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1 Abstract 21 

Phosphorous has long been the target of much research, but in recent years the focus has 22 

shifted from being limited only to reducing its detrimental environmental impact, to also looking 23 

at how it is linked to the global food security. Therefore, the interest in finding novel techniques 24 

for phosphorous recovery, as well as improving existing techniques, has increased. In this study 25 

we apply a hybrid simulation approach of molecular dynamics and quantum mechanics to 26 

investigate the binding modes of phosphate anions by a small intrinsically disordered peptide. 27 

Our results confirm that the conformational ensemble of the peptide is significantly changed, or 28 

stabilized, by the binding of phosphate anions and that binding does not take place purely as a 29 

result of a stable P-loop binding nest, but rather that multiple binding modes may be involved. 30 

Such small synthetic peptides capable of binding phosphate could be the starting point of new 31 

novel technological approaches towards phosphorus recovery, and they represent an excellent 32 

model system for investigating the nature and dynamics of functional de novo designed 33 

intrinsically disordered proteins.  34 

2 Introduction 35 

Phosphorous (P) is an essential element in terms of sustaining the world’s current and 36 

future food supply, for which there is no substitute.1–3 Given that the current P supply is based on 37 

the gradual depletion of limited fossil reserves, an increasing demand for P necessitates a change 38 

towards more sustainable practices where P is recovered from the large waste streams. The 39 

lifetime of remaining high quality phosphate rocks is still being debated, estimates varying from a 40 

few decades to a few hundred years.3,4 There is however a general consensus that P is becoming 41 

more and more difficult to access, costs are increasing, more waste is being produced, and the 42 
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global demand is expected to increase.4,5 Meanwhile, only a fraction of the mined P makes it into 43 

the intended plants and animals which humans consume, while most is lost along the way causing 44 

serious environmental problems e.g. by eutrophication of lakes, reservoirs, estuaries, and parts of 45 

the ocean.2,4,6,7 46 

The topic of P has been a point of interest for waste-water treatment engineers for 47 

decades.8 The main attention has however so far been focused almost exclusively on reducing 48 

eutrophication, so while many of the now common techniques for P treatment, e.g. chemical 49 

precipitation8 and enhanced biological phosphorus removal9 (EBPR), are highly efficient for the 50 

job they were designed for, they are not necessarily effective in terms of recovering P from its 51 

large waste flows, which have different characteristics from the commonly treated domestic 52 

wastewater flows and are not always easily intercepted (e.g. erosion and runoff2). One of the 53 

current main technologies, optimized for P removal but also applicable to recovery to some 54 

extent, is EBPR, where polyphosphate accumulating organisms are used to capture and store high 55 

amounts of P in their heterotrophic biomass. These organic biosolids may subsequently need to 56 

be treated prior to reuse of the P, or they may be used directly in agricultural settings, e.g. as a 57 

slow-release fertilizer. EBPR however faces several limitations, perhaps the most serious being 58 

that energy recovery (methane production) must be carried out in a strictly anaerobic system, 59 

which is not easily combined with the aerobic and anaerobic conditions needed in EBPR-based 60 

waster water treatment.2,10 61 

Biological techniques such as EBPR are encouraged by the fact that certain 62 

microorganisms flourish in P-limited environments by having developed efficient enzymes and 63 

proteins that bind with high specificity and reversibility to phosphorus compounds.11,12 This 64 

makes biomimetic approaches for P recovery generally interesting, and we recently did a 65 
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statistical analysis of how proteins in nature bind different phosphorus compounds in order to 66 

reveal common binding site characteristics.13 One of the most common ways in which proteins 67 

bind phosphates non-covalently, and in particular the 𝛽𝛽-phosphate of ATP and GTP, is through the 68 

P-loop, which is characterized by the consensus sequence Gly-Xxx-Xxx-Xxx-Xxx-Gly-Lys-69 

(Ser,Thr).14–18 Inspection of the three-dimensional structure of P-loops reveals that it is 70 

remarkably well conserved throughout nature, and the main conformation of the sequence is 71 

generally found to form a feature resembling an anion-binding nest.19,20 A classic “nest” feature in 72 

biochemistry is defined to consist of three amino acids, and can be either in a LR or RL 73 

configuration, depending on the main chain dihedral angles of the two first residues.21 The anion-74 

binding nest seen for the P-loops is formally a series of overlapping nests, typically in an LRLR 75 

conformation for the Xxx-Xxx-Gly-Lys part of the consensus sequence.22 Although the P-loop nest 76 

structure is expected to be essential for binding of the phosphate anion, the anion is also expected 77 

to stabilize the nest conformation, which has been demonstrated for some P-loop proteins by X-78 

ray crystallography; i.e. the P-loop without the anion is supposedly fairly flexible and without any 79 

stable structure.23,24 80 

Recently, a hexapeptide with the sequence Ser-Gly-Ala-Gly-Lys-Thr (SGAGKT) was 81 

synthesized Bianchi et al. based on the P-loop consensus sequence.25 The two glycines in this 82 

peptide were introduced to promote a natural LRLR conformation, and the peptide in its lysine-83 

protonated zwitter-ionic state was found be a capable binder of phosphate anions PO4
3- and HPO4

2-, 84 

whereas H2PO4
1- and H3PO4 were found not to be bound. From their studies, it is expected that the 85 

synthetic peptide form a classical LRLR nest structure when binding of the anion. Due to its small 86 

size, it is reasonable to assume that when unbound in solution this peptide does not posses a well-87 

defined secondary structure and instead exists as a dynamic ensemble of conformations which 88 

may posses transient residual secondary structure, or consist of multiple structures that rapidly 89 
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exchange.26 As such it is not unreasonable to assume that the peptide might potentially have a 90 

nature similar to intrinsically disordered proteins (IDPs), IDPs having received increasing interest 91 

in the scientific community in recent years,27 given that they compose approximately 20% of the 92 

proteome.28 Conventionally, when a given ligand binds to an IDP, the favorable free energy from 93 

binding is offset by the loss in conformational entropy, resulting in complexes that can be highly 94 

specific with low overall binding energies.29 For the SGAGKT peptide, however, binding of the 95 

phosphate anions has experimentally been found to be attributed to favorable entropic 96 

contributions.25 97 

In order to further investigate the nature of how the P-loop binds and interacts with 98 

phosphate, in this study we apply molecular dynamics (MD), accelerated molecular dynamics 99 

(aMD) and semi-empirical quantum mechanics (QM) in a hybrid approach (QM/MM) to simulate 100 

how the phosphate anion is bound by the peptide SGAGKT, and demonstrate how these results 101 

correlate with experimental data. MD is a simulation technique which can be used for simulating 102 

the physical movements of atoms in molecules in the context of classical dynamics, using 103 

empirically determined forcefields.30 For more details on the approach see Appendix A. Our 104 

simulations confirm the suspected intrinsically disordered nature of the peptide in the absence of 105 

an anion, and demonstrate how the addition of an anion stabilizes the conformational space. They 106 

also suggest, however, that the phosphate anions are not completely stably bound in a singular P-107 

loop nest structure, as hypothesized in literature, but rather that multiple binding conformations 108 

exist; this translates to a very reversible binding mechanism, and is therefore of considerable 109 

interest for applications involving phosphorus recovery. The use of a phosphate-binding peptide 110 

in a biomimetic system represents a model where there is no need for growing heterotrophic 111 

bacteria. Despite such technology still being at its infant state, it may thus potentially be superior 112 
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to current technologies such as EBPR, and it is therefore an appealing area of research in the 113 

future of resource recovery. 114 

3 Materials and Methods 115 

3.1 Model System 116 

All MD simulations were run using the molecular modeling packages Amber14 and 117 

AmberTools14.30 To set up a given peptide simulation, first the fully extended peptide was created 118 

using the module LEaP in AmberTools14. For peptide-anion systems, the anion was added 119 

randomly to the system on a sphere 100Å away from the peptide, hereafter it was translated to 120 

3.5Å proximity of the closest atom in the peptide, thereby ensuring random starting positions. All 121 

systems were built with LEaP using the ff14SB force field parameters31 and were explicitly 122 

solvated using the TIP3P model for water32 in rectangular boxes with 10.0Å to each edge from the 123 

system of interest. This resulted in each simulation having between 1450 and 1650 water 124 

molecules. To minimize system complexity no counter ions were included in the simulations. 125 

The systems were minimized for 10,000 steps: 5,000 steps using a steepest descent 126 

algorithm and 5,000 steps using a conjugated gradient algorithm. Heating of the system to 300K 127 

over 0.8ns was then performed with a weak restraint of 1 kcal/mol on the peptide-anion, and 128 

afterwards the systems were equilibrated for 0.2 ns without any restraints at 300K. Heating was 129 

performed under constant volume and temperature (NVT ensemble). Equilibration and 130 

production runs were performed at 300K using the Langevin thermostat with a collision 131 

frequency of 1 ps-1, and the pressure was set to 1 bar using the Berendsen barostat (NPT 132 

ensemble). Hydrogens were restrained using SHAKE33, non-bonded interactions were cut off at 133 
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10.0 Å, and full electrostatics for the periodic system were calculated using the Particle Mesh 134 

Ewald approach.34  135 

In all peptide-anion simulations, the phosphate anions were marked as quantum regions 136 

and treated using the semi-empirical PM6 hamiltonian with dispersion correction as implemented 137 

in Amber14.30,35 SHAKE restriction was used on all hydrogens in the QM region and all simulations 138 

were performed with a 2 fs timestep. The sander module of Amber14 was used for QM/MM 139 

simulations and pmemd.cuda was used for all peptide-only simulations.  140 

3.2 aMD simulations 141 

For all aMD simulations the average potential and dihedral energies were first obtained from 2 ns 142 

cMD runs on the same system. The hexapeptide SGAGKT has 74 atoms, and with the 143 

approximation that each residue has an energy contribution of 3.5 kcal/mol, the values for the 144 

parameters required for the aMD runs (see Appendix A) were calculated using empirical 145 

estimates as specified in Eqs. 1-4, where αD and αP are added to the average values obtained from 146 

the cMD simulations in order to account for the degrees of freedom in the peptide.36 147 

 148 

Equation 1 149 

𝛼𝛼𝛼𝛼 =
1
5

∙ 6 ∙ 3.5
kcal
mol

= 4.2
kcal
mol

 150 

Equation 2 151 

𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸avg + 𝛼𝛼𝛼𝛼 152 
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Equation 3 153 

𝛼𝛼𝛼𝛼 =
1
5

kcal
mol∙atoms

∙ 28 atoms = 5.6
kcal
mol

 154 

Equation 4 155 

𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸avg + 𝛼𝛼𝛼𝛼 156 

 157 

To obtain the canonical ensemble the trajectories were reweighted through cumulant expansion 158 

to the second order, using the python toolkit provided McCammon group.37 159 

3.3 Cluster Analysis & Principal Component Analysis 160 

Clustering of trajectories and principal component analysis (PCA) were performed with 161 

CPPTRAJ, which is the native post-processing utility of Amber14.38 Clustering was done both with 162 

an agglomerative hierarchical algorithm with 𝜀𝜀 set to 3.0 and using the DBSCAN39 algorithm with 163 

𝜀𝜀 set to 1.2 and the minimum points set to 20. The distance metric used for both algorithms was 164 

the root mean square deviation (RMSd) of all atoms in the peptide except for hydrogens. To 165 

reduce processing time, a “sieve” value was chosen such that for a given trajectory, only 20,000 166 

evenly spaced frames from the trajectory were used, and afterwards sieved frames were added 167 

back into the clusters if applicable given the value of 𝜀𝜀. 168 

A powerful way to improve the information gained from clustering algorithms, is to combine it 169 

with principal component analysis (PCA)40, where the overall motions of the trajectories are 170 

represented in a lower dimensional space by mapping the trajectories to a set of eigenvectors 171 

calculated from the covariance matrix of the atoms.41,42 These eigenvectors are referred to as 172 

“modes” throughout this work, such that each mode corresponds to a certain type of motion of the 173 
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peptide. Prior to all PCA the trajectories were RMS fitted to the overall average structure first, and 174 

the coordinate covariance matrix was then calculated for all heavy atoms in the peptide. The 175 

trajectories were projected along the calculated modes in order to obtain a time series of PCA 176 

projection values for each mode. 177 

The Kullback-Leibler divergence (KLD) has previously been shown to be a good indicator of 178 

convergence between two independent simulations.43–46 Briefly, the KLD can be defined as 179 

Equation 5 180 

𝐾𝐾𝐾𝐾𝛼𝛼(𝑡𝑡) = � 𝛼𝛼(𝑡𝑡, 𝑖𝑖) ∙ ln � 
𝛼𝛼(𝑡𝑡, 𝑖𝑖)
𝑄𝑄(𝑡𝑡, 𝑖𝑖)

 �
𝑖𝑖

 181 

 where 𝛼𝛼(𝑡𝑡, 𝑖𝑖) and 𝑄𝑄(𝑡𝑡, 𝑖𝑖) are the probability distributions of two independent simulations with t 182 

being the time and i being the bin index. Practically, the KLD is a measure of information 183 

difference between the two probability distributions, and as such when it converges towards zero 184 

the distributions can be said to have converged. To calculate the KLD between two simulations, 185 

PCA was first performed on the combined trajectory of the two simulations, and then the 186 

normalized probability distributions along the first (largest) eigenvector for each simulation were 187 

used in Eq. 5. For all histograms a total of 400 bins were used and a Gaussian kernel density 188 

estimator, a fundamental method for estimating probability density / data smoothing, was used to 189 

reduce the amount of bins with no population.43  190 

Structure alignment was done using the Kabsch algorithm, which is a method for calculating the 191 

optional rotation matrix that minimize the RMSd between two sets of points.47 As such it can be 192 

used to align peptide structures and superposition them on top of each other. 193 
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4 Results & Discussion  194 

4.1 Sampling the peptide conformational ensemble 195 

Peptide-only cMD simulations were performed using the GPU-accelerated pmemd.cuda module of 196 

Amber14, which enabled simulation times for each simulation of 100 − 200 ns/day with a single 197 

NVidia Tesla M2050 node. To test whether the conformational ensemble for these simulations had 198 

converged, KLD between the major modes of a PCA decomposition of a combined trajectory for 199 

two independent simulations was calculated. 200 

In Fig 1a, the KLD of the first three PCA modes are shown for the two peptide-only simulations, 201 

confirming that after around 1 μs the value is less than 0.02, which is used as the threshold value 202 

for declaring convergence.43,45 Correspondingly, in Fig. 1b the RMSd frequencies for these two 203 

simulations are shown after the 1 μs of simulation; i.e. it is a normalized frequency plot of RMSd 204 

values, where the RMSd values have been calculated between each frame in the trajectories and a 205 

common reference structure. Based on Fig. 1 it can be concluded that the conformational 206 

ensemble of the peptide-only simulations are well-converged after 1 μs of cMD simulation, 207 

however it is noted how the KLD of mode 1 and 2 increases drastically at around 400 ns which 208 

can be attributed to the two simulations exploring different parts of the conformational space at 209 

that point. This highlights the dangers of interpreting too short simulations with KLD. It was 210 

visually confirmed from the trajectories that during the simulation, the peptide undergoes such 211 

large changes in conformation that additional cMD runs are deemed unlikely to change the 212 

conformational space investigated or the obtained ensemble. 213 
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4.2 Restriction of the conformational space by HPO4
2−  214 

Introducing the phosphate anion into the system means it is no longer possible to use the 215 

GPU implementation of pmemd in Amber14, since QM is not currently supported in the pmemd 216 

modules. As a result, simulation times were limited to approximately 5 − 7 ns/day for each 217 

simulation when using 16 cpu cores (Intel Xeon E5-2680, 2.80 GHz) with the sander module of 218 

Amber14. Four independent simulations were carried out with the peptide−HPO4
2− system for 219 

100 ns. In Fig 2, 2d RMSd plots for a simulation of the peptide−HPO4
2− system, and a simulation of 220 

a peptide-only system are shown. Despite the fact that neither of these systems are converged 221 

after 100 ns, the seen behavior was consistently observed for all four anion simulations: the 222 

conformations sampled by the peptide throughout the simulation in the peptide−HPO4
2− systems 223 

are retained for longer periods of time and appear more “stable” on the 100 ns timescale, whereas 224 

the conformations sampled in the peptide-only simulations change more rapidly.  225 

4.3 Enhanced sampling with aMD  226 

The issue of poor conformational sampling of multiple-molecule systems in MD is a long-227 

standing problem, and several attempts have been made to use different enhanced sampling 228 

techniques to describe atomistic systems with varying levels of success. Here we use aMD to see if 229 

we can improve the sampling time of the canonical ensemble for both peptide-only and 230 

peptide−HPO4
2− simulations. In the case of peptide-only simulations, it was found that the KLD for 231 

two aMD simulations go below 0.02 already after 50-100 ns, and is further reduced to ~10−3 after 232 

the full 1 μs run (see supplementary information, Fig. S1). Considering that for cMD simulations 233 

convergence was declared only after 700 ns, aMD clearly represents a powerful way of increasing 234 

the sampling time for the conformational ensemble of the peptide-only simulations. For it to be 235 

truly useful, reweighting must be performed to obtain the original ensemble – using a cumulant 236 
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expansion algorithm to the second order, this reweighting was found to successfully reproduce 237 

the canonical ensembles from 50 ns aMD peptide-only simulations (see supplementary 238 

information, Fig. S2). The challenge, then, is whether or not aMD can similarly be used to simulate 239 

converged ensembles for the peptide-anion systems investigated in this work as well.  240 

In Fig. 3 the KLD’s between four independent 100 ns cMD and aMD peptide−HPO4
2− 241 

simulations are shown. The KLD for the cMD peptide − HPO4
2− simulations are not seen to 242 

decrease notably, meaning that the conformational ensembles have not converged during the 100 243 

ns of simulation time. Compared to the cMD simulations, it is clear from Fig. 3 that aMD increases 244 

sampling speed, but also that despite the relatively large boost from aMD (avg. 4.5 kcal/mol), it 245 

does not reach full convergence (KLD < 0.02) after 100 ns. Given that it takes the conformational 246 

ensembles of peptide-only simulations on the order of 1 μs to converge using cMD and 50-100 ns 247 

using aMD, it is no surprise that a peptide-anion system does not converge during 100 ns. The 248 

introduction of an anion into the system significantly complicates the system and thereby the 249 

required time for the ensemble to converge; it is noted that the ligand will likely also spend a 250 

certain amount of time in an unbound state, such that the convergence time should be at least that 251 

of the peptide-only system. One can only speculate about the time-scale required for the ensemble 252 

of the peptide−HPO4
2− system to converge fully, but it is likely to be on the order of several micro-253 

seconds if not even in the milli-second range for cMD and micro-seconds for aMD.  254 

Recalling that a KLD plot for two simulations is created from the overlap between the PCA 255 

histograms, KLD values of 0.1 in the case of the aMD peptide−HPO4
2− system clearly indicate that 256 

the four simulations presented in Fig. 3 sample similar motions and conformations and there is a 257 

significant overlap. As such, these close-to-converged ensembles can still be analyzed in terms of 258 



 13 

which conformations are present, with the precaution that the true frequency of each 259 

conformation in the ensemble is unknown.  260 

4.4 Cluster & PCA analyses 261 

MD trajectories can contain on the order of millions of frames, so in order to obtain a 262 

qualitative picture of a given system’s properties, reduced representations of the trajectories must 263 

be constructed first. The two most commonly used techniques for creating such reduced 264 

representations are principal component analysis (PCA) and clustering algorithms.40  265 

Clustering algorithms can be separated into two basic types; hierarchical and partitioning 266 

algorithms.48 In hierarchical algorithms the decomposition can be viewed in the form of a 267 

dendrogram, i.e. a tree where the dataset D is split into smaller subsets such that each node of the 268 

tree represents a cluster. This can be done either from the leaves up (agglomerative approach) or 269 

from the root down (divisive approach). Regardless of the approach, the hierarchical algorithms 270 

require the input of a termination condition, e.g. a critical distance between each cluster – this is 271 

the main problem with those kind of algorithms, since the clusters are sensitive to small changes 272 

in the termination condition as well as noise in the dataset. With partitioning algorithms the 273 

dataset D is initially split into a set of k clusters and then an iterative strategy is used to optimize 274 

some objective function. These algorithms require k as an input parameter, which limits their use 275 

since enough knowledge about the domain may not be known beforehand.  276 

An alternative clustering approach to the two basic types are density based clustering 277 

algorithms, where clustering is performed based on definitions of densities and connectivities in 278 

the dataset.39,49,50 One of the most common of these is the DBSCAN algorithm39, which creates 279 

clusters based on a simple notion of density-connectivity between points in the dataset. The 280 

DBSCAN algorithm requires the input parameter for minimum points in a given cluster and 𝜀𝜀 281 
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which characterizes the 𝜀𝜀-neighbourhood of a given point, i.e. the connectivity of points in the 282 

cluster. DBSCAN filters out points in the dataset that do not belong in a given cluster as “noise”, 283 

which would otherwise be added into the closest cluster in other algorithms (e.g. the 284 

hierarchical). It furthermore supports an effective heuristic denoted the sorted k-dist graph, i.e. a 285 

sorted list of the Kth farthest distance for each point in the dataset, which helps the user in 286 

determining the two input parameters.39 Clustering is inherently a highly complicated task, and 287 

the DBSCAN algorithm suffers from several disadvantages, e.g. it expects a density drop to detect 288 

the borders of the clusters, which means it might not be able to detect some of the more intrinsic 289 

clusters present in natural dataset. The DBSCAN algorithm has been revisited in the form of 290 

several extensions and modifications since its first description51–53, however the algorithm in its 291 

original form has stood the test-of-time and is generally considered a powerful clustering 292 

algorithm.  293 

To determine binding modes for the SGAGKT peptide to phosphate anions, we used both a 294 

hierarchical agglomerative algorithm and the DBSCAN algorithm. The cutoff used for the 295 

hierarchical algorithm was set to 3Å, which was empirically determined to result in 296 

approximately 10-20 clusters for each simulation. For DBSCAN the minimum points and ε 297 

parameters were set to approximately 20 and 1.2 respectively, based on k-dist plots (See 298 

supplementary information, Fig. S3).  299 

In Fig. 4, clustering results are presented for peptide-only (1 µs cMD) along the PCA 300 

projections for the two major modes (comprising ∼ 60% of the total peptide motion, see 301 

supplementary information, Fig. S4-S6). It is clearly observed how the two different clustering 302 

algorithms are different in terms of how they cluster the trajectories. The DBSCAN algorithm sorts 303 

out a large part of the trajectory as noise (78 ± 1% for peptide-only simulations), whereas the 304 
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hierarchical algorithm clusters all points together based on their closeness to each other. The 305 

peptide bound to HPO4
2− does show transiently stable conformations as evident from the DBSCAN 306 

analysis (see supporting information, Fig. S7), however, the majority of the time is spent in 307 

conformations of a more disordered nature (57 ± 10% is filtered off as noise), at least within the 308 

DBSCAN terminology and the algorithm input parameters. The same is evident from the free 309 

energy profiles, where local minima are observed for both the peptide-only and peptide-HPO4
2− 310 

simulations; the barriers around these minima are however fairly broad and smooth, which 311 

reflects the disordered nature of the peptide. 312 

In Fig. 5 aligned superpositions of the different clusters are presented for four 100 ns 313 

peptide-HPO4
2− simulations and two 1 μs peptide-only simulations, which is done to visualize the 314 

difference between the semi-stable DBSCAN conformations and the hierarchical clusters of the 315 

peptide. In Fig. 5a-b all the DBSCAN clusters, containing both peptide and anion, are shown – it is 316 

evident that these have a tendency towards the expected P-loop structure, where the backbone 317 

and the lysine side-chain folds around the anion in a nest structure. In the case of peptide−HPO4
2− 318 

simulations, 57 ± 10% of the ensemble was filtered off as noise by the DBSCAN algorithm: 319 

compared to the 78 ± 1% for peptide-only simulations, this again shows that the anion stabilizes 320 

the disordered ensemble. The hierarchical clusters shown in Fig. 5c-d on the other hand display 321 

much more variation in the peptide-anion interaction: in a significant amount of the clusters the 322 

anion is found to be interacting with the more or less extended peptide by only 1-3 hydrogen 323 

bonds without any nest-like structure. For the peptide-only simulations the DBSCAN clusters in a 324 

similar fashion reveal a series of semi-stable nest-like states (Fig. 5e), where the backbone is 325 

folded up in a nest with the lysine chain is in a more or less indeterminate orientation. The 326 

hierarchical clusters on the other hand show the disordered nature of the peptide – and it is in 327 

this disordered state that the peptide spends most of its time (Fig. 5f). 328 
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In the original paper where Bianchi et al. synthesized and investigated SGAGKT 329 

experimentally, they found that the peptide in its lysine-protonated zwitterionic state bound to 330 

HPO4
2− with ∆G = −4 ± 0.1 kcal/mol, whereas H2PO4

1− was found not to be bound. The ensembles 331 

of our peptide−HPO4
2− simulations are not fully converged, but can still be considered close-to-332 

converged. It is therefore interesting to see how these ensembles compare against the 333 

experimental binding energy; this can be done using a method known as molecular mechanics 334 

Poisson-Boltzmann surface area (MM-PBSA), which is a post-processing approach to estimating 335 

free energies and binding energies of molecules in solution.54 For the combined 400 ns trajectory 336 

of the peptide−HPO4
2− simulations, this approach calculates an average favorable binding free 337 

energy of 1.72 ± 0.28 kcal/mol. For 200 ns peptide-H2PO4
1− simulations, an average favorable 338 

binding free energy of 1.45 ± 0.24 kcal/mol was found, indicating that also this anion is bound by 339 

the peptide, albeit more weakly, which can likely be attributed to the less electronegative nature 340 

of H2PO4
1−. Looking at the binding energy distributions obtained from MM-PBSA (see 341 

supplementary information, Fig. S8), it is observed that these are markedly different for the two 342 

anions, with HPO4
2− having a broader distribution that is shifted towards more favorable binding 343 

energies compared to H2PO4
1− which is more centered around ∆G = 0, and it is clear from the 344 

energy distributions that there is a difference between how H2PO4
1− and HPO4

2− bind to the 345 

peptide. The discrepancy with experimental results can be attributed to the close-to-converged 346 

nature of the simulations, the inadequacy of MM-PBSA in describing binding energies in such 347 

highly dynamic systems, as well as the presence of 1M NMe4Cl in the experimental setup; such 348 

additional ions are likely to influence the system in a way that is not accounted for in the present 349 

theoretical model. The DBSCAN algorithm furthermore reveals that that 84 ± 3% of the trajectory 350 

for the peptide−H2PO4
1− simulations is filtered off as noise, indicating significant less stable 351 
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structures for this system compared to peptide−HPO4
2−. Looking at the hierarchical clusters for 352 

the peptide−H2PO4
1− simulations, many of them represent states in which the anion is not bound 353 

(see supplementary information, Fig. S9). Altogether, simulations qualitatively show that there is 354 

a clear difference between how H2PO4
1− and HPO4

2− are bound by the peptide, which is consistent 355 

with the experimental observations. 356 

High-resolution simulations such as the ones presented in this study are very difficult to 357 

interpret, since in addition to their inherent approximations in the form of choice of force field 358 

parameterization etc, their complexity necessitates the use of enhanced sampling techniques in 359 

order to reach convergence of the molecular ensembles, which in turn bias the obtained results. 360 

Despite these limitations, such simulations do provide insight into the dynamics at the molecular 361 

scale that can otherwise be difficult to obtain experimentally. Using accelerated molecular 362 

dynamics, which implicitly conserves the overall energy landscape of the system, we are able to 363 

obtain fully-converged peptide-only ensembles, and close-to-converged peptide-anion ensembles, 364 

which can then be reweighted to the canonical ensembles. The expected intrinsically disordered 365 

conformation of the peptide is confirmed from the simulations alongside with a transiently semi-366 

stable nest structure, and it is shown that this conformational ensemble of structures is stabilized 367 

upon HPO4
2− binding, which is in accordance with expectations and theories in the literature: 368 

however, albeit there is a clear tendency for the peptide to bind the HPO4
2− anion using a P-loop 369 

nest structure, slightly over half of the structures in the ensemble bind, or simply interact, with 370 

the anion in more loosely defined conformations. As such the binding process should not be 371 

considered in terms of the anion being tightly bound by the peptide in a single conformation, such 372 

as is the case for many conventional protein-ligand systems; rather it is a much more dynamic 373 
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binding effect with multiple structured states that can rapidly interchange and either bind, or 374 

release the anion.  375 

It is important to remark that simulations were limited to the zwitterionic peptide with a 376 

protonated lysine residue, in the absence of any other ions such as Na+ or Mg2+ cations. The 377 

influence of such additional species in the simulation is not immediately clear, as they may both 378 

work to facilitate binding as is often observed in nature13, or to disturb the binding energetics of 379 

the system. Bianchi et al. who synthesized the SGAGKT peptide performed their experimental 380 

studies in NMe4Cl solutions25, indicating that in this solution the peptide is capable of binding the 381 

phosphate anion. It is however not apparent how the presence of other species may influence the 382 

enthalpy and entropy contributions to the binding affinity. 383 

Despite the complicated binding mechanism and model approximations (protonation 384 

states, absence of counter ions, choice of force field, neglect of potential cooperative binding etc.), 385 

the theoretical model used here found that the peptide is capable of distinguishing between 386 

HPO4
2− and H2PO4

1−, which is consistent with experimental results and shows that despite the 387 

presence of only 6 amino acid residues, the peptide has very specific binding properties. The 388 

nature of the SGAGKT peptide in terms of binding phosphate anions, i.e. its reversible binding 389 

effect and specificity, makes it very interesting for development of new technologies for P 390 

recovery, where a too strong binding may be counter-productive when it comes to the recovery 391 

process. In such applications, a dynamic/reversible binding mechanism such as the one observed 392 

for the peptide may be advantageous in terms of a subsequent recovery step.   393 

Appendix A: Sampling Considerations 394 

A key drawback of the classical MD approach is the assumption that the electrostatic 395 

properties of molecules can be represented using point charges at the nuclear sites.55 In this 396 
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respect, QM provides a more rigorous treatment of the quantum chemical nature of the system at 397 

the price of a higher computational cost. For the system investigated in this report, we use QM 398 

specifically to describe the negatively charged phosphate anion, where the electronic structure is 399 

expected to be highly polarized, something which is not accounted for in the classical MD 400 

approach. For more thorough information about the benefits and limitations of the QM/MM 401 

approach in Amber14, the reader is referred reviews on the subject.56 402 

One of the key challenges in MD is to obtain “adequate” sampling of the conformational 403 

space of the system, such that all-important conformational states are sampled close to their 404 

Boltzmann-weighted ones. From such well-converged ensembles, one can calculate various 405 

thermodynamic properties, and thereby validate the simulation against experimental data. Even 406 

with recent advances in computing power, which have made microsecond and even millisecond 407 

time scale available to certain researchers,57–59 it can however still be difficult to obtain well-408 

converged ensembles of biological molecules using MD.45,60 The issue at hand is that the systems 409 

of interest in chemistry, physics and biology are characterized by the presence of a number of 410 

metastable states, which are separated by large barriers in the energy landscape, meaning that the 411 

system is easily trapped in a local minimum during a MD simulation. When two or more 412 

biomolecules are present, such as is the case in binding events between a IDP and its ligand, the 413 

situation is often complicated even further and generally equilibrium simulations of coupled 414 

folding and binding events at atomistic resolution are considered out-of-reach for the average 415 

researcher61, and instead coarse-grained representations of the systems are used.62  416 

In the case of atomistic simulations, various techniques to improve sampling have been 417 

explored, e.g. self-guided Langevin dynamics (SGLD)63, accelerated MD (aMD)64, and different 418 

variations of replica exchange MD (REMD).65–67 The different enhanced sampling techniques all 419 
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serve to increase sampling, but each also has its own set of disadvantages; e.g. REMD in general 420 

requires running N non-interacting replicas of the system, which may be prohibitive, temperature 421 

REMD (T-REMD) cannot guarantee convergence since not all barriers in a system are necessarily 422 

temperature-dependent68, reservoir REMD (R-REMD) is dependent on knowledge contained in a 423 

pre-generated reservoir of structures60, and in SGLD, which accelerates low-frequency motion in 424 

the system, the ensemble has to be reweighted afterwards to obtain the canonical ensemble.63 In 425 

aMD a bias potential is introduced into the conventional MD  (cMD) simulation which in practice 426 

lowers the height of local energy barriers, such that the sampling can continue faster; it inherently 427 

represents an increased sampling method where only a single copy of the system is simulated, 428 

and it does not require any previous information about the energy landscape or conformation 429 

space of the system.64 The aMD modification is defined as: 430 

 431 

Equation 1 432 

𝑉𝑉(𝑟𝑟)∗ = 𝑉𝑉(𝑟𝑟) + ∆𝑉𝑉(𝑟𝑟) 433 

 434 

Equation 2 435 

∆𝑉𝑉(𝑟𝑟) =
(𝐸𝐸𝐸𝐸 − 𝑉𝑉(𝑟𝑟))2

(𝛼𝛼𝛼𝛼 + 𝐸𝐸𝐸𝐸 − 𝑉𝑉(𝑟𝑟))
+

(𝐸𝐸𝐸𝐸 − 𝑉𝑉𝐸𝐸(𝑟𝑟))2

(𝛼𝛼𝛼𝛼 + 𝐸𝐸𝐸𝐸 − 𝑉𝑉𝐸𝐸(𝑟𝑟))
 436 

 437 

where V(r) is the traditional MD potential, 𝑉𝑉(𝑟𝑟)∗ is the modified potential, Vd(r) is a torsion 438 

potential, ∆𝑉𝑉(𝑟𝑟) is the applied bias, Ed and Ep are the average dihedral and potential energies, and 439 

𝛼𝛼𝛼𝛼 and 𝛼𝛼𝛼𝛼 are factors for determining the strength of the applied boost (i.e. high values reduce 440 
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the boost). This potential is proportionally bigger for deep regions in the energy landscape, and 441 

smaller for high-energy regions, thus conserving the shape of the landscape such that minima are 442 

still minima, and vice versa for barriers. This means that in theory the original canonical ensemble 443 

can be recovered exactly by reweighting the distribution.64 In practice reweighting of biased 444 

ensembles can however be challenging due to statistical errors69,70, and several algorithms for the 445 

task have been proposed, see ref(37). Previous studies have demonstrated how 500 ns aMD 446 

simulations could successfully be used to recover the correct canonical ensembles when 447 

compared to millisecond MD simulations and experimental data36, truly highlighting the power of 448 

aMD to obtain converged ensembles on a scale otherwise only available to a limited number of 449 

researchers. 450 

  451 
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 452 

FIGURE 1: Results from peptide-only simulations in explicit water showing (a) KLD of the 453 

first three PCA modes and (b) Frequency of RMSd values of frames in the trajectory 454 

compared to common reference structure (the fully extended peptide).   455 
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 456 

FIGURE 2: 2d RMSd plots for 100 ns simulations with the SGAGKT peptide in the absence 457 

(a) and presence (b) of the HPO4
2- anion in explicit water. 458 

  459 
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 460 

FIGURE 3: KLD of four independent cMD (a) and aMD (b) peptide-HPO𝟒𝟒
𝟐𝟐− simuations (1-4) 461 

performed in explicit water. For each simulation the KLD is calculated against all the 462 

other simulations.  463 
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 464 

FIGURE 4: PCA projections for the two first (largest) modes of a 1 𝛍𝛍s cMD peptide-only 465 

simulation. Free energy profiles (a), hierarchical clusters (b) and DBSCAN clusters (c).  466 
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 467 

FIGURE 5: Superposition of clusters. DBSCAN clusters (a,b), and hierarchical clusters (c,d) 468 

from four 100 ns peptide-HPO4
2- aMD simulations, aligned by the peptide backbone (a,c) 469 

and the lysine side chain (b,d). In the bottom row are DBSCAN clusters (e) and 470 

hierarchical clusters (f) from two 𝟏𝟏 μs peptide-only cMD simulations, aligned by peptide 471 

backbone.   472 
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