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Abstract 

There are numerous hydrologic studies using satellite altimetry data from repeat-orbit 

missions such as Envisat or Jason over rivers. This study is one of the first examples for the 

combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, 

with a river model. CryoSat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic 

model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations 

for unsteady flow and set up in the MIKE HYDRO River software. After calibration of 

discharge and water level the hydrodynamic model can accurately and bias-free represent the 

spatio-temporal variations of water levels. A data assimilation framework has been developed 

and linked with the model. It is a flexible framework that can assimilate water level data 

which are arbitrarily distributed in time and space. The setup has been used to assimilate 

CryoSat-2 water level observations over the Assam valley for the years 2010 to 2015, using 

an Ensemble Transform Kalman Filter (ETKF). Performance improvement in terms of 

discharge forecasting skill was then evaluated. For experiments with synthetic CryoSat-2 data 

the continuous ranked probability score (CRPS) was improved by up to 32 %, whilst for 

experiments assimilating real data it could be improved by up to 10 %. The developed 

methods are expected to be transferable to other rivers and altimeter missions. The model 

setup and calibration is based almost entirely on globally available remote sensing data. 

Keywords: CryoSat-2; Data Assimilation; hydrodynamic models; satellite altimetry; rivers 
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1. Introduction 

Remote sensing provides valuable data for parameterization and updating of hydrologic 

models, for example water level measurements of inland water bodies from satellite radar 

altimeters. CryoSat-2, a Synthetic Aperture Radar (SAR) satellite launched by the European 

Space Agency (ESA) in April 2010, is a satellite mission primarily designed for the 

observation of the cryosphere (Wingham et al., 2006). Like other satellite altimeters, CryoSat-

2 also delivers useful altimetry data over inland water bodies. However, the unique orbit 

configuration of CryoSat-2 leads to a drifting ground track pattern, different from most other 

satellite altimetry missions. Nielsen et al. (2015) extracted water levels from lakes of a size 

down to 9 km2 from CryoSat-2 at higher accuracy than from any other current satellite 

altimetry mission: The RMSE between gauge data and the CryoSat-2 observed heights was 

generally below 10 cm. Another example for the use of CryoSat-2 altimetry over lakes is the 

work by Song et al. (2015), who used CryoSat-2 in combination with ICESat altimetry to 

determine water level trends in Tibetan lakes. Water height estimation over rivers has high 

potential as well (Bercher et al., 2013b), as shown by Villadsen et al. (2015) and Schneider et 

al. (2017). Villadsen et al. (2016) estimated CryoSat-2 water level observations to be within 

approximately 30 cm of in situ observations at a station on the Amazon River. Another 

evaluation of the accuracy of CryoSat-2 observed river water levels against in situ 

observations was performed by Tourian et al., (2016). Their chosen method to transfer the 

altimetry observations to the locations of the in situ stations, however, was optimized for 

virtual station time series and not for the distributed CryoSat-2 data, not allowing for an 

independent evaluation of CryoSat-2 data. The potential of applying CryoSat-2 altimetry data 
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over rivers is also stressed in a recent review of satellite data sources for surface waters by 

Musa et al. (2015). 

Nevertheless, the application of CryoSat-2 altimetry over rivers is limited so far. This may be 

because CryoSat-2 challenges common ways of handling satellite altimetry data over inland 

water bodies, in particular rivers, as also described by Bercher et al. (2013a). All past and 

current satellite altimeter missions used in applications over rivers are on repeat orbits, 

returning to the same ground track every 10 (Jason-1 to Jason-3) to 35 days (Envisat or 

SARAL/AltiKa). The 91 day long repeat cycle of the laser altimeter mission ICESat is an 

exception. The spatial resolution, i.e. the inter-track distance also varies with the return cycle. 

The Jason missions with a return cycle of 10 days have an inter-track distance of 

approximately 315 km at the equator, while for Envisat or SARA/AltiKa it is around 80 km. 

An overview of the characteristics of different satellite altimeter missions can be found in 

Schwatke et al. (2015) or in Jiang et al. (2017). For inland water bodies, in particular rivers, 

repeat orbits allow the extraction of water level time series at locations where the satellite 

ground track repeatedly intersects the water body, the so called virtual stations. The virtual 

stations are spaced with inter-track distance. CryoSat-2, with a repeat cycle of 369 days, does 

not deliver virtual station time series. However, it provides a higher spatial resolution along a 

river than other satellite altimetry missions – its inter-track distance at the equator is only 

7.5 km. 

This means that CryoSat-2 can deliver water level profiles along rivers with much higher 

spatial resolution than the conventional short-repeat missions. The value of such dense data 

has been explored with other data sources than CryoSat-2: For example, O’Loughlin et al., 
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2013 used data from ICESat with a relatively small inter-track distance of 30 km to derive 

hydraulic characteristics of the Congo River. Garambois et al., 2017 exploited spatially dense 

data from Envisat where its ground track coincidentally runs parallel with a river. 

Using satellite altimetry data to update river models has proven to be successful. Paiva et al. 

(2013) assimilated Envisat altimetry data in a 1D hydrodynamic model of the entire Amazon 

River basin. This resulted in improvements of discharge simulations when validated against in 

situ data. For another large river, the Brahmaputra River in South Asia, Michailovsky et al. 

(2013) showed similar results, also with the assimilation of Envisat altimetry data to a 

Muskingum routing scheme. In operational use is the work by Hossain et al. (2014), using 

Jason-2 altimetry data to improve flood forecasting in the Ganges-Brahmaputra-Meghna 

Delta in Bangladesh. Besides this, there also exist numerous studies with synthetic data from 

the upcoming SWOT mission. This mission is expected to be launched in 2021. Biancamaria 

et al., (2016) provide a comprehensive overview over the expected applications of SWOT 

data for inland hydrology, including its assimilation into river models. Besides the studies 

presented therein, using ensemble based Kalman filters or smoothers, Gejadze and Malaterre 

(2016) developed a variational DA algorithm coupled for a 1D hydrodynamic model. All 

previous studies using actual data from operational missions, however, rely on altimetry data 

in the form of virtual stations. The main reason for this is that such time series allow deriving 

water level amplitudes (so called water surface elevation (WSE) anomalies), which are easier 

to assimilate than absolute water levels since any systematic bias between remote sensing 

observations and in-situ data is removed. CryoSat-2 data does not allow to directly derive 

water level amplitudes. The direct combination of such absolute water level data with models 
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requires the model to accurately represent absolute water levels. To the best of our 

knowledge, no studies have yet assimilated CryoSat-2 altimetry in a river model, yet most of 

the setups developed for the uptake of synthetic SWOT data should also be able to be used 

with CryoSat-2 data. 

There also do exist various ways of using altimetry data over rivers without directly 

combining them with a river routing model. For example, Boergens et al. (2016) presented a 

spatio-temporal kriging method to densify a multi-mission altimetry dataset along rivers. 

Also, discharge estimates over rivers have been performed based on satellite altimetry 

combined with other remote sensing data (Tarpanelli et al., 2015) or stochastic models 

(Tourian et al., 2017). 

Different approaches can be used to model river flow: simple routing schemes such as the 

Muskingum and the Muskingum-Cunge schemes, 1D hydrodynamic models based on the 

Saint-Venant equations for unsteady flow, or 1D-2D models including the river flood plain. 

There is a trade-off between computational efficiency and realistic simulation of discharge 

routing, water levels and flood extents. Despite progress in computational efficiency of the 

1D-2D hydrodynamic models and increased computational power available, most basin-scale 

applications of such models are still limited to deterministic simulations and do not support 

ensemble-based stochastic modelling and data assimilation (Biancamaria et al., 2011a, 2009; 

Schumann et al., 2013). 

The objective of this work is to evaluate assimilation of distributed CryoSat-2 altimetry data 

in a 1D hydrodynamic model of the Brahmaputra River. This was done using a data 
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assimilation (DA) system with ensemble based filters to update a DHI MIKE HYDRO River 

1D hydrodynamic river model with water level data. Specifically, the proposed methods do 

not rely on (virtual) station observations, but are able to ingest water level (or discharge) data 

with arbitrary distribution in time and space. The 1D hydrodynamic model is mainly based on 

remote sensing data and allows accurate and unbiased simulations of water levels after a 

cross-section calibration (Schneider et al., 2017). Moreover, it is computationally efficient to 

be run with large ensembles for DA and model calibration. First, synthetic satellite data was 

assimilated to evaluate the general capability of the DA framework and the value of different 

data in controlled experiments. Subsequently, the model was updated by real water level 

observations from CryoSat-2. 

2. Brahmaputra River case study 

2.1 Brahmaputra River overview 

The DA setup presented in this paper is demonstrated for the Brahmaputra River in South 

Asia. The Brahmaputra River is a large trans-boundary river, draining parts of the Tibetan 

Plateau in China before flowing through the Himalayan Mountains into the Assam Valley in 

India (Figure 1). It merges with the Ganges and Meghna Rivers in Bangladesh, before 

entering the Bay of Bengal. The river system often causes devastating floods in the low-lying 

downstream country Bangladesh. Despite this, there is only little cooperation between the 

river’s three main riparian countries, China, India and Bangladesh (Biancamaria et al., 

2011b). India considers the Brahmaputra basin “classified” (Central Water Commission, 

2009) and hence no in situ data are publicly available. This shows the importance of remote 
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sensing data to inform river models in the region, which is also reflected in the numerous 

studies for the region using remote sensing and specifically satellite altimetry data (for 

example Hossain et al. (2014); Michailovsky et al. (2013); Papa et al. (2015), (2010)). 

 

Figure 1: Base map of the Brahmaputra basin model. The focus of this work is the river reach in the 

Assam Valley, indicated in the map. 

The model used in this study simulates the entire Brahmaputra basin. However, assimilation 

of altimetry data is limited to the downstream Assam valley, as sufficient amounts of satellite 

altimetry data are only available for this part of the river (data indicated in Figure 1). Here, 

the total floodplain width reaches up to 20 km, and the single channels have a width up to a 

few hundred meters. Also, the surrounding terrain is relatively flat. Upstream of the Assam 

Valley, the Brahmaputra River flows through the Himalayan Mountains and the Tibetan 

Plateau and is more narrow and often confined by a steep river valley (Jain et al., 2007). 
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CryoSat-2 adapts its range window, where it is sensitive to meaningful height measurements, 

in closed-loop control mode. This makes it hard, or impossible to obtain height observations 

over steep terrain (Dehecq et al., 2013). Also, most of the inland water satellite altimetry 

databases, such as HydroWeb (http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/), 

DAHITI (http://dahiti.dgfi.tum.de/en/), or River&Lake 

(http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main) do not offer any data for the 

upstream part of the Brahmaputra River. Only HydroSat (http://hydrosat.gis.uni-

stuttgart.de/php/index.php) provides water levels for 12 virtual stations from Jason-2 along 

the upstream Brahmaputra River and its tributaries. However, CryoSat-2 provides a relevant 

amount of data (Schneider et al., 2017) also for the narrow upstream part of the Brahmaputra. 

2.2 Brahmaputra River hydrologic-hydrodynamic model 

The entire setup is based on the hydrologic-hydrodynamic modelling suite MIKE HYDRO 

River (previously MIKE 11, see DHI (2015)). The hydrodynamic model uses a 1D dynamic 

wave routing based on the Saint-Venant equations for unsteady flow (Havnø et al., 1995). A 

6-point implicit finite difference scheme is used to solve the governing equations (Abbott and 

Ionescu, 1967). On a staggered grid of alternating Q and h  points discharge is calculated at 

Q  points, whilst water level is calculated at h  points. Furthermore, the MIKE HYDRO River 

offers various rainfall-runoff models. Here the conceptual, lumped NAM rainfall-runoff 

model (Nielsen and Hansen, 1973) was used to generate the runoff forcing for the 

hydrodynamic model. 
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This modelling framework was used to set up a hydrologic-hydrodynamic model of the 

Brahmaputra basin until Bahadurabad station, close to the Brahmaputra River’s confluence 

with the Ganges River. The model is almost entirely based on globally available remote 

sensing data, because of restricted access to in situ data in the region. Model setup and 

calibration are described in detail in Schneider et al. (2017). The most important aspects are 

summarized in the following. 

The focus of this work is the hydrodynamic part of the model, which was forced with 

simulated runoff from 33 subcatchments (Figure 1). The subcatchments are set up as NAM 

rainfall-runoff models, including snow melt modelling. Their precipitation forcing is derived 

from TRMM v7 3B42 data (Tropical Rainfall Measurement Mission Project (TRMM), 2011), 

and temperature and evaporation forcing are derived from the ERA-Interim reanalysis 

products from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et 

al., 2011). 

Discharge calibration of the entire model was performed against in situ discharge from 2002 

to 2007 at Bahadurabad station close to the outlet of the model. Discharge data from the same 

station from 2010 to 2015 was also used for the DA experiments, and can be seen in Figure 2. 

Note that in situ observations exist only for the high-flow periods. The observations usually 

occur five times daily, at 06:00, 09:00, 12:00, 15:00, and 18:00h, resulting in 5156 

observations in total, covering 1067 individual days for the period 2010 to early 2015. DA 

experiments with real data thus could only be evaluated for the high-flow season. 
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Figure 2: Observed and simulated discharge at Bahadurabad station for the years 2010 to 2015, i.e. the 

years covered by CryoSat-2 data. The initial model calibration period was 2002 to 2007. 

Due to the lack of high precision DEM or bathymetry data, a cross-section calibration was 

performed. Synthetic, triangular cross-sections were placed at regular intervals. The cross-

section opening angles and datums were calibrated so that simulated water level amplitudes 

matched observed amplitudes from Envisat virtual stations (indicated in Figure 1), and the 

simulated water level profile along the river matched the one observed by CryoSat-2, see 

details in Schneider et al. (2017). The resulting cross section shapes do not bear direct 

resemblance with the multi-channeled real river; their main purpose is to accurately simulate 

water level-discharge relationships. 
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3. CryoSat-2 altimetry data 

3.1 Mission overview 

The CryoSat-2 data used in this study are water levels from Level 2 data provided by the 

National Space Institute, Technical University of Denmark. The data are based on the ESA 

baseline-b Level 1b 20 Hz product (https://earth.esa.int/web/guest/-/how-to-access-cryosat-

data-6842), and retracked with an empirical retracker (Jain et al., 2015; Villadsen et al., 

2015). SIRAL, the main instrument on CryoSat-2, is a Ku-band radar altimeter. Most of the 

Brahmaputra basin is covered in the Synthetic Aperture Radar Interferometric (SARIn) mode 

of CryoSat-2, providing the possibility for off-nadir correction of the measurements’ ground 

locations due to the second antenna. The footprint size in SARIn mode is rectangular with 

side lengths of approximately 1.65 km and 305 m for the across-track and the along-track 

direction, respectively (European Space Agency and Mullard Space Science Laboratory, 

2012). The combination of a relatively small footprint and the detection of the main echo 

location in across-track direction in SARIn mode also means that hooking effects to water 

bodies (see e.g. Maillard et al. (2015)) cannot be exploited as for classical, larger footprint 

altimeters (LRM mode). The height reference for the CryoSat-2 observations was the EGM08 

geoid. It is common for satellite altimeters to show small, systematic biases in their height 

observations. Tourian et al. (2016), for example, provide an estimate of this bias for CryoSat-

2 over the Adriatic Sea. For our application, however, these small inter-mission biases can be 

ignored as we do not compare the absolute water heights to heights from any other sources. 
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Figure 3: CryoSat-2 ground tracks over the Assam Valley. Displayed are tracks crossing the 

Brahmaputra River: 1 (yellow) being absolute orbit 17327, start time 13 July 2013 23:51 UTC, 1 (red) 

absolute orbit 17747, start time 13 August 2013 10:49 UTC. Envisat ground tracks are displayed in grey. 

The small panel shows the CryoSat-2 sampling pattern along the river chainage for the beginning of 2012. 

In terms of hydrologic applications, the main difference between CryoSat-2 and all other 

previous and current altimetry missions is its drifting ground track pattern. CryoSat-2 usually 

will cross the approximately 800 km long stretch of the Brahmaputra River considered in this 

study 11 to 13 times for each of its 30-day sub-cycles. These crossings are numbered 1 to 13 

in yellow (14 is not crossing the Brahmaputra) in Figure 3. Odd numbers indicate ascending 

orbits, even numbers descending orbits. The time between two consecutive crossings is on 

average 1 day (~0.5 days between an ascending and a descending orbit, ~1.5 days between a 

descending and an ascending orbit). I.e. the river stretch in question will be sampled on 

average 12 times during a 12 day-window. This period is followed by approximately 18 days 

without observations. After 30 days a new sub-cycle, i.e. a new period with observations 
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follows. For each sub-cycle the ground tracks are slightly shifted relative to the previous sub-

cycle. This shift can be seen in Figure 3, where the red “1” indicates the first orbit of the sub-

cycle following the yellow one. This gives a very different sampling pattern compared to 

conventional altimetry missions, such as Envisat. Its ground tracks, indicated in grey in 

Figure 3, give observations every 35 days at locations where they intersect with the river. 

3.2 Masking and aggregation of data 

To determine CryoSat-2 data points representing river water level, the observations have been 

filtered over yearly updated river masks derived from Landsat NDVI imagery. These river 

masks represent yearly minimum water extent to account for annual changes in river 

morphology, but cannot account for seasonal variations due to limitations from cloud cover. 

See Schneider et al. (2017) for details. 

After filtering, each crossing of CryoSat-2 over the river usually consists of several individual 

data points. For DA purposes, observations from individual crossings are aggregated. Each 

crossing represents, at least in terms of the hydrodynamic model, the exact same time. In case 

of the satellite ground track crossing the river (nearly) perpendicularly, as is often the case for 

the predominantly east-west flowing Brahmaputra River in the Assam Valley, this means that 

all data points from one crossing can be aggregated into one measurement. In other cases, 

however, as shown in Figure 4, the satellite does cover a river stretch of considerable length 

with one crossing. Consequently, a different aggregation method has to be applied: Each river 

crossing is evaluated individually using a k-means clustering approach. First, the maximum 

spacing between individual data points of the current crossing (dots in Figure 4) along the 
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river is determined. The number of clusters is determined by dividing the maximum spacing 

by a threshold distance (5 km in Figure 4; 1.5 km and 3 km were also tested). The individual 

data points are then grouped into the clusters by k-means clustering of their location (different 

colors represent different groups in Figure 4). Their location and observed water level is 

averaged (tilted crosses in Figure 4), and then projected onto the model river line (crosses). 

 

Figure 4: Clustering CryoSat-2 data from single crossings. The different colors indicate different groups. 

Left: crossing from 9 April 2011. Right: crossing from 30 October 2010. 



  

16 

 

Assuming that all points of such a group represent the same river water level, the standard 

deviation of each group’s individual point water levels can be used as an indicator of the 

related observation uncertainty. 

4. Data Assimilation setup 

This section starts with a general introduction to data assimilation (section 4.1), and then 

presents the DA framework used in this study, along with the specific setup and parameters 

used for the case study (sections 4.2 and 4.3). Section 4.4 describes how the setup of the 

synthetic DA experiments, and finally section 4.5 discusses the used DA verification 

measures. 

4.1 Data Assimilation introduction 

In general, DA refers to the updating of model forecasts with observations to minimize model 

prediction uncertainty. We consider a sequential updating of the model forecast in the 

following way 

 ( )( )a f f

t t t t ty= + −x x K H x   (1) 

where tx  is the current state of the model represented by its state vector. f

t
x  is the model 

forecast propagated from the state at the previous time step according to the model dynamics 

(often referred to as model operator). Each time an observation becomes available, the 

forecast f

t
x  is updated using the observation ty . This step results in the analysis state vector 

t

a
x  . For the analysis, the gain operator K  weighs between the model’s forecast and the 

observation depending on the related uncertainties and correlations between state variables. 
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H  is the observation operator relating the model states to the observations. In our case, the 

model’s state is represented by the state vector consisting of the water levels in the h  points 

described in the previous section, i.e. only the hydrodynamic part of the model is updated, not 

the rainfall-runoff models. In principle, both h  and Q  points of the model (compare section 

2.2) can be included in the state vector. However, when including the h  points in the state 

vector only, the respective Q values still get updated implicitly by the numerical model 

(Madsen and Skotner, 2005). In tests with the Brahmaputra model, this leads to very similar 

results than including both Q and h points. 

Commonly, some implementation of the Kalman Filter (for example Jazwinski (1970); 

Maybeck (1979)) is used to perform the analysis in equation (1) and propagate the model’s 

uncertainties. The classic Kalman Filter, however, requires an explicit calculation of the 

covariance matrix of the model state, limiting its use to linear models of relatively low order. 

Various approaches have been developed to circumvent these limitations, many of them based 

on ensemble methods. In ensemble filters, the covariance matrix is determined from an 

ensemble of model realizations representing the model state uncertainty. 

For our case, the Ensemble Transform Kalman Filter (ETKF) has been used (Bishop et al., 

2001), which is based on Ensemble Kalman Filter (EnKF) theory (Evensen, 2003). In 

ensemble filters, the covariance matrix P  is estimated from the model ensemble (in the 

following the time index is omitted for clarity) 

 ( )( )
1

1 1

1 1

m
T T

i i

im m=

= − − =
− −
∑P X x X x AA   (2) 
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where 1[ ,..., ]m=X X X  is the ensemble of model states with size m . 1

1 i

m

m i=
= ∑x X  is the 

ensemble mean. 1[ ,..., ]m=A A A , i i= −A X x  are the ensemble anomalies. In the ETKF 

(Sakov and Oke, 2008), the ensemble mean is updated using equation (1). The ensemble 

anomalies are updated explicitly using 

 a f
=A A T   (3) 

where T  must satisfy 

 S
=T T U   (4) 

and 

 ( )
1/2

11

1

T
S f fI

m

−

− 
= + + 

T HA R HA   (5) 

and U  is an arbitrary orthonormal matrix, and R  the observation error covariance matrix. 

The ETKF was chosen over the also commonly used EnKF because the EnKF requires 

perturbing the assimilated observations. The ETKF does not require this as it updates the 

ensemble anomalies explicitly, which theoretically should lead to better filter results. Hence, 

the ETKF also has been shown to outperform the EnKF (Sakov and Oke, 2008). For details 

on the ETKF please refer to Sakov and Oke (2008). 

4.2 Data Assimilation framework 

The DA experiments were carried out with the DHI Data Assimilation Framework (adapted 

from Ridler et al. (2014)). Written in .NET/C# it is integrated with MIKE HYDRO River, 

allowing various DA methods to be run with the hydrodynamic model. The DA framework 
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provides different filters, error models and observation mapping methods to assimilate 

different datasets to MIKE models. 

Configuration details are provided by the user through a specially formatted configuration 

file. The framework provides different filtering algorithms such as the Ensemble Kalman 

Filter (EnKF) and the Ensemble Transform Kalman Filter (ETKF). It includes bias-aware 

filtering, allowing measurement or model biases to be estimated by the filter (Ridler et al., 

2014). Localization approaches are provided; that is the state updating can be restricted to 

model states in the neighborhood of the observation location. This is useful to avoid artefacts 

created by spurious correlations across the model space (Evensen (2009), chapter 15). The 

framework also provides different methods to describe model errors for the ensemble based 

filters. Auto-correlated errors of the forcing are integrated in the model state vector via state 

augmentation. By this a bias in the current model error description can be accounted for (see 

for example Evensen (2009) for a discussion of this). 

For hydrologic-hydrodynamic models uncertainty often largely originates from simulated 

runoff, or originally from climate forcing uncertainty. The most important (and most 

uncertain) forcing for hydrologic models usually is precipitation. Hence, the runoff (or 

meteorological forcings of the rainfall-runoff models) has to be perturbed for model 

uncertainty description. This has been done in previous data assimilation studies: Andreadis et 

al. (2007) and Michailovsky et al. (2013) applied the error to the runoff generated by rainfall-

runoff models, whilst others (Biancamaria et al., 2011a; Paiva et al., 2013) perturbed the 

precipitation (and temperature) forcing of the rainfall-runoff models. When using lumped 

rainfall-runoff models for a number of subcatchments, perturbation errors are expected to be 
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both temporally and spatially correlated. A common approach to represent temporal 

correlation is a first-order autoregressive model (AR1) 

 1 tt tδ −= +e e ε   (6) 

where te  is the vector of additive runoff perturbations for all subcatchments, δ  the AR1 

parameter, and tε  a vector of white Gaussian noise with zero mean and standard deviation of 

2(1 2 )aδ− . a  is a relative factor to scale the Gaussian noise. A Gaussian relative error was 

chosen as the relative discharge model error , ,

,

 sim t obs t

obs t

Q Q

Q

−
 at Bahadurabad station follows roughly 

a normal distribution. The noise was assumed spatially correlated, using the Cholesky 

decomposition L  of the correlation matrix C  (Kay, 1988, chap. 6) 

 
,t t u=ε ε L   (7) 

where 
,t uε

 is the uncorrelated vector of noise, and tε  the respective vector of spatially 

correlated noise used in equation (6). C  describes the spatial (cross) correlation between the 

forcing perturbations of the different subcatchments. Finally the forcings are perturbed by 

 ( )1p u t= +f f e   (8) 

where p
f  and uf  are the vectors of the perturbed and unperturbed forcings, respectively. To 

avoid negative values and avoid introducing a bias for p
f , te  is truncated to ]-1; 1[ by 

resampling. 

In large models, correlations of state variables across the entire model state space are often 

not expected. However, such spurious correlations still can occur as a result of the limited 
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ensemble size used to represent model uncertainty (Evensen, 2009, chap. 15). In such cases, 

localization has to be applied. In the DA framework, localization is implemented via the local 

analysis as described by Sakov and Bertino (2011), section 4. The basic principle of the local 

analysis is that it builds a virtual local window around each observation. This is implemented 

by scaling the observation covariance matrix with a taper function. The taper function scales 

the covariance matrix, usually with a value between 0 and 1, effectively resulting in a full 

update where the value is 1 and no update where the value is 0. In our case this taper function 

( )f r  was chosen to be a joined complementary error function ()erfc  , used in the interval [0; 

3]: 

 max max

0                      

(( 0.5)6) / 2  

                     otherw

  

i

 for

se

 
( )

r
r

s erfc r r
f r

⋅ − <
=




  (9) 

where r  is the absolute distance along the river network from the observation location, and 

maxr  a defined maximum distance for the local analysis (everything farther away will be 

disregarded for updating). The function is scaled to yield results between 0 and 1 by dividing 

it by two (further scaling can be applied via the factor s , which is set to 1 for the 

localization). The resulting function is displayed in Figure 5. The value of ( )f r  describes a 

plateau around the observation point in the middle. With increasing distance it is smoothly 

approaching zero for maxr r= . This shape was specifically chosen to guarantee smooth 

transitions between updated and not-updated states, which helps numerical stability of the 

hydrodynamic model. Furthermore, a wide plateau where the local analysis is applied fully is 

obtained. 
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Figure 5: Two-sided complementary error function used to fade the localization in and out; see equation 

(9). 

Hydrodynamic models usually have small simulation time steps, for example in the range of 

minutes. Often observations occur at much larger intervals, but in principle only would be 

assimilated at the single simulation time step closest to the observation. However, for many 

setups it is reasonable to assume that an observation delivers information about a longer time 

frame than a single simulation time step. Hence, virtual measurements are created by updating 

the model with the same observation at each simulation time step over a period defined as 

virtual window. This increases the system’s memory for each observation, and allows for 

smoother updates preventing numerical instabilities in the model. To account for decreasing 

confidence in virtual measurements before and after the actual measurement and to smoothen 

the updating, the virtual measurements can be assimilated by scaling the observation 

uncertainty. This scaling can be done using the two-sided complementary error function in a 

modified additive form similar to equation (9). The impact of the fade in and out of the virtual 

window values however was shown to be small in this particular case. Hence, the given 

observation uncertainty was held constant over the entire virtual window in our application. 

Extreme water level observations can be problematic for DA, because extreme updates can 

cause numerical instabilities or non-physical values in the hydrodynamic model. Hence, 

outliers have to be removed from the dataset. As an acceptable limit, a difference between 
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simulated water levels and CryoSat-2 observations of 3 m was set. CryoSat-2 observations 

that deviated more than 3 m from the simulated water levels were either disregarded 

completely or their water level was changed to deviate only 3 m from the simulated water 

levels. The latter assumes that even though the CryoSat-2 observations are considered 

erroneous, they still deliver information on whether the true water levels are higher or lower 

than the simulated water levels. Both outlier treatments were tested in the following for the 

assimilation of real CryoSat-2 data. 

4.3 Data Assimilation parameters for Brahmaputra case 

The above described DA parameters have to be determined for the specific application. 

For the description of the model uncertainty in the Brahmaputra model, the autocorrelation of 

the relative runoff error was assumed to be the same for all subcatchments and equal to the 

autocorrelation of the relative discharge model error , ,

,

 sim t obs t

obs t

Q Q

Q

−
 at Bahadurabad station. The 

AR1 parameter based on those residuals was 0.96, and was used for the DA experiments. The 

magnitude of the relative runoff error at Bahadurabad station, however, was found to be too 

small to result in a realistic ensemble spread. Open loop experiments suggested a standard 

deviation for the Gaussian white noise in the range of 0.3: It was assumed that the coverage of 

the model ensemble (in terms of the 90 % confidence intervals) should be around 0.9. Like all 

other metrics, the coverage was evaluated against in situ discharge at Bahadurabad stations 

(see section 4.5). The spatial correlation of the forcing errors from the subcatchments was 

assumed to be the same as the spatial correlation of the simulated runoffs, and is in the range 

of 0.45 to 0.97 with a mean of 0.76. 
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An estimate of observation uncertainty was determined based on the clustered CryoSat-2 data 

as described in section 3.2. This procedure gives a good estimate of the uncertainties of the 

different observations relative to each other. For single observations or groups consisting of 

less than three individual observations a standard deviation of 1.5 m was assumed. 

Furthermore, a lower limit for the standard deviation of 0.1 m was applied. We assume that 

even if all measurements within one group closely agree, instrument and processing errors of 

CryoSat-2 observations are in that range (Pedersen (2016) and the references therein, 

Armitage and Davidson (2014); Wingham et al. (2006)). 

Tests suggested a localization distance maxr  of 200 km up- and downstream. Smaller values 

lead to more limited updates. Larger values sometimes lead to unreasonable updates due to 

spurious correlations in the limited-size model ensemble, causing the model to crash. 

For the length of the virtual window virt  a value of 120 minutes was used. The choice of this 

value was supported by an evaluation of the simulated water level dynamics. Simulated water 

level differences over different lag times, starting from 5 minutes, were evaluated. For lag 

times of 120 minutes the 95 % quantile of changes in simulated water levels even during the 

high flow period is below 4 cm. 

Using the controlled synthetic DA experiment described in the following section, an optimal 

ensemble size was determined. For ensemble based Kalman Filters, the ensemble size should 

be chosen sufficiently large to reliably represent the full model uncertainty. However, it is 

also limited by computational restrictions. For a general discussion of this issue see for 

example Evensen (2009), chapter 11.7. In the context of hydrologic models see the discussion 
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by Zhang et al. (2015) or DeChant and Moradkhani (2012). Often, an ensemble size below 

100 is considered sufficient. However, this can vary from model to model. Hence, synthetic 

DA experiments with varying ensemble size were conducted. Based on this analysis, an 

ensemble size of 80 was considered a reasonable trade-off between computational effort and 

filter efficiency. 

Details concerning the choice of the virtual window size and the ensemble size can be found 

in the supplementary material. 

4.4 Synthetic altimetry Data Assimilation experiments 

To test and evaluate the DA framework, controlled synthetic DA experiments were 

performed. This was done with the actual Brahmaputra basin model and synthetically 

extracted observations, in hidden truth experiments. 

The synthetic observations were derived from a hidden truth run of the Brahmaputra basin 

model. The hidden truth is a run of the model with one random realization of the forcing 

perturbation that was also used to generate the ensemble for the description of the model 

uncertainty in the DA. This hidden truth run then displays significantly different discharge 

and water levels than the original model with unperturbed forcings (see synthetic truth and 

deterministic runs in Figure 7). From the simulated water levels of this hidden truth run, 

synthetic observations were extracted. To assess the value of CryoSat-2 observations when 

assimilated to the hydrodynamic model, the actual sampling pattern of CryoSat-2 was kept; 

that is the synthetic observations were extracted at the exact same points in time and location 

where real CryoSat-2 observations occur. To account for observation uncertainty, the 
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synthetic observations were perturbed with Gaussian white noise. Standard deviations of both 

0.2 m and 0.4 m were tested, as well as the observation error estimated from the clustering of 

the real observations as described in section 3.2. Finally, the synthetic observations were 

assimilated in the original model. The resulting discharge at Bahadurabad produced by the 

DA run was compared to the discharge from the hidden truth model. A flow chart displaying 

the whole procedure is shown in Figure 6. 

 

Figure 6: Flow chart displaying the hidden truth generation and following synthetic DA experiments 

During each of the approximately 12 day long windows with CryoSat-2 observations over the 

Brahmaputra River described in section 3.1, the observations move downstream along the 

river with an approximate velocity of 0.7 m/s. Visual inspection of the model results showed 

that the simulated flood waves travelled with a velocity of approximately 1.5 m/s. Hence, 
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flood waves in the Brahmaputra River, as in most rivers flowing from east to west, will 

overtake the ground track drift of CryoSat-2. The question then arises whether the sampling 

pattern of CryoSat-2 in relation to the river flow affects the updating of a hydrodynamic 

model of the river with CryoSat-2 data. To test this, another synthetic experiment was 

conducted. The setup was the same as described above, except that the temporal sequence of 

the observations was reversed. Practically this means that ground track drift and flow 

direction now are opposite to each other; or, in other words, this results in a sampling pattern 

as it would occur over a river flowing from west to east. 

As mentioned, the developed DA framework is able to ingest altimetry data with any kind of 

spatio-temporal distribution. This ability was shortly tested with synthetic data from the ESA 

Sentinel-3A (launched in February 2016) and Sentinel-3B (scheduled to be launched in 2017) 

missions (ESA Earth Online, 2016). The identical Sentinel-3 missions are on a sun-

synchronous orbit with a repeat cycle of 27 days; similar to other short-repeat missions such 

as Envisat or SARAL/AltiKa. The phase of Sentinel-3B’s orbit is shifted by +/-180º to 

Sentinel-3A (Sentinel-3 Team, 2013). The ground tracks of Sentinel-3B fall directly in 

between those of Sentinel-3A. Sentinel-3 serves as an example for short-repeat missions 

providing virtual station data, to evaluate the impact of sampling pattern on data value in the 

DA. Other than for CryoSat-2 data, only theoretical ground tracks were available, and no 

actual sampling pattern. For each crossing of the theoretical ground track with the river line, 

one synthetic water level observations was extracted. Again, those extracted water levels were 

disturbed with white noise. 
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4.5 Data Assimilation verification measures 

The ensemble predictions of discharge from the DA experiments were evaluated using the 

continuous ranked probability score (CRPS) (Gneiting et al., 2005), a popular verification tool 

for probabilistic forecasts or model simulations.  

 2

, ,
1

1
( ( ) ( ))

f t o t

T

T t
CRPS F Q F Q dQ

∞

= −∞
= −∑ ∫   (10) 

where Ff,t is the empirical cumulative distribution function of the ensemble predictions at time 

t, and Fo,t the respective empirical cumulative distribution function of the observation or 

synthetic truth. The CRPS combines reliability and sharpness of forecasts in one indicator; the 

theoretic optimum is zero. Furthermore, for deterministic simulations it simplifies to the mean 

absolute error (MAE). The ensemble predictions also were evaluated in terms of their 

coverage and sharpness. The prediction ranges are characterized by their 90 % confidence 

intervals. Coverage describes the share of observations that fall within the range of 

predictions (i.e. the expected value is 90 %), and the sharpness is the width of this range, 

where smaller values are considered better. Another indicator is the commonly used Nash-

Sutcliffe model efficiency coefficient (NSE).  
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where Qf,t and Qo,t are the simulated and observed discharge at time t, and ������ the mean of 

observed discharge. The NSE is an indicator for deterministic simulations; its values range 

from 1 (perfect model output) to negative infinity, where 0 indicates that the model output is 

as good as the mean of observations. When calculating the NSE of ensemble predictions, the 
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ensemble mean was used. Furthermore, the root mean square error (RMSE) and bias were 

evaluated: 
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5. Results and discussion 

5.1 CryoSat-2 data 

Over the years 2010 to 2015, a total of 4553 single CryoSat-2 observations were obtained 

over the Brahmaputra River in the Assam Valley (Table 1). Observations from the same 

crossings were aggregated into groups as described in section 3.2. The resulting number of 

clustered observations is also shown in Table 1 for different cluster threshold distances. All 

values are shown separately for the low-flow (November to March) and high-flow period 

(April to October). Not surprisingly, the number of observations does not differ significantly 

between the two periods – this is because it was only possible to obtain one river mask for 

each year (see also Schneider et al. (2017) for a discussion of this), without distinguishing 

between different flow regimes. Numbers are still reported separately, as the in situ data used 

as benchmark in the DA experiments only cover the high-flow period; see Figure 2. Note that 

the CryoSat-2 mission started providing data in July 2010, and the used dataset ends in mid-

February 2015, when ESA baseline-b processing ended. 
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Table 1: Number of CryoSat-2 observations over the Brahmaputra River in the Assam Valley. Single 

observation points and observations aggregated with different cluster distances are shown. Low-flow (lf) 

refers to November to March, high-flow (hf) to April to October. Values in brackets are outliers deviating 

more than 3 m from simulated water levels. 

 No. of single obs. No. of obs. with 
1.5 km cluster 

distance 

No. of obs. with 3 km 
cluster distance 

No. of obs. with 5 km 
cluster distance 

 lf hf lf hf lf hf lf hf 

2010 189 (0) 99 (0) 47 42 30 28 26 22 

2011 606 (12) 590 (14) 201 176 118 110 86 89 

2012 386 (5) 450 (17) 151 144 105 111 85 99 

2013 602 (12) 590 (12) 213 186 118 115 88 99 

2014 402 (6) 456 (7) 168 153 94 107 72 94 

2015 183 (1) 0 (0) 63 0 37 0 26 0 

Sum 
2368 (36) 2185 (50) 843 701 502 471 383 403 

4553 (86) 1544 973 786 

 

To determine the optimal cluster distance, one can for example evaluate the number of single 

observations per cluster. Using a distance of 1.5 km results in an average of 2.9 single 

observations per cluster. This means that there are many clusters with only 1 or 2 single 

observations, making an assessment of their uncertainty hard. Making the cluster distance too 

large, however, increases the error from assuming that all observations within one group 

should represent the same water level, while in reality they do not due to water level slope. As 

a trade-off, the 3 km cluster distance was chosen to be used in the DA experiments, both to 

assimilate real CryoSat-2 data, and to extract and assimilate synthetic CryoSat-2 data. With 

3 km cluster distance, the mean error for all clusters with 3 or more members is 0.31 m, which 

compares well to studies evaluating satellite radar altimetry observation error against in situ 

data over rivers (Villadsen et al., 2016). 
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5.2 Assimilation of synthetic CryoSat-2 altimetry 

Three different noises for the synthetic observations were tested; white noise with 0.2 m and 

0.4 m standard deviation, and white noise with variable standard deviations as determined by 

the observation clustering. Furthermore, two different hidden truth runs (HT 1 and HT 2) 

were compared, and the experiments were repeated for the Brahmaputra River hypothetically 

flowing in west-east direction. Table 2 summarizes the results:  

Table 2: Results from the synthetic DA experiments in terms of discharge at Bahadurabad station. CRPS 

is calculated against the discharge of the hidden truth model. Sharpness and coverage in relation to the 

90 % confidence interval. NSE refers to the ensemble mean. Average of 4 runs in each row. 

  NSE 

[-] 

bias 

[-] 

RMS

E 

[m
3
/s] 

CRPS 

[m
3
/s] 

sharpnes

s 

[m
3
/s] 

coverag

e 

[-] 

HT 
1 

open loop 0.753 0.092 8695 3793 15611 0.773 

DA, CryoSat-2, obs. error 0.2 m 0.885 0.034 5937 2565 9439 0.651 
DA, CryoSat-2, obs. error 0.4 m 0.869 0.034 6347 2722 9688 0.673 
DA, CryoSat-2, cluster obs. error 0.864 0.020 6462 2761 11333 0.775 
DA, CryoSat-2, obs. error 0.2 m, west-east flow 0.913 0.013 5169 1996 8153 0.782 
DA, CryoSat-2, obs. error 0.4 m, west-east flow 0.909 0.012 5278 2082 8728 0.781 
DA, CryoSat-2, cluster obs. error, west-east flow 0.884 0.014 5965 2476 10868 0.829 

HT 

2 

open loop 0.848 -0.097 7769 3305 15611 0.839 

DA, CryoSat-2, obs. error 0.2 m* 0.909 -0.084 6011 2265 9256 0.821 
DA, CryoSat-2, obs. error 0.4 m 0.896 -0.084 6407 2445 9733 0.811 
DA, CryoSat-2, cluster obs. error 0.901 -0.090 6257 2420 11602 0.878 
DA, CryoSat-2, obs. error 0.2 m, west-east flow 0.911 -0.083 5949 2137 8267 0.812 
DA, CryoSat-2, obs. error 0.4 m, west-east flow 0.911 -0.085 5947 2192 8683 0.808 
DA, CryoSat-2, cluster obs. error, west-east flow 0.899 -0.098 6329 2345 11304 0.891 

DA, Sentinel-3A, obs. error 0.4 m 0.882 -0.110 6483 2388 7888 0.746 
DA, Sentinel-3A and Sentinel-3B, 
obs. error 0.4 m 

0.899 -0.097 6335 2182 6693 0.661 

* run shown in Figure 7 

The open loop run is a run of the model ensemble with the exact same description of model 

uncertainty as used in the DA experiments, but without assimilating any data. It can be seen 

as a benchmark of the model’s performance and uncertainty without DA. Largest 

improvements can obviously be achieved when assimilating synthetic observations with 
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lowest observation uncertainties. For synthetic data with a standard error of 0.2 m, the 

performance improvement in terms of CRPS is 32 % and 31 % for hidden truth 1 and 2, 

respectively. This value decreases to 26 % - 28 % for data with a standard error of 0.4 m or 

with the variable uncertainty. In general, sharpness of the model ensemble output increases 

when DA is applied. The relative performance improvements between hidden truth 1 and 

hidden truth 2 are very similar, even though the absolute deviation from the original model 

run is larger for hidden truth 1. In theory, the coverage of the 90 % confidence interval of the 

ensemble forecasts should be 0.9. The coverage of the open loop runs is only 0.773 for hidden 

truth 1 and 0.839 for hidden truth 2. This indicates that especially hidden truth 1 is a model 

realization that is particularly far away from the original model. This can happen despite the 

random nature of the perturbations applied; because the temporal correlation of the 

perturbation error is high. 

Interestingly, the flow direction of the river in relation to the ground track drift has an impact 

on the results. For the west-east flowing river, improvements of CRPS are between 29 % to 

47 %, compared to 26 % to 32 % for the original setup. This is likely related to the sampling 

pattern: For the west-east flowing river, CryoSat-2 observations drift in opposite direction of 

river flow. This results in a better spatio-temporal sampling pattern of river flow: With the 

original ground tracks (compare Figure 3), the last observation of each sub-cycle occurs at the 

downstream end of the Assam Valley. Every following first observation after the period 

without observations occurs at the upstream end. Consequently, any flood waves in a period 

of ~18 days plus the flood wave travel time from the upstream to the downstream end will be 

missed. In the west-east flowing river the sampling pattern is different and leads to increased 
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data value. Figure 7 shows the results in terms of discharge at Bahadurabad of one DA run 

with an observation standard error of 0.2 m for the original CryoSat-2 orbit for hidden truth 2. 

 

Figure 7: Results of DA of synthetic CryoSat-2 water level observations in comparison to the synthetic 

truth model results at Bahadurabad station. Example with hidden truth 2 and an observation error of 

0.2 m. The lower panel displays the deviations from the in situ data, as Qsim – Qtruth 
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5.3 Assimilation of synthetic Sentinel-3 altimetry 

Table 2 shows also the results of experiments with synthetic Sentinel-3A and Sentinel-3B 

data with an observation noise of 0.4 m. For the given period, the Sentinel-3A dataset 

contains 754 synthetic observations, compared to 973 clustered observations with the used 

3 km cluster distance from CryoSat-2 (Table 1). Even though the Sentinel-3A dataset offers 

fewer observations than CryoSat-2, the performance improvement is slightly larger. This is 

assumed to be related to the more regular sampling pattern of Sentinel-3A: the Brahmaputra 

River in the Assam Valley is observed at least every 3.5 days by Sentinel-3A, compared to up 

to 19 days without observations for CryoSat-2 (compare section 3.1). These long windows 

without observations allow the hydrodynamic model to deviate far from its updated state, as 

can for example be seen in the second half of September 2011 in Figure 7. Despite state 

augmentation of the forcing errors, the memory of the hydrodynamic model is shorter than the 

periods without observations. For a combination of Sentinel-3A and Sentinel-3B the number 

of synthetic observations increases to 1386, and the river is observed at least every 2 days. 

This gives further performance improvements. 

5.4 Assimilation of real CryoSat-2 altimetry 

For the real DA experiments, first tests were run assimilating all clustered CryoSat-2 

observations. This included observations that deviated more than 3 m from the simulated 

water levels. As described in section 3.2, these observations were considered outliers. Two 

options to handle outliers were considered initally: i) Instead of removing them their water 

level was set to deviate by a maximum of 3 m (instead of more) from the simulated water 
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levels. Their determined standard deviation was kept. ii) They were completely discarded, 

which lead to slightly better DA results. This indicates that information contained in these 

outliers on water levels being below or above simulated water levels does not add any value. 

Hence, the DA experiments discussed in the following and presented in Table 3 were 

conducted using the reduced dataset (Table 1 reports the number of such outliers). Other 

thresholds than the 3 m distance between simulated and observed water levels were tested as 

well. Except for extremely small thresholds discarding many observations and large 

thresholds leading to instabilities in the update step, the threshold value did not show to have 

a significant impact on DA performance. 

Results for these runs, as discharge at Bahadurabad station, are shown in Table 3 and 

compared to climatology and persistence forecast results. Climatology and persistence are 

used as benchmarks as both can be produced easily: Climatology forecasts the current flow to 

be the average of the historic records on a specific day of year. Persistence forecasts the 

current flow to be equal to the previously observed flow (here from 1 to 7 days before). To 

begin with, already the open loop run performs significantly better than a climatology based 

on historic discharge data for the 45 years 1956 to 2000: coverage of the model ensemble 

forecast is slightly higher than of the climatology, and it is significantly sharper. This results 

also in a significantly better CRPS value. Also, persistence forecasts of more than 4 to 5 days 

are outperformed by the model’s open loop run. 
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Table 3: Results from the real DA experiments in terms of discharge at Bahadurabad station, compared 

to persistence and climatology forecasts, against in situ discharge observations. Sharpness and coverage 

given in relation to the 90 % confidence interval. 

 NSE 

[-] 

bias 

[-] 

RMSE 

[m
3
/s] 

CRPS 

[m
3
/s] 

sharpness 

[m
3
/s] 

coverage 

[-] 

Persistence (1 day) 0.986 0.000 1851 1151 - - 
Persistence (2 days) 0.949 0.000 3475 2189 - - 
Persistence (3 days) 0.901 0.001 4855 3100 - - 
Persistence (4 days) 0.848 0.001 5998 3894 - - 
Persistence (5 days) 0.795 0.001 6935 4570 - - 
Persistence (6 days) 0.745 0.001 7704 5156 - - 
Persistence (7 days) 0.699 0.001 8338 5681 - - 

Climatology (based on 1956 – 2000 data) 0.651 -0.137 9207 4775 20661 0.911 

open loop 0.839 0.110 6306 3332 15264 0.926 

DA, base setup 0.839 0.124 6311 3244 11405 0.834 
DA, scaled cluster obs. uncertainty by 0.5 0.842 0.119 6256 3245 10741 0.784 
DA, fixed obs. uncertainty 0.3 m 0.871 0.094 5654 2997 9156 0.723 
DA, fixed obs. uncertainty 0.15 m 0.874 0.086 5578 3021 8655 0.698 

 

The DA base setup refers to a run assimilating all the CryoSat-2 observations with 3 or more 

individual data points per cluster group, using their standard errors as an estimate of 

observation uncertainty. The effect of this assimilation run was small, resulting only in minor 

improvement of CRPS. Scaling these standard errors by a factor of 0.5, consequently putting 

more trust in the observations does not provide better results either. Further experiments were 

conducted with a fixed observation uncertainty, instead of the varying uncertainties derived 

from the clustering. Here, more clear improvements could be shown. This indicates that the 

spread of individual data points is not a good estimator of the related observation uncertainty. 

Decreasing the observation uncertainty assumed in the DA from 0.3 m to 0.15 m showed no 

further improvement. Figure 8 shows the results in terms of discharge at Bahadurabad station 

for one run with a fixed observation uncertainty of 0.3 m. It can be seen, especially in the 

detail showing April to December 2011, that updating the Brahmaputra hydrodynamic model 

with CryoSat-2 altimetry is improving the model’s discharge prediction capabilities. The 
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model uncertainty description was well chosen, as can be seen at the 0.926 coverage ratio of 

the 90 % confidence intervals of the open loop run. The coverage, however, decreases 

significantly in the DA experiments; the more trust is put into the observations, the smaller 

the coverage. This can result from a discrepancy between the assimilated altimetry data and 

the in situ data used for verification, or also indicate that the model uncertainty is considered 

too low when assimilating data. Interestingly, except for the lowest observation uncertainty of 

0.15 m, the decrease in coverage is overcompensated by the increase in sharpness leading to a 

better CRPS value. 
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Figure 8: Results of DA of real CryoSat-2 water level observations in comparison to in situ data at 

Bahadurabad station. The lower panel displays the deviations from the in situ data, as Qsim – Qin situ 

It has to be noted that the improvements obtained in the real DA experiments (up to 10 % 

reduction in CRPS) are significantly smaller than those obtained in the synthetic DA 

experiments (up to 32 %). There are several possible reasons for this. For example, this 

behavior could indicate that the real CryoSat-2 observations have a lower accuracy than 
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estimated by us. Ground validation over the Brahmaputra River, however, is not possible. In 

addition, the very sparse in situ data from Bahadurabad station may have inaccuracies. The 

simulated water level-discharge relationships are central to this problem, as the assimilation 

of water level observations are evaluated against observations of discharge. The simulated 

water level-discharge relationships are determined by the cross-section calibration (Schneider 

et al., 2017), which in itself is partly based on CryoSat-2 data. The uncertainties related to the 

cross-section calibration only affect the real DA experiments, not the synthetic ones. Such 

uncertainties related to model parameterization can be significant in this case. Further 

research could be directed towards an integration of channel parameters in the updated state 

vector. Besides this, the chosen model structure with triangular cross-sections and a uniform 

channel roughness might not be able to adequately represent river geometry and conveyance 

in this braided river under highly variable flow conditions. A general assessment of 

discrepancies between water levels simulated by a 1D hydrodynamic model and its satellite 

observations by Siddique-E-Akbor et al., 2011 found errors of up to 2.4 m over the 

Brahmaputra River. 

Another potential reason for the limited DA performance is the CryoSat-2 data filtering. 

Using low-flow river masks only, it potentially misses a relevant amount of CryoSat-2 

observations especially during the high-flow season. River masks at higher temporal 

resolution, allowing tracking intra-annual changes of water extent could be extracted from 

SAR imagery. Unlike optical imagery from Landsat or similar, SAR imagery can provide 

observations independently of cloud cover. Since mid-2014 there exists a source of freely 

available SAR imagery with high spatio-temporal resolution: ESA’s Sentinel-1A mission. 
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The model improvements that could be obtained here are comparable to similar large-scale 

satellite altimetry DA studies. As mentioned, however, those assimilated water level 

anomalies instead of absolute water levels. Michailovsky et al. (2013) improved the Interval 

Skill Score of simulated discharge by around 5 % assimilating Envisat altimetry data from six 

virtual stations to a Muskingum routing model of the Brahmaputra River. This more simple 

model allowed to use the Extended Kalman Filter instead of ensemble methods. Assimilating 

Envisat altimetry data to a model of the Amazon River, Paiva et al. (2013) set up a model of 

the Amazon basin with very similar hydrologic-hydrodynamic structure as in this work. 

Assimilating Envisat data from 287 stations along the Amazon and its main tributaries using 

an EnKF, they managed to improve RMSE values of water levels compared to in situ 

observations by up to 44 % and discharge by up to 15 %. Studies using synthetic SWOT data 

in various river model data assimilation setups (an overview can be found in Biancamaria et 

al., 2016) could show the significant value of the wide-swath SWOT data. However, only 

after a successful launch of the SWOT mission expected in 2021, such setups can be tested 

with real data. 

6. Conclusions 

A method to assimilate altimetry data with arbitrary spatio-temporal sampling pattern to a 1D 

hydrodynamic river model has been developed. Compared to many past applications of 

satellite altimetry data to river models it does not require satellite altimetry in form of virtual 

station data. This work is the first one to use absolute water levels from real observations 

distributed along the entire river’s course instead of anomalies at virtual stations only. This is 

achieved by combining a hydrodynamic model able to simulate accurately and unbiased water 
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levels (calibration procedure described in Schneider et al. (2017)) with a flexible DA 

framework. The method has been presented using drifting ground track CryoSat-2 altimetry 

data with a model of the Brahmaputra River basin. The CryoSat-2 data was filtered over 

dynamic river masks based on Landsat imagery and assimilated to a 1D hydrodynamic model 

in the MIKE HYDRO River software. CryoSat-2 data was extracted over the downstream 

Assam Valley of the Brahmaputra River, with a high spatial resolution sampling pattern. 

The general capability of the developed DA framework in combination with the 

hydrodynamic model of the Brahmaputra River was demonstrated in controlled DA 

experiments with synthetic observations distributed as the original CryoSat-2 observations. 

Synthetic DA experiments showed improvements of discharge predictions at Bahadurabad 

station in terms of CRPS in the range of 26 % to 32 % compared to open loop runs. Also the 

influence of the river flow direction in relation to the ground track drift of CryoSat-2 was 

assessed, and it indicated that CryoSat-2’s data has highest value for rivers flowing from west 

to east. The results show that altimetry with CryoSat-2’s unique sampling pattern can 

significantly improve discharge simulations in river models. More regular sampling patterns 

without long periods lacking observations seem to have a beneficial impact on the results of 

the DA, as was shown by assimilating synthetic Sentinel-3 data. Potentially, updating model 

states with longer memory than the water levels in the hydrodynamic model, for example 

states of the rainfall-runoff models, could improve performance with such irregular sampling 

patterns. 

Assimilating real CryoSat-2 data to the hydrodynamic model also proved to be successful. 

Discharge predictions of the model at Bahadurabad station, evaluated against the available in 
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situ data for the high-flow season, could be improved by up to 10 % in terms of CRPS. An 

estimate of the CryoSat-2 observations uncertainty was calculated in this study based on 

grouping individual data points. Using this estimate, however, did not improve the model’s 

discharge predictions. Best results were obtained by assigning a fixed observation uncertainty 

to all outlier-removed observations. 

Direct validation of CryoSat-2 observations over the Brahmaputra River is hard due to the 

very limited access to in situ observations. The limited data availability, however, also makes 

the use of remote sensing data crucial and useful in practice. Further studies could be 

performed over river basins with better in situ data availability. The positive results from 

assimilating the data to a hydrodynamic model nevertheless indicate the general validity of 

the CryoSat-2 altimetry data, the chosen model setup, and the developed DA framework. In 

addition, first results of validation of CryoSat-2 altimetry observations over rivers indicate 

performance comparable to other current altimetry missions, also over more narrow rivers 

such as the Po River (Tourian et al., 2016; Villadsen et al., 2016, 2015). 

Because the developed model setup is based almost entirely on globally available remote 

sensing data, and the flexible DA approach can ingest any kind of altimetry data, the 

presented setup is expected to be transferable to almost any large river basin. Moreover, the 

flexible DA framework, in combination with the cross-section calibration procedure, opens 

the opportunity for assimilation of multi-mission datasets to hydrodynamic models. 
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