale (ODE-based) and micro-scale (hybrid MC) simulation is an 

important step in the model validation and internal consistency check. Figure 5 (left) illustrates very good 

agreement in the dynamic evolution of the number and weight average molar masses Mn, Mw, for samples 

L206, L210 and 214 predicted by both models with only small deviations in Mw towards the end of the 

reaction. Generally, profiles of mass-average molar mass Mw calculated by MC simulation exhibit slightly 

higher deviations than those of Mn due to the intensive “chain re-shuffling” (transesterification) and 

degradation (scission) reactions involved. In Section 3.2, we will thus use the deviations in Mw between ODE 

and MC simulation as a measure of the MC simulation accuracy. Another important validation of the 

developed hybrid MC model is its benchmarking against the traditional SSA algorithm of Gillespie via 

comparison of full chain length distribution (CLD) predicted by both methods. Figure 5 (right) illustrates that 

the agreement in calculated final CLD is very good for all three samples, although the number of molecules 

Np involved in the SSA-based simulation is significantly higher than in hybrid MC model in order to achieve 

similar numerical accuracy of both models (see further discussion in Section 3.2). 

 Figures 6-7 show comparison of predicted and experimental values (taken from [31]) of 

storage modulus G’, loss modulus G’’, and complex viscosity η*
 for all studied polymer melts at 200°C 

(displayed frequency range follows the experimental data; BoB software allows prediction in significantly 

higher range). Overall good agreement between simulations and measurements was achieved by assuming 

value of the entanglement time τe to be 9×10-7 s for all samples (values of τe = 1.3×10-6 have been estimated 

e.g. for linear polybutadienes at room temperature [90])  and molar mass between entanglements Me = NeMM 

to be in the range 4200–4700 g/mol, which perfectly corresponds to the approximate value of Me ~ 4000 

g/mol reported for PLA melt at lower temperature 140°C [30]. Small discrepancy observed at low 
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frequencies for sample L214 can be caused by the difference between properties of the real and artificially 

generated polymer samples. 

 

Table 2. Comparison of mass-average molar mass Mw and polydispersity index PDI of commercial samples studied by 

Cooper-White and Mackay [31] with model predictions and input parameters.  

Property 

/Parameter 

Sample 

L206 L210 L214 

Mw
exp (kg/mol) 40.000 130.000 360.000 

PDI
exp

 1.80 2.20 1.50 

Mw
sim

 (kg/mol) 39.863 133.411 368.504 

PDI
sim

 1.77 1.98 1.49 

T (°C) 165.0 170.0 160.0 

[M0]/[C0] 9×10
3
 1×10

4
 6×10

4
 

[D0]/[C0] 55.0 20.0 11.0 

Ne 65.0 62.0 58.0 

τe (s) 9×10
-7

 9×10
-7

 9×10
-7

 

 

 

Figure 6. Comparison of predicted (lines) and measured (points) moduli G’, G’’ of PLLA samples (cf. Table 2) at 

200°C. Storage modulus G‘ is indicated by full lines and points. The experimental data were taken from [31].  
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Figure 7. Comparison of predicted (lines) and measured (points) complex viscosity of PLLA samples (cf. Table 2) at 

200°C. The experimental data were taken from [31].  

 

3.2 Computational Efficiency 

 

For the model to be useful in optimization (both off-line and on-line) of the polymer production process, its 

computational efficiency needs to be addressed. Let us analyze the computational load of individual parts of 

the developed modeling framework: Fortran implementation of (i) the macro-scale (deterministic) part, and 

of (ii) the micro-scale (stochastic) Monte Carlo simulation, and (iii) rheological prediction by “BoB”, called 

as an executable file from the Fortran code. Subject of all simulations described in this section was the model 

with nominal set of input parameter values (cf. Table 3) assuming the reaction time of 12 min. The 

calculations were performed on average office laptop equipped with Intel® CoreTM i5-5300U CPU 2.30 GHz 

running on Microsoft Windows
®
 7 64-bit. No parallelization of the developed codes has been carried out. 

 The deterministic simulation based on integration of ODEs definitely represents the fastest 

element of the developed framework. With the constant time step of 3.6 s (i.e., solver ODEPACK is called 

every 3.6 s of the reaction time, in total 200 times), the overall duration of the simulation (including saving 

the results to a file) is 0.5 s. 
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 In the case of BoB, the simulation time depends primarily on the number of polymer chains 

considered for the simulation, which can be actually downsampled (i.e., smaller amount of chains is 

randomly selected) from the population produced by MC simulation. In our calculations (e.g., those leading 

to the results presented in Figures 6-7), we have not observed any significant improvement of the predicted 

rheological characteristics if the number of considered chains was increased to values higher than 300. 

Therefore this value was used in all simulations, with BoB running for 2.3 s. 

 It is not surprising that the bottleneck of the computational time is the Monte Carlo 

simulation. Due to its stochastic nature, speed of MC algorithm is affected not only by the assumed reaction 

time but also by the reaction conditions, because algorithmic implementation of the elementary reaction steps 

varies. For instance, propagation of an active chain by two units is evaluated significantly faster than the 

attack of an active chain on a dormant chain during intermolecular transesterification. Nonetheless, assuming 

the reaction duration and conditions to be constant, the highest impact on the time and accuracy of the MC 

simulation has the number of “particles” (i.e. molecules, chains) considered in the system Np. In the original 

stochastic simulation algorithm (SSA) of Gillespie (described in the beginning of Section 2.2), parameter Np 

involves all reacting species in the system – in this case molecules of monomer, catalyst, co-catalyst, acid 

and three distinct types of macromolecules. Gillespie’s implementation thus requires Np to be relatively high 

in order to ensure statistical representation of all species (even those present in very low concentrations) and 

fails to work if Np is below a critical value represented by the ratio of the highest and lowest concentrations 

involved in the system chemistry [91]. On the other hand, in our hybrid approach, only the number and 

topology of the macromolecules is tracked by the MC simulation, therefore allowing for significantly lower 

values of Np for the same accuracy of the prediction. 

 Let us compare the simulation time and accuracy of the hybrid MC algorithm presented in this 

paper with its alternative implemented as Gillespie’s SSA. As a measure of accuracy we take the sum of 

squared residuals (SSR) for the values of the mass-average molar mass Mw predicted by Monte Carlo (MC) 

and deterministic (ODE) simulation along the process trajectory 
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where P represents the number of prediction points representing the trajectory of Mw(t) (output of the 

simulation was saved every 10 s of reaction time, arriving finally at 720 s = 12 min). It has been already 

mentioned that SSR for Mw is chosen here because Mw exhibits generally higher discrepancy than Mn when 

comparing results of Hybrid MC and deterministic ODE simulation. Thus, for a given value of SSR(Mw) we 

believe that value of SSR(Mn) would be always lower. Figure 8 depicts dependency of both SSR(Mw) and 

simulation time on the number of particles Np for both MC implementations (denoted as “Hybrid MC” and 

“Gillespie”). First of all it should be noted that the minimum Np for Gillespie-based simulation was 104 and 

below this value the algorithm could not fully follow the polymerization kinetics. It is obvious that in either 

algorithm with increasing Np the precision of the prediction improves at the expense of higher computational 

time. 

 

 

Figure 8. Dependency of sum of squared residuals for the predicted mass-average molar mass SSR(Mw) defined by Eq. (26) and 

simulation time on the number of particles Np assumed in the original Gillespie Monte Carlo algorithm (denoted as “Gillespie”) and 

the hybrid Monte Carlo (“Hybrid MC”) approach developed in this paper. 

 

For the same number of particles Np, Gillespie’s algorithm performs significantly faster than the hybrid 

scheme, but with dramatically higher deviation from the accurate results. Both algorithms actually achieve 

similar precision after very different simulation times: Gillespie’s algorithm achieves accuracy of 7.6 
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kg2/mol2 in 35 minutes (Np = 2.5×105), while hybrid Monte Carlo arrives at 5.7 kg2/mol2 in 30 seconds (Np = 

5×10
3
), more than 70 times faster.  

In this case study, the optimal choice of Np for the hybrid MC approach seems to be between 

103 and 104 (corresponding to the simulation volumes of 2.8×10-23 and 2.8×10-22 m3), where the SSR(Mw) is 

on the order of units (high accuracy of prediction) and the simulation time below 2 minutes. For example, 

with Np = 2500, hybrid MC simulates for 11.4 s with SSR(Mw) = 4.14 kg
2
/mol

2
. Using these settings, the 

prediction of full molar mass distribution and rheological characteristics of the product based on the input 

reaction conditions (with 94% monomer conversion achieved) takes less than 15 seconds on a standard PC. 

Although we should keep in mind that the performance of the micro-scale model will always depend on the 

actual conditions in the reactor that define the kinetics, these results seem to be promising for the future 

development of robust soft sensors and model-based systems for control and optimization of L,L-lactide ring 

opening polymerization reactors. 

 

 

3.3 Global Sensitivity Analysis 

 

In this section we demonstrate application of global sensitivity analysis methods to the modeling framework 

described in Sections 2.1-2.3. In local (OAT) sensitivity analysis, the model inputs are perturbed only in the 

close proximity of their nominal values. However, all model parameters have some degree of uncertainty 

(stemming either from their numerical estimation or from experimental measurement error) that should be 

taken into account in order to have an overview of model sensitivity in a global context. Therefore we 

employ two well established methods of regional/global sensitivity analysis, namely Morris screening and 

Monte Carlo-based method of Sobol (cf. Section 2.4); results of OAT analysis are presented in 

Supplementary Information.  

The model input parameters, their nominal values, uncertainties (i.e. standard deviations for 

the parameter estimates) and corresponding sampling intervals are presented in Table 3 and divided into 
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three groups: (i) reaction conditions, (ii) polymerization kinetic rate coefficients, (iii) and inputs to the BoB 

software (that have no influence on macro-scale and MC simulation). Uncertainty in the values of species’ 

initial concentrations, rate coefficients ka1, ks and density of polymer melt ρm was set to ±5%. The reaction 

temperature T and temperature of polymer melt Tm was assumed to be measured with relatively high 

precision (±0.5% uncertainty). On the other hand, higher uncertainty (±10%) was assumed for chain 

entanglement time τe and number of monomer units between entanglements Ne. Uncertainties of other model 

parameters was taken directly from [21] and [57] as a result of their numerical estimation. Dynamic dilation 

exponent α was excluded from the list of uncertain inputs to BoB and its value was set to 1.0 [51,92]. 

The model outputs of interest consist of the following five process-product characteristics: 

1. Conversion of monomer X as an important measure of reaction progress. 

2. Number-average molar mass of polymer Mn as a direct measure of the average polymer chain length. 

3. Polydispersity index PDI = Mw/Mn is proportional to the broadness (variance) of polymer chain 

length distribution. 

4. Crossover modulus Gc is sensitive to changes in polymer chain-length distribution.  

5. Plateau modulus 
0

NG  as a measure of chain entanglement intensity.  

While X, Mn and PDI are taken as output of deterministic (macro-scale) simulation, rheological 

characteristics Gc and 
0

NG  are predicted by BoB, utilizing polymer chain architecture from stochastic (Monte 

Carlo) simulation. Therefore the estimated values of Gc and 
0

NG  are inevitably distorted by numerical error 

of MC algorithm. This we need to take into account when analyzing the results of sensitivity analysis. 

Since conversion and polymer molar mass distribution (MMD) evolve in time during 

polymerization in batch reactor, one can define several ways of measuring the model outputs (e.g., values at 

given time, average of values over a period of time). Here we are concerned with two different scenarios. In 

Scenario I we will observe values of the output states at reaction time tI = 10 min, when the conversion of 

monomer reaches value of ~90% (based on nominal values of model inputs, cf. Table 3).  In Scenario II, we 

will measure output values at tII = 2 hours, i.e., sufficiently long time to reach the equilibrium conversion. 

Thus, in Scenario I we focus more on the dynamics of the reaction, while Scenario II reflects the resulting 
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product properties rather than the polymerization dynamics. For the sake of brevity, analysis of Scenario II 

(which is of lower importance for industrial practice) is presented only in Supplementary Information. 

Sobol’s method needs much higher number of model evaluations than Morris screening, 

therefore only the method of Morris is used for sensitivity analysis of the whole computational framework 

(including prediction of rheological properties), while Sobol’s algorithm is employed to assess only outputs 

of the deterministic simulation (X, Mn, DPI) which are calculated very fast. Number of particles Np involved 

in micro-scale (MC) model of polymerization was set to 104 in all simulations.  

Table 3. List of input model parameters values (and their range) used in local and global sensitivity analysis. 

Description Symbol Unit 

Nominal  

value 

Uncertainty 

Lower  

bound 

Upper  

bound 

Reaction temperature T °C 160.0 ±0.5% 159.2 160.8 

Initial monomer to catalyst 

concentration ratio 

[M0]/[C0] - 1.0×10
4
 ±5.0% 9.5×10

3
 10.5×10

3
 

Initial co-catalyst to 

catalyst concentration ratio 

[D0]/[C0] - 60 ±5.0% 57 63 

Initial acid to catalyst  

concentration ratio 
[A0]/[C0] - 0.360 ±5.0% 0.342 0.378 

Activation rate coefficient ka1 L/mol/h 1.0×10
6
 ±5.0% 9.5×10

5
 10.5×10

5
 

Pre-exponential factor 

of propagation 

kp0 L/mol/h 7.40×10
11

 ±3.6% 7.13×10
11

 7.67×10
11

 

Activation energy 

of propagation 

Ea,p kJ/mol 63.30 ±3.6% 61.02 65.58 

Heat of polymerization ∆Hlc kJ/mol -23.3 ±6.4% -24.79 -21.81 

Entropy of polymerization ∆Slc J/mol/K -22.0 ±14.5% -25.19 -18.81 

Chain transfer rate 

coefficient 

ks L/mol/h 1.0×10
6
 ±5.0% 9.5×10

5
 10.5×10

5
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Pre-exponential factor 

of transesterification 

kte0 L/mol/h 3.38×10
11

 ±6.9% 3.15×10
11

 3.61×10
11

 

Activation energy 

of transesterification 

Ea,te kJ/mol 83.30 ±6.9% 77.55 89.05 

Pre-exponential factor 

of chain scission 

kde0 h
-1

 1.69×10
8
 ±17.0% 1.40×10

8
 1. 98×10

8
 

Activation energy  

of scission 

Ea,de kJ/mol 101.50 ±17.0% 84.25 118.76 

Polymer melt temperature Tm °C 200.0 ±0.5% 199.0 201.0 

Polymer melt density ρm kg/m
3
 1090.0 ±5.0% 1035.5 1144.5 

Entanglement time τe s 9.0×10-7 ±10.0% 8.1×10-7 9.9×10-7 

Number of monomer units 

between entanglements 

Ne - 65.0 ±10.0% 58.5 71.5 

 

When assessing significance of the model inputs based on results of the elementary effects (Morris’) method, 

one should always take into account values of both mean and variance (or standard deviation) of the 

elementary effects distribution defined by Eqs. (19) and (21). This is typically done by plotting standard 

deviation versus mean together with two lines corresponding to Meani = ± 2SEMi for all model parameters 

 i = 1…k [79], with SEMi = Si / r
1/2 being the standard error of the mean (cf. Figure 9). Therefore, if the 

coordinates for input i lie outside of the wedge formed by these two lines, it is a significant evidence of i 

being an influential parameter. Moreover, distance of the input’s coordinates from the zero point (0;0) is 

proportional to its importance with respect to model output. In contrast to Sobol sensitivity indices, means of 

elementary effects µ,i (horizontal axis in Figure 9) indicate not only magnitude, but also direction (positive or 

negative) of the input’s impact on the model output.  

During the final stage of the polymerization when the chain growth still takes place, by far the 

most influential parameter for conversion is the activation energy of propagation. Generally, activation 
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energies are more influential than pre-exponential factors due to their appearance in the exponential term of 

Arrhenius equation. Also the sign of the elementary effects mean is correct: increasing Ea,p results in slower 

propagation and thus decrease in conversion. The effect of temperature on conversion is relatively small, but 

we have to bear in mind that temperature has also the lowest uncertainty from all model inputs. Ea,p affects 

significantly also average chain length (reflected in Mn). Mn is also influenced by initial concentration of co-

catalyst which actually defines the number of reacting (active and dormant) chains in the reaction mixture, 

thereby directly influencing their average length. Probably the most influential parameter for Mn is the 

activation energy of random chain scission Ea,de. The phenomenon of chain scission (i.e., decrease in 

molecular weight) at high temperatures has been reported in the literature [93,94,95] and becomes significant 

for longer chains, i.e., when conversion approaches its equilibrium value and afterwards. Contrary to the case 

of Ea,p, Ea,de is positioned in the right half (with positive values of mean) of Mn plot in Fig. 9, because 

increase in activation barrier for chain scission actually allows chains to grow longer. Obviously, the 

polydispersity index PDI is extremely sensitive to the intermolecular transesterification (activation energy 

Ea,te). This reaction step (sometimes described as “re-shuffling”) is responsible for broadening of the polymer 

MMD, i.e., increase of PDI [96], therefore the negative sign of the mean in the plot. Chain scission (Ea,de) 

acts in a similar way but with smaller effect. 

Input coordinates in the plots for crossover and plateau moduli Gc and 
0

NG , resp., seem to be 

more “noisy” at first sight. There are no zero values and most of the inputs are placed inside the wedge 

representing statistical error: this is probably caused by an “artificial sensitivity” introduced by statistical 

error of Monte Carlo simulation. Generally speaking (and after careful examination of the numerical values 

of means and standard deviations provided in Supplementary Information), Gc and 
0

NG  follow similar trends 

concerning the sensitivity to the reaction recipe and kinetic parameters, with the most influential inputs being 

those related to propagation (Ea,p), transesterification (Ea,te) and scission reaction steps (Ea,de). Narrowing 

MMD should result in an increase of Gc [69; 97]: for negative effect on PDI a positive effect of Gc should be 

expected, therefore the difference in signs observed for parameters Ea,te and Ea,de is a bit surprising. However, 

the two elementary reactions have different effect on the polymer MMD: transesterification dramatically 
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affects polydispersity (via Mw), while retaining Mn almost intact; chain scission, on the other hand, influences 

PDI much less when compared to Mn. Among the inputs to BoB software, only the entanglement time τe is 

found outside the wedge in the plot for plateau modulus. Unfortunately, this input is typically highly 

uncertain, as it cannot be determined directly by any experimental method. 

Last but not least, model sensitivity analysis can facilitate process of linking reaction 

conditions to the product application properties: for instance, PLLA molding and extrusion can be made 

easier by lowering crossover modulus Gc, which can be achieved either by decreasing reaction temperature 

and concentration of co-catalyst, or by increasing monomer to catalyst ratio, or by combination of all these 

actions. 
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Figure 9. Estimated mean and standard deviation of the distribution of elementary effects of the model 

inputs on five different model outputs. The two blue lines drawn in each subplot correspond to Meani = 

±2SEMi (see text). Original values of the means and standard deviations of the elementary effects 

distribution are presented in Supplementary Information. 

 

First order sensitivity indices Si predicted by Sobol’s method (available in Supplementary Information) 

provide information only about parameter significance, since they have all positive values. From their 

relative ranking presented in Figure 10, it is evident that their magnitude corresponds very nicely to the 

absolute values of the means of elementary effects distribution, which were estimated via significantly lower 

number of model evaluations. On the other hand, by means of total sensitivity indices 
iTS , method of Sobol 

provides information not only about the first order effect of the model inputs, but also about the total effect 

which involves contribution of the inputs’ mutual interactions. In our study, the values of 
iTS  follow closely 

those of Si and the highest sum of 
iTS  over the input parameters (obtained for the case of PDI in Scenario II) 

reached the value of 1.093. This indicates that the variation in model outputs is driven primarily by the first 

order effects of the inputs with the interaction terms responsible in the worst case for only 9.3% of the model 

output variance. 
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Figure 10. Relative importance of model input parameters on conversion, number-average molar mass (Mn) 

and polydispersity index (PDI) calculated from first-order Sobol sensitivity indices Si. 

 

 

4 Conclusions and Future Work 

 

This paper deals with the development of the modeling framework allowing mapping between reaction 

conditions during the L,L-lactide ring opening polymerization (ROP) and the application properties of the 

product represented by detailed molecular architecture and rheological characteristics. The conclusions of 

our work can be summarized in the following points: 

• The deterministic model of L,L-lactide ROP experimentally validated at wide range of operating 

conditions was taken from the literature and extended by hybrid Monte Carlo algorithm and 

publicly available software for rheological estimations in order to expand the palette of predicted 

properties to full molar mass distribution (MMD) and viscosity of poly-(L-lactide) (PLLA) melt. 

• The developed predictive framework was validated by experimental rheological characteristics of 

three different industrial PLLA samples taken from the literature. The entanglement molecular 
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weight of the samples was estimated as 4200-4700 g/mol in agreement with values previously 

reported in literature. 

• Computational efficiency of the developed framework was critically assessed and shows a potential 

for the use as a soft sensor for MMD and polymer melt viscosity in the industrial production of 

PLLA. 

• Model sensitivity analysis indicated that the reaction temperature and co-catalyst to catalyst ratio 

have positive impact on the crossover and plateau moduli of PLLA melt. Sobol index showed that 

up to 60% of variability in polymer polydispersity index at the final stage of polymerization can be 

explained by the intermolecular transesterification reaction. 

In the future we plan to explore surrogate modeling techniques (e.g., Kriging interpolation, polynomial chaos 

expansion) to further enhance the computational efficiency of the developed model. In addition to that, the 

polymerization kinetic scheme will be extended by the presence of multifunctional co-catalysts resulting in a 

product with branched (nonlinear) architecture. This would allow for direct in silico tailoring of PLLA-based 

materials application properties via modification of reaction conditions and branch-on-branch architecture of 

the product. 
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Highlights for manuscript “Multiscale Modeling of Poly(lactic acid) Production: From Reaction Conditions 

to Rheology of Polymer Melt”: 

• Multi-scale model of PLLA (poly[L-lactic acid]) production was developed. 

• The developed framework allows fast prediction of polymer melt viscosity. 

• The model was validated by rheological data measured for various PLLA samples. 

• Comprehensive global sensitivity analysis of the model was performed. 

 


