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Abstract

Rotor drops in magnetic bearing and unbalance in rotors have been the sub-
ject of study for many years. The combination of these two well-known phe-
nomena has led to an interesting chaotic response, when the rotor touches
the inner race of the backup bearing. The present work explores the non-
linear rotor-backup-bearing dynamics both theoretically and experimentally
using a fully instrumented test rig, where the position of the shaft, its angu-
lar velocity and the contact forces between the shaft and the backup bearing
are sampled at 25 kHz. The test rig is built by a removable passive magnetic
bearing, which allows for the simulation of a magnetic bearing failure (loss
of carrying capacity and subsequent rotor fall). A theoretical approach is
given beforehand and forms the basis of the study. The theoretical and nu-
merical analyses are shown through Poincaré maps and double sided spectra.
The latter are important to characterize the condition at different levels of
unbalance between forward and backwards whirl. Our preliminary results
indicate that for small levels of unbalance the rotor oscillates at the bottom
of the backup bearing. When the levels of unbalance increase, the dynamical
behaviour of the rotor changes; this leads to extremely harmful conditions,
since the rotor can be lifted from the bottom of the bearing (contact state)
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and fall again, impacting on the inner race innumerable times without reach-
ing a steady state. Finally the presented results are discussed from the point
of view of nonlinear dynamics applied to the practical use.

Keywords: Safety bearings, impact, friction, contact mechanics, nonlinear
dynamics, magnetic bearing.

1. Introduction

The possibility of using magnetic bearing rotors in industrial applications
cannot be considered correctly without the use of proper backup bearings.
Applications are various, such as in reaction wheels, in centrifuges, in energy
efficiency machines, as cited for instance by Gasch [7] and Schweitzer and
Maslen [23]. For all these machines, a safety element has to be installed to
prevent failures such as power loss, which would cause the shaft to fall. The
safety element consists normally of a rolling bearing with inner race diameter
greater than the shaft diameter, but smaller than the one of the magnetic
bearing. It is designed to withstand the loads and impacts of a rotor. It also
protects the whole system and prevents even more disastrous situations.

Throughout the years, several works have been published on this subject.
A good overview of the state of rotordynamics research of rub-related phe-
nomena is given in Muszynska [19]. In the work of Johnson [15], a vertical
shaft was studied analytically and he investigated the changes in the radial
peaks when a bearing with clearance is introduced. Black [1] also consid-
ered a rotor with a clearance stator but added friction on the contact. He
conducted an analytical study, whose results about synchronous and counter
whirl were verified experimentally. Also in reference [29], a gyro pendulum
with a piecewise linear model was investigated with good agreement with
experimental results. Choy and Padovan [2] presented a numerical investiga-
tion of the interaction between the rotor and the casing of the bearing wall,
in which different parameters where tested, such as imbalance and friction
coefficients.

By employing a proper impact model, the occurrence of chaotic behavior
was reported by Goldman [9]. Moreover Piccoli and Weber [20] successfully
investigated the identification of chaotic motion with Lyapunov exponents
and Poincaré diagrams experimentally. In Jiang and Ulbrich [14], the onset of
dry friction whip was investigated with an unbalanced rotor to stator contact
explaining the recurrence using the multiple scales method. Regarding rotor
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drops, the work from Pradetto [21] describes the resulting phenomena of
the drop of a one-ton rotor as its backup bearing. Fumagalli [5] tested the
performance of the ball bearing instead of a plain circular one as a backup
bearing when the rotor drops, slides and tumbles on its inner race. His
results led to the information about the rotor’s whirl and motion as well as
the contact forces at each impact. More recently, [24] presented a simulation
with experimental validation of a 9-ton-active-magnetic-bearings-rotor drop
then compared and validated the proprietary code to several drop test as
a tool for future reliability tests. [13] analyses the rotor-to-stator impact
of a turbo-machinery with a thermo coupled model with dynamical system.
Their findings explores the nonlinear nature of the impact response and the
interaction with the blades of the rotor with the casing.

In combination with Active Magnetic Bearings (AMB) technology as
mentioned by Schweitzer [23] and in [22], it is clear that safety bearings
are an important subject of study. Chapter 27 in the book of Gasch et al. [6]
also treats the cases, in which the rotor starts impacting on the stator includ-
ing resonance passage and sudden unbalance. Ishii and Kirk [12] analyzed
numerically the transient response of a rotor drop. There it is cited that low
damping causes backwards whirl that leads to high-magnitude forces. The
work of [26] presents a very detailed mechanical model of a flywheel with two
safety bearings with power loss. The authors conducted a series of simula-
tions, whose response changed according to the parameters such as friction
and the preload applied. Ginzinger [8] developed an active actuator to avoid
rubbing and thus reduce the severity of the contact. He applies a feedback
control with a powerful magnetic actuator to smoothen the transition from
an impact-free to full contact eliminating impacts. Moreover, in Keogh [16], a
comprehensive study of different performances of auxiliary bearings was pre-
sented. Non-conventional geometries of the backup bearing were considered
by Simon [25], and later by Zülow [30] and then the new kind of bearing with
pins is presented by Lahriri [17] and analyzes the forces that the structure
receives on a sleeve backup bearing. The rotor is externally impacted and
the dynamics of the first impacts and the high radial forces in that generated
by the backwards whirl is assessed. In Fonseca et al. [4] it is shown that the
same pins help to surpass the critical speed avoiding the backwards whirl.
However, in most industrial operating machines, the usual safety bearing is a
rolling bearing element, and the rotor will lay down at the bottom allowing it
to rotate without much damage to the system. An analysis of the rigid rotor
on a safety bearing showing chaotic behavior is presented in reference [28].
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Later the contact between the shaft and the inner race was modeled using
a nonlinear matrix equation and presented by Cole et al. [3], whose authors
analyzed different configurations of rolling bearings in order to identify the
dynamics conditions of the rotor during impacts events and to try to specify
a proper backup bearing. More recently, Inayat-Hussain [11] gives an insight
about the response of a two dimensional rotor to different imbalance levels
with bifurcation diagrams, which show chaotic behavior when impacting on
the wall of the backup bearing. In his thesis, van Rensburg [27] applied to his
rotor model and AMB test rig several rotational speeds and showed different
dynamical behaviors and harmful cases. In Hakwings et al. [10] the result
of a series of drop tests of 140 kW flywheel on a backup bearing is presented
and illustrate the dynamical behavior of the rotor in the case of total failure
and unassisted spin down.

In the present work, a theoretical and an experimental study of a passive
magnetic bearing rotor colliding on the ball bearing inner race is presented.
The failure of the rotor will be induced by the rapid removal of the passive
magnetic bearing, letting the rotor fall on the backup bearing. The tests
will be compared with simulated results coming from a model of the rotor
as a rigid body impacting on an compliant surface of a compliant housing
support. The main contribution of this work is to show that different levels
of unbalance change the dynamical behavior of the system at least into three
separate regions, and some of them may lead to harmful situations. In order
to create these different levels of unbalance, small masses are added to the
disk of the rotor, but the velocity was kept constant. The findings are best
portrayed in bifurcation diagrams that describe the changes. Also, these
features appear on orbit plots, doubled-sided spectra and time-varying force
plots.

In Section 2, the dynamical model for the rotor-backup-bearing interac-
tion is developed. In Section 3, the simulation and experimental results are
shown and discussed. Finally, in Section 4, we present our conclusions.

2. Modeling the rotor-housing kinematics

2.1. The shaft

In Figures 1a and b, a schematic description of the rotor is made to
reproduce the assembled test rig. The rotor is supported by one spherical
ball bearing at point O and one movable passive magnetic bearing at point
C. The backup bearing is mounted between them at point B. The rotor is
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a)

b)

Figure 1: The moving frame references and the points of interests, A,B and C, where
forces are present.

modeled as a rigid body and external forces from the magnets, imbalance and
coupling are applied at points C, A and D respectively. In these figures the
reference frames used are shown and the moving reference frame B3 fixed
to the rotating shaft and positioned at the supporting point of the rotor.
Figure 2a is a photograph of the complete test rig and Figure 2b is another
one taken above the magnetic bearing and pointed to the backup bearing.

The rotor is only allowed to rotate according to the following three angular
degrees of freedom: Γ(t), β(t), θ(t), around the respective coordinate axes
xi, y1, z2, for which we define the angular velocities

IΓ̇ =
[
Γ̇(t) 0 0

]T
, B1β̇ =

[
0 β̇(t) 0

]T
and B2θ̇ =

[
0 0 θ̇(t)

]T
. (1)

Then the rotational matrices ITΓ, B1Tβ and B2Tθ are defined as

ITΓ =

 1 0 0
0 cos Γ(t) sin Γ(t)
0 − sin Γ(t) cos Γ(t)

 , B1Tβ =

 cos β(t) 0 − sin β(t)
0 1 0

sin β(t) 0 cos β(t)

 ,
B2Tθ =

 cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

 . (2)

Each external force will generate a moment with respect to O and the relevant
position vectors are given by
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a) b)

Figure 2: a) Photograph from the test rig assembled for tests with different backup bear-
ings. a - Passive magnetic bearing; b - Rotor with disk; c - Backup bearing. Here the
backup bearing is a plain wall bearing; d - Backup bearing housing; e - AC Motor. b)
Details from the shaft and the rolling bearing backup bearing.

B3rOA =
[
rOA,x 0 rOA,z

]T
, B3rOB =

[
rOB,x rOB,y rOB,z

]T
and

B3rOC =
[
0 0 rOC,z

]T
. (3)

The inertia tensor referred to the supporting point is

B3IO =

 Ixx 0 −Ixz
0 Iyy 0

−Izx 0 Izz

 , (4)

where Ixz = murulOD. The absolute angular velocity represented in the
coordinates of the moving reference frame B3 (where the inertia tensor is
constant) is given by

ωB3 =B3 Γ̇ +B3 β̇ +B3 θ̇ =

 cos (θ) cos (β) Γ̇ + sin (θ) β̇

− sin (θ) cos (β) Γ̇ + cos (θ) β̇

sin (β) Γ̇ + θ̇

 . (5)

The absolute acceleration written in B3 is written as:

ω̇B3 =

 −θ̇ sin (θ) cos (β) Γ̇ − cos (θ) β̇ sin (β) Γ̇ + cos (θ) cos (β) Γ̈ + θ̇ cos (θ) β̇ + sin (θ) β̈

−θ̇ cos (θ) cos (β) Γ̇ + sin (θ) β̇ sin (β) Γ̇ − sin (θ) cos (β) Γ̈ − θ̇ sin (θ) β̇ + cos (θ) β̈

β̇ cos (β) Γ̇ + sin (β) Γ̈ + θ̈

 .
(6)
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2.2. The inner and outer housing

In order to determine and measure the force between the rotor shaft and
the inner race, the backup bearing is mounted on a special casing, where
there are four force transducers. It is inside a block that is mounted inside a
frame, called an outer house. Then, the inner house is only allowed to move
vertically inside it. Subsequently, the outer house moves only horizontally.
Figures 3a and b show a scheme of the complete assembly.

The elastic elements kft represent the force transducers positioned be-
tween the bodies; the damping elements ch and cv represent the structural
damping. These damping terms are present due to the four beams that make
the inner house slide vertically and the outer house horizontally, two terms
for each direction.

a) b)

Figure 3: Assembly of the inner housing and the outer housing.

The dynamics of both housings is included in the mechanical model. The
dynamical coupling between the inner house and the rotor is introduced by
the impact forces, the normal force N and the friction force Ffric. The beams
that support the housings have the stiffness calculated as clamped-clampled
beam Kbeam = 48EI

Fa2(3l−4a)
, and the damping coefficients are approximated by:

ch = 2ζ
√
Kbeam (mih +moh) and cv = 2ζ

√
Kbeam (mih). (7)

Thus the equations of motion for both housings are written as follows

mihÿih = −2kftyih − 2cvyih −mihg +N sinα + Ffric cosα. (8)

(Moh +mih) ẍoh = −2kftxoh − 2chxoh +N cosα− Ffric sinα. (9)

7



a)
b)

Figure 4: a) The shaft inside the inner housing in contact with the inner race. b) The
forces acting at each ball of the backup bearing.

Consequently, the radial term rr can be calculated and allows one to know
whether the system is impacting or not, and it is equal to

rr =

√
(βlOB − xoh)

2 + (−ΓlOB) − yih)
2. (10)

The impact is analyzed at each time step if the rotor displacement at
the position of the backup bearing is greater or equal to the radial gap,
δ ≥ r0 = r1 − rr. The impact is modeled following a stepwise elastic model
proposed by [18], that is:

Fimp = N = kimpδ
3/2

(
1 +

3(1 − e2)

4

δ̇

δ̇−

)
, if δ ≥ 0, (11)

in which the stiffness coefficient is given as:

kimp =
4

3
(

1−ν2
s

Es
+

1−ν2
i

Ei

) ( rsr1

r1 − rs

)1/2

. (12)

and e is the coefficient of restituition. The model of impact has the advan-
tage of avoiding the determination of a damping factor and relies only on
the value of the coefficient of restitiution, which can be determined easier
through experiments. On other side, it is a piece-wise model that can lead to
numerical instabilities in the numerical integration in time. Therefore it is
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recommended to employ techniques like Filipov or manipulate the tolerances
into the computational code.

Therefore, the forces acting on the mechanical model are the rotor’s own
weight, the magnetic force and the damping force plus the impact forces

IFg =

 0
−mg

0

 , IFmag =

 −K cosα
−K sinα

0

 , IFdamp =

 −c cos ρ
−c sin ρ

0

 ,
IFimp =

 N cosα
N sinα

0

 and IFfric =

 Ffric sinα
Fimp cosα

0

 . (13)

Finally, one writes Euler’s equation with respect to the supporting point O∑
B3Force MomentsO =B3 IO

(
d

dt
ωB3

)
+B3 ω × (B3IO ·B3 ω) (14)

and one solves the set of equations considering the angles Γ and β small. The
motor has an independent control and is capable of delivering the necessary
torque to keep the angular velocity θ̇ fixed. The differential equations are
highly nonlinear, with many coupled terms, and the terms of the differential
equations may be determined using the symbolic program Mapler. However,
we are more interested in the position of the center of shaft at the backup
bearing plane and, using the transformation matrices, the coordinates are
written as: XY

Z

 =
(
IT

T
Γ(t) ·B1TT

β (t) −IT
T
Γ(0) ·B1T

T
β (0)

)
·B2rOC , (15)

where the following initial conditions are taken into consideration: t = 0,
Γ(0) = 0 and β(0) = 0. The complete expressions for Γ̈ and β̈ are available
in Appendix A.

2.3. The backup bearing

When the rotor drops and hits the rolling backup bearing, as seen in
Figure 4, the friction force accelerates the inner race and the spheres.The
angular position of the inner race, θIr, is also a degree of freedom. Figure
4a illustrates a schematic view of balls and inner race and their velocities.
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Since the outer race is not moving and the spheres are not sliding on the
touching point with it, point Osph, the tangential velocity is half of the one
on the edge between the sphere and the inner race, point E. The force acting
on one rolling bearing ball is shown in Figure 4b and the following equations
for one isolated ball are written in (16)-(18):∑

MomentOsph = Isphθ̈sph (16)

2rsphFi = Isphθ̈sph, since vt = θ̇irr2 = θ̇sphrsph, (17)

2rsphFi = Isphθ̈ir
r2

rsph
, (18)

where Isph = 2/5
(
πr2

sph

)
+msphr

2
sph. The Newton equation for the tangential

direction leads to
Fi +Ro = msphat. (19)

From (17) and (18),

Ro + Isphθ̈ir
r2

2 (rsph)
2 = msphθ̈irr2. (20)

Therefore, the angular acceleration of the inner race θ̈ir can be obtained by
taking into account the influence of all rolling spheres j:

θ̈irIir = fr1 − r2

Nsph∑
j=1

(Fi,j) , (21)

θ̈irIir = fr1 − r2Nsph

(
θ̈ir

Isphr2

2 (rsph)
2

)
(22)

θ̈ir

(
Iir +Nsph

Isph
2

(
r2

rsph

)2
)

= fr1. (23)

3. Simulation and nonlinear analysis

3.1. Integration in time

The equations of motion (14), (21), (8), and (9) are integrated in time
using a combined Matlab differential equation solver ode45 and a dedicated
Runge-Kutta algorithm. The former is employed together with an Event
function in order to find the exact moment of the impact. The latter is
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applied during the short period of impact. This is because it is a highly
stiff problem and demands an enormous amount of time with very tight
integration tolerances of the algorithm. Therefore, a test of convergence
was performed and the adequate step time was set to 10−6 s. During the
impact, the relative velocity between the shaft and the inner race, vrel, plays
an important role. The friction force depends on it, and if the velocities
match, there is no friction. Otherwise, the friction force is modeled as F =
µNsign (vrel). The model parameters are shown in table 1.

Table 1: Parameters set applied to the simulation.

Parameter of the shaft
Mass without unbalance m = 1.28 kg
Length to magnetic bearing rOC = [0, 0, 0.384m]
Length to rolling bearing rOB = [rr cos(α), rr sin(α), 0.211m]
Shaft diameter dr = 25 mm

Parameter of the rolling bearing
Inner diameter d1 = 2r1 = 28 mm
Inner race outer diameter d2 = 2r2 = 37 mm
Sphere radius rsph = 5.0 mm
Impact stiffness kimp = 2.5 · 1010 N/m3/2

Friction coefficient µ = 0.20
Restitution coefficient e = 0.90

Parameter of the inner and outer house
Mass from inner house mih = 1.70 kg
Damping 1 ch = 7.04 · 102 Ns/m

Mass from outer housing Moh = 8.87 kg
Damping cv = 2.28 · 102 Ns/m

Force Sensor
Force transducer stiffness kft = 8.3 · 107 N/M

3.2. Simulated results and experimental comparison.

As mentioned before, in section 2.1 the test rig is a rotor suspended at
one end by a removable passive bearing. From the moment that the magnetic
force is removed, there are three distinct stages: a) the rotor free fall inside
the bearing; b) the recurrence of contact between rotor and the inner race
surface leading to the deformation of both of them and the appearance of
an angular acceleration of the inner race; and finally c) the almost vanishing
of the relative velocities between the inner race and shaft surfaces with the
rotor finding a steady state condition at the bottom of the backup bearing. In
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Figure 5: 10 Hz simulated bifurcation for different unbalance levels together with 8 different
experimental tests with unbalance levels of: U1 = 0.0 g.mm, U2 = 15 g.mm, U3 = 21 g.mm,
U4 = 30 g.mm, U5 = 105 g.mm, U6 = 207 g.mm, U7 = 318 g.mm and U8 = 420 g.mm.

fact, since the rotor keeps executing small translational movements around
the equilibrium state, rarely will the tangential velocities of the shaft and
the inner race coincide. This occurs in spite of the fact that the steady-state
general dynamical behavior of the rotor changes significantly according to
the unbalance level. After removing the magnetic force, the rotor falls down
and impacts several times on the surface of the inner race. The energy will
be dissipated by the damping from the coupling between the inner and outer
housing and due to the impact with the compliant surface.

The changes in the steady-state behavior can be evaluated more explicitly
with a Poincaré map, as seen in Figure 5. The variables Y , Ẋ and Ẏ are
sampled every time the center of the shaft crosses the vertical line; in other
words, when X = 0. The first plot on the top of Figure 5 shows the vertical
position, Y , through which the rotor crosses the vertical line as a function of
the control variable, i.e., the unbalance U .

Overall, the phenomena are captured by both experiment and simulation.
We can divide the bifurcation diagram into three specific regions. First, the
rotor center is always crossing at the bottom of the shaft at Y = −1.5 mm in
region I. Suddenly, there is a change and more crossings at the vertical line
occur. This can be seen in region II of figure 5. The more unbalance, the more
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evident the fact that the center of the shaft performs chaotic trajectories. In
the simulation it is expected that the rotor will cross from the bottom to the
top of the bearing, but the mechanical set up shows a gradual increase in
the vertical crossing as the unbalance gets bigger until the rotor is able to
perform a full whirl. At the right end of the plot, region III, the rotor is only
executing a full whirl so the rotor is crossing the vertical line in the extremes,
Y = −1.5 to Y = 1.5 mm. In the following plots, the horizontal and the
vertical crossing velocity, Ẋ and Ẏ , are plotted against the unbalance and,
once again, the experimental and the simulation measurement tend to agree
with each other.

It can be seen that the unbalance plays a considerable role in the dynamics
of the shaft and its size can strongly influence the dynamical pattern. The
initial conditions were kept the same in experiments and simulations but in
the experiments the rotor starts in contact with the bearing and the magnetic
bearing is removed, while in the simulations, we start with the rotor at the
center and the magnetic bearing is turned off later. From the start until the
magnets are removed the orbit is painted in black, later, the color is red for
one second of simulation, which then changes to blue.

The first case is presented in Figure 6, where there is no additional mass.
The shaft is constantly in contact with the bearing inner race just oscillating.
The numerical result shows the shaft falling and impacting the inner race and
after some hits it stays on the bottom of the bearing. The difference between
them exists because there is a misalignment at the coupling between the shaft
and the motor.

Next, in Figure 7 we see a discrepancy between the experiment and the
numerical result. While numerically it is shown that the rotor is whirling,
falling and hitting a great number of times, the test rig developed a less
complex orbit, in which the center of the shaft makes a quasi-periodic mo-
tion. One can see that the hits are concentrated around three regions. An
additional increase in unbalance changes the orbit generated by the test rig
and matches with the expected behaviour as demonstrated by the simulation
in Figure 8. The chaotic behaviour shows some similarity when comparing
numerical and experimental results.

Finally, Figures 9 and 10 reveal the last observed change in the rotor
trajectories. The unbalance is high enough to maintain the rotor always in
contact with the inner race, after the initial hits. Both the experiment and the
numerical results are in clear accordance. Besides, there is a predominance
of the forward whirl in both of them. The reason for the recurrence of the
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forward whirl is that the friction force is at a “stick” phase and therefore its
magnitude is small and the wall is moving.
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Figure 6: Angular velocity 10 Hz. Experimental a) and simulated b) orbit with no unbal-
ance weight. (U = 0.0 g.mm).

To visualize the existence of chaotic trajectories performed by the rotor
center, a double-sided spectrum is displayed in Figure 11. Each graph cor-
responds to one red unbalance level in Figure 5. At low levels the heights
of the peaks are approximately the same. Several levels of unbalance are
chosen; the cases U = 0.0 g.mm, U = 15.0 g.mm, U = 21.0 g.mm, and
U = 30.0 g.mm represent region I. The noise clearly rises when the unbal-
ance is U = 105.0 g.mm and U = 207.0 g.mm from region II, which is a
clear indication that chaos is happening. In region III higher unbalance lev-
els, U = 210.0 g.mm and U = 420.0 g.mm, show clearly higher peaks at
Ω = −10.0 Hz than the opposite pair, confirming the predominance of a full
whirl in the same direction as the rotor spinning. Negative values of ω mean
the same spinning direction of the rotor.

As mentioned in section 2.2, the test rig has four force transducers po-
sitioned between the inner and outer housing. Their signals are converted
to newtons and are sampled simultaneously with the other signals. For the
same unbalance levels from figures 6 to 10, the horizontal (blue) and the
vertical force (red) present on the bearing’s inner race is plotted in Figure
12. Every addition in the unbalance increases the transient time until the
steady state disappears for a level of unbalance belonging to region II of the
bifurcation diagram. At a low level of unbalance there is a predominance of
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Figure 7: Angular velocity 10 Hz. Experimental a) and simulated b) orbit with unbalance
magnitude of U = 105.0 g.mm.
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Figure 8: Angular velocity 10 Hz. Experimental a) and simulated b) orbit with unbalance
magnitude of U = 207.0 g.mm.

the vertical force, since the rotor is only moving on the bottom of the backup
bearing.

Figure 12 demonstrates the effect of chaotic cases, in which the inner
race receives multiple high magnitude impacts. The magnitude of the force
reaches up to 200 newtons in each direction, which is considerably high for a
rotor whose weight is only 12.74 N. This situation changes for the regions III
cases, since the shaft is always in contact with the surface of the inner race
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Figure 9: Angular velocity 10 Hz. Experimental a) and simulated b) orbit with unbalance
magnitude of U = 318.0 g.mm.

and is no longer impacting. The level of the forces oscillates between -20 to
20 N for both horizontal and vertical forces. The bearing has only to be able
to withstand the centrifugal force in order not to break.
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Figure 10: Angular velocity 10 Hz. Experimental a) and simulated b) orbit with unbalance
magnitude of U = 420.0 g.mm.
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4. Conclusion

From the theoretical and experimental nonlinear analysis carried out in
this paper, one can conclude that the rotor-backup bearing system has three
distinguished dynamical behaviors depending on the level of rotor unbalance.
For region I, characterized by low unbalance level from (0, 60] g.mm, simple
oscillatory movements of the rotor center at the bottom of the backup bearing
are seen. For region II with unbalance levels from (60 to 280] g.mm, chaotic
motions are followed by impacts between the rotor and backup inner race
surface. Finally, for region III characterized by high unbalance levels, full
forward whirl of the rotor center takes place.

The magnitude of the forces at the three different regions changes and
supports the idea that it may damage the backup bearing. At low levels
of unbalance, the magnitude of the forces varies slightly in time and just
enough to support the fallen rotor. Chaotic cases cause multiple impacts,
which means that the contact forces are always high with a short duration.
Although a rotor with big unbalance remains in contact with the inner race,
the strength of the force drops significantly.
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Appendix A. Equations for Γ̈ and β̈

Γ̈ = −
1

Iyy (Ixx − Ixzβ cos (θ))

[
− Ixx

2
β̇βΓ̇ + Ixz β̇

2
(cos (θ))

2
Ixx sin (θ)−

− IxzIyy β̇
2

(cos (θ))
2

sin (θ) + IyyIzz
(
β̇
)
θ̇ (cos (θ))

2
+N sin (δ) lsIxx − cos (δ)FfriclsIxx+

+ IxxIyy β̇θ̇ + Izzβ̇θ̇Ixx + Ixx
2
β̇θ̇ (cos (θ))

2 − Ixx
2
β̇θ̇−

− sin (ρ) clQIxx −K sin (α) lQIxx − Ixz β̇
2
Ixx sin (θ) + Ixz θ̇

2
Ixx sin (θ)−

− Iyy
2
β̇θ̇ (cos (θ))

2
+ Izzβ cos (θ) Γ̇

2
Ixx sin (θ)−

− IyyIzzΓ̇
2
β cos (θ) sin (θ) − IyyN cos (δ) β (cos (θ))

2
yB+

+ IyyN sin (δ) β (cos (θ))
2
xB − Iyy cos (δ) β (cos (θ))

2
fxB − Iyy sin (δ) β (cos (θ))

2
FfricyB+

+ 2IxzβΓ̇θ̇Ixx sin (θ) + IyyIzzβ̇Γ̇β (cos (θ))
2 − IyyNΓ cos (δ) β (cos (θ))

2
ls − IyyΓ sin (δ) β (cos (θ))

2
fls−

−NΓ cos (δ) cos (θ) yBIxx sin (θ) +NΓ sin (δ) cos (θ) xBIxx sin (θ)−
− Γ cos (δ) cos (θ)FfricxBIxx sin (θ) − Γ sin (δ) cos (θ)FfricyBIxx sin (θ) +

+ IyyNΓ cos (δ) cos (θ) sin (θ) yB − IyyNΓ sin (δ) cos (θ) sin (θ) xB + IyyΓ cos (δ) cos (θ) sin (θ)FfricxB+

+ IyyΓ sin (δ) cos (θ) sin (θ)FfricyB + Izz cos (θ) Γ̇θ̇Ixx sin (θ)−

− IyyIzzΓ̇θ̇ cos (θ) sin (θ) + IyyK cos (α) cos (θ) sin (θ) lQ + Iyy cos (ρ) cos (θ) sin (θ) clQ−

−K cos (α) cos (θ) lQIxx sin (θ) − cos (ρ) cos (θ) clQIxx sin (θ) −KΓ sin (α) β cos (θ) lQIxx sin (θ)−

− Γ sin (ρ) β cos (θ) clQIxx sin (θ) − Γβ cos (θ) gmrOA,zIxx sin (θ) +

+ IyyKΓ sin (α) β cos (θ) sin (θ) lQ + IyyΓ sin (ρ) β cos (θ) sin (θ) clQ+

+ IyyΓβ cos (θ) sin (θ) gmrOA,z + Izzβ̇βΓ̇Ixx +N sin (δ) βxBIxx − cos (δ) βFfricxBIxx−

− sin (δ) βFfricyBIxx − Iyy β̇βΓ̇Ixx −N cos (δ) βyBIxx − Iyy
2
β̇Γ̇β (cos (θ))

2 −

− Ixx
2
β cos (θ) Γ̇

2
sin (θ) + Iyy

2
Γ̇
2
β cos (θ) sin (θ) +

+N cos (δ) cos (θ) lsIxx sin (θ) + sin (δ) cos (θ)FfriclsIxx sin (θ)−

− IyyN cos (δ) cos (θ) sin (θ) ls − Iyy sin (δ) cos (θ) sin (θ)Ffricls−

− Ixx
2

cos (θ) Γ̇θ̇ sin (θ) − Ixz (cos (θ))
2

Γ̇
2
Ixx sin (θ) +

+ IxzIyy Γ̇
2

(cos (θ))
2

sin (θ) − 2IxzIyy β̇Γ̇ (cos (θ))
3

+ Iyy
2
(
Γ̇
)
θ̇ cos (θ) sin (θ) +

+ IyyN sin (δ) (cos (θ))
2
ls − Iyy cos (δ) (cos (θ))

2
fls − rOA,xΓmgIxx sin (θ)−

− IyyK sin (α) (cos (θ))
2
lQ − Iyy sin (ρ) (cos (θ))

2
clQ − Iyy (cos (θ))

2
gmrOA,z−

− IxxIzzββ̇Γ̇ (cos (θ))
2

+ IxxNβ cos (δ) (cos (θ))
2
yB − IxxNβ sin (δ) (cos (θ))

2
xB+

+ Ixxβ cos (δ) (cos (θ))
2
fxB + Ixxβ sin (δ) (cos (θ))

2
fyB − IxxIzzβ̇θ̇ (cos (θ))

2
+ IxxK sin (α) (cos (θ))

2
lQ−

− IxxN sin (δ) (cos (θ))
2
ls + Ixx cos (δ) (cos (θ))

2
fls+

+ Ixx sin (ρ) (cos (θ))
2
clQ + Ixx (cos (θ))

2
gmrOA,z+

+ Ixx
2
ββ̇Γ̇ (cos (θ))

2
+ 2IxxIxz β̇Γ̇ (cos (θ))

3
+

+ IxxNβΓ cos (δ) (cos (θ))
2
ls + IxxβΓ sin (δ) (cos (θ))

2
fls − gmrOA,zIxx−

− 2Ixz β̇ cos (θ) Γ̇Ixx −NΓ cos (δ) βlsIxx − Γ sin (δ) βFfriclsIxx

]
(A.1)
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β̈ = −
1

Iyy (Ixx − Ixz cos (θ) β)

[
Ixz

2
(cos (θ))

2
β̇
2
β + 2Ixz

2
θ̇Γ̇ (β)

2 − Ixz
2

(cos (θ))
2

Γ̇
2
β+

+ Ixx
2

(cos (θ))
2

Γ̇
2
β − IyyIxxθ̇Γ̇ − IxzβΓgmrOA,x − IxxIxz θ̇ sin (θ) β̇β−

− IxxIxz Γ̇ sin (θ) β̇β
2

+ IxzIyy θ̇ sin (θ) β̇β + IxzIzz θ̇ sin (θ) β̇β − IxzIyy Γ̇ sin (θ) β̇β
2
+

+ IxzIzz Γ̇ sin (θ) β̇β
2 − IxzK sin (α) sin (θ) βlQ − Ixz sin (ρ) sin (θ) βclQ − Ixz sin (θ) βgmrOA,z

− IxzN sin (θ) (β)
2

cos (δ) yB − Ixz sin (θ) β
2

cos (δ)FfricxB − Ixz sin (θ) β
2

sin (δ)FfricyB+

+ IxzN sin (θ) β
2

sin (δ) xB + IxzN cos (θ) β cos (δ) ls + Ixz cos (θ) β sin (δ)Ffricls − Ixz sin (θ) β cos (δ)Ffricls−

− 3IxxIxz θ̇ cos (θ) Γ̇β + IxzN sin (θ) β sin (δ) ls − 2Ixz
2

cos θΓ̇ sin (θ) β̇β − Iyy
2

cos (θ) Γ̇ sin (θ) β̇β+

+ IxzIzz θ̇ cos (θ) Γ̇β − IxzK cos (α) cos (θ) βlQ + Ixx
2
θ̇ cos (θ) sin (θ) β̇ + IxxK cos (α) (cos (θ))

2
lQ+

+ Ixx cos (ρ) (cos (θ))
2
clQ − IxxIzz θ̇ (cos (θ))

2
Γ̇ − Iyy

2
θ̇ cos (θ) sin (θ) β̇ − IxxN (cos (θ))

2
cos (δ) ls−

− Ixx (cos (θ))
2

sin (δ)Ffricls + IxxN (cos (θ))
2

Γ cos (δ) yB + Ixx (cos (θ))
2

Γ cos (δ)FfricxB+

+ Ixx (cos (θ))
2

Γ sin (δ)FfricyB + Ixx cos (θ) ΓgmrOA,x − IxxN (cos (θ))
2

Γ sin (δ) xB − Ixz cos (ρ) cos (θ) βclQ+

+ IyyIxz θ̇ cos (θ) Γ̇β + Ixx
2

cos (θ) Γ̇ sin (θ) β̇β − IyyN cos (θ) sin (θ) βΓ cos (δ) ls + IxxN cos (θ) sin (θ) βΓ cos (δ) ls+

+ Ixx cos (θ) sin (θ) βΓ sin (δ)Ffricls − Iyy cos (θ) sin (θ) βΓ sin (δ)Ffricls + Ixz
2
θ̇
2
β + IxxIxz cos (θ) β̇

2−

− IxxIxz θ̇
2

cos (θ) − IxxIxz (cos (θ))
3
β̇
2

+ IxxIxz (cos (θ))
3

Γ̇
2 − Ixz

2
β̇
2
β − 2IyyIxz (cos (θ))

2
Γ̇ sin (θ) β̇+

+ IyyN cos (θ) sin (θ) sin (δ) ls − Iyy cos (θ) sin (θ) cos (δ)Ffricls + IyyIzz θ̇ cos (θ) sin (θ) β̇−

− IxxIzz θ̇ cos (θ) sin (θ) β̇ + Ixx cos (θ) sin (θ) cos (δ)Ffricls − IxxN cos (θ) sin (θ) sin (δ) ls+

+ 2IxxIxz (cos (θ))
2

Γ̇ sin (θ) β̇ + IxxK sin (α) cos (θ) sin (θ) lQ + Ixx sin (ρ) cos (θ) sin (θ) clQ+

+ Ixx cos (θ) sin (θ) gmrOA,z − IyyK sin (α) cos (θ) sin (θ) lQ − Iyy sin (ρ) cos (θ) sin (θ) clQ−

− Iyy cos (θ) sin (θ) gmrOA,z + IyyN cos (θ) sin (θ) β sin (δ) xB + IxxN cos (θ) sin (θ) β cos (δ) yB+

+ Ixx cos (θ) sin (θ) β cos (δ)FfricxB + Ixx cos (θ) sin (θ) β sin (δ)FfricyB−

− IxxN cos (θ) sin (θ) β sin (δ) xB − Iyy cos (θ) sin (θ) β cos (δ)FfricxB − Iyy cos (θ) sin (θ) β sin (δ)FfricyB−

− IyyN cos (θ) sin (θ) β cos (δ) yB − IxxIzz cos (θ) Γ̇ sin θβ̇β + IyyIzz cos (θ) Γ̇ sin (θ) β̇β−

− IxzN sin (θ) β
2
Γ cos (δ) ls − Ixz sin (θ) β

2
Γ sin (δ)Ffricls − Ixz cos (θ) β

2
ΓgmrOA,z+

+ IxzN cos (θ) βΓ sin (δ) xB − IxzK sin (α) cos (θ) β
2
ΓlQ − IxzN cos (θ) βΓ cos (δ) yB−

− Ixz cos (θ) βΓ cos (δ)FfricxB − Ixz cos (θ) βΓ sin (δ)FfricyB − Ixz sin (ρ) cos (θ) β
2
ΓclQ+

+ Ixx (cos (θ))
2
βΓgmrOA,z + IxxK sin (α) (cos (θ))

2
βΓlQ + Ixx sin (ρ) (cos (θ))

2
βΓclQ + Ixx

2
θ̇ (cos (θ))

2
Γ̇+

+ IxzIzz cos (θ) Γ̇
2
β
2 − IxxIxz cos (θ) Γ̇

2
β
2 − IxxIzz (cos (θ))

2
Γ̇
2
β + Iyy

2
θ̇Γ̇+

+ Iyy
2
Γ̇
2
β − Iyy (cos (θ))

2
cos (δ) ΓFfricxB − Iyy (cos (θ))

2
sin (δ) ΓFfricyB−

− IyyN (cos (θ))
2

cos (δ) ΓyB + IyyN (cos (θ))
2

sin (δ) ΓxB − IyyK sin (α) (cos (θ))
2
βΓlQ−

− Iyy sin (ρ) (cos (θ))
2
βΓclQ − Iyy (cos (θ))

2
βΓgmrOA,z + IyyIzz (cos (θ))

2
Γ̇
2
β + IyyIzz θ̇ (cos (θ))

2
Γ̇−

− IyyK cos (α) (cos (θ))
2
lQ + IyyN (cos (θ))

2
cos (δ) ls − Iyy cos (ρ) (cos (θ))

2
clQ + Iyy (cos (θ))

2
sin (δ)Ffricls−

− Iyy
2
θ̇ (cos (θ))

2
Γ̇ − IxzIyy (cos (θ))

3
Γ̇
2

+ IxzIyy (cos (θ))
3
β̇
2 − Iyy

2
(cos (θ))

2
Γ̇
2
β+

+ Iyy sin (ρ) βΓclQ + IyyβΓgmrOA,z + IyyK sin (α) βΓlQ − IyyIzz Γ̇
2
β − IyyN cos (δ) ls − Iyy sin (δ)Ffricls+

+ Iyy cos (ρ) clQ + IyyIxz cos (θ) Γ̇
2 − IyyIxz cos (θ) β̇

2 − IyyIzz θ̇Γ̇ + IyyK cos (α) lQ + IyyΓ cos (δ)FfricxB+

+ IyyΓ sin (δ)FfricyB + IyyNΓ cos (δ) yB − IyyNΓ sin (δ) xB

]
(A.2)
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berührung – Fanglager [The strong stator-contact – Catcher Bearing.].
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 555–573.
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