

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 13, 2024

AIR Tools II: algebraic iterative reconstruction methods, improved implementation

Hansen, Per Christian; Jørgensen, Jakob Sauer

Published in:
Numerical Algorithms

Link to article, DOI:
10.1007/s11075-017-0430-x

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Hansen, P. C., & Jørgensen, J. S. (2017). AIR Tools II: algebraic iterative reconstruction methods, improved
implementation. Numerical Algorithms, 1-31. https://doi.org/10.1007/s11075-017-0430-x

https://doi.org/10.1007/s11075-017-0430-x
https://orbit.dtu.dk/en/publications/ade77c07-c8a3-4363-b047-7bae5e0203e0
https://doi.org/10.1007/s11075-017-0430-x

Numer Algor
https://doi.org/10.1007/s11075-017-0430-x

ORIGINAL PAPER

AIR Tools II: algebraic iterative reconstruction
methods, improved implementation

Per Christian Hansen1 ·Jakob Sauer Jørgensen2

Received: 19 June 2017 / Accepted: 19 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We present a MATLAB software package with efficient, robust, and
flexible implementations of algebraic iterative reconstruction (AIR) methods for
computing regularized solutions to discretizations of inverse problems. These meth-
ods are of particular interest in computed tomography and similar problems where
they easily adapt to the particular geometry of the problem. All our methods are
equipped with stopping rules as well as heuristics for computing a good relaxation
parameter, and we also provide several test problems from tomography. The package
is intended for users who want to experiment with algebraic iterative methods and
their convergence properties. The present software is a much expanded and improved
version of the package AIR TOOLS from 2012, based on a new modular design. In
addition to improved performance and memory use, we provide more flexible iter-
ative methods, a column-action method, new test problems, new demo functions,
and—perhaps most important—the ability to use function handles instead of (sparse)
matrices, allowing larger problems to be handled.

This work is a part of the project HD-Tomo funded by Advanced Grant No. 291405 from the
European Research Council. Networking support was provided by the EXTREMA COST Action
MP1207.

The work was carried out while the author Jakob Sauer Jørgensen was with the Department of
Applied Mathematics and Computer Science, Technical University of Denmark.

� Per Christian Hansen
pcha@dtu.dk

Jakob Sauer Jørgensen
jakob.jorgensen@manchester.ac.uk

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

2 Present address: School of Mathematics, University of Manchester, Manchester M13 9PL, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0430-x&domain=pdf
http://orcid.org/0000-0002-7333-7216
http://orcid.org/0000-0001-9114-754X
mailto:pcha@dtu.dk
mailto:jakob.jorgensen@manchester.ac.uk

Numer Algor

Keywords Algebraic iterative reconstruction · ART methods · SIRT methods ·
Column-action methods · Semi-convergence · Stopping rules ·
Tomographic imaging

Mathematics Subject Classification (2010) 65F10 · 65F22

1 Introduction

Algebraic iterative reconstruction (AIR) methods are popular methods for computing
regularized solutions to discretizations of linear inverse problems,

Ax ≈ b, A ∈ R
m×n, (1)

in particular those arising in computed tomography (CT) [5, Chapter 6]. These meth-
ods rely on semi-convergence where the number of iterations acts as regularization
parameter. A MATLAB package AIR TOOLS with a collection of such methods has
been available from the first author since 2012; the package was outlined in [24] but
the software was never officially published.

Based on our experience and feedback from the users, the time is ripe to officially
publish this updated and expanded version that also improves on the performance
and efficiency of the methods. A particularly powerful expansion is that our iterative
methods can now be used in matrix-free mode where the matrix-vector multiplica-
tions with A and its transpose are done in functions. This feature also allows us to
use optimized software from other packages.

Our package is written solely in MATLAB with the main purpose of providing
easy-to-use implementations of the most important AIR methods, along with relevant
2D test problems. Each method is equipped with several stopping rules as well as
heuristics for choosing the relaxation parameter. The software is simple to install and
does not rely on other software or toolboxes—apart obviously from the case where
the user explicitly wishes to use other packages in conjunction with AIR TOOLS II.

The software is distributed as a compressed archive; uncompressing the file will
create a directory which contains the code. More information can be found in the
README.txt file contained in the package. The software is available from Netlib
http://www.netlib.org/numeralgo/ as the na47 package. Maintenance of the code is
available from GitHub: https://github.com/jakobsj/AIRToolsII.

There are a few other public-domain software packages that include AIR methods:
ASTRA [41], SNARK09 [30], and TIGRE [40]. These packages focus on large-scale
CT problems; they lack the generality, flexibility, and completeness of our package,
and they provide neither stopping rules nor parameter-choice methods. Our package
is not a competitor to dedicated CT packages; it is written for numerical analysts and
application specialists who want to experiment with the iterative methods and their
convergence properties. At the same time, AIR TOOLS II can handle large-scale
problems by interfacing to (GPU-accelerated) third-party software implementations
of the computationally expensive applications of the matrix A and its transpose.

http://www.netlib.org/numeralgo/
https://github.com/jakobsj/AIRToolsII

Numer Algor

Algebraic iterative reconstruction methods take the overall form of either sequen-
tial and simultaneous versions—plus their block variants. We use the following
acronyms (see, e.g., the survey in [25]):

– ART: algebraic reconstruction technique. Methods that sequentially involve one
row at a time. The original algorithm is due to Kaczmarz [29]; the name ART
originates from the seminal paper [20] by Gordon, Bender, and Herman.

– CART: column-action reconstruction technique. Methods that sequentially
involve one column at a time [13]; these methods are sometimes referred to as
column-relaxation methods [44].

– SIRT: simultaneous iterative reconstruction technique. Methods that simulta-
neously involve all the rows at a time and, therefore, are based on matrix
multiplications. This name1 originates from the paper [19] by Gilbert; see also
[42].

All the iterative methods can include constraints that can be formulated as a pro-
jection on a convex set; we provide box constraints which include, as a special
case, nonnegativity constraints. Our package does not include implementations of
any block versions [39] of the above methods; such methods are highly suitable for
large-scale problems but MATLAB is not the right platform for such software.

Where possible, we have striven for backward compatibility with AIR TOOLS,
but in certain cases, we found it necessary to deviate from this principle, e.g., when
improved functionality is provided or when the old input or output parameters were
sub-optimal. The revisions and modifications, compared to AIR TOOLS, take the
following forms.

1. The code itself is now written in a modular fashion, which is better suited for
test, maintenance, and future expansion of the code.

2. All iterative methods now accept either a (sparse) matrix or a function handle
as input for the matrix A, allowing larger problems to be handled and also
allowing for handling problems where a matrix is not explicitly available.

3. The iterative methods can easily be customized by the user: in the ART and
CART methods, the user can specify a row ordering, and in the SIRT methods,
the user can specify two weight matrices that define the methods.

4. We added options for showing a “waitbar” and printing on-screen information
during the iterations (“verbose”).

5. The SIRT methods exhibit a fully deterministic behavior in spite of the use
of random numbers for computing the relaxation parameter via MATLAB’s
eigs.

6. It is now possible to add a damping parameter in the ART and CART methods,
e.g., to robustly handle small row or column norms.

7. It is now possible to use a diminishing relaxation parameter in the ART
methods, given by a user-defined function.

1In the CT community, the acronym “SIRT” is often associated with a specific simultaneous method called
“SART” in the numerical linear algebra community and in our package.

Numer Algor

8. Some stopping rules did not work well, and we changed these rules and their
implementation such that they are more robust.

9. We provide three more test problems (including the spherical Radon transform),
as well as a collection of test phantoms that can be used for all the test problems.

10. We provide a function which, given the matrix A, illustrates the geometry of
the underlying test problem.

11. The code is, as much as possible, optimized for speed and memory use—e.g.,
by avoiding duplication of variables and by blocking matrix operations.

12. Some input parameters, or their names, were not well chosen and we have
revised these choices. For example, instead of simple box constraints xi ∈
[0, u], we now allow more general box constraints xi ∈ [�i, ui] for all pixels.

13. The format of the output parameters was changed and we now return more
parameters, such as the relaxation parameter chosen by the software.

14. A few default parameters were not optimal, and we have changed them to more
intuitive values. For example, in the fancurvedtomo test problem (previ-
ously called fanbeamtomo), the default number of projection angles is now
identical to that in paralleltomo, such that the two functions—with default
parameters—produce coefficient matrices of the same size.

15. We added an auxiliary function fbp that computes the filtered back projec-
tion solution to a parallel-beam tomography problem, using the corresponding
matrix A.

Users who upgrade from an older version of the code should note the following
changes in the fields of the options input struct:

– The name of the relaxation parameter is changed from lambda to relaxpar.
– The logical nonneg is replaced by a scalar or vector lbound.
– The scalar ubound is replaced by a scalar or vector with the same name.
– The struct restart is removed.
– The weighting vector w in cav, cimmino, and drop is removed.

There are also changes in the output:

– The vector info is changed to a struct with the same name and which contains
more information about the computations.

– The struct restart is changed to a struct ext info with additional
information.

This paper focuses on descriptions of the improvements and additions to the orig-
inal software AIR TOOLS, and we refer to [24] for more details about the original
design of the package. Our paper is organized as follows. Section 2 gives an overview
of the package, including descriptions of the iterative methods and their convergence,
the stopping rules, and the relaxation-parameter choices. Section 3 describes the
test problems, and in Section 4, we list the main considerations about our improved
implementation. Finally, in Sections 5 and 6, we present some of the main new
features of the software.

Numer Algor

2 Overview of the package

The functions fall into the seven categories listed in Table 1. A number of changes
were made in these functions, compared to the original paper [24].

– There are four new functions with iterative methods:art,cart,columnaction,
sirt.

– There are five new test problems: fanlineartomo, phantomgallery,
seismicwavetomo, show tomo, sphericaltomo.

– The new function train relaxpar collects the previous functions
trainLambdaART and trainLambdaSIRT, and adds new functionality.

– The functions fancurvedtomo, purge rows, and train dpme are new
names for fanbeamtomo, rzr, and trainDPME, respectively.

– The demo scripts are renamed and updated, and we added several more demos
that illustrate the new features; see Table 1 for details.

– There are seven new auxiliary functions as listed in Table 1.

Below we give a brief overview of the methods underlying the functions; more
details can be found in the respective references.

2.1 ART, CART, and SIRT methods

All iterative methods in this package take as input the coefficient matrix A (which
is typically sparse) and the right-hand side vector b. Instead of the explicit matrix A,
our software accepts also a function handle to a function that performs multiplication
with A and its transpose, which allows our software to handle larger problems and
utilize such functions from external software.

It is possible, in all the iterative methods, to include an orthogonal projection PC
on the convex set C. We provide general box constraints described by the set

C = [�1, u1] × [�2, u2] × · · · × [�n, un], (2)

where the lower and upper bounds are allowed to be -Inf and Inf, respectively.
This includes, as a special case, the common case of nonnegativity bounds C = R

n+.
The three row-action ART methods in this package involve an update of the

iteration vector x of the form

x ← PC

(
x + ω

bi − aT
i x

‖ai‖2
2 + α

ai

)
, 1 ≤ i ≤ m, (3)

where bi is the ith component of the right-hand side, aT
i is the ith row of the coef-

ficient matrix, and ω is a relaxation parameter which is either constant or decreases
with the iterations. Moreover, α is a damping parameter introduced in [2] that
stabilizes the iterations for small row norms; we choose

α = damp · max
i

‖ai‖2
2, (4)

Numer Algor

Table 1 Overview of the software in AIR TOOLS II

Category Functions

ART methods art General interface for all the ART methods

kaczmarz Kaczmarz’s method with cyclic row sweep

randkaczmarz Kaczmarz’s method with random row selection

symkaczmarz Kaczmarz’s method with “symmetric” (top →
bottom → top) row sweep

CART methods cart General interface for the CART methods

columnaction Column-action method with cyclic col. sweep

SIRT methods sirt General interface for all the SIRT methods

cav Component averaging (CAV) method

cimmino Cimmino’s method

drop Diagonally relaxed orthogonal projection

(DROP) method

landweber Landweber’s method

sart Simultaneous algebraic reconstruction

technique (SART)

Training methods train dpme Use training to compute a good multiplicative

factor in the DP and ME stopping rules

train relaxpar Use training to compute a good relaxation

parameter for the ART/CART/SIRT methods

Test problems fancurvedtomo 2D fan-beam CT with a curved detector (equal

angles between rays)

fanlineartomo 2D fan-beam CT with a linear detector

paralleltomo 2D parallel-beam CT

phantomgallery A collection of different 2D phantoms

purge rows Remove empty or very sparse rows of A and the

corresponding elements of b

seismictomo 2D seismic travel-time tomography

seismicwavetomo Similar to seismictomo but without the ray

assumption

show tomo Illustrate the geometry of a tomographic test

problem using the rows of the matrix A

sphericaltomo 2D spherical Radon transform tomography

Demo scripts demo art How to use the ART methods

demo astra 2d How to use external code

demo cart How to use the CART method

demo constraints How to use constraints

demo custom all Customization of the ART and SIRT methods

demo custom sirt A specific customized SIRT method

demo matrixfree How to use the matrix-free mode

demo relaxpar How to set the relax. parameter strategy

demo show tomo How to use the show tomo function

demo sirt How to use the SIRT methods

demo stoprules How to set the stopping rule

demo training How to use the training methods

Auxiliary afun astra 2d gpu Wrap ASTRA forward and back projectors into

a function handle

afun matrix Wrap a matrix into a function handle

calc relaxpar Compute the relaxation parameter

check inputs Check inputs and set default values

check stoprules Check if stopping rule criteria are met

fbp Filtered back projection that explicitly uses the

matrix AT for the back projection

get mfun dfun Compute M and D for the SIRT methods

Numer Algor

where damp is a user-specified parameter (default to zero). What distinguishes the
different methods is the strategy for selecting the ith row at the kth sweep over the
rows, as listed in Table 2.

We provide one column-action CART method that uses an update of the form

xj ← PC

(
xj + ω

cT
j (b − Ax)

‖cj‖2
2 + α

)
, 1 ≤ j ≤ n, (5)

where xj is the j th component of x, and cj is the j th column of the coefficient
matrix. Similar to before, we use α = damp · maxj ‖cj‖2

2. The columns are selected
in a cyclic fashion, cf. Table 2. In our implementation of CART, it is possible to use
the “flagging” strategy from [13] where update steps (5) are skipped if the update is
small; this can save a substantial amount of computational work.

As a new feature that gives more flexibility, the user can now define customized
ART and CART methods by specifying a fixed, alternative, ordering of the rows
and columns, respectively. An example of this is given in the new demo script
demo custom all.

For all ART and CART methods, to guarantee asymptotic convergence (for k →
∞), the relaxation parameter must satisfy

0 < ω < 2 (6)

and our software checks if a user-supplied ω satisfies this criterion. The default value
is ω = 1 for ART and ω = 0.25 for CART.

Table 2 Overview of ART and CART methods, where i or j is the choice of row/column index and k

counts the number of sweeps over the rows/columns

Method Choice of i and j One iteration Ref.

Custom ART The user specifies a row ordering m updates:

art via an integer vector I i = I(1),I(2), . . . ,I(m)

Also generic interface to kaczmarz, symkaczmarz, and randkaczmarz

Kaczmarz i = k (mod m) m updates: i = 1, 2, . . . , m [29]

kaczmarz

Symmetric
Kaczmarz

i =
{

i0, 1 ≤ i0 ≤ m−1

m−i0+1, m ≤ i0 ≤ m−2
m − 1 updates:
i = 1, 2, . . . , m−1 or

[4]

symkaczmarz where i0 = k (mod 2m) i = m,m−1, . . . , 2

Randomized i = random choice in m random updates [38]

Kaczmarz {1, 2, . . . , m} with probability

randkaczmarz proportional to ‖ai‖2

Custom CART The user specifies a column n updates:

cart ordering via an integer vector J j = J(1),J(2), . . . ,J(n)

Also generic interface to columnaction

Column action j = k (mod n) n updates: j = 1, 2, . . . , n [13, 44]

columnaction

Numer Algor

If the system (1) is inconsistent, then a constant relaxation parameter ω leads to
cyclic asymptotic convergence for Kaczmarz’s method, and to avoid this, one must
use a diminishing step size [3]. Therefore, in the ART methods, the user can supply
a function (instead of a constant) with a diminishing parameter, e.g., ω� = 1/

√
�

where � counts the total number of row updates.
All five SIRT methods in this package involve updates of the form

x ← PC
(
x + ωk D AT M (b − Ax)

)
, k = 1, 2, 3, . . . , (7)

where ωk is the relaxation parameter in iteration k while D and M are diagonal
matrices with positive diagonal elements and, hence, symmetric and positive (SPD),
as specified in Table 3. This table also lists the bounds on the relaxation parameter
ωk to ensure asymptotic convergence; these bounds are derived from the general
criterion

ωk < 2/ρ(D AT MA), ρ(·) = spectral radius , (8)

and using that ρ(AT A) = ‖A‖2
2 and ρ(AT MA) = ‖AT MA‖2 when M is SPD. For

SART, it proved in [6] that ρ(D AT MA) ≤ 1, meaning that the criterion ωk < 2
is sufficient (and easy to check) but not necessary. Our software checks if a user-
supplied constant relaxation parameter ωk = ω satisfies these conditions. The default
value is ω = 1.9/ρ(D AT MA).

A new feature, similar to ART and CART, is that the user can now define a cus-
tomized SIRT method by specifying the two matrices D and M , either as matrices
or as vectors representing the diagonal of diagonal matrices of appropriate size. To
ensure convergence, these matrices must be SPD; but we do not check this. An
application of this feature is presented in Section 5.2.

Table 3 Overview of the SIRT methods; Im and In denote identity matrices of size m × m and n × n

Method Choice of diagonal matrices Relax. parameter Ref.

Custom SIRT The user specifies symmetric and 0 < ωk < 2/ρ(D AT MA)

sirt positive definite D and M

Also interface to landweber, cimmino, cav, drop, and sart

Landweber D = In, M = Im 0 < ωk < 2/‖A‖2
2 [32]

landweber

Cimmino D = In, Mii = m−1 ‖ai‖−2
2 0 < ωk < 2/‖AT MA‖2 [9]

cimmino

CAV D = In, Mii = ‖ai‖−2
S 0 < ωk < 2/‖AT MA‖2 [8]

cav where ‖z‖2
S ≡ ∑n

j=1 z2
jnnz(cj)

DROP Djj = nnz(cj)
−1, Mii = ‖ai‖−2

2 0 < ωk < 2/ρ(D AT MA) [7]

drop

SART Djj = ‖cj‖−1
1 , Mii = ‖ai‖−1

1 0 < ωk < 2 [1]

sart

Numer Algor

By defining the iterations as shown in Tables 2 and 3, we ensure that the amount
of computational work per iteration is almost identical for all the methods. One iter-
ation in the ART and CART methods, as implemented in this package, is sometimes
called a sweep in other works. For consistency with the other methods, we define one
symkaczmarz iteration as either a “down” or an “up” sweep of the rows, and for
this method, the number of iterations must be an even number.

It is interesting to note that all the AIR methods discussed here can be interpreted
as optimization methods for (weighted) least squares problems. The ART methods
are special instances of projected incremental gradient methods [2], CART is a cyclic
coordinate descent algorithm [45], and the SIRT methods are (projected) gradient
methods with different scalings.

2.2 Convergence and semi-convergence

For the unconstrained SIRT methods, the convergence analysis can be cast in terms
of the singular value decomposition; see, e.g., [18]. For all other methods, the con-
vergence aspects are surprisingly complex, as they depend on both the rank of the
matrix and the consistency of the system Ax ≈ b in (1).

For example, consider Kaczmarz’s method with a fixed relaxation parameter. If
the system is consistent (i.e., b lies in the range of A), then this method converges to
the unique solution of minimum 2-norm, independently of the rank of A, provided
that x0 lies in the range of A, e.g., when x0 = 0. But if the system is inconsistent and
overdetermined (m > n), then, independently of the rank of A, this method does not
exhibit asymptotic converge for k → ∞ (we have cyclic convergence [16]).

When we face noisy data—which is typical for CT applications—we rely on
the semi-convergence properties of the iterative methods, and therefore, we do not
elaborate on the asymptotic convergence aspects. To set the stage, we write the noisy
data as

b = b̄+e, b̄ = A x̄ = exact data, x̄ = exact solution, e = noise. (9)

Moreover, we let xk denote the kth iterate of any of the iterative methods, with
or without constraints. Semi-convergence—as coined by Natterer [33]—denotes the
following scenario:

– During the initial iterations, xk tends to approach the desired but un-obtainable
exact solution x̄ to the noise-free problem.

– During later iterations, xk converges, as specified by the asymptotic convergence
theory, to an undesired solution associated with the noisy data (e.g., A−1b if the
system matrix is invertible).

– If we can stop the iterations just when the convergence behavior changes from the
former to the latter, then we achieve a regularized solution—an approximation to
the noise-free solution which is not too perturbed by the noise in the data [21].

The mechanism underlying this semi-convergence can be explained by splitting the
reconstruction error x̄ − xk for the kth iteration vector xk into two components:

x̄ − xk = (
x̄ − x̄k

) + (
x̄k − xk

)
,

Numer Algor

where the “clean” iteration vector x̄k corresponds to the noise-free data b̄ = A x̄.

– The first component x̄ − x̄k is the iteration error which is independent of the
noise in the data. This component decreases as described by the asymptotic
convergence theory for the particular method.

– The second component x̄k −xk is the noise error which is due to the presence of
the data error e. This component tends to increase with the number of iterations,
and the key to demonstrate semi-convergence for a particular method is to show
how fast this component increases.

Fig. 1 Illustration of the
influence of a constant
relaxation parameter ωk = ω on
the semi-convergence; the insets
show relevant zooms on the
minima. The top plot shows that
for SIRT methods, the minimum
reconstruction error is almost
independent on ω (except when
it is close to its maximum
value). The middle and bottom
plots show that the situation is
different for the ART methods,
both without and with
nonnegativity constraints; here,
a smaller ω gives a smaller
reconstruction error. We also
show the values of ω found by
the function
train relaxpar described
in Section 2.5

Numer Algor

Figure 1 shows numerical examples of semi-convergence and, in particular, how
the relaxation parameter ω influences this behavior. The figure also shows the spe-
cific value of ω chosen by the training method discussed in Section 2.5. For the
unconstrained SIRT methods, it is fairly straightforward to show semi-convergence
in terms of an SVD analysis [18]. Otherwise, the analysis is more involved; see, e.g.,
[13–15].

2.3 Stopping rules

Stopping rules for iterative methods that solve well-conditioned systems Ax = b or
minx ‖Ax−b‖2 typically terminate the iterations when the residual norm ‖b−Axk‖2
or normal-equations residual norm ‖AT (b−Ax)‖2 is sufficiently small. However, for
discretizations of ill-posed problems, it is well known that such a small residual does
not imply a good approximate solution [21], and hence, these traditional stopping
rules can not be used here.

Instead, we must rely on the semi-convergence of the iterative methods, where
the number of iterations plays the role of a regularization parameter [21]. Therefore,
many of the parameter-choice rules developed for inverse problems can be directly
applied as stopping rules for the AIR methods.

Specifically, we need stopping rules—often based on heuristic methods—that seek
to identify the change of convergence behavior mentioned above. There is a rich
literature on such methods, but not all of them are robust enough to be included in
a package like this. We have carefully selected the stopping rules listed in Table 4,
with some revisions as listed below.

There are several other good stopping rules that we intentionally did not imple-
ment, such as the UPRE and GCV methods [43, Chapter 7]. These methods require
an estimate of the trace of the matrix AA#

k , where A#
k is a method-specific matrix

Table 4 Overview of the stopping rules, where rk = b −A xk , δ is an estimate of ‖e‖2, and τ is a “safety
factor” slightly larger than 1

Name Rule Used in Ref.

Maximum number of k = kmax All

iterations methods

DP—discrepancy ‖rk‖2 < τ δ All [17]

principle methods

ME—monotone error 1/2
(
rk

)T (
rk−1 + rk

)
/‖rk‖2 < τ δ All SIRT [17, 26]

methods

NCP—normalized 1D: mink ‖v(rk) − vwhite‖2 All [22, 36]

cumulative periodogram 2D: mink p−1 ∑p

�=1

∥∥v(rk
�) − vwhite

∥∥
2 methods

see (10), (11) for defs. of v(·) and rk
�

Numer Algor

such that xk = A#
kb. The computation of this trace estimate doubles the amount of

work in each iteration, and hence, we did not find such stopping rules suited for this
package.

2.3.1 Implementation of the DP and ME rules

The discrepancy principle (DP) and monotone error (ME) stopping rules are special
cases of a more general rule described in [17]. Ideally, they terminate the iterations
at the smallest k such that

DP : (
rk

)T
M rk < τ ‖Me‖2, ME : (

rk
)T

M
(
rk + rk+1)/‖rk‖2 < τ‖Me‖2,

where rk = b − Axk and τ is a suitable “safety factor” slightly larger than 1. We
modified these rules in two ways, leading to the rules shown in Table 4.

For the case M �= Im, in AIR TOOLS, we followed the recommendation in [17]
to replace ‖Me‖2 with the upper bound ‖M‖2‖e‖2. Unfortunately, extensive exper-
iments showed that this bound is always a very large overestimate and hence the
iterations terminated much too early. Hence, we decided to ignore the matrix M on
both sides of the inequality signs, which gives stopping rules that work much better
in practice.

When the ME rules are formulated in the above forward-looking fashion, we
always need to take one additional iteration because we need the residual rk+1, asso-
ciated with iteration vector xk+1, to terminate at iteration k. This is not practical.
Since the SIRT methods converge rather slowly, we have chosen instead to use the
more practical backward-looking version with rk +rk+1 replaced by rk−1 +rk . Also,
we found that adding the factor 1/2 improved the performance.

When using these stopping rules, the user is assumed to know a good estimate δ

of the norm ‖e‖2 of the noise, as well as a suitable value of the “safety factor” τ—
and the user only needs to specify the product τδ. To aid the user in choosing the
τ parameter, we provide a function train dpme that, given an iterative method, a
test problem with exact data, and the parameter δ = ‖e‖2, computes the value of τ

that leads to the smallest reconstruction error (for the test problem) in the smallest
number of iterations. This function implements the strategy from [17] and averages
over a user-specified number of noise realizations.

2.3.2 Implementation of the NCP rule

The principle underlying this rule is to terminate the iterations when the residual
vector rk resembles white noise. Following [22] and [36], the NCP stopping rule
implemented in AIR TOOLS was derived for the case where b represents a 1D signal
(e.g., a time series). Let r̂k denote the discrete Fourier transform of the residual rk ,
and let m denote the largest integer such that m ≤ m/2. Then, using MATLAB’s
colon-notation, we define the normalized cumulative periodogram (NCP) for rk as
the vector v with elements

v
(
rk

)
i
= ∥∥r̂k(2 : i+1)

∥∥2
2/

∥∥r̂k(2 : m+1)
∥∥2

2, i = 1, 2, . . . , m. (10)

Numer Algor

If rk consists of white noise, then its power spectrum is flat and the elements of
the corresponding v(rk) will approximately be equal to i/m for i = 1, 2, . . . , m.
Hence, we terminate the iterations at that k for which v(rk) is closest to the vector
vwhite = (1/m, 2/m, . . . , 1).

The above approach for 1D signals is not strictly correct for CT problems where
the right-hand side b corresponds to p individual projections—one for each projec-
tion angle in the measurements. Here, we describe a new variant of NCP for such
problems. We assume that data are organized such that we can partition b and the
residual rk into p conforming sub-vectors,

b =

⎛
⎜⎜⎜⎝

b1
b2
...

bp

⎞
⎟⎟⎟⎠ , rk =

⎛
⎜⎜⎜⎝

rk
1

rk
2
...

rk
p

⎞
⎟⎟⎟⎠ , (11)

with each sub-vector corresponding to a single projection. This is indeed the case
for the 2D test problems generated by paralleltomo, fancurvedtomo, and
fanlineartomo. Then we measure the kth residual’s deviation from being white
noise by averaging the sub-vectors’ deviations from being white,

Δk = 1

p

p∑
�=1

∥∥v
(
rk
�

) − vwhite
∥∥

2, (12)

and we want to terminate the iterations at the minimal Δk . The user must always
specify whether the 1D or 2D version, listed in Table 4, should be used.

Our experiments show that Δk does not always vary smoothly with k; rather, it
may have a zigzag behavior. A similar observation was made in [23] and [35] for the
Monte Carlo GCV approach. Their solution, which we replicate in our software, is to
apply a short filter that tracks the envelope of the NCP function Δk .

2.4 Illustration of the stopping rules

We illustrate the issues described above by means of the 2D X-ray CT problem
generated by means of paralleltomo (see below), with the parameters

N = 50, theta = 0:3:177, p = 75

which produces a coefficient matrix of dimensions 4500 × 2500. We added white
Gaussian noise with ‖e‖2/‖b̄‖2 = 0.03 and solved the problem with the Cimmino
and Kaczmarz methods. The results are shown in Fig. 2.

– The top plots show the error histories, i.e., ‖x̄ − xk‖2/‖x̄‖2 versus k; the
minimum reconstruction error is marked by the bullets.

– The middle plots show the DP and ME functions ‖rk‖2 and 1/2
(
rk

)T (
rk−1 +

rk
)
/‖rk‖2, respectively; their intersections with the horizontal line at δ = ‖e‖2

(marked by the bullets) define the number of iterations (we used τ = 1). The ME
rule does not apply to the ART methods.

Numer Algor

– The middle left plot also shows the function corresponding to the ME rule as
originally proposed in [17]:

(
rk

)T
M

(
rk−1 + rk

)
/(‖M‖2 ‖rk‖2). This function

is strictly smaller than δ, showing that this version of the ME rule does not work
for the present problem.

– The bottom plots show the behavior of the filtered NCP function Δk in both its
1D and 2D variants, as well as the un-filtered NCP function in its 2D variant.
The latter shows the need for the filtering. For Cimmino, both variants happen to
give approximately the same number of iterations, while the 1D variant stops the
Kaczmarz iterations too early.

The behavior of the stopping rules observed here is quite general: DP and ME tend
to give the same results, and they may terminate the iterations before the minimum
reconstruction error is reached; NCP tends to terminate the iterations even earlier.
But these early terminations are acceptable because the reconstruction error is not
much larger than its minimum. (One could argue that they are desirable because they
trade a slightly sub-optimal solution for a shorter computing time.)

To illustrate the robustness of the DP, ME, and NCP stopping rules when applied
to the same test problem as above, we generated 500 instances of white Gaussian
noise with ‖e‖2/‖b̄‖2 = 0.03. For each instance, we used Cimmino’s method and
computed the ratio krule/kopt between the number of iterations chosen by the stopping
rule and the optimal number of iterations for which the error is minimum, as well
as the ratio ‖x̄ − xkrule‖2/‖x̄ − xkopt‖2. Ideally, both ratios should be close to 1. If
krule/kopt < 1, we stop too early; otherwise, we stop too late, and in both cases,

Fig. 2 Illustration of stopping rules for the Cimmino and Kaczmarz methods; see the text for details

Numer Algor

‖x̄ − xkrule‖2/‖x̄ − xkopt‖2 > 1. Moreover, if the latter ratio is large, it means that the
stopping rule did not work well—the iterations stopped either too early or too late.

Scatter plots of all the pairs of these ratios are shown in Fig. 3, for two different
choices of the parameter τ in DP and ME. The inserted plots show all the results, and
we see that in most of the cases, the ratio krule/kopt is smaller than 1, i.e., we stop too
early. The large plots zoom in on the interval 0 ≤ krule/kopt ≤ 0.8 where most of the
data points are located. From these plots, we see that

– For all three stopping rules, when the iterations are stopped too early, then the
ratio ‖x̄ − xkrule‖2/‖x̄ − xkopt‖2 can be as large as 1.4 or 1.8, for τ = 1.2 and 1.3,
respectively.

Fig. 3 Illustration of the robustness of the stopping rules for Cimmino’s method; see the text for details.
The top and bottom plots correspond to using τ = 1.2 and 1.3, respectively, in the DP and ME stopping
rules

Numer Algor

– For τ = 1.3, the ME rule occasionally terminates the iterations much too early,
as indicated by the cluster of green points in the upper left corner.

– The NCP rule consistently stops the iterations too early, and there is no risk
of taking too many iterations. On average, for krule/kopt < 1, the obtained
reconstruction error for the NCP rule is a bit larger than that for the DP and ME
rules.

– For both the DP and ME rules, the iterations are occasionally stopped too late,
especially for τ = 1.2 (63 out of 500 cases); for τ = 1.3, this happens less often
(23 out of 500 cases).

In conclusion, the NCP stopping rule never takes too many iterations but the average
reconstruction error is a bit larger than for the DP and ME rules. On the other hand,
the latter rules may occasionally stop the iterations much too early or much too late—
and they require that the noise level is known.

2.5 Choice of relaxation parameter

The relaxation parameter in (3), (5), and (7) is either a constant or it depends on
the iterations. The user can specify a constant relaxation parameter ω; if this is not
specified, then the default values mentioned above are used.

The choice of ω is important, in the sense that we want to compute a good
reconstruction in as few iterations as possible. For the SIRT methods, the smallest
reconstruction error is almost independent on ω [15], and this means that we pre-
fer an ω towards its maximum allowed value (cf. Table 3)—although not too close
to this value. For the ART methods, on the other hand, there is a more complicated
relationship between ω and the smallest reconstruction error for this parameter. The
dilemma is that a smaller ω (which gives a slower convergence) gives a smaller
error—and hence we want to balance the number of iterations and the reconstruction
error. Figure 1 in Section 2.2 illustrates these aspects, using the same test problem as
in Section 2.4.

To aid the user in finding a good constant relaxation parameter ω, we provide a
function train relaxpar that, given a noisy test problem with a known exact
solution, determines an optimal ω that leads to semi-convergence in the smallest
number of iterations. See [24] for the details of this algorithm. The values of ω found
by this function are also shown in Fig. 1.

For the SIRT methods, we can also use a relaxation parameter ωk that depends on
the iterations, and we provide two strategies for choosing ωk . The line search method
[12], [15] minimizes the error ‖D−1/2(x∗ − xk)‖2 in each iteration; here, x∗ is the
solution to Ax = b which is assumed to be consistent. This leads to the choice

ωk = (rk)T Mrk

‖D1/2AT Mrk‖2
2

. (13)

Since this strategy assumes a consistent system, it can lead to oscillations in the error
history for non-consistent problems, cf. [15].

Numer Algor

An alternative is to use a diminishing step-size strategy for ωk in which the iter-
ations “slow down” as they reach the point of semi-convergence. We implement the
“Ψ -strategies” from [18] in which ω0 = ω1 = √

2/ρ and

ωk =

⎧⎪⎪⎨
⎪⎪⎩

2
(

1−ξk

)
�

, Ψ1-strategy

2
(

1−ξk

)
�
(

1−ξk
k

)2 , Ψ2-strategy
for k = 2, 3, . . . (14)

where � = ‖AT MA‖2 and ξk is the unique root in the interval (0, 1) of the poly-
nomial (2k − 1)ξk−1 − (ξk−1 + · · · + ξ + 1). Modified versions are obtained by
scaling ωk by 2 and 1.5, respectively. We refer to [18] for more details.

3 Test problems

We provide three types of test problems: 2D X-ray tomography, 2D spherical Radon
tomography, and 2D seismic travel-time tomography. In all cases, we use a pixel
basis; the image is N × N and it is represented by the vector x ∈ R

n with n = N2.
The user must specify N and parameters for the measurement geometry. We return
the image x̄, the corresponding data b ∈ R

m, and the sparse matrix A that represents
the underlying mathematical model: b = Ax.

A new feature in AIR TOOLS II is that the test problem generators can return a
function handle @A instead of the sparse matrix, such that the multiplications Ax and
AT y are replaced by the calls A(x,’notransp’) and A(y,’transp’). The
updated versions of all the iterative methods accept such a function handle instead of
the matrix.

For all test problems, it is possible to display the geometries in an animation by
specifying an input parameter isDisp; we recommend to do this only for small
problems. An additional new feature to illustrate the measurement geometries is by
means of the function show tomo which, given a test problem matrix or function
handle, performs a loop where it displays the rows of the matrix reshaped into an
N × N image.

3.1 X-ray CT problems

The underlying model in these test problems consists of straight X-rays that penetrate
the object, after which we record the damping. According to Lambert-Beer’s law
[5, §2.3.1], and after taking the logarithm of the recorded data, the damping is given
as a line integral along the X-ray of the object’s attenuation coefficient. Discretization
of the object then leads the following model, for the ith ray:

bi =
∑
j∈Si

Lij xj ,

Numer Algor

where Si is the set of indices to those pixels that are penetrated by the ith ray, Lij is
the length of the ith ray through the j th pixel, and xj is the attenuation coefficient in
pixel j . Defining the elements of the sparse matrix A as

aij =
{

Lij , j ∈ Si

0, otherwise
(15)

we arrive at the linear algebraic system Ax = b. This classical discretization
scheme is often referred to as the “line model” (or “Siddon’s method,” although his
contribution [37] was a fast algorithm for implementing this scheme).

The detector has p pixels, and the assumption is that each detector pixel is hit
by a single X-ray. Moreover, the source-detector pair is rotated around the object,
and measurements are recorded for Nθ angles θ1, θ2, . . . , θNθ . Hence, the number of
data is m = p Nθ . The default values are p = round(

√
2N) and Nθ = 180. The

measurement configurations are as follows—see Fig. 4 for illustrations of the three
configurations:

– The object domain is the square [−N/2 , N/2] × [−N/2 , N/2].
– paralleltomo. The source is placed infinitely far from a flat detector with

equal spacing between the pixels (which is a very good approximation to the
situation at synchrotron facilities) and the p rays are therefore parallel. The dis-
tance between the first and the last ray is d, with default value d = p − 1, and
the default projection angles are 0◦, 1◦, 2◦, . . . , 179◦.

– fancurvedtomo. The source is located at distance R N from the object’s cen-
ter (default R = 2). The detector is curved such that there is an equal angular
span between each ray, and the total angular span is d degrees; the default value
of d is such that the first and last rays originating from (0, RN) hit the two
domain corners (−N/2 , N/2) and (N/2 , N/2). The default projection angles
are 0◦, 2◦, 4◦, . . . , 358◦.

– fanlineartomo (new test problem). Again, the source is located at distance
R N from the object’s center (default R = 2). The detector is linear such that

Fig. 4 Illustration of the measurement geometries in the three X-ray CT test problems. The parameters
(which are not the default values) were chosen for illustration purposes

Numer Algor

there is an uneven angular span between the rays; it is located at distance sdN

from the source (default sd = 3) and the distance between the centers of the
end-point pixels is dwN (default dw = 2.5). The default projection angles are
0◦, 2◦, 4◦, . . . , 358◦.

3.2 Spherical Radon transform tomography

The spherical Radon transform arises, e.g., in photo-acoustic tomography [31] where
a laser pulse focused inside the object generates a thermoelastic expansion that pro-
duces a pressure wave which is measured by transducers outside the object. The data
consist of integrals over spheres (or circles in the 2D case)—and hence the name
“spherical means” is also used. The measurement configuration for the test problem
sphericaltomo is as follows—see Fig. 5 for an illustration:

– The object domain is a square centered at the origin.
– The centers for the integration circles are placed on a circle just outside the image

domain, and the user specifies the angles to these circle centers. The default
angles are [0◦, 2◦, 4◦, . . . , 358◦].

– For each circle center, we integrate along a user-specified number of concentric
circles with equidistant radii, using the periodic trapezoidal rule. The default
number of circles is round(

√
2N).

3.3 Seismic travel-time tomography

These test problems simulate geophysical problems where one records the travel time
of seismic waves between sub-surface sources and detectors located either at or below
the surface. The goal is to determine the sub-surface attenuation, or slowness, in the

Fig. 5 Illustration of the
measurement geometry in the
spherical Radon transform test
problems sphericaltomo.
We show 10 concentric
integration circles centered
outside the image domain

Numer Algor

Fig. 6 Left: illustration of the measurement geometry in the two seismic travel-time test problems. Middle
and right: a single row of A displayed as an image, showing a single ray in seismictomo and a single
Fresnel zone in seismicwavetomo. The parameters (which are not the default values) were chosen for
illustration purposes

domain represented by x. The measurement configurations are as follows—see Fig. 6
for illustrations:

– The domain is the square and of size [0, N] × [0, N].
– There are s equally spaced sources located at the right side of the domain; the

default is s = N .
– There are p receivers equally spaced on the top (the surface) and the left side of

the domain; the default is p = 2N .
– seismictomo. The recorded travel time is modeled by a line integral of the

attenuation coefficient along a straight line between the source and the detector,
and when discretized, this leads to the same linear model b = Ax as before with
the matrix elements given by (15).

– seismicwavetomo (new test problem). Here, the wave between the source
and the receiver is assumed to travel within the first Fresnel zone [27] shaped
as an ellipse with focal points at the source and the receiver. The width of the
ellipse depends on the dominating frequency ν of the propagating wave (default
ν = 10); the smaller the ν, the wider the ellipse. The recorded travel time is
modeled as an integral of the attenuation coefficient over the Fresnel zone. This
also leads to a sparse matrix A but with more nonzeros than for seismictomo;
the smaller the ν, the more nonzeros in A.

3.4 Collection of test phantoms

We provide a total of nine test images, also known as phantoms, as listed and shown
in Table 5. In addition to the well-known Shepp-Logan medical phantom, we provide
phantoms with various characteristics and features that make them suited for testing
different reconstruction capabilities (such as edges and small details).

The phantom is always an N ×N image with pixel values between 0 and 1, and the
user must reshape this image to obtain the vector x. The user can specify a number of
additional input parameters that define the appearance of the phantom. All phantoms
except shepplogan are created by us.

Numer Algor

Table 5 An overview of the nine test phantoms generated by the function phantomgallery

Name Description Parameters

shepplogan The Shepp-Logan “medical” phan-
tom. Default in the X-ray CT and
spherical Radon transform test prob-
lems

None

tectonic Two convergent tectonic plates creating a
subduction zone. Default in the seismic
test problems

None

smooth A smooth image consisting of a
superposition of four Gaussian func-
tions

P1 = 1, 2, 3, 4 (default 4) defines four
different images

binary A random image with binary pixel val-
ues arranged in domains dominated by
horizontal structures

P1 is the seed for the random number gener-
ator

threephases A random image with pixel values 0, 0.5,
and 1 arranged in domains

P1 controls the number of domains
(default = 100)
P2 is the seed for the random number
generator

threephasessmooth Similar to threephases, but the
domains have smoothly varying pixel
values and there is a smooth back-
ground

P1 controls the number of domains
(default = 100)
P2 controls the intensity variation
within each domain (default = 1.8)
P3 is the seed for the random number
generator

fourphases A random image similar to binary
but with three phases separated by
(thin) structures that form the fourth
phase

P1 is the seed for the random number gener-
ator

grains A random image with Voronoi cells,
simulating grains in a crystalline mate-
rial

P1 is the number of cells (default =
round(3*sqrt(N)))
P2 is the seed for the random number
generator

ppower A random image with patterns of
nonzero pixels [28], suited for sparse
reconstructions

P1 is the fraction of nonzero pixels,
between 0 and 1 (default = 0.3)
P2 > 0 is the smoothness of the image
(default = 2)
P3 is the seed for the random number
generator

The images were generated with N = 128 and default parameters

Numer Algor

4 Improving the implementation of AIR TOOLS II

The original software AIR TOOLS was not designed in a modular fashion, leading
to a large amount of duplicated code. Several additional features have been added
over the years, making it increasingly difficult to maintain and ensure correctness
and consistency due to the non-modular design. Moreover, the original software
was not designed with large-scale problems in mind; hence, the explicit use of the
matrix A was required and the code was not optimized for performance. These
reasons motivated a major re-design of the software, which has led to this improved
implementation which incorporates a reorganizing of the code in a modular fash-
ion with emphasis on computational speed and memory use and with expanded
functionality.

One of the major new features of the software is the ability to use functions that
compute matrix-vector products, instead of requiring the coefficient matrix A to be
explicitly stored. This allows us to solve much bigger reconstruction problems—at
the cost of somewhat larger execution times due to the computation of the matrix
elements “on the fly,” and we illustrate this feature in the next section. The following
considerations are in order:

– Computation of the matrix norm ‖AT MA‖2 and the spectral radius
ρ(D AT MA), used for checking and/or selecting the constant relaxation param-
eter in the SIRT methods, is done by means of the MATLAB function eigs
(MATLAB’s svds does not accept a function handle as input). We set a fairly
large accuracy threshold because we only need the result with a few significant
digits.

– In doing this, we ensure that the computed results are fully reproducible. The
MATLAB function eigs uses a random starting vector causing minor varia-
tions in the computed spectral radius. Therefore, we make the computation of the
spectral radius and, thus, the relaxation parameter, deterministic by using fixed
random number generating settings before calling eigs, and then restoring the
previous settings afterwards.

– Computation of the row and column 2-norms must be done by extracting the rows
or columns individually, by applying A or AT to all the canonical unit vectors.
This is time-consuming for large problems.

– Computation of the row and column 1-norms is simple when the matrix has non-
negative elements (making the SART method attractive for CT problems where
this is always true). If 1 denotes the vector of all ones (of appropriate length), then
the vectors A 1 and AT 1 hold the 1-norms of the rows and columns, respectively.

Another major update consists of collecting all the iterative methods in three
general functions art, cart, and sirt, and adding a small number of auxiliary
functions (e.g., for checking the input parameters and imposing the stopping criteria).
Previously, all the iterative methods were implemented in separate functions with
similar structure; collecting them in three general functions with common auxiliary
functions ensures consistency and makes it much easier to maintain and update the

Numer Algor

software (e.g., if more stopping rules are added). For backward consistency, we pro-
vide interface functions with all the old function names, such as kaczmarz and
cimmino, that call these general functions.

An additional advantage of this design is that we can now allow the user to custom-
define variants of the iterative methods. In particular, the user can specify the row or
column ordering for the ART and CART methods, and specify the matrices D and M

(either as matrices or vectors representing the diagonal of diagonal matrices) in the
SIRT methods.

The original software included a possibility for continuing the iterations after they
were terminated, by returning the necessary “internal” matrices and parameters. This
feature was surprisingly difficult to use, so it was removed. We return relevant “inter-
nal” quantities such as D and M , as well as the constant relaxation parameter ω if
this strategy is used.

5 Demonstrations of new features

Here, we present three examples that demonstrate some of the new features of the
software. More examples can be found in the original paper [24], as well as in the
demo scripts provided in the package.

5.1 Use of constraints

In this example, we show that the use of constraints can lead to an improved recon-
struction, and we demonstrate how to specify these constraints in our software. We
generate a noisy parallel-beam CT test problem and solve it by Cimmino’s method
with four instances of the constraints:

1. No constraints.
2. Nonnegativity constraints C = R

n+.
3. Box constraints C = [0, 1]n,
4. Box constraints combined with tight constraints for those pixels in x̄ whose

values are known to be close to 0.3.

For each instance, we compute the 2-norm of the reconstruction error in two different
ways: i) over all the pixels or ii) only in those pixels where x̄i �= 0.3, giving the
results:

Case No constr. C = R
n+ C = [0, 1]n Box + equality

i) 1.896 0.879 0.866 0.769
ii) 1.825 0.832 0.819 0.769

Clearly, each added constraint improves the reconstruction. In particular, note that
the tight constraints not only affect the relevant pixels but also improve the recon-
struction elsewhere. This example is available in the script demo constraints.

Numer Algor

5.2 Use of the custom SIRT function sirt

It is shown in [16] that a down-up “double sweep” of the symmetric Kaczmarz algo-
rithm is mathematically identical to one iteration of the SIRT algorithm with D = I

and a symmetric M given by

M = (2ω − 1) (ωΔ + L)−T Δ (ωΔ + L)−1, (16)

where Δ is diagonal and L is strictly lower triangular such that L+Δ+LT = AAT .
To verify this experimentally, we generate a small test problem, run a few iterations of
both methods, and compute the 2-norm of the difference between respective iteration
vectors – see Fig. 7. To guarantee full rank of AAT we ensure that the matrix A used
here has no zero rows. This example is available in the script demo custom sirt.

Numer Algor

Fig. 7 Experimental verification that the symmetric Kaczmarz method is identical (within rounding
errors) to a certain SIRT method with D = I and M given by (16)

Numer Algor

5.3 Function handles instead of matrices

The next example illustrates how to use function handles instead of matrices in the
iterative methods, thus making it possible to handle larger reconstruction problems
for which it is not feasible to store the entire matrix in memory. We show two different
cases, both related to the paralleltomo test problem:

1. We create a function-handle “wrapper” Afun ps to an existing A matrix, in
order to illustrate the general principle. The matrix is generated by means of
a standard call to the paralleltomo function, and the “wrapper” uses the
function afun matrix provided in this package.

2. We use a function handle Afun mf to a fully matrix-free version, generated
by calling paralleltomo with a sixth input parameter 0. Note that all test
problems come with this feature.

This example is available in the script demo matrixfree.

6 Interface to other software: the ASTRA tomography toolbox

The possibility of specifying a function handle instead of a matrix as input to the iter-
ative methods (cf. Section 5.3) allows AIR TOOLS II to interface to other software.
In this way, we can use efficient third-party implementations of the matrix multipli-
cations. The only requirement is that the user writes a function in the same format as
afun matrix to implement the necessary operations, namely, multiplication with
the matrix and its transpose, and returning the size of the matrix.

This section illustrates the above functionality in a detailed example showing how
to use the matrix-free GPU-accelerated forward and back projectors (corresponding
to A and AT) provided in the ASTRA tomography toolbox [34, 41]. This enables
much faster execution than using the matrix-free methods of AIR TOOLS II. The
corresponding code for the 2D problem is available in the demo demo astra 2d
and it uses the “wrapper” function afun astra 2d gpu. In order to run this exam-
ple, the user needs to install ASTRA and have access to a suitable GPU, see www.
astra-toolbox.com/ for details. All our experiments were done using version 1.8 of

www.astra-toolbox.com/
www.astra-toolbox.com/

Numer Algor

ASTRA, which was the latest release at the time of writing. All our experiments were
done using version 1.8 of ASTRA, which was the latest release at the time of writing.
To be clear, apart from this example, no other functionality of AIR TOOLS II relies
on external software.

ASTRA, among other things, provides an algebraic iterative reconstruction
method called “SIRT” which is equivalent to our SART method—although with more
restricted options, such as a fixed choice of ωk = 1 for the relaxation parameter, no
stopping rules other than a maximum number of iterations, and no progress output
during iterations. Another current limitation in ASTRA is that all data must fit into
the GPU’s RAM, thus limiting the size of data that can be handled. AIR TOOLS II
provides the flexibility to go beyond this limitation.

The script demo astra 2d uses fanlineartomo to generate a test problem
and compute a reconstruction with the SART algorithm. We consider four cases:

(i) Using sart with the matrix A explicitly generated by fanlineartomo
(ii) Usingsart’s matrix-free mode with the function handle fromfanlineartomo

(iii) Using sart with ASTRA’s GPU-accelerated forward and back projections
(iv) Using ASTRA’s equivalent method called “SIRT” available in SIRT CUDA

The resulting reconstructions along with computing times are shown in Fig. 8.
Since we focus on demonstration of the software, rather than on achieving the
best reconstruction, only 10 iterations are performed—which explains the blurred
reconstructions.

Fig. 8 The output from demo astra 2d which demonstrates how to interface to the ASTRA tomog-
raphy toolbox [41] from AIR TOOLS II. The figures show the reconstruction after 10 iterations, together
with the corresponding computing times; see the text for details. All images are shown in gray-scale
window [0, 0.6]

Numer Algor

The four reconstructions are very similar in appearance, thus verifying that the
interface to ASTRA works as expected, with only subtle differences ascribed to the
different discretizations used in AIR TOOLS II and ASTRA to compute the matrix A.
The computing time reported for case (i) does not include the initial time for set-
ting up the matrix A. Case (ii) takes substantially longer, which is expected since
all matrix elements are computed on the fly when needed, i.e., twice per iteration.
The advantage of case (ii) is lower memory requirements, since A is never explicitly
stored. If the problem considered is too large for the matrix to fit into system mem-
ory, one can thus trade memory usage for computing time by using the matrix-free
mode in AIR TOOLS II. In case (iii), the GPU acceleration provided by ASTRA
reduces the matrix-free computing time, thus offering both low memory usage and
fast reconstruction. Even faster is case (iv) where ASTRA’s built-in function “SIRT”
avoids time-consuming data transfers to and from the GPU.

Using ASTRA’s GPU-accelerated implementations of 3D tomography problems,
it is now possible to handle large 3D CT problems in AIR TOOLS II via the function-
handle interface. To illustrate this, we use the SOPHIABEADS DATASETS [10, 11]
consisting of cone-beam micro-CT measurements of glass beads packed in a plas-
tic container. Specifically, we use the dataset SophiaBeads 1024 averaged
with 1024 projection angles in [0◦, 360◦]. The projection data for each angle are 2D
images of 1564 × 1564 pixels. We use the ASTRA function SIRT3D CUDA running
on a high-end GPU (nVIDIA GeForce GTX TITAN X, 12-GB RAM), where we can
compute up to 200 “slices” of the 3D reconstruction before exceeding the available
GPU memory. We thus select the central 200 rows of each projection image and com-
pute a 3D reconstruction of 1564 × 1564 × 200 voxels. The reconstruction obtained
after 50 iterations (reconstruction time 782 s) is shown in the left part of Fig. 9, which
shows the three central orthogonal “slices.” The reconstruction is somewhat blurry;
it can be improved by running more iterations or by accelerating the iterations with

Fig. 9 Orthogonal “slices” of two 3D reconstructions after 50 iterations, using the SOPHIABEADS

DATASETS. Top: the 1564×1564 horizontal slice; middle and bottom: the 200×1564 vertical slices. Left:
reconstruction by ASTRA’s SIRT3D CUDA method with relaxation parameter ωk = 1. Right: reconstruc-
tion by AIR TOOLS’s sart with relaxation parameter ωk = 1.9 interfacing to ASTRA’s GPU-accelerated
forward and back projectors. All images are shown in the gray-scale window [0, 0.004]

Numer Algor

a larger relaxation parameter ωk , but ASTRA’s software does not allow other values
than 1.

As an alternative, by interfacing to ASTRA’s 3D forward and back projectors, we
can compute a reconstruction using our sart function. We use the default relaxation
parameter ωk = 1.9 and run again 50 iterations, which produces the reconstruction
shown in the right part of Fig. 9. The beads are substantially sharper and they have
a higher contrast to the background. The computing time for AIR TOOLS II was
1633 s, roughly only a factor 2 longer than that of ASTRA.

These simple examples were chosen to clearly illustrate how to increase the
flexibility of AIR TOOLS II—here in conjunction with the ASTRA software for
large-scale CT reconstruction. All features of AIR TOOLS II can be employed
including stopping rules, relaxation parameter strategies, general constraints, storing
of intermediate iteration vectors, a number of other iterative algorithms, and printing
of progress per iteration using the verbose option. This provides a much more gen-
eral set of iterative methods, while still utilizing ASTRA for GPU acceleration of the
forward and back projection computations at only a moderately longer computation
time.

7 Conclusion

We gave an overview of the MATLAB software package AIR TOOLS II with focus
on the improvements, compared to the original package from 2012. Perhaps, the main
improvement is the ability to use function handles instead of (sparse) matrices, thus
allowing larger problems to be solved. Other improvements include a new modular
design, better user interface, more flexible iterative methods, a new column-action
method, new test problems, and new demo functions. Compared to dedicated tomog-
raphy software, our package allows the user to easily experiment with a variety of
well-documented algebraic iterative reconstruction methods in a flexible and uniform
framework, and at the same time, our software can be used efficiently for real-data
reconstruction problems.

Acknowledgements We thank Tommy Elfving for his continued help and support during this project.

References

1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior
implementation of the ART algorithm. Ultrason. Imaging 6, 81–94 (1984)

2. Andersen, M.S., Hansen, P.C.: Generalized row-action methods for tomographic imaging. Numer.
Algorithms 67, 121–144 (2014). https://doi.org/10.1007/s11075-013-9778-8

3. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Prog. 129,
163–195 (2011)

4. Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of
systems of linear equations. BIT 19, 145–163 (1979)

5. Buzug, T.M.: Computed Tomography. Springer, Berlin (2008)
6. Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projections for the

linear feasibility problem. SIAM J. Matrix Anal. Appl. 24, 40–58 (2002)

https://doi.org/10.1007/s11075-013-9778-8

Numer Algor

7. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection
methods. SIAM J. Sci. Comp. 30, 473–504 (2007)

8. Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm
for large sparse unstructured problems. Parallel Comput. 27, 777–808 (2001)

9. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca
Scientifica, XVI, Series II, Anno IX 1, 326–333 (1938)

10. Coban, S.B.: Sophiabeads datasets project codes, May 2017. Available online from: sophilyplum.
github.io/sophiabeads-datasets

11. Coban, S.B., McDonald, S.A.: Sophiabeads dataset project, March 2015. Available online from:
https://doi.org/10.5281/zenodo.16474

12. Dos Santos, I.T.: A parallel subgradient projections method for the convex feasibility problem. J.
Comput. Appl. Math. 18, 307–320 (1987)

13. Elfving, T., Hansen, P.C., Nikazad, T.: Convergence analysis for column-action methods in image
reconstruction. Numerical Algorithms (2016). https://doi.org/10.1007/s11075-016-0176-x. Erratum
(Fig. 3 was incorrect), https://doi.org/10.1007/s11075-016-0232-6

14. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz’s method. Inverse
Prob. 30 (2014). https://doi.org/10.1088/0266-5611/30/5/055007

15. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence and relaxation parameters for pro-
jected SIRT algorithms. SIAM J. Sci. Comput. 34, A2000–A2017 (2012). https://doi.org/10.1137/
110834640

16. Elfving, T., Nikazad, T.: Properties of a class of block-iterative methods. Inverse Prob. 25, 115011
(2009). https://doi.org/10.1088/0266-5611/25/11/115011

17. Elfving, T., Nikazad, T.: Stopping rules for Landweber-type iteration. Inverse Prob. 23, 1417–1432
(2007). https://doi.org/10.1088/0266-5611/23/4/004

18. Elfving, T., Nikazad, T., Hansen, P.C.: Semi-convergence and relaxation parameters for a class of
SIRT algorithms. Electron. Trans. Numer. Anal. 37, 321–336 (2010)

19. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections.
J. Theor. Biol. 36, 105–117 (1972)

20. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-
dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970).
https://doi.org/10.1016/0022-5193(70)90109-8

21. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)
22. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice

for discrete ill-posed problems. BIT Numer. Math. 46, 41–59 (2006)
23. Hansen, P.C., Nagy, J.G., Tigkos, K.: Rotational image deblurring with sparse matrices. BIT Numer.

Math. 54, 649–671 (2014). https://doi.org/10.1007/s10543-013-0464-y
24. Hansen, P.C., Saxild-Hansen, M.: AIR Tools—a MATLAB package of algebraic iterative recon-

struction methods. J. Comp. Appl. Math. 236, 2167–2178 (2012). https://doi.org/10.1016/j.cam.2011.
09.039

25. Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6, 273–294 (1976)
26. Hämarik, U., Tautenhahn, U.: On the monotone error rule for parameter choice in iterative and

continuous regularization methods. BIT 41, 1029–1038 (2001)
27. Jensen, J.M., Jacobsen, B.H., Christensen-Dalsgaard, J.: Sensitivity kernels for time-distance inver-

sion. Sol. Phys. 192, 231–239 (2000)
28. Jørgensen, J.S., Sidky, E.Y., Hansen, P.C., Pan, X.: Empirical average-case relation between

undersampling and sparsity in X-ray CT. Inverse Problems and Imaging 9, 431–446 (2015).
https://doi.org/10.3934/ipi.2015.9.431

29. Kaczmarz, S.: Angenäherte auflösung von Systemen linearer Gleichungen. Bulletin de l’Académie
Polonaise des Sciences et Lettres A35, 355–357 (1937)

30. Klukowska, J., Davidi, R., Herman, G.T.: SNARK09—a software package for reconstruction of
2D images from 1D projections. Comput. Methods Programs Biomed. 110, 424–440 (2013).
https://doi.org/10.1016/j.cmpb.2013.01.003. The software is available from www.dig.cs.gc.cuny.edu/
software/snark09/index.php

31. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Euro. J. Applied Math.
19, 191–224 (2008)

32. Landweber, L.: An iteration formula for Fredholm integral of the first kind. Am. J. Math. 73, 615–624
(1951)

sophilyplum.github.io/sophiabeads-datasets
sophilyplum.github.io/sophiabeads-datasets
https://doi.org/10.5281/zenodo.16474
https://doi.org/10.1007/s11075-016-0176-x
https://doi.org/10.1007/s11075-016-0232-6
https://doi.org/10.1088/0266-5611/30/5/055007
https://doi.org/10.1137/110834640
https://doi.org/10.1137/110834640
https://doi.org/10.1088/0266-5611/25/11/115011
https://doi.org/10.1088/0266-5611/23/4/004
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1007/s10543-013-0464-y
https://doi.org/10.1016/j.cam.2011.09.039
https://doi.org/10.1016/j.cam.2011.09.039
https://doi.org/10.3934/ipi.2015.9.431
https://doi.org/10.1016/j.cmpb.2013.01.003
www.dig.cs.gc.cuny.edu/software/snark09/index.php
www.dig.cs.gc.cuny.edu/software/snark09/index.php

Numer Algor

33. Natterer, F.: The Mathematics of Computerized Tomography. Reprinted by SIAM, Philadelphia
(2001)

34. Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: Performance improvements for iterative electron tomog-
raphy reconstruction using graphics processing units (GPUs). J. Structural Biology 176, 250–253
(2011)

35. Perry, K., Reeves, S.: A practical stopping rule for iterative signal restoration. IEEE Trans. Signal
Proces. 42, 1829–1833 (1994)

36. Rust, B.W., O’Leary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed
problems. Inverse Prob. 24 (2008). https://doi.org/10.1088/0266-5611/24/3/034005

37. Siddon, R.L.: Fast calculation of the exact radiological path for a three-dimensional CT array. Med.
Phys. 12, 252–255 (1985)

38. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm for linear systems with exponential
convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)

39. Sørensen, H.H.B., Hansen, P.C.: Multicore performance of block algebraic iterative reconstruction
methods. SIAM J. Sci. Comp. 36, C524–C546 (2014)

40. TIGRE: Tomographic iterative GPU-based reconstruction toolbox, available from github.com/CERN/
TIGRE

41. van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A., De Beenhouwer,
J., Batenburg, K.J., Sijbers, J.: Fast and flexible X-ray tomography using the ASTRA toolbox. Opt.
Express 24, 25129–25147 (2016). https://doi.org/10.1364/OE.24.025129. The software is available
from www.astra-toolbox.com

42. van der Sluis, A., van der Vorst, H.A.: SIRT- And CG-type methods for the iterative solution of sparse
linear least-squares problems. Linear Algebra Appl. 130, 257–303 (1990)

43. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)
44. Watt, D.W.: Column-relaxed algebraic reconstruction algorithm for tomography with noisy data.

Appl. Opt. 33, 4420–4427 (1994)
45. Wright, S.J.: Coordinate descent algorithms. Math. Program., Ser. B 151, 3–34 (2015)

https://doi.org/10.1088/0266-5611/24/3/034005
github.com/CERN/TIGRE
github.com/CERN/TIGRE
https://doi.org/10.1364/OE.24.025129
www.astra-toolbox.com

	AIR Tools II: algebraic iterative reconstruction methods, improved implementation
	Abstract
	Introduction
	Overview of the package
	ART, CART, and SIRT methods
	Convergence and semi-convergence
	Stopping rules
	Implementation of the DP and ME rules
	Implementation of the NCP rule

	Illustration of the stopping rules
	Choice of relaxation parameter

	Test problems
	X-ray CT problems
	Spherical Radon transform tomography
	Seismic travel-time tomography
	Collection of test phantoms

	Improving the implementation of AIR Tools II
	Demonstrations of new features
	Use of constraints
	Use of the custom SIRT function sirt
	Function handles instead of matrices

	Interface to other software: the ASTRA tomography toolbox
	Conclusion
	Acknowledgements
	References

