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Abstract 

Thermochemically treated titanium grade 2 and 5 were investigated by light optical microscopy and 

hardness indentation. Gaseous oxidation in oxygen and N2O containing atmospheres resulted in a 

diffusion zone of oxygen in solid solution in titanium with a hardness up to 1000HV. A surface 

scale consisting of oxide can be present depending on the treatment conditions. A new type of 

carbo-oxidation treatment was applied, where carbon and oxygen are simultaneously incorporated 

into the surface. This resulted in new microstructural features such as a deep zone of mixed 

interstitial solid solution, i.e. a diffusion zone, and surface regions consisting of a mixed interstitial 

compound (TiCXO1-X structure). Carbo-oxidation yields hardness values in excess of 2500 HV in 

the mixed interstitial compound and values up to 1500 HV in the diffusion zone. Simultaneously, 

with the surface hardening treatment, core hardening of the material can be obtained.  

 



 

1. Introduction  

Titanium and its alloys are used in applications where high specific strength and light weight are 

required, e.g. hardenable Ti alloys are widely applied in aerospace industry. Titanium is also known 

for its favorable corrosion properties, which are superior to most iron-based alloys and it is the 

material of choice for applications where high corrosion performance is required, e.g. off-shore, 

chemical industries etc. The favorable corrosion performance of titanium is a result of its ability to 

spontaneously form a strongly adherent surface oxide layer (self-passivation). Another aspect of 

titanium is its biocompatibility, making it the ideal choice for biomedical applications such as 

implants. However, titanium suffers from poor tribological properties making it unapt for 

applications where wear is experienced. The poor wear behavior strongly curtails more widespread 

use of this otherwise highly attractive engineering material. Surface hardening is one route to 

remedy this inherent problem of titanium 

 

1.1. Surface hardening of titanium  

Surface hardening of titanium is somewhat special due the presence of the strongly adherent 

impenetrable oxide layer and that the element itself is a very strong nitride and carbide former. For 

this reason Ti is also extensively used as an alloying element in iron-based alloys. The 

impenetrability and strong affinity of the material itself to interstitials effectively excludes the use 

of conventional surface hardening methods for incorporation of nitrogen and/or carbon. In fact, the 

interstitial elements nitrogen, carbon and oxygen, are usually considered as impurity elements in Ti 

alloys. In order to circumvent the major problem with the passive layer barrier, relatively high 

temperatures are required and special processes have to be applied. A general overview of surface 

hardening methods based on oxygen, carbon, nitrogen and boron is given in references [1,2]. 



 

Gaseous nitriding at high temperature (e.g. 1000°C) is the “classical” way to surface harden 

titanium; exposing titanium to high purity molecular nitrogen gas at temperatures above, say 800°C, 

results in formation of TiN and Ti2N nitride and a (supporting) diffusion zone with varying 

thickness [e.g. 3, 4, 5, 6]. The resulting surface layer of TiN has a golden color and will 

aesthetically change the appearance of the treated Ti, but will result in high hardness and low 

friction coefficient. More recently, attempts have been made to control the nitrogen-containing 

atmosphere to develop exclusively a nitrogen diffusion zone by applying a very low partial pressure 

of N2 to avoid formation of Ti-nitrides [7]. There is limited work in the literature on carburizing of 

titanium [8,9,10,11,12]. Carburizing is carried out at high temperature in a carbon bearing gas (e.g. 

CH4) and this transforms the surface into very hard cubic Ti1-xC carbide. The solubility of carbon in 

titanium is low, which means that essentially no diffusion zone forms below the hard Ti1-xC carbide. 

Hence carburizing results in a hard (thin) layer on a relatively soft substrate, which is typically 

unwanted due to risk of an egg-shell effect. Oxidation is generally considered as a detrimental high 

temperature corrosion mechanism, but in the case of titanium oxygen can – counterintuitively - be 

used for surface hardening. Titanium has a large capacity for oxygen in solid solution (32.4 at.%) 

and can form several types of oxides, e.g. rutile and anatase, TiO2. In the 1960s oxidation of 

titanium and surface hardening with oxygen were investigated [13,14] and later also (sporadically) 

in different media, pressure- and temperature ranges [e.g. 15,16,17,18,19,20]. The oxygen-titanium 

system enables relatively thick diffusion zones due to the high solid solubility. A plethora of 

(mainly unsystematic) work on energy-assisted (plasma/ion-based) methods for incorporation of 

interstitials can also be found in the literature [e.g. 21,22,23 24,25]. The main benefit of such 

methods is the possibility to apply lower temperatures as sputtering is an integrated part of the 

method which effectively removes the barrier oxide layer.  



 

So-called mixed interstitial compounds and solid solutions based on the ternary systems N-C-Ti, N-

O-Ti, C-O-Ti are claimed to have interesting properties. These systems (viz. N-C-Ti) are also 

widely used for coatings by PVD/CVD methods. Thermochemical treatment applying two 

interstitials have been suggested to hold promise by Fedirko et al. due to the favorable properties 

that can be obtained [26,27]. The Ti system is particularly interesting as substitution of interstitial 

elements is possible between the oxides, nitrides and carbides; i.e. formation of a broad range of 

mixed-interstitial compounds or solid solutions [28]. The mixed-interstitial compounds and solid 

solutions have physicochemical properties significantly different from those of the binary 

compounds and solutions. The ternary compounds have higher hardness, wear resistance, corrosion 

resistance, thermal resistance and radiation resistance than the binary compounds [26]. In a recent 

publication on (largely uncontrolled) pack cementation treatment, which essentially is a gas process, 

Bailey and Sun showed that a network layer of TiC could be formed on top of a Ti(O) diffusion 

zone [29]. It was suggested that this (favorable) combination was the consequence of air oxidation 

during heating and subsequent formation of CO for carburizing at high temperature. 

 The present contribution shows the possibility for applying purely gaseous processes for controlled 

oxidation and transformation of the surface into mixed-interstitial solid solution and compound. It is 

not the intention to provide a systematic treatise of such processes but to showcase the possibilities 

of new (mixed-)interstitial gaseous surface hardening methods. Simultaneously with these 

treatments, core hardening can be achieved. In the following this is illustrated for titanium grade 2 

and 5 by means of light optical microscopy methods.  

 

2. Experimental 

2.1. Materials 



 

Titanium grade 2 and 5 were applied for the investigations and the nominal compositions of the 

materials are given in Table 1. Titanium grade 5 (Ti6Al4V) is an / alloy which typically is heat 

treated to obtain higher strength. 

 

2.2. Gaseous surface hardening 

Ambient air oxidation was carried out in a Nabertherm open box furnace. Atmosphere controlled 

O2-Ar oxidation was carried out in an Entech furnace equipped with a Kanthal tube fitted with 

Brooks electronic mass-flow controllers. The total gas flow rate was 200 ml/min.  

Carbo-oxidation was performed in a Netzsch thermal analyzer STA 449F1 in a carbon and oxygen 

providing atmosphere; the process is presently proprietary. The heating rate to process temperature 

was 20 K/min and the cooling rate was 50 K/min. The applied process temperatures were 1000°C 

and 1050°C. N2O oxidation was also performed in the Netzsch thermal analyzer; total flow was 60 

ml/min. Details about oxidation and carbo-oxidation treatments are provided in the figure captions. 

3.3. Metallography 

All treated samples were cut with a Struers precision Accutome. The cross sections were prepared 

by hot mounting in a Struers Prontopress 20 using Durofast resin. Preheating at 180°C for 5 

minutes; holding time 6 min with 20 kN pressure and slow cooling (8 min). The embedded samples 

were prepared using a Struers Rotoforce 4 with Rotopol 22. The grinding and polishing procedure is 

given in table 2. 

Etching was performed using Keller’s reagent (185 ml distilled water + 5 ml nitric acid 65% + 3 ml 

hydrochloric acid 32% + 4 ml hydrofluoric 10%) for an etching time from 10 and 40 seconds, 

depending on the effect of the thermochemical treatment (microstructural features present). 



 

Optical microscopy was performed on the cross sections using a Zeiss Neophot 32 reflected light 

microscope. Microhardness was measured using a Future Tech model FM-700 hardness tester on 

the mounted cross sections applying a load of 25 gf and a dwell time of 10s. 

 

3. Results and discussion 

3.1. Oxidation 

Microstructures of oxidized titanium grade 2 are shown in Fig.1. Different treatments have been 

applied to illustrate the response of the material. Fig.1a depicts the microstructure after oxidation in 

a controlled O2-Ar atmosphere at 750°C for 2 hours, combined with a post heat treatment for core 

hardening. At 750°C the high content of O2 results in a fast development of a rutile TiO2 scale and a 

shallow diffusion zone (not shown). The applied temperature of 750°C is below the beta-transus 

temperature and no transformation occurs in the sample, neither in the case nor in the core. Upon 

heat treatment at 970°C in ambient air the rutile layer is partly dissolved and the oxygen content in 

the surface is further augmented. The temperature 970°C is above beta transus for the material and 

the core is therefore fully transformed into b.c.c. -Ti, while the oxygen-rich case remains h.c.p. -

Ti, as oxygen, in solid solution, is a strong alpha stabilizer. Final quenching in water has the 

consequence that the core is transformed into h.c.p. ’-martensite, possibly with some retained -

Ti. The oxide scale (viz. rutile TiO2) present at 970°C spalls off during the quench treatment and 

leaves only the diffusion zone. The hardness of the core after quenching is 267 (±17) HV compared 

to 202(±33) HV for the delivered equiaxed condition. For low-alloyed Ti the maximum strength 

and hardness is obtained after quenching; tempering/ageing has a larger effect for alloyed Ti. The 

hardness of the case having an oxygen solid solution is 1050 HV at the surface. In Fig. 1B a 

comparable microstructure is observed, but the diffusion zone of oxygen is significantly thicker. 



 

The treatment has been carried out solely in atmospheric air and was followed by direct quenching 

in water from the treatment temperature. A treatment temperature of 910°C is slightly above the 

beta transus and the core has transformed into martensite. The alpha-stabilized case (oxygen) 

clearly exhibits relatively large grains due to grain growth of the original alpha structure. The 

chemical nature of oxygen in solid solution is also evident; the etching response varies over the 

thickness of the diffusion zone, thus revealing a gradient in the dissolved oxygen content. The near-

surface region of the oxygen-rich case appears unaffected by Keller’s reagent, indicating improved 

corrosion resistance. The core microstructure shown in Fig. 1C is equivalent to the structure (and 

heat treatment) from Fig. 1A, except for a final aging treatment of the martensite, i.e. 600°C for two 

hours. For low alloyed Ti (as Grade 2) the strength/hardness is only marginally affected. However, 

some refinement of the martensite morphology is observed, i.e. more distinct packets and lamellas. 

The microstructure shown in Fig. 1D is the result of a relatively long treatment at 1000°C (20 

hours) in an atmosphere containing N2O. N2O is a very potent oxidizer similar to H2O2 (at lower 

temperatures). Indeed a thick oxide layer together with a thick diffusion zone is obtained. The core 

is transformed into a Widmanstätten structure, i.e. plates of . The outer oxide layer has a layered 

morphology but no spallation is observed. The visual appearance of the treated sample was a milky-

white surface which had swollen (clear change of dimensions). X-ray diffraction of the outermost 

surface of the oxide scale (not included) confirmed the presence of rutile TiO2. The thick underlying 

diffusion zone is a consequence of the high temperature and long treatment time. Hardness values in 

excess of 1000HV were obtained in this zone. Massive grain growth is observed within the alpha-

stabilized oxygen-rich case. Obviously, this treatment has no practical applicability but illustrates 

the behavior of Ti in a highly oxidizing atmosphere.         

3.2. Carbo-oxidation 



 

Carbo-oxidation as surface hardening treatment entails simultaneous incorporation of oxygen and 

carbon into the surface of the titanium. This can result in mixed-interstitial solid solutions or 

compounds (based on O and C), cf. the introduction. Fig. 2 depicts carbo-oxidation at 1000°C for 

20 hours of Ti grade 2. The case consists of a mixed-interstitial solid solution zone (diffusion zone) 

and a mixed interstitial compound. The mixed interstitial compound phase is located preferentially 

along grain boundaries in the diffusion zone and as a relatively thin layer at the surface (cf. Fig. 

2C). X-ray diffraction analysis (not included) revealed that the mixed interstitial compound is the 

cubic (B1) TiCXO1-X structure. The hardness of the mixed interstitial compound phase is in average 

1819(±235) HV and the diffusion zone is up to 1148 HV. The morphology of the mixed-interstitial 

compound exhibits local gradients (cf. Fig 2C) and the center-line contains porosities or 

alternatively graphite precipitates (presently not confirmed). The overall layer thickness is 

approximately 400 µm, which is much larger than for single element hardening and strongly 

suggests a synergistic effect of dissolving two interstitials. The case can be considered a composite 

consisting of hard mixed interstitial compound phase (TiCXO1-X type) embedded in a ‘softer’ 

diffusion  zone. Indeed, preliminary results on wear in a tribometer using a pin on disc setup with an 

alumina counterpart (not shown) show very high wear resistance of the surface hardened Ti. 

Moreover corrosion testing (exposure in a solution containing 0.25 wt.% hydrofluoric acid adjusted 

to pH=1 with hydrochloric acid) showed that surface hardened Ti, similar to the treatment shown in 

Fig. 2, was inert even after 16 days exposure; the untreated Ti reference corroded immediately upon 

contact with the electrolyte.  

The core of the surface hardened material is shown in Fig.3 and exhibits a Widmanstätten 

morphology (cf. above). The plates of alpha formed in the original beta structure are clearly seen. 

This results in a hardness increase compared to an equiaxed structure of alpha grains in the as-

delivered condition. 



 

A similar treatment, but at 1050°C, is shown in Fig. 4. Fig. 4a shows a macroscopic image 

(stereomicroscope) of the treated component. A uniform case of almost one mm is obtained both 

internally and externally. Clearly, the higher temperature results in faster growth. Figs. 4b to 4e 

show the morphology of the hard case at different magnifications. The same features in the mixed-

interstitial compound as observed at 1000°C are visible, i.e. signs of porosity or graphite 

precipitation (Fig. 4E). It is clear that the mixed interstitial compound phase forms a network; at this 

temperature it is not fully clear if this is associated with the alpha grain boundaries. A hardness 

depth profile of the surface hardened zone is depicted in Fig.5. The figure contains two profiles: a 

profile obtained for the diffusion zone and one for the mixed-interstitial compound. The hardness of 

the mixed-interstitial compound phase is in the range 1700 to 3000 HV with an average around 

2200 HV in the surface region which is significantly harder than the values obtained at 1000°C. 

This could indicate that more carbon is incorporated in the TiCXO1-X structure. The large scatter of 

measured hardness values can be attributed to local hardness (composition) gradients in the mixed 

interstitial compound; here it also has to be emphasized that the values are obtained in a 

heterogeneous (3-dimensional) structure where measurement can be affected by adjacent 

(harder/softer) structures. The diffusion zone is generally harder than at 1000°C; a maximum of 

about 1500HV is obtained at a depth of 200 µm. The hardness drops slightly towards the surface 

but is compensated by a larger fraction of mixed-interstitial compound phase with a significantly 

higher hardness.  

A feature which is evident is the incipient tendency for horizontal cracks in the diffusion zone (Fig. 

4B). This is not surprising due to the very deep case depth achieved; certainly 20 hours at this 

treatment temperature is too much. The parallel and horizontal cracks suggest compressive surface 

stresses, which can be a combination of growth and thermal stresses. 



 

In Fig. 6 surface hardened Ti alloy grade 5 is shown. The treatment temperature was 1000°C similar 

to Fig. 2 and 3. Clearly, the response of this alloys compared to (unalloyed) grade 2 is markedly 

different. In the near surface region a uniform layer can be observed, which is approximately 20 µm 

thick with a hardness of 1416 HV; this is most likely TiCXO1-X rich in oxygen. Below this 

compound an approximately 100 µm thick diffusion zone extends and gradually fades into the core 

microstructure. This zone can be described as mainly oxygen-stabilized alpha. The presence of 

aluminum, also being a strong oxide former, is attributed to be responsible for the different response 

of the material. Preferential and fast formation of alumina (Al2O3) either as (dispersed) internal 

oxidation or as a thin surface zone can impede further growth. Al has a lower affinity to oxygen 

than Ti, but expectedly has a higher mobility than Ti in the alloy. Furthermore, the solubility 

product of Al2O3 is much lower than for TiO2. Hence it is expected that Al rich oxide is located at 

the surface where the oxygen pressure imposed by the gas atmosphere is highest. Indeed, for pure 

oxidation experiments the surface zone was rich in Al, as identified with EDS analysis (not shown). 

For the carbo-oxidation treatment the same behavior is expected and Al enrichment in the surface 

would impede fast ingress of carbon and oxygen. In this respect it should also be mentioned that Al 

does not form carbides. The role of vanadium, if any, is presently not clear. The core microstructure 

after cooling from 1000°C (50K/min) can be described as equiaxed primary alpha grains 

surrounded by (partly) transformed beta regions (acicular alpha in beta). This suggests that the 

material was treated in the two phase alpha-beta region (at 1000°C) prior to cooling. 

3.3. Metallography and surface hardening of titanium. 

Revealing microstructures in titanium alloys is not an easy task due to the superior corrosion 

resistance of these materials. This implies that relatively aggressive reagents have to be applied. The 

task is further complicated for surface hardened components where the surface region has a 



 

different etching response than the core. For the present examples the incorporation of oxygen and 

carbon markedly changed the chemical behavior of the interstitial-rich part of the material.  

The shown carbo-oxidation gaseous treatments appear highly effective in achieving deep hard cases 

on titanium (viz. unalloyed grade). This can be attributed to the synergistic effect of the two 

interstitial elements with respect to solubility and fast growth kinetics of mixed interstitial solid 

solutions and compounds. These topics are presently largely uninvestigated and will be addressed in 

future work. 

4. Conclusions  

Gaseous surface hardening of titanium grade 2 and 5 is possible by applying controlled oxidation or 

carbo-oxidation. Oxidation can result in a solid solution of oxygen in titanium which provides a 

strengthening effect. Hardness values up to 1000HV can be achieved. A new gaseous carbo-

oxidation process enables very thick hard cases on titanium consisting of a diffusion zone with a 

hardness of more than 1200HV and a mixed interstitial compound zone with a hardness value of 

more than 2500HV. Case depths up to 1 mm can be obtained which imparts the treated surfaces 

with high wear and corrosion resistance. Different microstructural features (core and case) can be 

revealed by use of the metallographic procedures applied.   

 

 

 

 

 



 

Tables: 

Table 1. Nominal composition of ASTM Ti grade 2 and 5 (wt%). 

Grade Ti Al V C Fe H N O 

2 99.2 - - Max. 0.1 Max. 0.3 Max. 

0.015 

Max. 0.03 Max. 0.25 

5 

(Ti6Al4V) 

90 6 4 - Max. 0.25 - - Max. 0.2 

 

Table 2. Metallographic preparation of titanium 

Step  Grinding/polishing Time [min] Pressure (per sample) [N] 

1 500 # paper 2.5 10 

2 1000 # paper 2.5 10 

3 4000 # paper 2.5 10 

4 Mol 3 µm diamond 

suspension  

3 10 

5 Nap 1 µm diamond 

suspension  

3 10 

6 Chem, OPS (50% vol H20) 8 10 

 

Figure captions: 

Fig. 1. Ti grade 2. A) oxidation in 50 vol% O2 at 750°C (2 hours) followed by slow cooling; then 

post heat treated at 970°C for 20 min. (air) and quenched in water. B) Oxidation in open air furnace 

(air) at 910°C for 2 hours and directly quenched in water. C) Core microstructure after heat 

treatment at 970°C for 20 min. and quenched in water (cf. A); then aged at 600°C for 2 hours. D) 



 

Oxidation in 83%N2O-17%Ar gas mixture at 1000°C for 20 hours followed by rapid cooling 

(50K/min). 

Fig. 2. Ti grade 2. Carbo-oxidation at 1000°C for 20 hours. This results in formation of a case 

consisting of a mixed interstitial compound and diffusion zone. Different magnifications are shown. 

 Fig. 3. Ti Grade 2 core microstructure (same as Fig. 2) – different magnifications. Cooling rate 

50K/min to RT.  

Fig. 4. Ti grade 2. Carbo-oxidation at 1050°C for 20 hours. A) Stereomicroscopy - overview. All 

surfaces have been hardened – including the internal tread. B to E) Reflected light optical 

microscopy:  Formation of a case consisting of a mixed interstitial compound and diffusion zone in 

the surface; different magnifications. 

Figure 5. Hardness depth profiles for surface hardened Ti grade 2 (treatment shown in Fig. 4). 

Dotted lines are given to guide the eye (diffusion zone and compound zone). At 700 µm the 

compound zone ends. 

Fig. 6. Ti grade 5. Carbo-oxidation at 1000 C for 20 hours. A & B) Formation of a case consisting 

of a mixed-interstitial compound and a diffusion zone. C) Core microstructure (cooling 50K/min)  
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