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Summary (English)

This thesis deals with parcellation of whole-brain functional magnetic resonance
imaging (fMRI) using Bayesian inference with mixture models tailored to the
fMRI data. In the three included papers and manuscripts, we analyze two
different approaches to modeling fMRI signal; either we accept the prevalent
strategy of standardizing of fMRI time series and model data using directional
statistics or we model the variability in the signal across the brain and across
multiple subjects. In either case, we use Bayesian nonparametric modeling to
automatically learn from the fMRI data the number of funcional units, i.e.
parcels. We benchmark the proposed mixture models against state of the art
methods of brain parcellation, both probabilistic and non-probabilistic.

The time series of each voxel are most often standardized using z-scoring which
projects the time series data onto a hypersphere. This underlying manifold is
often ignored and the data is modeled using Gaussian distributions. In one
contribution, we show that using a mixture model based on the directional
distribution, the von Mises-Fisher distribution, increase the reliability of inferred
parcellations.

We develop a mixture model for modeling time-series using a Gaussian Process
as a prior that is informed of the temporal dynamics of the data expected from
the blood oxygenation level dependent (BOLD) signal. In two contributions, we
explore the potential of this modeling framework. In the first, we show that this
mixture model can delineate regions of task activation that can then be identified
unsupervised. This forms a promising framework for unsupervised identification
of task activated when the task design is unknown. In the final contribution,
we evaluate the performance of the mixture model on the problem of clustering
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whole-brain fMRI. Based on both simulations on synthetic data and analysis
of two fMRI datasets, we show that the model provides improved reliability
of clustering compared to traditional clustering methods. Furthermore, the
inferred parcellations provide the foundation for a method for increasing the
reliability and sensitivity in analyses of task activation and for determining the
networks of functionally connectivity in fMRI.

The proposed mixture models form promising tools for brain parcellation and
we hope the methods can provide a nudge towards using probabilistic models
for fMRI parcellation.



Resumé (Danish)

Denne afhandling omhandler problemstillingen med at inddele hjernen i funk-
tionelle enheder, det vil sige områder der har samme funktion som målt ved
funktionelle magnetisk resonans scanningsbilleder. Til dette formål anvender vi
miksturmodeller der er skræddersyede til fMRI signalet. I tre bidrag analyserer
vi to forskellige tilgangsvinkler til at modellere fMRI signalet; enten kan man
acceptere den gængse metode, hvor man standardiserer fMRI tidsserierne og
modellere signalet ved hjælp af sandsynlighedsfordelinger over retninger eller
man kan forsøge at modellere variabiliteten der findes i støj og signal hen over
hjernen og mellem forskellige personer. I hvert tilfælde har vi brug for at sam-
menligne de modeller vi foreslår med både probabilistiske og ikke-probabilistiske
metoder til at parcellere hjernen.

Når voxeltiddserier standardiseres har de ikke længere information om magni-
tuden af observationerne men er projiceret ned på overfladen af en hyperkugle.
Alligevel anvendes modeller baseret på Gaussiske miksturer ofte til at modelle-
re fMRI signalet og i et bidrag viser vi at en miksturmodel der baserer sig på
von Mises-Fisher fordelingen, der er en fordeling overfladen af hyperkugler, øger
pålideligheden af de identificerede parcelleringer.

Derudover udvikler vi en miksturmodel til modellering af tidsseriedata der bru-
ger en Gaussisk Proces som en informeret prior der er informeret om den tem-
porale dynamik der forventes at være grundet ændringer i hjernens blodgen-
nemstrømning. I to bidrag undersøger vi potentialet for denne konstruktion af
miksturmodeller. Først viser vi at modellen kan afgrænse områder af hjernen der
er aktiveret mens personer udfører en opgave i MR scanneren og disse områder
kan identificeres ved at se på korrelation af parcel tidsserier over forskellige in-
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divider. Denne metode er lovende til at finde områder af hjernen der aktiveres
når individer udsættes for stimuli der ikke udføres i overensstemmelse med et
veldefineret skema. I det andet bidrag udfører vi en grundig analyse af miks-
turmodellens evne til at parcellere fMRI tidsserier fra alle voxels i hjernens grå
substans. Baseret på både en syntetisk analyse og på analyser af to fMRI data-
sæt ser vi at den foreslåede metode finder parcelleringer der er mere pålidelige
i forhold til eksisterende metoder, både probabilistiske og ikke-probabilistiske.
Derudover viser vi, at de lærte parcelleringer medfører øget følsomhed og påli-
delighed i analyser af aktiverede hjerneområder samt i netværksanalyser.

De foreslåede miksturmodeller viser et stort potentiale og vi håber at vores
bidrag kan give et skub i retningen mod at bruge probabilistiske metoder til at
adressere problemet med opdeling af hjernen i funktionelle enheder.
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Chapter 1

Introduction

Understanding the human brain is one of the most fundamental questions science
has tried to answer as it is crucial to understanding ourselves and possibly to
understanding the concept of intelligence in general. Historically, this quest has
been driven by few examples where damage has been inflicted to the brain, either
by accident or by experimenting with inflicting lesions to the human or animal
brain. In the past few decades, the methods of studying the brain, has shifted to-
wards noninvasive studies using modern techniques for brain imaging including
electroencephalogram (EEG), magnetoencephalogram (MEG), positron emis-
sion tomography (PET), and methods of magnetic resonance imaging (MRI)
including structural MRI, diffusion based MRI (dMRI) and the focus of this
thesis, functional MRI (fMRI).

Increased neuronal activity indirectly causes an increase in the local level of
oxygenated blood and, due to differences between the magnetic properties of
oxygenated and deoxygenated hemoglobin, this gives rise to the blood oxygena-
tion level dependent (BOLD) signal. With fMRI, a structural image of the brain
is recorded every few seconds and, focusing on the BOLD signal, it provides an
indirect measure of the level of neural activity across the brain. The spatial
resolution of fMRI scans, i.e. the size of the volumetric pixels, called voxels, is
typically between 1 and 43 cubic mm for modern MR scanners and scanning
sequences. In this resolution, every voxel contains millions of neurons and the
BOLD signal is therefore an aggregated measure of the neuronal activity within
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each voxel. Still, the signal-to-noise level is so high that the single voxel level
might not be sufficiently aggregated for the sensitivity of current generation
fMRI (Chumbley and Friston, 2009) but gathering voxels in regions of homoge-
nous functional activity can further improve the sensitivity and reliability and
better characterize the function and connectivity in the brain.

A prominent view describes the human brain as organized into segregated func-
tional units that function together in a network (Tononi et al., 1994). Identify-
ing these functional units is very much an open problem, and historically this
has been done using labor intensive parcellation techniques based on structural
properties such as myelin thickness and the tissue types from in vitro brains
or structural scans. Brain atlases such as the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) and the Broadmann regions are ex-
amples of such atlases. A recent exploration of this approach is presented in
Glasser et al. (2016b) where multi modal data from a very large number of sub-
jects are used to find a brain parcellation in a mix of labor intensive and data
driven parcellation methods. Alternative to these approaches are the purely
data driven methods for parcellating the brain that use tools from machine
learning to perform clustering on fMRI data.

Prominent classical methods of clustering applied to brain parcellation include
K-means clustering, hierarchical agglomerative clustering, divisive clustering,
techniques based on growing seed regions, and techniques focusing on boundaries
between areas of consistent functional connectivity. These methods share a
number of disadvantages in that they require the pre-specification of a number
of clusters and they are not based on probabilistic models and thus unable to
explicitly model the variability in physiological and scanner related noise that
is apparent in fMRI.

Recent approaches have applied probabilistic mixture models to the problem of
parcellating substructures of the brain (Ryali et al., 2013; Janssen et al., 2015).
Inspired by these results and others, we aim with this thesis to construct gen-
erative models that scale to the problem of whole-brain fMRI time-series data
and that explicitly incorporates domain knowledge. Furthermore, the models
we employ are able to adapt to and quantify the complexity of the data using
Bayesian non-parametrics. The produced software comprises a generic frame-
work for efficient sampling in Bayesian mixture models such that the models
can be further developed and adapted. The developed clustering models are
compared to the state of the art non-probabilistic clustering models based on
established methods of comparing whole-brain parcellation techniques as well as
against the end goal of fMRI analysis such as network analysis and identifying
regions of task activation.

This thesis includes three research contributions; in paper A, we explore the use
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of a parcellation model as a means to unsupervised extraction of information on
the task relevant regions in fMRI. In papers B and C we analyze two approaches
to modeling fMRI time series data. A frequently used preprocessing step is to
standardize the voxel time series using z-scoring, which means that each voxel
will have zero mean and unit standard deviation. Considering the standardized
time-series as a point in a vector space, only the direction in space remains
and this is properly modeled using directional distributions. We explore this
approach to modeling fMRI data using a nonparametric mixture model based
on von Mises-Fisher distributions in paper B. The other approach we consider
is to model the variability in the data explicitly using a model that account for
the spatial heteroscedasticity of the noise and signal amplitude that is present
in fMRI data. Furthermore, the proposed model uses Gaussian Processes as an
informed prior to focus on the part of the fMRI signal that is caused by changes
in the cerebral blood flow. We analyze the model built on these assumptions
for parcellating fMRI data in paper C.

The rest of the thesis is organized as follows.

Chapter 2 presents a brief description of fMRI, the traditional approaches to
fMRI parcellation, and methods of validating brain parcellation methods.

Chapter 3 describes the theoretical basis for the Bayesian mixture models as
well as the inference methods applied in this thesis.

Chapter 4 presents the software tool for sampling based inference in Bayesian
mixture models that was developed as part of the thesis.

Chapter 5 summarizes the three research contributions.

Chapter 6 presents a discussion and conclusion on the thesis as a whole.

The three papers included in this thesis can be found in appendices A, B, and
C.
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Chapter 2

Functional Magnetic
Resonance Imaging

In the following sections, I will first introduce functional magnetic resonance
imaging (fMRI) and the preprocessing pipeline that was applied to the datasets
used for this thesis. In section §2.2 I will introduce whole-brain parcellation
along with some of the most commonly applied parcellation methods and ways
of evaluating and comparing clusterings.

2.1 fMRI

The history behind the modern MR scanner dates to the initial discovery of the
principle of nuclear magnetic resonance by Isidor Rabi around 1938 for which he
was awarded the 1944 Nobel Prize in Physics. Felix Block and Edward Purell
independently observed the NMR phenomenon in liquids and solids in 1946 for
which they shared the 1952 Nobel Prize in Physics. The 2003 Nobel Prize in
Medicine was, under some controversy, awarded to Paul Lauterbur and Peter
Mansfield who independently described the use of gradients to localize NMR
signals and thus setting the foundations for the way MRI is being performed
today (Ai et al., 2012). The first demonstrations that the MR scanner could
be used to measure the in vivo blood oxygenation level dependent (BOLD)
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response, and thus changes in hemodynamics, was performed in 1990 for the
rodent brain (Ogawa et al., 1990) and a few years later, the human brain (Ogawa
et al., 1992; Kwong et al., 1992; Bandettini et al., 1992).

In magnetic resonance imaging, the subject that is to be scanned is placed in
a strong magnetic field and nuclei with a magnetic dipole moment, such as
the hydrogen nuclei, are excited by oscillating a weak magnetic field at the
resonance frequency. This causes the magnetic field of the hydrogen nuclei to
oscillate while emitting a weak oscillating magnetic field that is measured (Faro
and Mohamed, 2006). The magnetic properties of matter vary depending on
perturbations in the magnetic field in the vicinity of the hydrogen atom, and
in particular there is a slight difference between the magnetic properties of oxy-
genated and deoxygenated hemoglobin. This gives rise to the blood oxygenation
level dependent (BOLD) contrast which is indirectly coupled to neural activity
(Faro and Mohamed, 2006). In fMRI, the entire brain is scanned every few
seconds resulting in a 3-dimensional image, often described as a brain volume,
and from the BOLD signal it is possible to achieve the indirect measure of brain
activity of each volumetric pixel, denoted voxels, of the brain.

Input image

 

1. Slice Time

Correction

2. Realignment and

 Normalization

3. Wavelet 

 Despiking

4. Gaussian 

 Smoothing

5. Highpass Filtering

 and GM mask

0 200 400

Slice number

360

380

400

420

0 200 400

Slice number

360

380

400

420

0 200 400

Slice number

350

400

450

500

0 200 400

Slice number

370

380

390

400

410

420

0 200 400

Slice number

395

400

405

410

415

420

0 200 400

Slice number

-5

0

5

Figure 2.1: Illustration of the preprocessing pipeline applied for the data in
this thesis. Above we show an axial slice of the brain where a voxel
is marked with a blue dot and below are the the time series for
the first 400 brain volumes for the marked voxel. Note, that the
voxel time series before and after realignment and normalization
is not necessarily from the same voxel.

It is common practice to perform a number of preprocessing steps to the recorded
fMRI signal (Faro and Mohamed, 2006). In this thesis, we used two datasets
recorded at the Danish Research Centre for Magnetic Resonance, consisting of
29 healthy subjects scanned in a resting state session and a finger tapping task
session. In the resting state dataset, the subjects were asked to rest and not
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think of anything while 480 brain volumes were recorded. For the finger tapping
task dataset, subjects were instructed to follow a task paradigm consisting of
10 repetitions of the stimulation cycle: 20 s right handed finger tapping, 10
s rest, 20 s left handed finger tapping, and 10 s rest resulting in 240 brain
volumes in total. Both the fMRI datasets used a TR=2.49 s and recorded 3
mm isotropic voxels. For further description of the scanning parameters, see
Rasmussen et al. (2012); Andersen et al. (2014) or the included papers A-C.
The preprocessing pipeline used for the datasets was performed using the SPM12
software (SPM12, Wellcome Trust Centre for Neuroimaging, http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/) and the BrainWavelet software tool
(Patel et al., 2014). The pipeline is illustrated in Figure 2.1 and consists of the
following steps:

1. Slice Time Correction The brain volumes are typically recorded one slice
at a time and each slice will thus have a slightly different acquisition time.
Under the assumption of critical sampling, this can to some degree be
corrected for by interpolating the time series.

2. Realignment and Normalization The brain volumes are highly suscepti-
ble to even minor movement in the scanner and the volumes must therefore
be realigned using a six-parameter rigid body transformation. Further-
more, the volumes of individual subjects are often normalized to a space
shared over subjects, such as the MNI152 brain (Montreal Neurological
Institute, average of 152 coregistered structural images). All fMRI vol-
umes were registered to the mean volume and normalized to the MNI152
brain.

3. Wavelet despiking Spikes (sudden high amplitude signals) are typically
present in the fMRI signal, often caused by head movement. It is to some
degree possible to correct for this using some form of despiking and we
used the software package BrainWavelet for this purpose (Patel et al.,
2014).

4. Gaussian Smoothing For most of the datasets we applied spatial smooth-
ing using a 4mm FWHM Gaussian kernel. While this step severely reduces
the spatial resolution it increases the signal to noise ratio by reducing the
non-spatially distributed noise and may help to reduce the anatomical
differences between subjects.

5. High pass filtering and GM mask To remove low frequency fluctuations
unrelated to the signal we applied a high-pass filter with a cut-off period
at 128 s. We then subtracted the mean time series from each voxel time
series, and used the SPM tissue probability map with a threshold set to
0.25 pct. for a rough grey matter mask.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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The preprocessing pipeline is quite minimal and often further steps are taken
to correct for motion (Friston et al., 1996) and physiological noise such as res-
piration and pulse (Lund et al., 2006). Furthermore, the fMRI data might be
projected onto the cortical surface to get a 2-dimensional representation of the
data (Glasser et al., 2016b).

Traditional analysis of task-fMRI, where the subject is asked to perform a
task per instructions, is performed using a mass-univariate general linear model
(GLM). GLM performs a univariate test for each voxel against a design matrix
creating a statistical parametric map of the brain, often correcting for autocor-
relation. The design matrix consists of regressors for the task paradigm along
regressors correcting for motion and possibly other nuisance regressors. The re-
gressors in the design matrix are compared by setting up contrasts, i.e. testing
whether one task is more explanatory compared to rest or another task. These
contrast maps can be used as input for studies in brain parcellation, see for in-
stance (Goutte et al., 1999; Thirion et al., 2014). To test if a region of activation
is statistically significant, the tests against the task paradigm is corrected for
multiple comparisons using either Bonferroni correction or controlling for family
wise errors (FWE) using Gaussian random fields (Worsley et al., 1996). Alter-
natives to correction using FWE include permutation test (Nichols and Holmes,
2002), controlling the false discovery rate (Chumbley and Friston, 2009), and
cluster based inference as we apply in paper C.

2.2 Functional brain parcellation

Functional brain parcellation divides the brain into regions that are functionally
homogenous with respect to the voxel time series or to the connectivity map of
each voxel. The benefits of a good parcellation are many, Glasser et al. (2016a)
phrases it in the following form:

Accurate parcellation provides a map of where we are in the brain,
enabling efficient comparison of results across studies and
communication among investigators; as a foundation for
illuminating the functional and structural organization of the brain;
and as a means to reduce data complexity while improving
statistical sensitivity and power for many neuroimaging studies.

Glasser et al. (2016a)

While Glasser et al. (2016a) argues for an atlas of the brain based on both ma-



2.2 Functional brain parcellation 9

chine learning methods and manual labor on a multi modal magnetic resonance
imaging dataset consisting of several hundred subjects, we focus in this thesis on
the purely data driven parcellation methods. An atlas based on a purely data
driven parcellation would optimally be able to characterize the salient features
of the dataset.

There have been numerous studies searching for an optimal method to compute
a data driven parcellation of the human brain. These studies typically face a
number of questions such as: How can spatial constraints be incorporated in the
model? How should data be aggregated from multiple subjects for an optimal
group level clustering? How can different clustering techniques be evaluated
and compared? How should the number of parcels be selected? In the following
sections, we present an overview of some of the methods that are applied to
the problem of functional brain parcellation and how they answer the three
questions phrased above.

2.2.1 Methods of functional brain parcellation

Brain parcellations are typically computed from one of three types of fMRI
derived data:

(a) fMRI time series.

(b) Graphs of functional connectivity (FC).

(c) Statistical parametric maps or Z-maps against task designs.

For the following let xi for i = 1, . . . , N denote either the (a) fMRI time series of
the i’th voxel, (b) the N dimensional vector of correlations with all voxels in the
brain (c) The P dimensional vector consisting of the values in the parametric
maps for each of the P contrasts. Let the voxels be partitioned into K clusters
according to the cluster assignment vector z such that zi = k if the i’th voxel is
in the k’th cluster. Furthermore, let Zk be the indices of voxel in cluster k, i.e.
Zk = {i | zi = k} and µk the k’th centroid. Using this notation, we can describe
the following list of clustering methods that recently have gained traction:

K-Means is perhaps the most commonly used clustering algorithm and has
been used on Z-maps by Goutte et al. (1999); Thirion et al. (2014), and
functional connectivity by Yeo et al. (2011). K-means is a greedy algorithm
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for minimizing the following cost function

1

K

K∑

k=1

∑

i∈Zk
||xi − µk||2. (2.1)

The centroids µk are initialized either randomly or using the ++ algorithm
(Arthur and Vassilvitskii, 2007) and refined using greedy updates that
iterates between assigning clusters to the closest centroid and updating
the centroids of each cluster to the empirical centers.

Ward Ward’s hierarchical agglomerative clustering algorithm (Ward Jr, 1963)
has been used to cluster both Z-maps (Thirion et al., 2014) and functional
connectivity (Baldassano et al., 2015). The hierarchical clustering method
initializes with voxels in singleton clusters and at each step joins the two
clusters with the shortest Euclidean distance between the two centroids
||µl − µk||2 until the desired number of clusters are left.

Normalized Cut has been frequently used in neuroimaging and perhaps most
prominently by Craddock et al. (2012). Ncut (Shi and Malik, 2000) rep-
resents the fMRI data as a fully connected graph with voxels as nodes
and where the edges between two voxels is weighted by their similarity,
s, for any measure of similarity such as the Pearson correlation between
time series or functional connectivity profiles. At any step in the divisive
clustering method, Ncut divides a cluster Zk into two cluster Zk1 and Zk2
such that it minimizes the Ncut cost function:

Ncut(Zk1 ,Zk2) =
cut(Zk1 ,Zk2)

assoc(Zk1 ,Zk)
+

cut(Zk1 ,Zk2)

assoc(Zk2 ,Zk)
, (2.2)

where

cut(Zk1 ,Zk2) =
∑

a∈Zk1 ,b∈Zk2

s(a, b) (2.3)

is the sum of the total edge connections of the two clusters and

assoc(Zk1 ,Zk) =
∑

a∈Zk1 ,v∈Zk
s(a, v) (2.4)

is the sum of the total edge connections between the nodes in Zk1 to all
the nodes in Zk. Advantages include that it is robust to outliers due to the
normalization of the cut criteria. This same normalization does, however,
also means that it produces clusters of similar size and that the clusterings
might be driven by size instead of the data as illustrated in paper C.

Region Growing has recently been proposed by Blumensath et al. (2013) to
parcellate surface based FC and is a technique where a number of seed
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regions are selected in regions of stable functional connectivity. The seeds
are then grown into non-overlapping initial regions. These regions are
finally merged using a hierarchical clustering technique, such as Ward’s,
until the desired number of clusters is left.

Boundary mapping was proposed by Cohen et al. (2008) and later refined by
Wig et al. (2014); Gordon et al. (2014) and applied to a large scale multi
modal dataset by Glasser et al. (2016a). Boundary mapping is applied
to surface based functional connectivity fMRI data: For each vertex, a
map of the level local spatial similarity of the vertex by vertex functional
connectivity map is created. Based on this map, areas with high gradients
in the map of spatial similarity are identified as areas with high probability
of being a boundary between two clusters. This map of probability edges
is averaged over all vertices and, for a group analysis, over all subjects.
Finally an edge detection algorithm is applied to calculate the clustering.

Network modeling A number of variants of the stochastic block models have
been applied to modeling the functional connectivity network in resting
state fMRI data. Mørup et al. (2010) applied the infinite relational model
(IRM) on thresholded connectivity maps and Andersen et al. (2014) com-
pared the IRM model to several constrained variants of the IRM model.
The full connectivity map was modeled by Baldassano et al. (2015) using
a probabilistic model that showed increased reliability compared to sev-
eral non-probabilistic methods including Ncut, Ward, Region growing and
boundary mapping.

Mixture modeling Churchill et al. (2016) introduces a mixture model that
simultaneously optimizes the within cluster homogeneity and the connec-
tivity to the rest of the brain. Lashkari and Golland (2009); Lashkari et al.
(2010) applied a mixture model based on the von Mises-Fisher distribution
to task activations. Recently a non-parametric Gaussian mixture model
with spatial restrictions have been used to cluster the striatum (Janssen
et al., 2015) and Ryali et al. (2013) used a vMF based mixture model to
cluster several substructures of the brain including the insula and motor
cortex. We elaborate on probabilistic mixture modeling in Chapter 3.

Spatial Constraints

There is a consensus, that the functional units of the brain should be spatially
contiguous. Clustering methods based on the voxel by voxel similarity matrix
can directly enforce spatial contiguity using a hard constraint such as fixing the
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similarity to zero outside some neighborhood of the voxels:

wi,j =

{
s(vi, vj) if di,j ≤ ε
0 otherwise

, (2.5)

where ε > 0 and s(vi, vj) and di,j are the similarity and distance between voxel
i and j respectively. This is frequently implemented for both Ward’s and the
N-cut algorithms. Spatial contiguity is, by construction, ensured for both region
growing and boundary detection clustering algorithms.

In probabilistic parcellation methods this spatial contiguity can be ensured using
the distance dependent Chinese Restaurant Process (dd-CRP) prior on the clus-
tering Blei and Frazier (2011). This has been applied to clustering of fMRI time
series by Janssen et al. (2015) and to FC networks by Baldassano et al. (2015).
In section 3.2.1 we will introduce the Chinese Restaurant Process (CRP). The
dd-CRP modifies the CRP to take the distance between clusters and nodes into
account.

Ryali et al. (2013) used a Markov random field to incorporate spatial dependency
in a probabilistic model for the time series to parcellate several substructures of
the brain including the striatum and the insula. Note, that the use of a Markov
random field can be computationally expensive and thus prohibitive for use in
whole-brain parcellation.

In our contributions, we omit spatial constraints in the probabilistic models
allowing the data to be optimally modeled. The means we are not guaranteed
spatially contiguous clusters but we allow for other important aspects of the data
such as left right symmetry between the two hemispheres of the brain. Note, that
even though the models do not guarantee spatial contiguity, we would expect the
models to infer clusters that are spatially localized if this structure is supported
by the data. Note also that spatially smoothing the data in preprocessing also,
however indirectly, encourages spatially contiguous clusters.

Group level clustering

To obtain a reliable clustering that is able to handle the level of noise in fMRI
data, it is necessary to incorporate data from multiple scanning sessions. Re-
cent studies have incorporated information from several hundred subjects, such
as in Yeo et al. (2011) who uses 500 subjects and Glasser et al. (2016a) uses
information from 210 subjects.

In many studies of functional connectivity, the connectivity matrix is averaged
across subjects (Baldassano et al., 2015; Glasser et al., 2016a; Craddock et al.,
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2012). Other approaches calculate subject specific parcellations for each sub-
ject in the group and subsequently uses these parcellations for a second level
group clustering (Craddock et al., 2012). In probabilistic clustering models,
each subject can be modeled independently allowing for explicitly modeling the
variability across subjects (Janssen et al., 2015) and in this thesis, we follow
that approach.

2.2.2 Evaluating clusterings

While there is no consensus on the details of the methods that are used to
evaluate methods for brain parcellation, it is quite well established that for
a parcellation method to be good, the parcellation method must satisfy the
following three criteria in some form:

Compliancy The inferred parcellations must be in compliance with brain
structures known from studies of human brain anatomy.

Parsimony The description of the data should capture important as-
pects and otherwise use as few components as possible as
stated by the principle of parsimony or Occam’s razor.

Reliability If the inferred parcellation is to be interpreted as a presen-
tation of the structure of the human brain in a way that
generalizes among subjects it is necessary for the inferred
parcellation to be robust.

Compliancy

It is important that a parcellation of the brain complies with the wealth of
knowledge that has been accumulated on the structure of the brain. Areas
of task activation should align with parcel borders (Wig et al., 2014; Gordon
et al., 2014; Glasser et al., 2016a) and the parcellation of specific structures of
the brain should be similar to those found by analyzing the architecture of the
brain, for instance based on myelin thickness Ryali et al. (2013); Janssen et al.
(2015); Glasser et al. (2016a). This is, of course, only true under the assumption
that the brain volumes are properly normalized and that there is no individual
differences in the function of brain regions. This is an assumption that is often
made for studies of groups of healthy subjects but limits the use of compliancy
as a method of evaluating parcellation methods.
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It is, however, difficult to quantify the level of compliancy and in most studies the
evaluation based on this criterion is primarily based on a visual comparison on
the cortical surface. Note, however, that the criterion of compliancy is closely
related with the functional homogeneity of the parcels, since parcels of good
functional homogeneity should also align with areas of task activation.

Inspired by single subject test-retest reliability of task activation (Gorgolewski
et al., 2013), in paper C we propose the use of the reliability of inferred regions
of task activation as a measure that combines the evaluation criteria compliancy,
parsimony, and reliability. For a parcellation based task analysis to be reliable it
requires the parcellation to be reliably inferred, that the regions are functionally
homogeneous, and that the parcels align with regions of task activation.

Parsimony

The principle of parsimony states that the explanation to any phenomenon
should make as few assumptions as possible. For parcellation methods this
means that the inferred parcels should be homogenous while balancing homo-
geneity and number of parcels. Most of the conventionally applied methods
of brain parcellation requires the prespecification of the number of components
that are required by the clustering model. The evaluation of how well the
parcellation models can explain the data can be measured by evaluating the
homogeneity of the inferred parcels.

There is a long list of methods that address the issues of parsimony and reliabil-
ity. In the following we present some of the most prominent and a more extensive
list of methods of evaluating clusterings can be found in Eickhoff et al. (2015).
A frequently applied measure of functional homogeneity is the average similarity
(Craddock et al., 2012) often using either the similarity between time-series or
similarity between functional connectivity maps.

Gordon et al. (2014) propose the use of the percent of the parcel variance in
functional connectivity that can be explained by the most prominent connec-
tivity pattern in the parcel. This can be computed in the following way: First
compute the N by N matrix with the vectors of functional and for each cluster
select the vectors that corresponds to voxels resulting in a nk by N matrix.
Compute the singular value decomposition of this matrix, then the percent-
age of variance from the first eigenvalue will denote the homogeneity from this
cluster. The measure averages the homogeneity from all clusters and Gordon
et al. (2014) notes that it produces similar results to the average similarity of
Craddock et al. (2012).
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Regardless of which measure of homogeneity is chosen, it is difficult to compare
the homogeneity of clusterings with a different number of clusters. For surface
based clustering methods, this can be addressed using the relative homogeneity
against a null model with randomly placed parcels of the same size, shape, and
relative position to each other. These null model parcellations can be achieved
by applying small rotations of the surface based parcellations (Gordon et al.,
2014).

For probabilistic models the predictive likelihood can be used to compare models
and to quantify the homogeneity. The predictive likelihood balances model com-
plexity and homogeneity and should therefore be better at comparing models
that differ in the number of clusters. In the following chapter, we will elaborate
on the predictive likelihood. The NPAIRS framework (Strother et al., 2002)
applies a split-half analysis evaluating the prediction and reproducibility of a
model. It was, for instance, used in Andersen et al. (2014) to compare different
variations over the stochastic block model.

Reliability

If a clustering is a way of determining an anatomically meaningful parcellation of
the human brain, then the inferred parcellations on different groups of subjects
should be similar. This raises the question of how to evaluate the similarity
of two parcellations. In the neuroimaging literature, three measures are often
applied:

1. The Rand index (RI) or adjusted rand index (AR) (Thirion et al., 2014;
Janssen et al., 2015).

2. The mutual information (MI) or normalized mutual information (NMI)
(Mørup et al., 2010; Andersen et al., 2014; Baldassano et al., 2015) or
adjusted mutual information (AMI) (Thirion et al., 2014).

3. Dice index or averaged Dice index (a-Dice) (Blumensath et al., 2013; Crad-
dock et al., 2012).

Vinh et al. (2009) provides a theoretical discussion why it is necessary to adjust
these measures for chance. There are several ways ways of doing this and we
follow Vinh et al. (2010). The mutual information between two clusterings z1
and z2 are given by

MI(z1, z2) =

K1∑

k=1

K2∑

l=1

p(z1 = k, z2 = l) log

(
p(z1 = k,z2 = l)

p(z1 = k)p(z2 = l)

)
(2.6)
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The normalized mutual information normalizes the mutual information such
that it is in the range between 0 and 1 and we use the following way of normal-
izing the mutual information:

NMI =
MI(zz, z2)√
H(z1)H(z2)

, (2.7)

where H is the entropy and the entropy of a clustering z can be computed as
MI(z, z). The NMI between two random clusterings is highly dependent on the
number of components that are in the two clusterings. Therefore, the adjusted
mutual information corrects for this, and we use the following formulation

AMI =
MI(zz, z2)− E[MI(zz, z2)]

max(H(z1), H(z2))− E[MI(zz, z2)]
, (2.8)

where E[MI(zz, z2)] is the expected mutual information between two random
clusterings with the same number of clusters.

The Rand index is given by RI(z1, z2) = (N00 + N11)/
(
N
2

)
, where N00 is the

number of pairs i, j ∈ 1, . . . , N such that zi 6= zj in both z1 and z2 and N11 are
the pairs where i and j are in the same component in both clusterings. Again,
it is most often used in the form where it is adjusted for chance:

AR(z1, z2) =
RI(z1, z2)− E[RI(z1, z2)]

max(RI(z1, z2))− E[RI(z1, z2)]
, (2.9)

where E[RI(z1, z2)] again is the expected rand index between two random clus-
ters with the same number of clusters.

The Dice score is normally used as a measure of overlap in two sets X and Y :

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y | . (2.10)

This is extended to the average Dice score between two clusterings z1 and z2 the
following way: Each parcel in z1 is matched with a parcel in z2 in descending
order according to their Dice overlap. The two clusters with largest overlap are
matched and the process is repeated omitting the previously considered parcels
Blumensath et al. (2013).



Chapter 3

Bayesian Mixture Modeling

Cluster analysis or clustering is the task of dividing a set of objects into groups
such that the objects within groups are more similar than objects between two
groups. This can be done using a multitude of different algorithms, both proba-
bilistic mixture models and classical clustering algorithms. Opposed to classical
clustering algorithms, probabilistic mixture models can quantify uncertainty in
the inferred components as illustrated in Figure 3.1.

Generated data K-means Gaussian mixture model

Figure 3.1: Mixture models are able to handle uncertainty and each compo-
nent is able to have a different noise. This is easy to illustrate in 2
or 3 dimensions but it is perhaps even more important in the high
dimensional spaces where fMRI time series reside.
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In this chapter, we develop the theory behind probabilistic mixture models and
the sampling based inference that we have employed to the problem of whole-
brain parcellation in the papers included in this thesis. We follow this with a
presentation and discussion of the models we have applied in this thesis.

3.1 Bayesian modeling

The following description of Bayesian modeling is loosely based on Gelman et al.
(2014) and Bishop (2006) which are good introductions to the topic. Bayes
theorem follows directly from basic probability theory and states that

p(θ | x) =
p(x | θ)p(θ)

p(x)
, (3.1)

and provides the possibility to invert conditional probabilities. Often the the-
orem is used to invert the relation between observations and the parameters
governing the distribution of the observations. In this setting, x might be an
observation and θ the parameters governing the likelihood of the data, denoted
p(x | θ), p(θ) is the prior distribution for the parameters, and p(θ | x) is the
posterior of the parameters given the data. The final part of the expression,
p(x), is constant with regards to the parameters and referred to as the evidence,
marginal likelihood, or normalizing constant. It is computed by integrating over
the space of possible parameters, i.e. by marginalizing the parameter:

p(x) =

∫
p(x | θ)p(θ)dθ. (3.2)

In general, this integral is often intractable analytically. The likelihood and the
prior together forms the joint distribution as p(x | θ)p(θ) = p(x, θ).

In traditional statistical modeling with data D = {x2,x2, . . . ,xN} the specifi-
cation of the likelihood p(D | θ) with θ = {θ1, . . . , θM} denotes the statistical
model and the task of inference is to find the set of parameters θ̂ that optimizes
the likelihood of the observed data. A Bayesian statistical model is specified by
the likelihood distribution along with a prior distribution on the parameters p(θ)
or by the joint distribution p(D,θ). Note that often the prior distribution for
θ includes some parameters and these parameters are called hyperparameters,
and are either considered fixed or given an additional layer of priors, possibly
with fixed parameters used. For Bayesian inference, we are interested in the
posterior distribution of the parameters given the data and not just a single set
of parameters. This must be considered when evaluating how well a Bayesian
statistical model is able to predict a new observation, x∗. This is quantified by
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the predictive likelihood given by

p(x∗ | D) =

∫
p(x∗ | θ)p(θ | D)dθ. (3.3)

Here, every set of parameters contribute to the predictive likelihood proportional
to how likely they are given the observed data.

A similar question is which of two statistical models are best able to fit an
observed dataset. For this calculation we need to further condition on the
Bayesian model such that the joint distribution for model m is given by p(D,θ |
m). This means that we can compare two statistical models using the posterior
distribution for the model given the data calculated by Bayes theorem

p(m | D) =
p(D | m)p(m)

p(D)
, (3.4)

where p(D | m) is the likelihood of the model or the evidence of the data in the
setting with a single Bayesian model and p(D) can be calculated by summing
over the considered models. This is, for instance, used in Bayesian hierarchical
clustering (Heller and Ghahramani, 2005).

One effect of using a prior distribution is that it regularizes the posterior dis-
tribution of the parameters and thereby embodies Occam’s razor in reducing
the complexity of the parameters that are likely and therefore reduce the effect
of a few extreme observations. A good review of the effects of using Bayesian
modeling in contrast to frequentist modeling can be found in Robert (2007).

3.1.1 Exponential family and conjugate priors

All the distributions of this thesis are members of the exponential family (Bishop,
2006) which means the probability density function can be described as

p(x | θ) = h(x)g(θ) exp(θ>u(x)), (3.5)

where u is a function mapping the data to it’s sufficient statistics, θ are the
canonical or natural parameters associated to the vector of sufficient statistics
and g(θ) is the partition function that ensures that the probability distribution
integrates to one over the domain of x.

What is most important for this thesis is that the members of the exponential
family have natural conjugate priors. A prior p(θ) is conjugate if it leads to a
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posterior p(θ | x) with the same functional form as the prior. The prior for a
member of the exponential family can then be written in the form

p(θ | χ, ν) = f(χ, ν)g(θ)ν exp(νθ>χ). (3.6)

This means that, provided the prior has a closed form, it is possible to evaluate
the integral for the marginal likelihood analytically and for Bayesian mixture
models it allows us to marginalize the parameters for easier inference.

3.2 Mixture models

In mixture models, data is modeled independently from a mixture of several
different probability distributions or components such that each of these com-
ponents contribute to the likelihood of the data. This can be described by the
following probabilistic model:

p(x1:N | θ1:K ,π) =

N∏

i=1

K∑

k=1

πkp(xi | θk), (3.7)

where N is the number of observations, K the number of components, and πk
for k = 1, . . . ,K are mixing coefficients that satisfies

∑K
k=1 πk = 1 such that

it is a proper distribution. It is easy to determine parameters that optimize a
single component with respect to the observations in the component but the
dependencies between the mixing coefficient and component parameters makes
it difficult to jointly optimize the parameters for both.

In a Bayesian mixture model, the parameters are also considered stochastic
and thus require the specification of priors. Furthermore, the latent variable
z = {z1, . . . , zN} is introduced such that zi = k if the i’th observation is part of
the k’th component. The joint distribution of the Bayesian mixture model can
thus be specified as

p(x1:N ,θ1:K ,π, z) = p(π)p(θ)

N∏

i=1

p(xi | θzi)p(zi | π), (3.8)

where p(zi | π) are the probabilistic distribution that corresponds to the mixing
coefficients determined by parameter π and with prior p(π).

3.2.1 Prior on the latent variable, z

The multinomial distribution can be used as prior on the latent variable, p(z |
π). It is part of the exponential family with the Dirichlet distribution the
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associated conjugate prior. The multinomial distribution is specified by mixing
parameter π:

p(z | π) =

N∏

i=1

K∏

k=1

π
δ(k,zi)
k , (3.9)

such that
∑K
k=1 πk = 1 and δ(a, b) is the delta function which is one if a = b

and zero otherwise. The Dirichlet distribution is given by

p(π | α) =
Γ(
∑K
k=1 αk)

∏K
k=1 Γ(αk)K

K∏

k=1

παk−1k . (3.10)

In general, we are not interested in the mixing parameter π and using conjugacy
it is easy to evaluate the marginal likelihood analytically:

p(z | α) =

∫
p(zi | π)p(π | α)dπ =

Γ(
∑K
k=1 αk)

Γ(N +
∑K
k=1 αk)

K∏

k=1

Γ(nk + αk)

Γ(αk)
, (3.11)

where nk =
∑N
i=1 δ(zi, k) is the number of elements in component k. The

marginalized distribution is known as the Dirichlet-multinomial distribution or
the Pólya distribution. Furthermore, since we have no prior knowledge on the
mixing, the parameter α of the Dirichlet distribution is often fixed such that
αk = α/K for i = 1, . . . ,K.

It is useful to consider the probability of adding element i to cluster k:

p(zi = k | z\i, α) =
nk + α/K

N − 1 + α
, (3.12)

where nk is the number of elements in cluster k. This illustrates the effect of
marginalizing the mixing parameter; now the equivalent of the mixing parameter
is nk+α/K and the probability of being added to a cluster increases with its size
enforcing the rich-get-richer principle. It is possible to take the limitK →∞ and
for ease of notation let D be the number of occupied clusters. The probability
that element i is added to cluster k is then given by

p(zi = k | z\i, α) =
nk + α/K

N − 1 + α
→ nk

N − 1 + α
as K →∞, (3.13)

and for one of the K −D empty clusters

p(zi = k | z\i, α) =
α(K −D)/K

N − 1 + α
→ α

N − 1 + α
as K →∞. (3.14)
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Gathering the joint distribution p(z | α) = p(z1)p(z2 | z1) . . . p(zN | z\N ) yields
the distribution known as the Chinese Restaurant Process (Aldous, 1985) and
is given by

CRP(z | α) =
Γ(α)αK

Γ(N + α)

K∏

k=1

Γ(nk). (3.15)

That this is the case can be illustrated by constructing the joint distribution for
the elements of cluster k by Equations (3.13) and (3.14):

p({zi}i∈Zk | α) =
α

α

nk∏

j=2

j − 1

j + α
=
αΓ(α)Γ(nk)

Γ(nk + α)
, (3.16)

where Zk is the list of elements in cluster k. Employing the CRP in mixture
models has several advantages. Primarily the mixture model is now a distribu-
tion over any possible clustering and not just clusterings with K components.
The posterior distribution p(z,θ | x1:N ) will therefore have contributions from
clusterings with many different number of components, the mode will be able to
select the number of clusters that best describes the data and it is possible to
compute the posterior distribution for the number of clusters in the data. Fi-
nally, since all empty clusters are considered together inference is more efficient.

The CRP is an alternative view of the Dirichlet process and the mixture models
with CRP prior are also known as Dirichlet process mixtures as introduced by
(Ferguson, 1973). The prior on the CRP prior, α, controls the prior distribution
on the number of clusters. Miller and Harrison (2013) criticizes Dirichlet process
mixtures providing both theoretical and experimental evidence that they tend
to overestimate the number of clusters, with a fixed CRP parameter α. We
briefly address this issue in §3.5.1.

Typically, a Bayesian mixture model is described by the generative process:

z | α ∼ p(z | α) (3.17)

θk | θ0 iid∼ p(θk | θ0) (3.18)

xi | z,θ ind∼ p(xi | θzi), (3.19)

here with marginalized mixing parameter π and where iid∼ and ind∼ denote inde-
pendently and identically and just independently drawn samples respectively.
The prior distribution for the parameters, p(θk) is typically requires specification
of a number of hyperparameters denoted here by θ0. This formulation explicitly
denotes the dependencies in the statistical model and provides an easy recipe
for generating data; first sample a clustering from the prior p(z | α), then com-
ponents θk iid. from p(θk) for each k, and finally observations independently
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from their respective component distributions. Note that this formulation is
equivalent to the specification of the joint distribution of Equation (3.8).

3.3 Inference

From the maximum likelihood perspective we are interested in a set of pa-
rameters θ1:K that optimizes likelihood in Equation (3.7), i.e. the clustering
configuration and set of cluster parameters for each that are most likely. By
θ1:K we denote the matrix with θk as column vectors for k = 1, . . . ,K. For the
Bayesian perspective, the primary object of interest is the posterior distribution
of the parameters given the data. With N observations in K possible clus-
ters, there are KN possible assignments or Bell(N) that are equivalent under
permutations of the cluster labels. The dependencies between the component
parameters and the clustering labels makes estimating the parameters in both
the maximum likelihood problem and for evaluating the posterior distribution
for the Bayesian problem NP hard.

The joint distribution with marginalized π for a finite Bayesian mixture model
is given by

p(x1:N ,θ1:K , z | α) = p(z | α)

[
K∏

k=1

p(θk)

]
N∏

i=1

p(xi | θzi), (3.20)

and to compute the posterior distribution for the parameters, p(θ1:K , z | x1:N , α)
using Bayes theorem we are required to compute the evidence, p(x1:N | α). In-
tegrating over the parameters θ1:K and latent variables z gives the following
expression for the evidence

p(x) =

∫
p(θ1:K)

N∏

i=1

K∑

zi=1

P (zi = k | α)p(xi | zi,θk)dθ1:K (3.21)

Using conjugate priors it is possible to marginalize the parameters θk if the
integrand in Equation (3.21) factors in k but this is not the case here and
the time complexity of evaluating the integral is O(KN ). If we rearrange and
distribute over the sum, we can write the evidence as the following:

p(x) =
∑

z

p(z)

∫
p(θ1:K)

N∏

i=1

p(xi | θ1:K)dθ1:K (3.22)

The integral here factorizes such that each factor only contains a contribution
from the k’th component. Now, however, there are KN possible configurations
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in the sum over z and computing the evidence therefore remains exponential in
N and intractable (Blei et al., 2016).

There are several possible approximations to do inference in mixture models. For
a non-Bayesian mixture model, the most popular approximation is the expecta-
tion maximization algorithm (EM). EM is an iterative approach that first per-
forms an expectation step that optimizes p(z | x1:N ,θ1:K) and p(θ1:K | x1:N , z)
iteratively. This is followed by an expectation step where the configuration is
changed to optimize the likelihood based on the parameters. This process is
guaranteed to converge to a solution but the solution is highly dependent on
the initial configuration and therefore susceptible to local minima. This can
be addressed by using multiple restarts from random initializations but that
does not solve the issue. For a further discussion on this topic and expectation
maximization, see Bishop (2006).

In a Bayesian mixture model, there are two main approaches: Variational or
sampling based inference. In variational inference (VI), sometimes also referred
to as variational Bayes, the joint distribution is approximated by a factorized
distribution q within some variational family. The "distance" or divergence of
the two distributions is then minimized, often as measured by the Kullback-
Leibler (KL) divergence, KL(p||q), which for continuous distributions is given
by

KL(p||q) =

∫
p(x) log

p(x)

q(x)
dx. (3.23)

Note that the KL divergence is not a metric since it does not satisfy the triangle
inequality. This is a general approach for doing inference and in the setting of
a mixture model the only approximation that is required is that the posterior
distribution q(θ, z | D) factors into q(z | D)q(θ | D). Then the parameters of
the distributions can be optimized in an iterative procedure that resembles the
EM algorithm; first the expectation of q(z) is optimized given the θ parameters
and vice versa. As for the traditional EM algorithm, this procedure is also
highly susceptible to local minima. In literature there are many examples of
sampling based inference in mixture models and for a general introduction we
refer to Bishop (2006) or Jordan et al. (1999); Blei et al. (2016).

Sampling based inference is a very general tool and sampling based inference
is also applicable for marginalized mixture models. Using a sufficient number
of samples, it is possible to approximate the posterior distribution with arbi-
trary precision. With no closed from expression for the posterior distribution,
we can use the samples to compute the relevant quantities such as the mode,
quantiles, mean etc. for the approximated distribution. In theory, and often
in practice, sampling based inference will approximate any distribution given
sufficient samples and is thus not susceptible to local minima like the VI or
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EM algorithms. In practice, however, it is not always feasible to collect enough
samples for a good approximation. In this thesis, we have followed the path
of sampling based inference and apply state of the art sampling techniques to
try combat the downsides. In the following sections I will present the sampling
techniques that have been applied in this thesis.

3.4 Sampling based inference

Sampling is a very general method for approximate inference in probabilistic
problems and instead of optimizing a parametric distribution, we sample from
the distribution and can then use the samples to compute the quantities of
interest.

For mixture models, we are interested in the posterior distribution p(θ1:K , z |
x1:N , α) or possibly p(z | x1:N , α) with marginalized parameters. Note, that
since the posterior distribution is proportional to the joint distribution we must
resort to the sampling techniques that does not require the distribution, we
are sampling from, to be normalized such as many Markov chain Monte Carlo
samplers.

3.4.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a technique for generating samples using
a Markov chain, ie. to generate samples ν(0), ν(1), . . . , ν(M) where each gener-
ated sample is only dependent on the previous sample and a transition kernel,
T (ν(t) | ν(t−1)) = p(ν(t) | ν(t−1)). Provided the Markov chain is ergodic and irre-
ducible, then the Markov chain will converge to a unique stationary distribution,
denoted equilibrium distribution p∗(ν) (also called stationary or invariant). p∗
is invariant if

p∗(ν) =
∑

ν′

T (ν | ν′)p∗(ν′), (3.24)

and it is irreducible if it is possible to go from ν to any other ν′ in a finite number
of steps, and if the limiting distribution p(ν(m))→ p∗(ν) for m→∞ regardless
of the choice of initial distribution p(ν(0)) it is also ergodic. A sufficient, but
not necessary, criterion is for the chain to satisfy detailed balance:

p∗(ν)T (ν′ | ν) = p∗(ν′)T (ν | ν′). (3.25)
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It is, perhaps surprisingly, quite easy to construct a transition kernel such that
the Markov chain satisfies either detailed balance or that it is ergodic, irreducible
with the proper equilibrium distribution (Bishop, 2006; Neal, 1993).

3.4.2 Metropolis-Hastings

One of the most widely used Markov Chain Monte Carlo methods is the Metropolis-
Hastings algorithm (Hastings, 1970). Based on some initial value in the Markov
chain it uses a proposal distribution q(ν′ | ν) to generate a proposed next step in
the Markov chain ν′ and this proposal is then accepted with probability α(ν′, ν)
which is defined by

α(ν′, ν) = min

(
1,
p̃(ν′)q(ν | ν′)
p̃(ν)q(ν′ | ν)

)
, (3.26)

where p̃(ν) = Zp(ν) for some constant Z emphasizing that it is sufficient to
evaluate the distribution up to a constant. If the proposal ν′ is not accepted
ν is used as the next element in the Markov chain. This gives the following
transition operator:

T (ν′ | ν) =

Acceptance︷ ︸︸ ︷
q(ν′ | ν)α(ν′, ν) +δ(ν′, ν)

Rejection︷ ︸︸ ︷[
1−

∫
q(ν̃ | ν)α(ν̃, ν)dν̃

]
. (3.27)

Note, that if ν′ = ν we have either proposed the previous state or we have
rejected a state and the probability staying at ν will therefore have a contribution
from both the case where we accept and reject a proposal. It is easily seen that
this transition density satisfies the detailed balance criterion. For ν′ 6= ν the
transition probability is T (ν′ | ν) = q(ν′ | ν)α(ν′, ν) and multiplying with
Zp(ν)q(ν′ | ν) on both sides of Equation (3.26) yields

p(ν)q(ν′ | ν)α(ν′, ν) = min(p(ν)q(ν′ | ν),p(ν′)q(ν | ν′)) (3.28)
= α(ν, ν′)p(ν′)q(ν | ν′)

and the constructed transition kernel thus satisfies Equation (3.25). If ν′ = ν
then a proposal was rejected and the detailed balance principle is clearly satisfied
as well.

The Metropolis-Hastings algorithm is a generalization of the Metropolis sam-
pling method Metropolis et al. (1953) that uses a symmetric proposal distri-
bution simplifying the expression in Equation (3.26). Metropolis-Hastings does
not necessarily produce correlated samples which can be observed by simply
using the desired distribution as the proposal distribution independent on the
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previous sample. In practice, however, the proposal distributions are selected for
convenience, for instance using a Gaussian distribution centered on the previous
point. If the variance of the proposal distribution is set too high, the proposals
will be far from the previous proposal and rarely accepted while if it is too low
most proposals will be accepted but the Markov chain will for a finite number
of samples be unable to satisfactorily explore the desired distribution.

This tradeoff between the level of dependency between samples and the ability
of the sampler to explore the distribution is always apparent when sampling
in high dimensional spaces and the Gibbs sampler makes even more correlated
samples by only consider the change of a single variable zi of z.

Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) can be viewed as a special case of
MH where we are guaranteed to accept the proposals. Instead of generating a
new sample for the entire vector ν, which might be high dimensional, in Gibbs
sampling we iterate the dimensions of ν. Let ν = {ν1, . . . , νM} for some M and
in each step of the Gibbs sampler we generate a new proposal from p(νi | ν\i).
Correctness for the Gibbs sampler is most easily shown by showing that the
correct distribution is invariant and that it is irreducible and ergodic. It is
easily seen that the distribution p(ν) is invariant to each of the Gibbs steps
individually and thus to the whole chain since we are sampling from the correct
conditional distributions. Furthermore, if none of the conditional distributions
are anywhere zero it is also irreducible and ergodic.

To see that Gibbs is a special case of Metropolis-Hastings, let the proposal ν∗
be such that ν∗i = ν′i and ν∗\i = ν\i. Then the Metropolis-Hastings acceptance
probability is

α(ν∗, ν) = min
(

1,
p(ν∗)q(ν | ν∗))
p(ν)q(ν∗ | ν))

)
= min

(
1,
p(ν′i | ν\i)p(ν\i)p(νi | ν∗\i)
p(νi | ν\i)p(ν\i)p(ν′i | ν\i)

)
= 1,

(3.29)

and the proposals are thus always accepted. Note that the Markov chain gen-
erated by Gibbs sampling is highly correlated and the chain should be thinned
to acquired uncorrelated samples. If it is not possible to draw samples from
p(zi | z\i,D) directly it is often useful to embed Metropolis-Hasting sampling
in Gibbs sampling for some of the variables in the model.

Now we return to the Bayesian mixture models as specified by the generative
process of Equations (3.17)-(3.19), where we, in the notation, ignore the depen-
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dencies on the hyperparameters. The posterior distribution for the i’th index
in the latent variable z is given by

p(zi | z\i,x1:N ) =
p(x1:N | zi, z\i)p(zi | z\i)∑
zi
p(x1:N | zi, z\i)p(zi | z\i)

(3.30)

which is a categorical distribution over the possible components that zi can
be assigned to. In Equations (3.13) and (3.14) we derived the expression for
p(zi | z\i) and the probability of assigning element i to component k is therefore
given by:

P (zi = k | z\i,x1:N ) ∝
{

nk
α+N−1p(xZk∪i | z\i, zi) if k populated

α
α+N−1p(xi) if k empty

(3.31)

where the proportionality is the denominator in Equation (3.30) and shared for
both cases. p(xZk∪i | z\i, zi) is marginalized contribution to the joint distribu-
tion for component k, i.e.

p(xZk∪i | z\i, zi) =

∫
p(xZk∪i | θk, z\i, zi)p(θk)dθk, (3.32)

and for a new component

p(xi) =

∫
p(xi | θK+1)p(θK+1)dθK+1. (3.33)

Since the proportionality constant is shared for all possibilities this can be ef-
ficiently calculated for conjugate mixture models. For non-conjugate mixture
models we need to propose new parameters for the new cluster, for example
using the algorithm proposed by (Neal, 2000, Algorithm 8).

Sequentially-Allocated Merge-Split Sampler

The problems of correlated samples are especially detrimental when sampling
the latent assignment variables. It is frequently the case that a cluster is sup-
posed to be split into two clusters but every step towards splitting the cluster
decreases the joint distribution even though it it is favorable in the joint distribu-
tion for the cluster to be divided. Split-merge and its derivative, sequentially-
allocated merge-split, are methods for jumping directly to the configuration
where the cluster split in two.

The Gibbs procedure for sampling the clustering parameter can become trapped
in local modes due to the incremental nature of the Gibbs sampler (Celeux et al.,
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2000; Albers et al., 2013). For instance, to escape a mode where one compo-
nent is wrongly divided in two components with similar parameters, the Gibbs
sampler must transition through a number of states of low probability. The
split-merge algorithm was introduced by Jain and Neal (2004) to allow more
flexible sampling in Dirichlet process mixtures addressing this problem. Later,
Dahl (2005) proposed the sequentially-allocated merge-split (SAMS) algorithm
that slightly changes the split-merge algorithm and shows that it, in many cases,
is an improvement over the split-merge algorithm. Both methods are implemen-
tations of the Metropolis-Hastings sampling method and uses the evaluation of
the categorical distribution in the Gibbs sampler to generate the proposal for
the latent variables in the Dirichlet process mixture models. In this thesis, we
employ both methods and here follows a thorough description of the SAMS al-
gorithm and a discussion of the changes between split-merge and SAMS as well
as our proposal for changing the order in the procedure to minimize the time
spent evaluating the transition probability of proposals that will be rejected
regardless.

For the following again consider a nonparametric mixture model as in Equa-
tions (3.17)-(3.19) with N observations divided into K occupied clusters. The
SAMS algorithm is specified in the following procedure:

1. Sample indices i and j uniformly at random from {1, . . . , N}.
2. Generate proposal state

Propose split if zi = zj, denote S = {n | zn = zi, n 6= zi, n 6= zj}
Compute the split proposal state by the following:
(a) Remove indices i and j from S and form singletons Si = {i} and

Sj = {j} and let zj = K + 1.
(b) For n in S in random order, assign n according to the categorical

distribution

p(zn ∈ {i, j} | xSk , Si ∪ Sj). (3.34)

and add n to the associated set, Si or Sj . Note, that this is
equivalent to the distribution in Gibbs sampling and is computed
similarly.

Propose merge if zi 6= zj, denote S = {n | zn = zi or zj , n 6= zi, n 6= zj}
For the merge proposal state assign all elements of zi and zj to zi
and remove component zj .

3. Compute the acceptance probability α:

α(z∗, z) = min

(
1,
p(z∗ | D)q(z, z∗)
p(z | D)q(z∗, z)

)
, (3.35)



30 Bayesian Mixture Modeling

where the transition probabilities q(z, z∗) and q(z∗, z) must be computed
as follows:

z∗ split For the split proposal q(z, z∗) is transition probability of the
merge. Since this can only happen in one way q(z, z∗) = 1. On
the other hand, there are several possible split configurations and
the transition probability to z∗ is the product of the probabilities in
Equation (3.34) from the selected assignments.

z∗ merge For the merge, by similar arguments, q(z∗, z) = 1 and the
transition probability q(z, z∗) is the probability of transitioning to
precisely z out of all the possible splits. Therefore q(z, z∗) is the
product of the probabilities given by Equation (3.34) where the i’th
observation is assigned to the component zi, ie. the component it
was assigned to before the SAMS procedure.

The split-merge algorithm is quite similar to the SAMS algorithm. The main
change is that instead of assigning the elements of S sequentially to generate a
proposal state for the split case, the elements are assigned the two components at
random followed by a number of Gibbs sweeps that are restricted to only sample
the elements of S. These restricted Gibbs sweeps refines the proposal state
from a socalled launch state to make it more likely and therefore increase the
acceptance ratio. This also entails minor changes to the transition probabilities
and it must now be computed as the probability of transitioning from the launch
state to the proposed state.

We propose a small but crucial change to the order in which the quantities
in both the SAMS and split-merge procedures are computed for case where
the merge of two components is considered. The acceptance probability α of
Equation (3.35) is bounded by the ratio of the posterior distributions

α(z∗, z) = min

(
1,
p(z∗ | D)

p(z | D)

q(z, z∗)
q(z∗, z)

)
≥ min

(
1,
p(z∗ | D)

p(z | D)

)
(3.36)

Therefore, without having to evaluate the transition probability, it is possi-
ble to reject the merge proposal with probability min

(
1, p(z

∗|D)
p(z|D)

)
. In case we

cannot reject the merge proposal based on this initial test, continue to calcu-
late the transition probabilities and accept the merge proposal with probability
min

(
1, q(z,z

∗)
q(z∗,z)

)
such that the total probability of acceptance is the same as in

Equation (3.35).

For practical problems, this small change has a considerable impact on the time
the samplers spends in evaluating the merge proposals. It is difficult to say
something general on this since it is highly dependent on the distribution on
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the size of clusters and on the likelihood of accepting a merge of two clusters
at random. Instead we compared the impact on performance on whole-brain
fMRI data in paper A. In general, the SAMS or split-merge samplers are very
important for the mixing properties of the sampler and it is but once a level of
convergence has been reached the impact of these proposals lessens.

Since the both the split-merge and SAMS sampler are manifestations of the
Metropolis-Hastings algorithm, the correctness for the SAMS algorithm is there-
fore quite trivial, but the split-merge algorithm it is the transition from the ran-
dom launch state to the state with two clusters that is the transition probability.
The proof that this transition probability equals the transition probability from
the initial state to the state with two clusters can be found in Jain and Neal
(2004).

Change of variables

One way to handle constraints for hyperparameters is using a change of variables
for the distributions. In general, if p(x) is a probability distribution over some
space X it is possible to compute the distribution of Y = g(X). If g : X → Y is
a monotonic function, then the distribution of Y , pY (y) is given by

pY (y) =

∣∣∣∣
d

dy
(g−1(y))

∣∣∣∣ pX(g−1(y)) (3.37)

In the case of sampling of hyperparameters we want to draw samples around
some y0 ∈ Y but it is much easier for us to draw samples around g−1(y0) ∈
X. Using change of variables, we can do exactly that. Two frequently used
transformations in this thesis are the transformations g : IR→ IR+ using g(x) =
exp(x) and g : IR → (0, 1) using a sigmoid function such as g(x) = 1/(1 +
exp(−x)).

3.4.3 Verifying correctness of sampler

Sampling can be surprisingly resistant to minor errors in the implementation
and still recover the true clustering on synthetic data. Since the sampling pro-
cedure is often computationally demanding all steps in the sampling procedure
must be optimized from the evaluation of the joint distribution to the compu-
tation of the categorical distribution in the Gibbs sweeps of Equation (3.30),
the evaluation of the transition in the SAMS sampler of Equation (3.35), and
the evaluation of the Metropolis-Hastings proposals for the hyperparameters of
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Equation (3.26). Ensuring that these equations are correctly computed can be
done by unit testing them as suggested by Grosse and Duvenaud (2014).

Using the fact that

p(x′ | z)
p(x | z) =

p(x′, z)
p(x, z)

(3.38)

it is possible to verify that each of the optimized evaluations of the posterior
distributions can be verified against the ratio of the joint distribution.

Furthermore, it is possible to jointly test the samplers on small problems where
it is possible to analytically evaluate the evidence by brute force summing over
all possible configurations as in Equation (3.22). An example of this is provided
in Figure 3.2.

3.5 Models

With either the Chinese restaurant process or the Dirichlet-multinomial distri-
butions as prior for the clustering p(z) we need to further specify a likelihood
p(x | θ) and a prior on the parameters p(θ) to complete the specification of a
Bayesian mixture model. We here further present the marginal likelihood for N
observations in a component as using this makes calculating the posteriors in the
Gibbs sampler for a mixture model primarily a question of book keeping. The
focus of this thesis is mixture models in the context of whole-brain clustering
and therefore we must factor in the domain knowledge:

1. The problem is large scale and inference in the clustering models must scale
linearly in both the number of subjects, temporal dimension, number of
clusters, and number of voxels. A model that does not satisfy this criterion
will be intractable for the sampling based inference.

2. The BOLD response as measured by the MR scanner is time-series data
and we would expect the signal to be temporally smooth in accordance
with the temporal dynamics of the BOLD response.

3. The fMRI data is often heavily preprocessed using spatial smoothing and
normalization of the data using z-scoring.

The simplest, and probably most widely used, example is the Gaussian mixture
model which can be phrased in three levels of complexity in the prior for the
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True posterior

10000 samples, KL(p||q)=0.004

1000 samples, KL(p||q)=0.268

100 samples, KL(p||q)=7.289
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-2
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Figure 3.2: Comparison between the inferred posterior distribution by sam-
pling and the exact posterior distribution by manually evaluating
Bell(5)=52 possible configurations for N = 5 observations. Each
bar represents the posterior probability of that particular z pa-
rameter. Note how the Kullback-Leibler divergence diminishes as
more samples are used to approximate the posterior distribution.
In the top left corner is the generated data two dimensional data
and the two most likely partitions are illustrated by color-coding
the cluster label for each observation above the true posterior dis-
tribution.
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parameters; with the covariance matrix as either a full rank, diagonal, or diag-
onal with identical elements (Gilles and Gérard, 1995; Rasmussen, 1999). For
an illustration of the three types of Gaussians, see Figure 3.3. We include the
Gaussian distributions based mixture models as a benchmark against traditional
mixture models.

Normal Inverse Wishart distribution

The multivariate Gaussian or normal distribution is a distribution over IRD and
is given by

N (x | µ,Σ) = |2πΣ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
(3.39)

The conjugate prior for the parameters (µ,Σ) is the Normal inverse Wishart
distribution (NIW):

p(µ,Σ | µ0,Σ0, γ, ν) = N (µ | µ0, γΣ)IW(Σ | Σ0, ν), (3.40)

where IW is the inverse Wishart distribution with probability density function

IW(Σ | Σ0, ν) =
|Σ0|ν/2

2
νD
2 ΓD(ν2 )

|Σ|− ν+D+1
2 exp

(
−1

2
tr(Σ0Σ

−1)

)
, (3.41)

where ΓD is the multivariate Gamma function, Σ0 is a positive definite matrix
called the scale matrix, and ν0 > D − 1 is the degrees of freedom parameter.

Using conjugacy, it is possible to analytically marginalize the parameters µ and
Σ for the marginal likelihood:

p(x1:N | Σ0, ν) = (3.42)

|Σ0|ν/2Γp(
ν+p
2 )(γ/(N + γ))D/22(N+ν)D/2

(2π)
ND
2 2νD/2ΓD(ν/2)|Σ̄ + Σ0 + µ0µ

>
0 − 1

N+γ (x̄+ γµ0)(x̄+ γµ0)>| ν+D2
,

where x̄ =
∑N
i=1 xi and Σ̄ =

∑
i=1 xnx

>
n . Note that this calculation requires

the inversion of a D by D matrix which in general has computational complexity
O(D3). When an observation is added to a component, for instance in a Gibbs
sampling step, the sufficient statistics likelihood needs to be updated and thus
requires recalculating the inversion of the matrix. Using the Cholesky factor-
ization this can be done in O(D2) but this complexity still renders the mixture
model based on the NIW intractable for problems of the scale of whole-brain
parcellation. Furthermore, there are D(D + 1)/2 parameters in the covariance
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matrix that are to be determined for each cluster. Even though these parame-
ters are somewhat regularized by the use of the IW prior it might still be an
issue for high dimensional data with few observations per cluster.

The generative model for the mixture of Gaussians with normal inverse Wishart
prior, in this thesis denoted GMM, is summarized in the following generative
process:

Full covariance Gaussian Mixture model (GMM)

Prior p(µk,Σk) = NIW(µk,Σk | µ0,Σ0, γ, ν)
Likelihood p(x | µk,Σk) = N (x | µk,Σk)

Normal Inverse Gamma distribution

For a univariate Gaussian distribution, a conjugate prior is given by the normal
inverse gamma distribution and this construction can also be used as a prior for
a multivariate Gaussian distribution with diagonal covariance matrix:

p(µ,σ2 | µ0, γ, a, b) = N (µ | µ0, γ · diag(σ2))

D∏

d=1

IG(σ2
d | a, b), (3.43)

where IG is the inverse gamma distribution given by

IG(σ2 | a, b) =
ba

Γ(a)
(σ2)−(a+1) exp(− b

σ2
), (3.44)

where Γ is the univariate Gamma function. This is clearly not as flexible a prior
as the NIW prior but it is no longer necessary to compute the inversion of a
full rank matrix for the marginal likelihood. The marginal likelihood is then
given by

p(x1:N | µ0, γ, a, b) = (3.45)
D∏

d=1

(γ/(N + γ))1/2abΓ(N/2 + b)

Γ(b)(2π)N/2
[
1
2 (σ̄2

d + 2γ) + 1
2γµ

2
0,d − 1

2(N+γ) (x̄d + γµ0,d)
2
](N/2+b) ,

where σ̄2
d is the d’th entry in σ̄2 =

∑N
i=1 x

2
i and x̄ =

∑N
i=1 xi. Mixture models

based on this generative process has been used to cluster the striatum with a
distance dependent version of CRP prior by Janssen et al. (2015). In this thesis,
we denote the generative process GMMd:
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Diagonal matrix covariance Gaussian Mixture model (GMMd)

Prior p(µk,σ
2
k) = NIG(µk,σ

2
k | µ0, γ, a, b)

Likelihood p(x | µk,Σk) = N (x | µk,Σk)

A further simplification can be made, if we assume that all the elements of the
diagonal matrix diag(σ2) are identical in which case the conjugate prior is

p(µ, σ2 | µ0, γ, a, b) = N (µ | µ0, γσ
2I)IG(σ2 | a, b), (3.46)

and with σ̄2 =
∑N
i=1 = ||x||2 this gives the following marginal likelihood:

p(x1:N | µ0, γ, a, b) = (3.47)

(γ/(N + γ))D/2abΓ(ND/2 + b)

Γ(b)(2π)ND/2[ 12 (σ̄2 + 2γ) + 1
2γ||µ0||2 − 1

2(N+γ) ||x̄+ γµ0||2](ND/2+b)
.

We refer to the mixture model based on this construction as the GMMs model
and it is summarized in the following generative process:

Spherical covariance Gaussian Mixture model (GMMs)

Prior p(µk, σ
2
k) = NIG(µk, σ

2
k | µ0, γ, a, b)

Likelihood p(x | µk, σ2
k) = N (x | µk, σ2

kI)

The three levels of complexity in three presented Gaussian mixture models is
summarized in Figure 3.3 where the respective covariance structures are visu-
alized from data generated from either a spherical, diagonal, or full covariance
multivariate Gaussian distribution.

GMM GMMd GMMs

Figure 3.3: Illustration of the difference in flexibility of the three versions of
the Gaussian mixture model.
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Normal-Gaussian Process distribution

A Gaussian process is a collection of random variables any finite subset of which
are jointly Gaussianly distributed and is specified by a mean function m(x) and
covariance function ker(x, x′) (Rasmussen and Williams, 2006). A Gaussian pro-
cess can be interpreted as a nonparametric prior over functions such that given
a finite sampling of the domain, the function values are distributed according
to the multivariate Gaussian distribution given by N (m(x),Σ) where element
{i, j} of the covariance matrix is given by ker(xi,xj). The kernel function thus
specifies how two points in the domain covariate and given the points in the
domain, the Gaussian process is basically just a multivariate Gaussian distri-
bution. Since we subtract the mean from the data before modeling we fix the
Gaussian process with zero mean. We further introduce parameters for mod-
eling the scaling of the noise and signal independently for each element. We
denote the mixture model with a Gaussian process prior as the GMMGP and
it is specified by the following generative process:

Gaussian mixture model with GP prior(GMMGP)

Prior p(µk) = GP(µk, | 0,Σ)
Likelihood p(xi | µk, τk) = N (x | wiµk, σ2

i I)

In the model, we have further introduced two parameters for modeling the noise
and scaling of signal independently for each observation. This enables the model
to group together observations regardless of the magnitude of signal and noise
and the model should therefore be able to learn a more compact representation
of the data.

For our purpose the Gaussian process prior serves the purpose of an informed
prior with which we can focus on the part of the signal that has the expected
temporal dynamics. This is possible using the squared exponential covariance
function which, for two observations xi and xj that are separated by τ in the
input domain, is given by

kerSE(xi,xj) = σ2
f exp

( ||τ ||2
2l2

)
(3.48)

where l is the length-scale and σ2
f is the signal variance hyperparameters. Using

this construction, we can use a full rank covariance matrix that is specified by
only these two parameters. This construction does, however, break the possibil-
ity of analytically marginalizing the observation noise parameter. The marginal
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likelihood is given by

p(x1:N |σ2,w,Σ) =

∫
p(x1:N |µ,w,σ2)p(µ | Σ)dµ (3.49)

=
√
|Σ|/|S| exp

{
1

2
x̄>S−1x̄

} N∏

i

(2πσ2
i )−D/2 exp

{
− 1

2σ2
i

x>i xi

}
,

where

x̄ =

N∑

i=1

wi
σ2
i

xi, and S =


Σ−1 +

∑

z(i)=k

w2
i

σ2
i

I


 . (3.50)

The inversion of the full rank covariance matrix S can be done in linear time in
D using the spectral decomposition of Σ = V >DV as proposed in paper A.

We fix the length-scale of the squared exponential covariance function to that of
the canonical hemodynamic response function such that the clustering procedure
focuses on the part of the signal that is caused by the slowly varying level of
oxygenation in the cerebral blood flow. Note that this has the further effect of
regularizing the size of the clusters since the informed prior will penalize small
clusters more strongly than the regular Gaussian mixture models.

We illustrate the effect of using a strong prior in the clustering model in Fig-
ure 3.4 where we present data with two different sources of temporal dynam-
ics; observations contains a contribution from either the red and blue lines in
the left plot and share a contribution from the more slowly varying black line.
The iGMMGP sampler with a fixed length-scale at 1 distinguishes between the
observations from the two nuisance sources but with a length-scale at 10 all
observations are clustered together as seen in the middle and right panel of
Figure 3.4.

This framework for clustering sequential data is very general and prior knowl-
edge on the dependency in the sequence can be encoded by using different kinds
of kernel functions. Popular covariance matrices include the Matérn covariance
and periodic covariance functions.

A mixture model with a Gaussian process prior on the mean parameter was
proposed by Lázaro-Gredilla et al. (2012) to model overlapping mixtures of
Gaussian processes. The model was applied to the problem of tracking objects,
and specifically for identifying ground-to-air missile trajectories. Later Ross and
Dy (2013) augmented the model with constraints implemented by a Markov
random field with sampling based inference to identify meaningful subtypes of
lung disease in a longitudinal study.
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Figure 3.4: This figure illustrate the effect of using a Gaussian Process prior
in clustering. In the left panel, we present the data generated; the
blue crosses are generated iid. around the blue line, and the red
cross around the red line. Both the blue and red line are generated
by drawing from a Gaussian process with a squared exponential
covariance with length-scale 1 and the black line as mean. The
black line is drawn from a zero mean Gaussian Process with a
squared exponential covariance and length-scale 10. In the middle
panel is shown the clustering results from the infinite GMMGP
model with a fixed length-scale at 1 and the model identifies two
clusters. In the right panel the length-scale is fixed at 10 and
identifies only one cluster.
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Von-Mises Fisher distribution

A frequently used preprocessing step when working with fMRI data is normal-
izing the data using z-scoring such that the time-series for each voxel gets zero
mean and standard deviation 1. This projects the data into the hypersphere
with radius

√
D − 1 and should therefore be modeled using directional statistics

(Mardia and Jupp, 2009).

The von-Mises Fisher distribution is a distribution on the unit length hyper-
sphere and is similar to the spherical Gaussian distribution. The von-Mises
Fisher distribution is often parameterized by a mean vector µ ∈ SD and a
concentration parameter τ ∈ IR+ and is given by

vMF(x | τ,µ) = CD(τ) exp(τµ>x), (3.51)

where CD(τ) = τD/2−1

(2π)D/2ID/2−1(τ)
with Iν(x) the Bessel function of first kind of

order ν and argument x. A mixture model based on von-Mises Fisher distribu-
tions was introduced in Banerjee et al. (2005) and recent variational inference
approaches has been presented by Taghia et al. (2014) and Gopal and Yang
(2014).

The von-Mises Fisher distribution is part of the exponential family and by
Eq. (3.6) the conjugate prior is given by

p(τ,µ | a, b,µ0) ∝ CD(τ)a exp
{
τbµ>µ0

}
. (3.52)

Note that the normalization constant is not available in closed form (Nunez-
Antonio and Gutiérrez-Pena, 2005) and furthermore this construction does not
allow the concentration parameter, τ , and the mean direction, µ, to be modeled
independently. Therefore, it is beneficial to use the following prior that still
allows the parameter µ to be marginalized analytically

p(τ,µ | τ0,µ0, a, b) ∝ vMF(µ | τ0,µ0)
CD(τ)a

CD(bτ)

= vMF(µ | τ0,µ0)f(τ | a, b). (3.53)

Since the normalization constant of the conjugate prior for the vMF distribution
is not available in closed form there is little computational difference between
using the more flexible prior of Equation (3.53). Using this prior the marginal
likelihood is given by

p(x1:N | τ0,µ0, a, b) =

∫
CD(τ0)CD(τ)N

CD(τ ||µ0 +
∑N
i=1 xi||)

p(τ)dτ, (3.54)
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where p(τ) ∝ CD(τ)a

CD(bτ) is the prior for τ . This integral is one dimensional and can
easily be evaluated numerically, for instance using integration by MCMC. The
generative process for the mixture of von-Mises Fisher distributions, denoted
vMFmm, is summarized by the following generative process

Figure 3.5: Illustration of the von-Mises Fisher model. On the left is the clus-
tering of the highest likelihood sample along with 95% credibility
regions denoted by the black circles around each cluster. On the
right are the posterior marginal distribution for the number of
clusters, the samples for the hyperparameters a and b with the
highest likelihood sample marked by the red dot, and the poste-
rior distributions for τ for each of the three clusters and the prior
for τ in black for the highest likelihood sample.

von-Mises Fisher Mixture model (vMFmm)

Prior p(µk, τk) = vMF(µk, | µ0, τ0)f(τk | a, b)
Likelihood p(x | µk, τk) = vMF(x | µk, τk)

Mixture models based on the von-Mises Fisher distribution has been previously
used in neuroimaging. Using normalized brain maps of Z-statistics for a number
of different tasks was modeled by a mixture of von-Mises Fisher distributions by
Lashkari et al. (2010); Lashkari and Golland (2009). Yeo et al. (2011) computed
the functional connectivity of each voxel to 1000 ROIs spread across the brain
and modeled the normalized FC vectors using a vMFmm dividing the brain into
14-34 parcels. Finally, Ryali et al. (2013) modeled the normalized voxel time
series for several regions of the brain using mixture of vMF distributions and
restricting the clustering to contiguous clusters using a Markov random field.
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3.5.1 Effect of hyperparameter sampling

In Bayesian modeling, there is often a distinction between parameters and hy-
perparameters. Parameters control the distribution of the observed variables
while hyperparameters control the distribution of the parameters. The hyper-
parameters in the mixture models used in this thesis are the parameters for the
prior distributions, such as the set {α,µ0, τ0, a, b} for the vMFmm. It is crucial
in order to be able to infer the correct clustering that these hyperparameters
learned as illustrated by Albers et al. (2016) for the infinite relational model.

In Figure 3.6 we illustrate the effect of sampling the hyperparameters in the
vMFmm applied to the dataset generated for Figure 3.5. From the list of sam-
pled hyperparameters, we select two sets of hyperparameters where the mode
for the prior distribution of the concentration parameter is (1) too high, and
(2) too low. As expected, the set (1) overestimates the number of clusters while
the set (2) has a higher peak at the correct number of clusters compared to
when the hyperparameters are learned. The inference chain with sampled hy-
perparameters are, with respect the adjusted mutual information with the true
clustering, better than both of the selected sets of parameters.

As previously mentioned, Miller and Harrison (2013) argues that Dirichlet pro-
cess mixtures overestimates the number of clusters. While, this can be partly
addressed by inferring the hyperparameters, most importantly, the number of
clusters in generated samples is not a very robust statistic of the data. In most
samples from large models, some observations will be in singleton clusters, but
these singletons might be eliminated if the parameters are optimized in the in-
ference chain, i.e. running several iterations of the MCMC procedure where the
optimal proposals are accepted.

3.5.2 Model summary

The presented models are summarized in Table 3.1. Note that for satisfyingly
sample the distributions for whole-brain fMRI the sampling chains would require
an exponential number of samples. Instead, we often use the highest likelihood
sample from the inference chain and from this sample optimize the parameters
to a local maximum. This means that the sampling procedure might better
be compared with stochastic optimization. In Table 3.1 we include a summary
of the implemented models with number of parameters that are estimated and
time per MCMC iteration for a synthetically generated dataset.
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Figure 3.6: Illustration of the effect of sampling the hyperparameters. In the
top panel we present the sampled sets of parameters (a,b) for the
prior on the concentration parameter along with the two selected
sets marked by the colored crosses. The second and third panel
shows the distribution of the number of clusters and adjusted mu-
tual information for hyperparameters for the set of parameters
corresponding to the color of the histograms. In the bottom panel
are the equivalent graphs for the inference chain where all hyper-
parameters are sampled.
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Model Inf. model Complexity Time/iter # parameters
GMM iGMM O(SKND2) - O(SKD2)
GMMd iGMMd O(SKND) 1min 18s O(SKD)
GMMs iGMMs O(SKND) 26s O(SKD)
GMMGP iGMMGP O(SKND) 1min 19s O(SKND)
vMFmm iVMFmm O(SKND) 1min 3s O(SKD)

Table 3.1: Table summarizing the considered models, note that the mod-
els using the nonparametric CRP prior are preceded with an i.
The time per MCMC iteration is for the nonparametric models
and is reported for a 2.1 GHz core i7 laptop processor running
Matlab 2015b on a synthetic dataset generated with parameters
N = 45000,K = 500, S = 1, D = 120. The non-parametric version
of each model was used and the models was initialized from the true
clustering such that each model iterates over the same number of
clusters.



Chapter 4

Implementation of sampling
based inference in mixture

models

In this chapter we present a tutorial on how to use the software tool for clustering
using the mixture models presented in this thesis. The code is written in Matlab
and both code and examples are available from www.brainconnectivity.compute.
dtu.dk or github.com/rasmusroege.

Mixture model Description Inf. class name Class name

GMMs Spherical GMM igmmsmodel gmmsmodel
GMMd axis aligned diagonal GMM igmmddmodel gmmddmodel
VMFmm infinite von-Mises Fisher MM ivmfmodel vmfmodel
GMMGP infinite GMM with GP prior igmmgpmodel gmmgpmodel

Table 4.1: The implemented mixture models.

www.brainconnectivity.compute.dtu.dk
www.brainconnectivity.compute.dtu.dk
github.com/rasmusroege


46 Implementation of sampling based inference in mixture models

4.1 Usage

This section demonstrates the usage of the mixture modeling framework. First,
we generate a small dataset that is used in the clustering with S subjects con-
sisting of N observations of dimension T in K clusters.

1 K=10; N=100; T=20; S=3;
2 z=kron((1:K)’,ones(N/K,1)); % Clustering vector, see Fig. 4.1
3 muk=randn(T,K,S); % Generate cluster means
4 x=repmat({zeros(T,N)},S,1); % cell array with observations
5 for s=1:S
6 for k=1:K
7 % generate observations for cluster k
8 x{s}(:,z==k)=bsxfun(@plus,muk(:,k,s),randn(T,sum(z==k),1));
9 end;

10 end

We can use the infinite spherical Gaussian Mixture model to cluster the gener-
ated dataset by the following code snippet:

1 z_init=randi(K,N,1);
2 m=igmmsmodel(x,z_init);
3 infsample(x,m);

The first line creates a random clustering configuration that is used for ini-
tializing the model. The next line creates a model object that initializes all
parameters of the probabilistic model. The model thus represents one sample
from the posterior distribution of the parameters of the mixture model given
the dataset x. The model is used in the second line by the sampling function,
infsample, that modifies the parameters of the model. Per default the inference
procedure performs 3 iterations and the most recent parameters are stored in
the model object. We can visually compare the true and inferred clustering by
the following snippet that produces Figure 4.1

1 subplot(1,2,1);
2 bar(z); xlim([0 100]); title(’True clustering’);
3 subplot(1,2,2);
4 bar(m.par.z); xlim([0 100]); title(’Inferred clustering’);

It is possible to use any of the implemented models in both their finite and
infinite implementations. The finite models must be initialized with a number
of components, K, in addition to the data and the initial clustering:

1 imd=igmmdmodel(x,z); md=igmmdmodel(x,z,K);
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Figure 4.1: Visual comparison of the inferred and true clustering for the gen-
erated dataset. The observation indices is on the x-axis and the
associated cluster labels are on the y-axis. Note, that the ordering
of the cluster labels is random and the inferred clustering and the
true clustering are therefore equivalent.

2 ivmfm=ivmfmodel(x,z); vmfm=vmfmodel(x,z,K);
3 igpmod=igmmgpmodel(x,z); gpmode=gmmgpmodel(x,z,K);
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Figure 4.2: A convergence plot with the log joint distribution for the first
MCMC 100 iterations.

The two models based on the von Mises-Fisher distribution require the input
data, x, to be normalized, i.e. for each observation to have unit norm and zero
mean. It is possible to pass options to the infsample function, and the function
call returns a number of variables:

1 o=struct();
2 o.maxiter=100;
3 o.verbose=0;
4 [z,llh,noc,best_sample]=infsample(x,m,o);

z is the clustering configuration of the highest likelihood sample, llh is a vector
of the log joint probability for each sample, noc is a vector of the number of
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clusters in each sample, and best_sample is the highest likelihood sample.

4.2 Features

The framework uses sampling based inference and most interesting quantities
are therefore analyzed by collecting samples. This includes evaluating the pos-
terior distribution for hyper parameters, marginal distribution for the number
of clusters, and approximating the predictive likelihood. To illustrate how these
quantities are computed we generate a test and training dataset:

1 K=10; N=100; T=20; S=3;
2 z=kron((1:K)’,ones(N/K,1));
3 muk_train=randn(T,K,S);
4 muk_test=randn(T,K,S);
5 x_train=repmat({zeros(T,N)},S,1);
6 x_test=repmat({zeros(T,N)},S,1);
7 for s=1:S
8 for k=1:K
9 sigk=gamrnd(4,1);

10 % generate training dataset
11 x_train{s}(:,z==k)=bsxfun(@plus,muk_train(:,k,s),sqrt(sigk)*

randn(T,sum(z==k),1));
12 sigk=gamrnd(4,1);
13 % generate dataset for test
14 x_test{s}(:,z==k)=bsxfun(@plus,muk_test(:,k,s),sqrt(sigk)*

randn(T,sum(z==k),1));
15 end
16 end

We then run the igmmsmodel discarding the first 50 for burnin and then col-
lecting 50 samples with a thinning factor of 3. We store the samples in a cell
arrray:

1 % initialize model
2 m=igmmsmodel(x,z);
3 o=struct();
4 o.maxiter=50;
5 % burnin
6 infsample(x_train,m,o);
7 nsamples=50;
8 thinning=3;
9 samples=cell(nsamples,1);
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10 % inference
11 o.maxiter=thinning;
12 for iter=1:nsamples
13 infsample(x,m,o);
14 samples{iter}=copy(m);
15 end

We then approximate the predictive likelihood using the collected samples:

1 pred_llh=zeros(nsamples,1);
2 for i=1:nsamples
3 tmp=samples{i};
4 tmp.calcss(x_test);
5 pred_llh(i)=tmp.llh;
6 end
7 log(sum(exp(pred_llh-max(pred_llh))))+max(pred_llh)-log(nsamples)

% -7.2593e+03

We have further implemented a number of switches for using either the SAMS
or split-merge sampler (for infinite models), using the speedup for the SAMS
or split-merge sampler, switching off the printed status for each iteration, for
using the last few (10 here) iterations to go to a local optimum, and finally to
activate the debugging functionalities:

1 o.UseSequentialAllocation=1; % SAMS / split-merge (default:1)
2 o.UseSMspeedup=1; % (default:1)
3 o.maxiter=100; % (default:3)
4 o.verbose=1; % (default:1)
5 o.optim=10; % (default:0)
6 o.debug=1; % (default:0)

The GMMGP models supports the options for heteroscedastic modeling of the
noise and scaling of the signal. The choice for this option is passed as an
additional argument when the object is constructed.

1 gmmgp_choice=’hh’; % ’hh’,’hs’,’sh’,’ss’
2 m=gmmgpmodel(x,z_init,gmmgp_choice)

The different choices are described in the following table along with the expres-
sion for the likelihood.



50 Implementation of sampling based inference in mixture models

gmmgp_choice Heteroscedastic Signal Heteroscedastic Noise Likelihood

’hh’ Yes Yes xi,s ∼ N (wi,sµz(i),s, σ
2
i,sI)

’hs’ Yes No xi,s ∼ N (wsµz(i),s, σ
2
i,sI)

’sh’ No Yes xi,s ∼ N (wi,sµz(i),s, σ
2
sI)

’ss’ No No xi,s ∼ N (wsµz(i),s, σ
2
sI)

4.3 OOP implementation of mixture models

The inference of the mixture models is created in an object-oriented program-
ming (OOP) framework where the sampling function, infsample, uses a mixture
model object, such as the gmmgpmodel, to perform inference. The implementa-
tion of the mixture modeling framework has been developed under considera-
tions for generalizability, code reuse, and easily understandable implementation
but weighted against the computational performance. Implementing the in-
ference procedure in a object oriented framework means that any object that
implements a specific set of methods can be used for the sampling procedure.
The possibility to reuse both the code for inference and debugging allows for
fast and easy extension of the framework with additional mixture models as
described in § 3.4.3.

The mixture model object implements either the AbsFiniteModel or AbsInfi-
niteModel abstract classes such that infsample knows whether the model is
a finite mixture model or not. The model object must implement functions
that allow infsample to use the model for Gibbs sampling and possibly split-
merge or SAMS sampling. The model objects are responsible for sampling hyper
parameters. The general methods that must be implemented are:

1 llh(obj) % evaluate the log joint prob.
2 copy(obj) % create a deep copy.
3 calcss(obj,x) % eval. sufficient statistics.

Note that the obj argument is a reference to the object itself and therefore
only specifies that the method has access to the parameters of the object. The
llh returns the log joint distribution for the current set of parameters, copy
creates a deep copy of the object, which is necessary since the models extends
the handle Matlab class. calcss computes the sufficient statistics of the model
class object. The required methods for Gibbs sampling are

1 remove_observation(obj,x,n) % remove obs. n
2 cat=compute_categorical(obj,x,n) % compute categorical dist.
3 add_observation(obj,n,k) % add obs. n to cluster k
4 remove_empty_clusters(obj) % remove empty clusters
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remove_observation removes observation n from the sufficient statistics.

compute_categorical returns the categorical distribution of assigning obser-
vation n to any of the possible clusters.

add_observation adds observation n to cluster k.

remove_empty_clusters removes any empty clusters in the sufficient statistics.

For the infinite models to support split-merge or SAMS sampling, the object
needs to further implement the following two methods:

1 m_split=initLaunch(obj,x,z_t,c); % initialize to launch config.
2 m_merge=initMerge(obj,x,z_m,c); % initialize to merge config.

where the initLaunch method allows the model to efficiently compute the suf-
ficient statistics of the launch state based on the current state of the model
and knowledge of the new clustering assignment, z_t, and c=[k1,k2] where k1
and k2 are indices for the two clusters that are to be considered in the split
proposal. The initMerge should similarly be an efficient method to update the
sufficient statistics to the state whith clustering assignment z_m by merging the
two components in c.

The objects themselves are responsible for hyper parameter sampling. The
infsample request a cell array of function names using the get_samplers class
method and then iteratively apply each of the methods using the feval matlab
function.

1 for sampler=1:length(model.get_samplers)
2 feval(str2func(model.get_samplers{sampler}),model,X,1);
3 end

For further documentation, we refer to the comments in the source available
from www.brainconnectivity.compute.dtu.dk or github.com/rasmusroege.

www.brainconnectivity.compute.dtu.dk
github.com/rasmusroege
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Chapter 5

Research contributions

In the included papers, we follow the aim of developing and applying proba-
bilistic models to parcellate whole-brain fMRI. We therefore apply the mixture
models and inference procedures from Chapter 3 in the modeling framework de-
scribed in Chapter 4. The mixture models of primary focus were the Gaussian
mixture model with Gaussian Process prior (GMMGP) and the von Mises-Fisher
mixture model (vMFmm). Note that all the code that has been used for these
papers is available online.

5.1 Paper A, Unsupervised Segmentation of Task
Activated Regions in fMRI

Traditional analysis of task fMRI is done using a general linear model to create a
statistic parametric map of the contrasts of interest based on specific knowledge
of the timing of the task conditions. This approach requires strong knowledge
and assumptions on the BOLD response induced by the task conditions. Spa-
tially smoothing the fMRI data is a standard preprocessing step that increases
statistical power but at the cost of spatial resolution. We show that the regions
of task activation can be identified unsupervised using the iGMMGP mixture
model without smoothing the fMRI data.
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We apply the iGMMGP mixture model with heteroscedastic noise on non-
smooth fMRI finger tapping task data. We initialize the mixture model with
all voxels in the same cluster and infer the required model complexity using
Bayesian non-parametrics. We further propose a minor, but crucial, change
to the split-merge MCMC sampling procedure, and we demonstrate that it
causes a significant speedup on the problem of whole-brain parcellation. The
inferred clusterings consists of approximately 100 clusters many of which consist
of spatially contiguous regions and show right-left hemisphere symmetry. The
clusters in the motor cortex have a component in the cerebellum in accordance
with expectations. We use cross-subject correlation of the parcel time series
and consistency of the inferred clusters across sampling chains to unsupervised
identify regions of task activation. We find that clusters with high cross subject
correlation of time-series are also consistently delineated and that the two clus-
ters with the highest cross-subject correlation corresponds well to the regions
of task activation from a supervised SPM group analysis. We further find inter-
esting regions that cannot be identified by the SPM analysis because they are
not sufficiently correlated with the design matrix.

In summary, the method shows great promise for clustering fMRI time series
data and the framework of unsupervised extraction of task activated regions is
promising, especially for fMRI experiments where strong knowledge of how the
task induces a BOLD response is missing.

5.2 Paper B, Infinite von Mises-Fisher Mixture
Modeling of Whole-Brain fMRI Data

Cluster modeling of fMRI time-series data is often performed using Gaussian
mixture models or non-probabilistic clustering algorithms on z-scored fMRI
data. Z-scoring projects the time series with D brain volumes of each voxel
to the hyper sphere with radius

√
D − 1. Modeling data on a hypersphere is

properly done using directional statistics since there is no longer any informa-
tion in the magnitude of the voxel time series. This fact is most often ignored
when clustering fMRI time series.

Paper B analyses the effect of modeling directional data with the von Mises-
Fisher distribution in contrast to traditional Gaussian distributions and intro-
duces a von Mises-Fisher based mixture modeling framework that scales to the
problem of whole-brain fMRI time series modeling. Both types of mixture mod-
els are implemented with two different priors on the clustering; one using the
Dirichlet-multinomial distribution and the other using the Chinese restaurant
process allowing for the model complexity to be adapted to the data. We employ
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identical methods for inference and initialization for all the considered clustering
models, the GMMs, GMMd and vMFmm. The paper presents a thorough anal-
ysis of the effect of the numerical approximation required for the vMF based
models to be tractable and initialization strategies for fast convergence. The
sampling based inference is compared to an approximation based on variational
inference on a previously studies topic modeling dataset and found to be at least
on par. The von Mises-Fisher and Gaussian based mixture models are applied
to a synthetic dataset generated from a mixture of vMF distributions and to a
29-subject resting state fMRI dataset normalized to the unit hyper sphere.

The inferred clusterings are evaluated based on three measures of reliability of
clusterings across groups of subjects; normalized mutual information, adjusted
mutual information, and the adjusted rand index. On the synthetic data, we
find that both the Gaussian and vMF based finite mixture models show very
similar reliability performance. The infinite Gaussian based mixture models do,
however, tend to overestimate the number of clusters. On the rs-fMRI dataset
we analyze, we ran the finite mixture models with the number of clusters in the
range from 50 to 1000 and the vMF based mixture model showed consistently
more reliable results for all settings compared to both Gaussian models. While
the infinite vMF based mixture model found more clusters compared to the
Gaussian mixture model, the inferred clustering solutions were more reliable.

The results from clustering analysis indicate that it is possible to increase the
reliability of clustering by modeling the normalized fMRI time-series using di-
rectional statistics.

5.3 Paper C, Functional Whole-Brain Parcella-
tion using Bayesian Non-Parametric Model-
ing

In paper C we explore the strategy of constructing a probabilistic mixture model
that is sufficiently expressive to account for the variability in fMRI. We extend
the model from paper A to also model the scaling of the signal across the brain
and we show that the iGMMGP method finds a compact representation of the
data and that the extracted parcellation is more reliable when compared to both
nonprobabilistic clustering methods and Gaussian mixture models.

We perform a thorough comparison with several traditional clustering models
that have been applied to the problem of whole-brain parcellation including clus-
tering using Ward’s algorithm, Normalized cut, and clustering based on region
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growing. We compare the clustering methods on data generated with spatially
dependent noise and scaling of the signal and find that the non-parametric GM-
MGP model can recover both the number of clusters and the clustering configu-
ration more reliably without being informed of neighbors or the spatial location
of the synthetic voxels. On fMRI data, we find that the use of voxel specific
parameters improves on the predictive performance while allowing for a more
compact representation of the data on both a resting state and a finger tapping
task dataset. Comparing the reliability in the inferred clustering across groups
of subjects, the proposed method is consistently more reliable compared to both
the traditional Gaussian based methods and the non-probabilistic methods.

We divide the task and resting state datasets into test and training datasets by
splitting each time series in two, and use the iGMMGP model to independently
perform a parcellation on the two splits. On the task fMRI dataset, the cluster
based SPM analysis is more reliable and with higher sensitivity infers the regions
of task activation compared to a traditional voxel based SPM analysis. On the
resting state dataset, we select two regions and again compare the functional
connections inferred by a cluster based SPM analysis to a voxel based analysis
using the averaged region time series as regressors. Again, we see that the cluster
based analysis more reliably identifies regions of functional connectivity.

The introduced probabilistic clustering model is able to more reliably perform
whole-brain parcellation compared to both probabilistic and traditional clus-
tering models. Based on a predictive analysis there is support for the use of
heteroscedastic modeling of noise and signal scaling. Finally, the increased reli-
ability of identified regions of task activation and the functional networks means
that the clustering method is a promising tool for preprocessing fMRI data for
more reliable analyses.



Chapter 6

Discussion and Conclusion

The aim of this thesis was to develop efficient probabilistic methods for whole-
brain parcellation that incorporate domain knowledge in the statistical distri-
butions used to model the fMRI time series. Using Bayesian non-parametrics,
the models can adapt to the complexity of the data. The probabilistic mod-
els investigated in this thesis in general outperform the tested non-probabilistic
clustering models with respect to reliability of inferred clusterings across groups
of subjects.

The proposed framework for unsupervised identification of task activated re-
gions in paper A successfully identified regions of task activation in a very well
understood dataset. A natural follow up question is to investigate if this find-
ing generalizes to other and more difficult task datasets such as datasets where
subjects are exposed to natural stimuli such as listening to an auditory feature
film (Hanke et al., 2014).

The von Mises-Fisher and the Gaussian mixture model with a Gaussian process
prior represent two different approaches to clustering fMRI time series data as
presented in papers B and C. Both models find reliable parcellations, but there
are significant differences between the two models: While the vMFmm models
the directional standardized fMRI data, it also optimally infers regions that are
homogenous as measured by correlation. Since correlation is frequently used
both as a homogeneity measure for evaluating parcellation methods as well as
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for further analysis of fMRI data, this is a promising feature of the model. The
GMMGP model has additional advantages: One effect of the strong prior on the
parcel time series is that small clusters are penalized and in combination with
the heteroscedastic modeling of signal and noise, the nonparametric Bayesian
modeling thus provide a more compact representation of the data.

For most results on whole-brain analysis in the presented paper, the inference
chains were limited to approximately 100 MCMC samples. This is absolutely
not enough to satisfactorily explore the posterior distribution. Chance is that
it is not even enough for sufficient burnin. Both variational inference based
methods and expectation maximization escape this problem by approximating
the distribution but are highly susceptible of being stuck in local modes of the
posterior distribution. MCMC sampling can also get stuck in local modes but
can break free given enough samples. The problem of inference in mixture
models is thus a weighting of vulnerability to local modes and not reaching
the equilibrium distribution for sampling. Ultimately the methods should be
evaluated based on how well the inferred clusterings perform in practical settings
and we should therefore not let the perfect be the enemy of good.

The same philosophy applies to the use of the Bayesian nonparametrics. Since,
we cannot guarantee that the sampling chains have reached the equilibrium
distributions we cannot draw firm conclusions on the number of clusters in
the data. We do, however, know that the split-merge and SAMS sampling
procedures, that the CRP prior enables, greatly improves the rate of convergence
(Dahl, 2005; Albers et al., 2013). Therefore, while the number of clusters inferred
by the nonparametric models might not a good estimate for the true number of
clusters in the data, it will be a better estimate than what would be achieved by
pruning a parametric model. This advantage in the sampling procedures could
perhaps be transferred to a finite model; if we, for instance, are interested in
a 500-cluster brain parcellation we could initialize a nonparametric model with
100 clusters and allow this model to populate the 500 clusters. When these
500 clusters are populated inference could continue with a parametric model,
initialized from the nonparametric solution, that could be used for further fine
tuning of the clustering configuration.

Bayesian probabilistic models allow for using the predictive likelihood on hold-
out data to assess the ability of a model to adequately fit the data without
overfitting. We use the predictive likelihood to show that there is support for
heteroscedastic modeling of the parameters for noise and scaling of signal in
paper C. Optimally, we would like to perform comparisons between the classes
of probabilistic models considered in this thesis. The Gaussian process in the
iGMMGP model constitutes a strongly informed prior that prevents the model
from fitting to high frequency fluctuations in the data. Since these fluctuations
might be caused by physiological noise they will also be apparent in the test
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dataset and the model will thus be handicapped in terms of the predictive
likelihood. The von Mises-Fisher based mixture models are only defined for
data residing on the unit hypersphere. This is ensured by normalizing the time
series data, but also entails that we cannot use the predictive likelihood to
compare the vMF and Gaussian based models.

In paper C we validate the inferred clustering against the dice overlap of in-
ferred regions of task activation and functionally connected regions. Many fMRI
studies are based on either identification of task activated regions or based on
network analysis. It is therefore important to increase the reliability and sensi-
tivity of these analyses and we show that this could potentially be done using
a parcel based analysis. Shifting the validation of parcellations from reliability
and homogeneity towards validation on the analyses that fMRI data is actually
used to facilitate these benefits. Therefore, we believe that it would be interest-
ing to extend the presented method to a formalized framework for comparing
and evaluating clusterings.

The fMRI datasets analyzed in papers B and C are preprocessed using spatial
smoothing. This reduces the spatial resolution of the data but there are consid-
erable difficulties for the models to handle the level of noise in the fMRI data
without spatial smoothing. Recent approaches use the data from several hun-
dred subjects for a whole-brain parcellation of non-smoothed fMRI data (Glasser
et al., 2016a). This approach would be feasible for brain parcellation by extend-
ing the developed framework to exploit parallel computation. The sampling
procedure which constitutes the computational bottleneck trivially parallelize
across the number of clusters and subjects.

Several traditional methods of clustering fMRI data are based on hierarchical
clustering methods. This is also possible using probabilistic methods such as
Bayesian hierarchical clustering (Heller and Ghahramani, 2005) or the Bayesian
rose trees algorithm (Blundell et al., 2012) for multifurcating hierarchical clus-
tering. Building on the experience using mixture models to model fMRI data
it might be beneficial to apply these algorithms to the problem of whole-brain
fMRI parcellation in the future.

The research contributions within the thesis show that the use of validated
probabilistic clustering methods are beneficial for modeling fMRI data. These
can potentially have wide applications in neuroimaging studies and can serve to
improve sensitivity, robustness and interpretability of fMRI based studies.
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Appendix A

Unsupervised Segmentation
of Task Activated Regions

in fMRI

Røge, R. E., Madsen, K. H., Schmidt, M. N., Mørup, M. (2015), ‘Unsupervised
Segmentation of Task Activated Regions in fMRI’. 2015 IEEE International
Workshop on Machine Learning for Signal Processing.
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ABSTRACT
Functional Magnetic Resonance Imaging has become a central mea-
suring modality to quantify functional activiation of the brain in both
task and rest. Most analysis used to quantify functional activation
requires supervised approaches as employed in statistical paramet-
ric mapping (SPM) to extract maps of task induced functional ac-
tivations. This requires strong knowledge and assumptions on the
BOLD response as a function of activitation while smoothing in gen-
eral enhances the statistical power but at the cost of spatial resolu-
tion. We propose a fully unsupervised approach for the extraction
of task activated functional units in multi-subject fMRI data that ex-
ploits that regions of task activation are consistent across subjects
and can be more reliably inferred than regions that are not activated.
We develop a non-parametric Gaussian mixture model that apriori
assumes activations are smooth using a Gaussian Process prior while
assuming the segmented functional maps are the same across sub-
jects but having individual time-courses and noise variances. To im-
prove inference we propose an enhanced split-merge procedure. We
find that our approach well extracts the induced activity of a finger
tapping fMRI paradigm with maps that well corresponds to a su-
pervised group SPM analysis. We further find interesting regions
that are not activated time locked to the paradigm. Demonstrating
that we in a fully unsupervised manner are able to extract the task-
induced activations forms a promising framework for the analysis of
task fMRI and resting-state data in general where strong knowledge
of how the task induces a BOLD response is missing.

Index Terms— Functional connectivity, Gaussian Mixture
Model, fMRI analysis

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) allows for the iden-
tification of task related brain activations by measuring the blood
oxygenation level dependent (BOLD) response in each voxel of the
brain. The reliable identification of these regions of activations poses
a major challenge due to a massive multiple comparisons problem
and due to the low level of signal to noise found in fMRI data. Tradi-
tionally, fMRI data is spatially smoothened and then analysed using
statistical parametric mapping (SPM) [1] in order to identify brain
regions that are significantly correlated with the expected activation
time course. These univariate voxel specific tests have to be cor-
rected for multiple comparisons as fMRI data is high-dimensional
i.e. in the order of 105 voxels. This is commonly handled by meth-
ods for correcting for the family-wise error based on Gaussian Ran-
dom Fields [2] or correcting for false discoveries [3].

This work was supported by the Lundbeck Foundation, grant no. R105-
9813

An alternative procedure is to cluster the fMRI time-series [4, 5]
and carry out the statistical analysis at the level of clusters. Com-
monly adopted approaches have here been based on hierarchical and
k-means clustering [4] and the cluster based algorithm (CBA) pro-
posed in [5]. Thereby the number of statistical tests reduces to the
number of clusters extracted while spatial smoothing no longer is
necessary as the signal to noise ratio (SNR) is improved when con-
sidering the time series of each cluster centroid [5]. As opposed to
segmenting the brain into clusters, independent component analysis
(ICA) [6] is a widely applied approach to identify maps of task [6]
and resting state [7] activations typically assuming spatial indepen-
dence of the extracted components. In these approaches activations
have been established using supervised evaluation of the extracted
time courses [8].

In this paper we focus on a fully unsupervised approach for func-
tional segmentation of task related activity using clustering based on
a non-parametric mixture model tailored to the analysis of multi-
subject fMRI data. Being non-parametric our model is able to au-
tomatically learn from data the number of clusters. It assumes sub-
jects are normalized into a common space such that the extracted
functional units are consistent across subjects with subject specific
cluster time-series apriori assumed smooth by imposing a Gaussian
process prior. To account for inhomogenous noise and misaligments
a separate noise parameter is estimated individually for each subject
and voxel. Inference in the model is accomplished by Markov-chain
Monte Carlo sampling where we propose a new efficient procedure
for split-merge sampling [9] that significantly reduces the computa-
tions of the in general most occuring merge operations.

For the unsupervised extraction of task-related clusters we eval-
uate how correlated the cluster time-series are across subjects as well
as the stability of the clusters using evidence accumulation [10, 11]
hypothesizing that these consistent actitvations correspond to task
induced activity. We show that our unsupervised multi-subject anal-
ysis extracts the regions expected to be activated in a finger tapping
paradigm and that the maps are similar to those extracted using a
standard supervised group SPM analysis. Our method further cir-
cumvents smoothing as a necessary preprocessing step.

2. METHODS

2.1. The Infinite Gaussian Mixture model with a Gaussian Pro-
cess prior (IGMMGP)

Let Xs be the N × T matrix of the N voxels with a time course
with T measurements of subject s. We use z as a vector for the
group assignment, such that z(i) = k if the i’th voxel is assigned
to the cluster k. We thus assume that the voxels are aligned across
subjects and that the clustering is shared. Our model is illustrated as
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a directed graphical model in Fig. 1 and is described by the follow-
ing generative process where we use the Chinese Restaurant Process
(CRP) [12, 13] as a prior for partitioning the voxels into clusters.:

z ∼CRP (γ) groups, (1)
μk,s ∼GP (0,Σ) group time series, (2)

xi,s ∼N (μz(i),s, σ
2
i,sI) voxel time series, (3)

where Σ is the covariance structure encoding the imposed temporal
dynamics, μk,s is the time series of cluster k of subject s, σ2

i,s is the
variance of voxel i of subject s, and xi,s is the time series of voxel
i of subject s. The model we propose is an extension of the Infi-
nite Gaussian Mixture Model [14] in which temporal dynamics are
imposed on the mixtures through the Gaussian Process (GP) prior
with covariance function Σ. A Gaussian Process prior has previ-
ously been considered in the Infinite Gaussian Mixture Models also
imposing Markov Random Field constraints [15]. A benefit of our
model is that it includes voxel and subject specific noise that can
potentiallty account for misalignment across subjects as well as spa-
tially varying noise levels. In the following we call our model the
Infinite Gaussian Mixture model with a Gaussian Process prior (IG-
MMGP).

We define by {Xs}, {μs}, and
{
σ2

s

}
the collections of all sub-

jects voxel time series, group time series and voxel variances re-
spectively. With σ2

s we denote the noise variance for all voxels for
subject s, and with xz(i)=k,s = {xi,s | z(i) = k} we denote the
time series of all voxels assigned to cluster k of subject s.

According to the generative model the joint distribution of data
and parameters can be expressed as

p(z, {μs} , {Xs} |
{
σ2

s

}
,Σ, γ) (4)

=

[∏

s

p(Xs|μs,σ
2
s)p(μs|Σ)

]
p(z|γ).

Due to conjugacy it is possible to analytically integrate out the group
time series from the joint distribution

p(z, {Xs} |
{
σ2

s

}
,Σ, γ) (5)

=

∫ [∏

s

p(Xs|μs,σ
2
s)p(μs|Σ)dμs

]
p(z|γ))

=
Γ(γ)γK ∏K

k=1 Γ(nk)

Γ(N + γ)

∏

i,s

(2πσ2
i,s)

−T/2 exp

{
− 1

2σ2
i,s

x�
i,sxi,s

}

K∏

k=1

(|Sk,s|/|Σ|)−1/2 exp

{
1

2

K∑

k=1

x̄�
k,sS

−1
k,sx̄k,s

}
,

where

x̄k,s =
∑

Z(i)=k

1

σ2
i

xi,s, Sk,s =

⎛
⎝Σ−1 +

∑

z(i)=k

1

σ2
i,s

I

⎞
⎠ ,

and nk is the number of voxels assigned to cluster k with N being
the total number of voxels.

2.2. Model inference and accellerated merge steps

For inference of the clustering z we use Gibbs sampling with split-
merge moves [9]. In each Gibbs move a voxel can be placed in any
of the currently occupied K clusters or create a new. This means

Fig. 1. Directed graphical model representation of the generative
process.

that the expression x̄�
k,sS

−1
k,sx̄k,s has to be evaluated K + 1 times.

Let Σ = V �DV be the eigendecomposition of Σ. Then

x̄�
k,sS

−1
k,sx̄k,s = x̄�

k,s

⎛
⎝(V �DV )−1 +

∑

z(i)=k

1

σ2
i,s

I

⎞
⎠

−1

x̄k,s

= (V x̄k,s)
�(D−1 +

∑

z(i)=k

1

σ2
i,s

I)−1V x̄k,s.

Keeping V x̄k,s and (D−1 +
∑

z(i)=k
1

σ2
i,s

I) in memory reduces

the computational complexity of evaluating x̄�
k,sS

−1
k,sx̄k,s to O(T )

when the projections V {X} and eigenvalues D have been com-
puted. This reduces the total time complexity of a Gibbs sweep to
O(SNKT ).

In the split-merge procedure two nodes, or voxels as denoted in
this paper, are randomly sampled. If they are in the same group the
group is proposed split and if they are in two different groups these
two groups are proposed merged. The split/merge move is accepted
according to the Metropolis-Hastings ratio

α(z∗ | z) = min

[
1,

p(z∗, {Xs} |γ,
{
σ2

s

}
,Σ)q(z|z∗)

p(z, {Xs} |γ, {σ2
s} ,Σ)q(z∗|z)

]
, (6)

where the transition probability q(zsplit|zmerge) for splitting a clus-
ter is calculated using Gibbs sampling restricted to the observations
influenced by the move. The transition probability is calculated by
first sampling a so-called launch state and keeping track of the tran-
sition probabilities from this state to the final split configuration. As
the merge move is deterministic we have for the transition probabil-
ity q(zmerge|zsplit) = 1, see also [9].

Provided no group contains more than 50 % of the observations
there will be more merge than split proposals. As merge moves
are deterministic we further have for these moves that q(z|z∗)

q(z∗|z) ≤
1. We can thus significantly accelerate the evaulation of these pro-
posals if we are able to reject the move by the ratio of the joint

probabilities alone, i.e.
p(z∗,{Xs}|γ,{σ2

s},Σ)

p(z,{Xs}|γ,{σ2
s},Σ)

thereby circumvent-

ing the more computationally demanding restricted Gibbs sweeps.
This leads us to propose the following accelerated merge procedure:
Before computing the launch state and final configuration using re-
stricted Gibbs sampling compute the preliminary acceptance proba-
bility for a merge step

α1(z
∗ | z) = min

[
1,

p(z∗, {Xs} |γ,
{
σ2

s

}
,Σ)

p(z, {Xs} |γ, {σ2
s} ,Σ)

]
. (7)



In case we cannot accept the proposal based on α1 we will not be
able to accept it based on α as α(z∗|z) ≤ α1(z

∗|z).
In order to infer the hyperparameters γ and {σ2} we impose

the non-informative and improper prior p(θ) ∝ θ−1. We use
Metropolis-Hastings sampling by transforming the variable to the
log-domain and use the symmetric normal distribution as proposal
density. Using the eigendecomposition of Σ and V xk,s the cost
of evaluating the joint density ratio of the Metropolis-Hastings ratio
is O(T ). Therefore a sweep of evaluating proposals of {σ2} is
O(SNT ), i.e. this inference step is less computationally demanding
than the Gibbs sweep.

2.3. Unsupervised extraction of consistent clusters

The posterior of the cluster time series given the data and clustering
can be calculated using Bayes theorem:

p(μk,s|xz(i)=k,s,σ
2
z(i)=k,s,Σ) (8)

=
p(xz(i)=k | μk,s,σ

2
z(i)=k,s)p(μk,s | Σ)∫

p(xz(i)=k | μk,s,σ
2
z(i)=k,s)p(μk,s | Σ)dμk,s

= N (S−1
k x̄k,Sk).

To un-supervised select clusters of relevance for the task we evaluate
the consistency of the cluster time-series as well as the consistency
of the clustering across separate chains based on the sample with
highest value of the joint-distribution p(z, {Xs} |

{
σ2

s

}
,Σ, γ)

presently denoted the MAP solution.
We evaluate the consistency of the cluster time-series across sub-

jects by computing the posterior mean, S−1
k,sx̄k,s, for all clusters and

all subjects and rank the clusters according to the mean correlation
(over all pairs of subjects), i.e.

R(k) =
1

S(S − 1)/2

∑

s>s′
correlation(μk,s,μk,s′). (9)

To evaluate the consistency of the clusterings we use evidence ac-
cumulation [10, 11] in order to quantify how consistent across L
separate sampling chains (excluding the chain with the MAP solu-
tion) voxels are grouped together according to the following cluster
specific consistency score

C(k) =
1

nk(nk − 1)/2

∑

i>j:zMAP
i =zMAP

j =k

1

L

∑

l

I(z(l)i = z
(l)
j ),

(10)

where I(a) is the indicator function that evaluates to 1 if a is true
and 0 otherwise and nk is the number of voxels in cluster k.

3. RESULTS AND DISCUSSION

To impose smoothness we use as kernel for the covariance of the
Gaussian Process, Σ, that is generated by the following expression:

kSE(xi(t),xi(t
′)) = exp

(
− (t− t′)2

2l2

)
, (11)

with the characteristic length-scale as the optimal length-scale for
modeling the hemodynamic response function as provided by the
SPM12 software (SPM12, Wellcome Trust Centre for Neuroimag-
ing, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The length-
scale was inferred by optimizing the fit of a Gaussian Process with

Fig. 2. Number of components extracted as a function of the SNR,
NMI using a single subject, and group analysis of 10 and 25 sub-
jects. Below is given the density of the SNR for the real multi-subject
fMRI data is given in.

a squared exponential kernel and was l = 4.6s or 1.85 frames (with
TR = 2.49). In our analysis we initialized the clustering configura-
tion to have all voxels in the same cluster. The noise parameter σ2

was initialized to the variance of the data, i.e. σ2
i = var(xi) and the

CRP parameter γ was initialized to 5.
For the inference procedure a full sweep consisted of 1 Gibbs

sweep and a number of split-merge moves defined such that the
CPU time spent on the split-merge moves matched that of the Gibbs
sweep. This means that the number of split-merge moves performed
changed dynamically during the model inference. In each split-
merge move 3 restricted Gibbs sweeps were performed. Addition-
ally 10 sweeps of Metropolis-Hastings hyper-parameter sampling
was performed for each σ2

i,s and for γ. On the fMRI dataset con-
sisting of 28 subjects and 48799 voxels each with a time-series of
240 measurements (further details on the data is given below) this
entire sampling forming one iteration took approximately one hour
to complete.

To test the model on the synthetic data we performed 3 runs for
each selection of noise and number of synthetic subjects. On the
fMRI dataset 10 runs using the accelerated split-merge procedure
and 10 runs with the standard split-merge procedure were performed
to illustrate the impact on convergence of the change in the split-
merge procedure.

3.1. Synthetic data

In order to investigate the level of noise for which the model can in-
fer the correct clustering, a number of synthetic data sets were gener-
ated of varying noise. Furthermore we varied the number of subjects
to illustrate how the performance of the model increases with more
subjects. For each dataset we generated 15 cluster means for each
subject according to Eq. (2) and (11) with a characteristic length-
scale of 1.85. For each cluster we generated 400 voxels with the
same temporal dimension as the fMRI dataset. This was done ide-
pendently for each of the synthetic subjects such that the only thing
shared was the clustering configuration. This was done 3 times for
each noise level and number of subjects pair in order to verify the
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Fig. 3. Progression of the joint distribution given in equation (5)
using standard split-merge sampling and using the proposed accel-
erated merge procedure. On the right are the last 30 iterations of the
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stability of the method.
To quantify the extend in which the clustering matches the

ground truth we used the normalized mutual information (NMI)
[16] measure as well as the number of clusters inferred as a function
of the average SNR of the generated data defined by

SNRDB = 10 log10
Psignal

Pnoise
= 10 log10

∑
s,k nkμ

�
k μk∑

s,n Tσ2
s,n

. (12)

As seen in Fig. 2, the method is able to handle Gaussian noise un-
til a SNRDB of approximately -5. After that additional subjects are
needed in order to be able to infer the correct configuration. In order
to get a crude estimate of the SNR in the used fMRI data we used
the following estimate: For the mean of the signal we used the 10
repetitions of the task to construct the mean, μ̄(s)

v = 1
10

∑10
i=1 x

(s)
v ,

and then estimates the SNR by:

SNR2
v,estimate =

μ̄(s)
v μ̄(s)�

v

1
10−1

∑10
i=1(x

(s)
v − μ̄

(s)
v )(x

(s)
v − μ̄

(s)�
v )

. (13)

According to this crude estimate the model should not be able to cor-
rectly infer the correct configuration for a single subject. However,
this should be possible when using 10 subjects and in our regime
using 28 subjects.

3.2. Multi-subject fMRI

To validate our proposed method we used a fMRI finger tapping data
set consisting of 28 healthy subjects scanned in a Siemens 3T scan-
ner. The dataset has previously been described in [17, 18]. The fin-
ger tapping paradigm consisted of two paced motor conditions each
lasting 20 s, first right handed finger tapping followed by left handed
finger tapping. Both conditions were paced by a blinking colored
circle and were followed by 9.88 s rest. The stimulation cycle was
repeated 10 times and 240 scans was acquired in total. Data was
preprocessed using a default strategy in the SPM8 software package
that comprised the following steps: (1) Rigid body realignment, (2)
co-registration, (3) spatial-normalization to the MNI 152 template,
(4) re-slicing of images into MNI space at 3 mm isotropic voxels.
For the SPM analysis a spatial smoothing was further applied using
an isotropic Gaussian filter (6 mm FWHM). Finally a rough grey
matter mask (48799 voxels) was applied.

Fig. 3 shows the logarithm of the joint distribution for the 10
different runs. It is clear that the accelerated split-merge procedure

using enhanced merge steps significantly improves on the conver-
gence. We also observe that even using this enhanced inference pro-
cedure the model has not converged.

In order to show how many clusters are task relevant we sorted
the clusters according to the cluster specific mean correlation R(k)
computed in Eq. (9). As seen from Fig. 4 it is clear that two clusters
show a much higher degree of correlation across subjects whereas
8 clusters show a correlation higher than 0.3. Of these 8 clusters 7
show a consensus score (i.e., C(k)) higher than 0.6. These 7 clusters
are colored in shades of red and are the clusters of similar color in the
consensus score plot in Fig. 4. The cluster that shows a high level
of correlation but a low consensus score is colored yellow. The 8
clusters having high correlation are also visualized in figure A)-H) of
Fig. 6 and shown in descending order according to their correlation
score colored as in Fig 4. According to the consensus score we also
selected the 7 clusters with the highest consensus score, shown in
shades of green. These 7 clusters are also shown in figure I)-O) of
Fig. 6.
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Fig. 4. Average correlation across the estimated cluster specific
time-series for each subject and stability as quantified using evidence
accumulation. In shades of red is given clusters that have corelation
above 0.3. In green the remaining 7 clusters that are in top 10 of the
consensus score.

We performed a standard multisubject SPM analysis on the
smoothened data with left-right and right-left contrast maps for a
comparison with the regions extracted by our method. The activation
maps of the SPM analysis are thresholded and compared with the
two clusters of average correlation higher than 0.7 in Fig. 5. From
the figure it is clear that there is a very high degree of correspon-
dance but also that the two top correlated maps are more localized.
The SPM maps are also included in the top of Fig. 6 where it can be
seen that the 10 most correlated clusters well correspond to subpar-
cellations of the SPM maps of regions that are task activated whereas
the regions with a relative high consensus score but relatively low
correlation do not delineate regions that are extracted in the SPM
analysis but different cortical regions that robustly group together.

4. CONCLUSION

When analyzing fMRI the data is traditionally smoothened and vox-
els of brain activation extracted in a supervised manner for instance
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Fig. 5. On the left are SPM heatmaps of activated voxels at selected
axial slices. On the right are the inferred clusters of highest cross
subject correlation.

using a SPM analysis that identifies voxels with the expected tem-
poral evolution as defined by the imposed HRF convolved with the
design matrix. In contrast, our proposed approach is fully unsuper-
vised and automatically groups voxels circumventing the need for
smoothing data. It uses the temporal consistency across subjects as
well as reliability over separate chains of the sampler in order to infer
regions of interests. We find that regions with high temporal consis-
tency well correspond to those derived by a standard SPM analysis
whereas regions that are only reliable across chains of the sampler
correspond to cortical regions that are neither identified by SPM nor
our measure of correlation.

We succesfully demonstrated on a simple finger tapping paradigm
that our completely unsupervised approach is able to extract the task-
induced activations. This we believe forms a promising framework
for the analysis of taskdata in general where there is no good knowl-
edge of how given tasks induce BOLD responses. We also find that
there is generally correspondence between regions that correlate
across subjects and regions that are robustly identififed by our infer-
ence procedure. This indicates that consistency of the clustering by
itself can be used to idenfity task relevant regions and can thereby
be used to quantify activated regions when information on task is
unavailable such as in the analysis of resting state fMRI.
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Fig. 6. The activation maps for the two conditions using group SPM analysis and the average of the time-series of the activated voxels. In A)-
O) are the extraced functional activation maps using our fully unsupervised approach. A)-H) are the clusters of high cross subject correlation,
and only F) has a consensus score lower than 0.6. In I)-O) are the reliable maps that are not highly correlated in time across subjects.
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Abstract

Cluster analysis of functional magnetic resonance imaging (fMRI) data is of-

ten performed using Gaussian mixture models, but when the time series are stan-

dardized such that the data reside on a hypersphere this modeling assumption is

questionable. The consequences of ignoring the underlying spherical manifold

are rarely analyzed, in part due to the computational challenges imposed by di-

rectional statistics. In this paper, we discuss a Bayesian von Mises-Fisher (vMF)

mixture model for data on the unit hypersphere, and present an efficient inference

procedure based on collapsed Markov chain Monte Carlo sampling. Comparing

the vMF and Gaussian mixture models on synthetic data, we demonstrate that both

models are able to recover the true underlying clustering of spherical data when

the number of clusters is known; however, when performing model selection, the

two models are not in agreement. Analyzing multi-subject whole brain fMRI data,

we find that the vMF mixture model is considerably more reliable than the GMM

when comparing solutions across models trained on different groups of subjects,

and again we find that the two models disagree on the optimal number of com-

ponents. The analysis indicates that the fMRI data support more than a thousand

clusters, and we confirm this is not a result of over-fitting by demonstrating bet-

ter prediction on data from held-out subjects. Our results highlight the utility of

using directional statistics to model standardized fMRI data, and demonstrate that

whole-brain segmentation of fMRI data requires a very large number of functional

units in order to adequately account for the discernible statistical patterns in the
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data. The developed vMF software can be applied to data clustering on the hyper-

sphere in general, and is available from the authors.

1 Introduction

In many areas of statistical modeling, data is represented only by a direction, thus setting

the stage for directional statistics (Mardia and Jupp, 2009). This is perhaps most easily

seen when the data consist of measures of directions in three-dimensional space such

as the directions of radiation beams used for treatment (Bangert et al., 2010), directions

from the earth to stars (Mardia and Jupp, 2009), or locating emergency transmitters

(Guttorp and Lockhart, 1988). One of the most frequently used directional distribu-

tions is the von Mises-Fisher distribution (vMF) (Fisher, 1953; Mardia and El-Atoum,

1976). The vMF distribution is specified by a concentration parameter and a mean di-

rection, and because it is part of the exponential family it has a conjugate prior. Unfortu-

nately, the normalization constant of the conjugate prior is not available in closed form,

which makes the vMF distribution more challenging to work with (Nunez-Antonio and

Gutiérrez-Pena, 2005) compared to e.g. the Gaussian distribution.

Models based on the von Mises-Fisher distribution have been applied to a wide va-

riety of high-dimensional problems on the unit hypersphere. This includes document

topic modeling (Banerjee et al., 2005; Gopal and Yang, 2014) and the modeling of

gene expressions data (Banerjee et al., 2005; Taghia et al., 2014). Within the field of

neuroscience, normalizing or z-scoring the data is a common step in the preprocessing

pipeline for functional magnetic resonance imaging (fMRI) analysis (Craddock et al.,

2012; Hyde and Jesmanowicz, 2012). Z-scoring transforms each voxel time series to
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have zero mean and unit standard deviation, i.e. voxel time series data consisting of

D brain volumes will therefore be projected onto the hypersphere with radius
√
D − 1.

Since there is no longer any information in the magnitude of the observations, the mag-

nitude can be disregarded and the data modeled using directional statistics. This makes

the von Mises-Fisher a natural first choice for modeling the standardized fMRI time

series. Time series data from several substructures of the brain, including the insula and

striatum, was recently modeled using a mixture model based on the von Mises-Fisher

distributions with Markov random field to ensure spatial contiguity (Ryali et al., 2013).

The von Mises-Fisher distrubiton has also been frequently used in modeling fMRI task

activations (Lashkari et al., 2010; Lashkari and Golland, 2009) and vectors of functional

connectivity with a number of regions of interest (Yeo et al., 2011). These studies,

however, either focused on low-dimensional representations of high-dimensional time-

series by extracting task-activated b-maps (Lashkari et al., 2010; Vul et al., 2012) or

only considered fMRI time-series within a small region of interest (Ryali et al., 2013).

Furthermore, neither of these studies have provided a systematic comparison of the vMF

with the Gaussian distribution assumption when modeling fMRI. It is therefore unclear

what the benefits of imposing the more challenging von Mises-Fisher distribution might

be, as opposed to applying the well-studied and more simple Gaussian distribution. De-

spite the directional nature of the z-scored fMRI time series data, modeling is still most

often based on assumptions of Gaussian distributions (Janssen et al., 2015).

In this article, we advance the von Mises-Fisher mixture model to large-scale fMRI

clustering. We employ collapsed Markov chain Monte Carlo (MCMC) inference and

exploit non-parametric Bayesian modeling for model order quantification. We apply
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the developed framework to multi-subject whole-brain fMRI segmentation and contrast

the performance of the von Mises-Fisher distribution assumption to the conventional

Gaussian assumption. We thus present a thorough comparison with Gaussian mixture

models based on identical inference procedures, such that we isolate the differences that

are caused by the difference in probabilistic modeling assumptions from what could be

caused by potential difference in inference implementation. We investigate the models

on synthetic data with ground truth as well as on large scale multi-subject fMRI data

and contrast the estimated model order based on non-parametric Bayesian modeling to

the model order estimated using the predictive distribution based on finite mixtures.

The paper is structured as follows: In §2 we introduce the generative models and in-

ference procedure for our non-parametric vMF mixture model. In §3 we present results

regarding the implementation of the vMF models. We apply our model to multi-subject

resting state fMRI data and contrast the performance to conventional parametric and

non-parametric Gaussian mixture modeling. Finally, in §4 we present our conclusions.

In Appendix A we compare our implementation to an existing implementation based

on variational inference (Gopal and Yang, 2014).

2 Methods

Clustering using a mixture of von Mises-Fisher distributions was introduced by Baner-

jee et al. (2005) who proposed an inference procedure using expectation maximization

(EM). Due to the occurrence of the Bessel function in the von Mises-Fisher probabil-

ity density function, they relied on an approximation to determine the concentration
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parameter of the vMF distribution, and provided bounds for the accuracy of the ap-

proximation. Focusing on the three-dimensional case, Bangert et al. (2010) extended

the model to a non-parametric “infinite” vMF mixture, and presented a Markov chain

Monte Carlo (MCMC) inference procedure, combining Gibbs sampling and slice sam-

pling. Recently, Taghia et al. (2014) and Gopal and Yang (2014) independently pro-

posed variational inference procedures for finite mixtures of von Mises-Fisher distri-

butions, using the gamma distribution and log-normal distribution respectively as prior

for the concentration parameter. The variational inference method requires some ex-

tra work to estimate the concentration parameter, which can be performed either using

an approximation (Taghia et al., 2014; Gopal and Yang, 2014) or by MCMC sampling

(Gopal and Yang, 2014). In contrast to variational inference, MCMC sampling yields

an unbiased estimate of the true posterior and may thus have some advantages over

variational inference. The downside is that it is computationally demanding, and may

not converge for larger problems despite providing a useful approximation.

In this contribution we present the Bayesian generative model for clustering direc-

tional data based on von Mises-Fisher distributions. Similar to Bangert et al. (2010)

we formulate a non-parametric mixture model and base our inference on MCMC sam-

pling; however, we improve on the inference procedure by analytically marginalizing

over the mean parameter, as opposed to sampling it, and we apply the model to high di-

mensional problems, where Bangert et al. (2010) considered only the three-dimensional

case. We carefully investigate the effect of using only few samples to approximate the

integration of the concentration parameter in this collapsed distribution, leading to a

computationally more efficient inference procedure.
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2.1 The von Mises-Fisher mixture model

In this section, after a short review of the von Mises-Fisher distribution, we present

the von Mises-Fisher mixture model along with the numerical approximations, a de-

scription of the inference procedure, and posterior quantities used for the subsequent

analyses.

2.1 The von Mises-Fisher distribution

The von Mises-Fisher distribution is a distribution over unit vectors on the hypersphere

and is defined by a mean direction parameter µ ∈ SD−1, where SD−1 = {x ∈ RD :

‖x‖ = 1} and a concentration parameter τ ∈ (0,∞). For a given unit vector x ∈ SD

the von Mises-Fisher probability density is given by

vMF(x | µ, τ) = CD(τ) exp(τµ>x), (1)

where

CD(τ) =
τD/2−1

(2π)D/2ID/2−1(τ)
, (2)

and ID/2−1(τ) is the modified Bessel function of the first kind of order D/2 − 1 and

argument τ . The von Mises-Fisher distribution with parameters {µ0, τ0} is in itself a

conjugate prior for the mean direction.

For N observations from a von Mises-Fisher distribution with concentration τ , the

marginal likelihood for τ is given by

p(x1:N | τ) =

∫
vMF(µ | µ0, τ)

N∏

i=1

vMF(xi | µ, τ)dµ =
CD(τ)N+1

CD

(
τ
∥∥µ0 +

∑N
i=1 xi

∥∥
) .

(3)
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Therefore, if we apply a prior given by

f(τ | a, b) ∝ CD(τ)a

CD(bτ)
, (4)

with parameters a and b where a > b > 0, then it corresponds to having seen a obser-

vations from a von Mises-Fisher distribution that has the combined length b (cf. Hornik

and Grün 2013). The normalization constant for this prior is not available in closed

form due to the dependency on the modified Bessel functions. Previous implementa-

tions have used either the lognormal or Gamma distribution (Taghia et al., 2014; Gopal

and Yang, 2014) as priors, but as shown by Taghia et al. (2014) the gamma distribution

very closely resembles the above prior we have chosen for our implementation.

2.2 Prior distributions for cluster assignments

A natural choice for a probability distribution for the cluster assignments, which we de-

note by z, is the compound Dirichlet-categorical distribution, also known as the Pólya

distribution: It posits that each observation belongs to cluster k with probability πk, and

that the cluster proportions πk are generated from a symmetric Dirichlet distribution

with parameter α
K

. Marginalizing the cluster proportions, the resulting Pólya distribu-

tion with parameter α > 0 is given by

Pólya(z | α) =
Γ(α)

Γ(N + α)

K∏

k=1

Γ(nk + α
K

)

Γ( α
K

)
, (5)

where N is the number of observations, K is the number of clusters, and nk is the

number of observation that belong to cluster k. Taking the limit K → ∞ of the Pólya

distribution yields the socalled Chinese restaurant process (CRP) (Aldous, 1985; Pitman
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et al., 2002)

CRP(z | α) =
Γ(α)αK

Γ(N + α)

K∏

k=1

Γ(nk), (6)

where now K denotes the number of non-empty clusters. Utilizing the non-parametric

nature of the CRP, the number of clusters can be directly inferred from data, while it

must be fixed in advance when using the Pólya distribution. Both these distributions

enforce the rich-get-richer principle in which higher probability mass is assigned to

large clusters, to a degree controlled by the parameter α. In this work, we have imple-

mented both variants to assess if the theoretical advantage of the CRP is also apparent

in practice.

2.3 Mixture model specification

Modelig data with a mixture of multiple von Mises-Fisher distributions is the classical

misture model and to complete model specification for either the finite or the infinite

case we need to include the Pólya distribution or Chinese restaurant process as prior

on the clustering. The von Mises-Fisher mixture model is then given by the following

generative process:

τk | a, b ∼ f(a, b) k = 1, . . . , K (7)

µk | µ0, τ0 ∼ vMF(µ0, τ0) k = 1, . . . , K (8)

xi | µz(i), τz(i) ∼ vMF(µz(i), τz(i)) i = 1, . . . , N (9)

where xi,µk, and µ0 are vectors on the D dimensional hypersphere and f(a, b) the

normalized prior for the concentration parameter from Eq. (4). The joint probability of
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the generative model is given by

p(x1:N ,µ1:K , τ1:K | z,µ0, τ0, a, b) =
[
N∏

i=1

vMF(xi | µz(i), τz(i))

][
K∏

k=1

vMF(µk | µ0, τ0)

]
f(τk | a, b). (10)

To marginalize the cluster mean direction parameters, we turn our attention to the

terms of the joint distribution related to cluster k, which are given by

p(xZk
,µk | z,µ0, τ0, τk) =

[∏

i∈Zk

vMF(xi | µk, τk)
]

vMF(µk | µ0, τ0) (11)

= CD(τ0)CD(τ)nk exp(λkm
>
k µk), (12)

where Zk = {i ∈ 1, . . . , N : zi = k} is the index set of observations in cluster k, and

λk =

∥∥∥∥τ0µ0 + τk
∑

i∈Zk

xi

∥∥∥∥, mk =
1

λk

(
τ0µ0 + τk

∑

i∈Zk

xi

)
. (13)

By conjugacy we can now marginalize µk analytically,

p(xZk
| z,µ0, τ0, τk) =

∫
p(xZk

,µk | z,µ0, τ0, τk)dµk =
CD(τ0)CD(τk)

nk

CD(λk)
, (14)

where nk is the number of elements in cluster k. We further marginalize the concentra-

tion parameter τk:

p(xZk
| z,µ0, τ0, a, b) =

∫
p(xZk

| z,µ0, τ0, τk)f(τk | a, b)dτk (15)

= CD(τ0)

∫
CD(τk)

nk

CD(λk)
f(τk | a, b)dτk. (16)

As this unidimensional integral is analytically intractable, we approximate it using

MCMC integration. One approach could be to perform joint MCMC inference of the

cluster labels and the concentration parameters; however, numerically marginalizing
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the concentration parameters significantly simplifies the MCMC inference for the clus-

ter labels, by allowing for a standard Gibbs sampling approach. Therefore, we take

the approach of marginalizing the concentration parameters in a separate step, as we

discuss next.

2.4 MCMC approximation for the concentration parameter

If we simulate S samples, {τ (s)k }, from f(τk | a, b), then the integral in Eq. (16) can be

approximated as

∫
CD(τk)

nk

CD(λk)
f(τk | a, b)dτk ≈

1

S

S∑

s=1

CD(τ
(s)
k )nk

CD(λ
(s)
k )

. (17)

It is possible to use a number of different sampling techniques to simulate independent

samples from the prior. In our implementation we used Metropolis-Hastings sampling,

discarded the first 200 samples as burn-in, and used a thinning factor of 20 to get ap-

proximately independent samples. Note that Metropolis-Hastings sampling does not

require the distribution to be normalized.

Only when the values of the hyper-parameters a or b change, the prior f(τ | a, b)

will change and thus require sampling a new set of of τ (s)k ’s. The number of samples

used in the approximation will affect the overall accuracy of the algorithm: If only a few

samples are used for approximating the integral then there is a higher risk of accepting

a poor proposal for a or b. Similarly, if few samples are used we might not recover the

correct clustering. However, the computational complexity of the inference procedure

scales linearly with the number of samples used to approximate the integral and it is

thus beneficial to use as few samples as possible that still provide accurate inference.

The numerical integration requires the evaluation of CD(τ) which in turn requires
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the evaluation of Iν(x) for some values of ν and x. Using the MATLAB function

besseli, we noted that issues with overflow or underflow would sometimes arise. To

avoid this issue, we use a large order approximation for ν > 10 (Hornik and Grün,

2014)

log Iν(x) ≈
√
x2 + (ν + 1)2 + (ν + 1/2) log

x

ν + 1/2 +
√
x2 + (ν + 1)2

+
1

2
log x/2 + (ν + 1/2) log

2ν + 3/2

2(ν + 1)
− log 2π

2
. (18)

Using this numerical integration, we obtain the following expression for the col-

lapsed joint distribution:

p(x1:N | z,µ0, τ0, a, b) =
∏

k

CD(τ0)

S

S∑

s=1

CD(τ
(s)
k )nk

CD(λ
(s)
k )

. (19)

2.5 Inference

Having analytically marginalized µk and numerically integrated τk, inference reduces

to standard Gibbs sampling for the cluster assignments z combined with updates for

the hyperparameters τ0, a, and b. For the infinite model with the CRP as a prior for the

clustering the posterior distribution for assigning the i’th element to the k’th component

using Gibbs sampling is (up to proportionality) given by

p(zi = k | z\i, . . .) ∝ nk

S∑

s=1

CD(τ
(s)
k )nk+1

CD

(∥∥τ0µ0 + τ
(s)
k [xi +

∑
j∈Zk

xj]
∥∥
)

S∑

s=1

CD(τ
(s)
k )nk

CD

(∥∥τ0µ0 + τ
(s)
k

∑
j∈Zk

xj
∥∥
)

, (20)

with the convention that observation i has been removed from Zzi . The posterior for

assigning the element to a new cluster is proportional to

p(zi = K + 1 | z\i, . . .) ∝
αCD(τ0)

S

S∑

s=1

CD(τ
(s)
k )

CD
(
‖τ0µ0 + τ

(s)
k xi‖

) . (21)
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We further apply the split-merge algorithm (Jain and Neal, 2004) with accelerated

merge moves (Røge et al., 2015) for faster convergence.

The version of the model with the Pólya distribution is identical, except that in

the posterior conditional distribution for each cluster in Eq. (20), the factor nk must

be replaced by nk + α
K

. The split-merge algorithm is not applicable to finite mixture

models and the procedure is thus omitted from the inference in that case.

To infer the hyperparameters τ0, a, and bwe use Metropolis-Hastings sampling. The

parameter τ0 is required to be positive and we therefore use a log transform to facilitate

the use of the symmetric normal distribution as proposal distribution. Furthermore,

the parameters a and b has the constraint that a > b > 0 and we therefore apply the

appropriately truncated Gaussian proposal distributions. We impose the improper and

relatively uninformative prior p(θ) = θ−1 on each of the hyperparameters τ0,s, a, and b

with the additional constraint that a ≥ b. We keep µ0 parameter fixed at the mean of

the data.

2.6 Multiple dataset analysis

The models can be straightforwardly extended to multiple data sets that share the clus-

tering configuration. To construct the generative model in this case, we use the CRP or

Pólya distribution as prior for the clustering configuration and then take the product of

the joint distribution in Eq. (10) over the multiple data sets. This approach is frequently

used in fMRI data analysis when fMRI scans from multiple subjects are acquired, and

it is not unreasonable to assume that the clustering should be the same over subjects

after spatial normalization (Craddock et al., 2012). In our implementation, the subjects
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share the same hyper-parameters for τ0, a, and b while µ0 is fixed for each subject as

the mean time series of all voxels from the subject.

2.7 Posterior quantities

We can use Bayes’ theorem to obtain the posterior probability for the concentration

parameter

p(τk | x, a, b) =
p(x | τ, a, b)p(τ | a, b)∫
p(x | τ, a, b)p(τ | a, b)dτ . (22)

This is proportional to

p(τk | x, a, b) ∝
CD(τk)

nkCD(τk)
a

CD(λk)CD(bτk)
. (23)

This enables us to compute the radii of the confidence regions and the posterior curves

for the concentration parameter.

Similarly, we can obtain the posterior probability for the mean direction conditioned

on the concentration

p(µk |X, τk, µ0, τ0) ∝ p(X | µk, τk)p(µk | τ0, µ0) ∝ exp(λkm
>
k µk). (24)

Since this is the functional form of a von Mises-Fisher distribution we know the nor-

malization constant and obtain

p(µk |X, τk, µ0, τ0) = CD(λk) exp(λkm
>
k µk). (25)

2.2 Gaussian mixture model

For comparison, we include two versions of the Gaussian mixture model with both

the Pólya distribution and CRP as priors for the clustering configuration for comparing
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the difference between modeling data on the hypersphere and ignoring the underlying

manifold. The Gaussian mixture model with the CRP prior is known as the infinite

Gaussian Mixture Model and was introduced by Rasmussen (1999).

The multivariate Gaussian mixture model can be defined with the covariance ma-

trix being either a scaled identity matrix (spherical), a diagonal matrix (elliptical), or

a full matrix. The computational complexity of models with the spherical or elliptical

covariance scales linearly in D, while the full covariance model scales with D2 thus

rendering it intractable for large problems. The Gaussian models with the spherical co-

variance structure most closely resembles that of the von Mises-Fisher distribution and

for completeness, we include both the spherical and elliptical Gaussian mixture models

in our analyses.

The generative model for the mixture of Gaussians with axis-aligned elliptical co-

variance structure is given by

σ2
m,k|ν, γ ∼ IG(ν, γ) m = 1, . . . , D k = 1, . . . , K (26)

µk|γ,σ2
k ∼ N (µ0,

1

λ
diag(σ2

k)) k = 1, . . . , K (27)

xi|µzi
,σ2

k ∼ N (µzi
, diag(σ2

k)) i = 1, . . . , N, (28)

where IG is the inverse gamma distribution and diag(σ2
k) the diagonal matrix with the

elements of σ2
k on the diagonal. The collapsed joint distribution is, in concordance with

the procedure for the von Mises-Fisher based model, obtained by marginalizing over
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the mean µk and noise σ2
k parameters.

p(x1:N , z | θ) =
K∏

k=1

∫ ∫ ∏

i∈k
p(X, z | µk,σ2

k)p(µk | σ2
k)p(σ

2
k)dµkdσ

2
k

=
K∏

k=1

D∏

m=1

(λ/[nk + λ])1/2γνΓ(nk/2 + ν)

(2π)nk/2Γ(ν)R
nk/2+ν
mk

, (29)

where

Rmk = γ +
1

2

(
σ̄2
mk + λµ2

0m −
(x̄k + λµ0m)2

nk + λ

)
, (30)

and σ̄2
mk =

∑
n∈Zk

x2mn and x̄k =
∑

n∈k xn. For the spherical Gaussian mixture model

the generative model is given by

σ2
k|ν, γ ∼ IG(ν, γ) k = 1, . . . , K (31)

µk|σ2
k, λ ∼ N (µ0,

σ2
k

λ
I) k = 1, . . . , K (32)

xi|µk, σ2
k ∼ N (µzi , σ

2
kI) i = 1, . . . , N (33)

and the collapsed joint distribution is given by

p(x1:N , z | θ) =
K∏

k=1

(λ/[nk + λ])D/2γνΓ(Dnk/2 + ν)

(2π)Dnk/2Γ(ν)R
Dnk/2+ν
k

, (34)

where, with σ̄2
k =

∑
n∈k ‖x‖ and x̄k =

∑
n:zn=k

xn,

Rk = γ +
1

2

(
σ̄2
k + λ‖µ0‖2 −

‖x̄k + λµ0‖2
nk + λ

)
. (35)

We apply the same inference procedure as with the von Mises-Fisher mixture model

with suitable priors and transformations on the hyperparameters.

2.1 Predictive analysis

In order to evaluate how well the model, when estimated on training data, is able to

characterize unseen test data, we evaluate the predictive likelihood, which in general is
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given by

p(x∗ |X) =

∫
p(x∗ | θ)p(θ |X)dθ, (36)

whereX is training data, x∗ is test data, and θ are the parameters of the model.

In case we are given a test data set that shares the same clustering and has a one-to-

one correspondence with the training data, such that each test observation has a known

corresponding training observation, the predictive likelihood can be computed directly

from the MCMC approximation. After generating a sample of M parameter-sets from

the posterior, {θ(m)} ∼ p(θ|X), we can compute the Monte Carlo estimate

p(x∗ |X) ≈ 1

M

M∑

m=1

p(x∗ | θ(m)). (37)

In case we are given a new observation but no information regarding which cluster

it belongs, we can compute the predictive likelihood by the following procedure: First,

we sum over each cluster

p(x∗ |X) =
K∑

k=1

p(zx∗ = k |X)p(x∗ |X, zx∗ = k), (38)

where p(zx∗ = k | X) is the posterior predictive distribution of the clustering. For the

infinite models we need to sum over all populated clusters as well as one unpopulated

cluster. We evaluate the expression by approximation using samples drawn from the

posterior distribution during inference,

p(x∗ |X, zx∗ = k) =

∫
p(x∗ |X, zx∗ = k, τ0, z, a, b)p(τ0, z, a, b |X)d{τ0, z, a, b}

=
1

M

M∑

m=1

p(x∗ |X, zx∗ = k, τ
(m)
0 , z(m), a(m), b(m)). (39)
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We can compute part of this expression analytically and part with MCMC samples from

the posterior of τk as given by Eq. (23):

p(x∗ |X, zx∗ = k, τ0, z, a, b) =

∫∫
p(x∗ | µk, τk)p(µk |X,µ0, τ0)dµkp(τk |X, a, b)dτk

=

∫
CD(τk)CD(λ

(s)
k )

CD(λ
∗(s)
k )

p(τk |X, a, b)dτk, (40)

where λ∗(s)k = ‖λkmk + τkx
∗‖.

2.3 Initialization

It is not clear how the hyperparameters of the models are best initialized. If the param-

eters initially set such that the level of noise in the model is much too high compared

to the variance of the data, the MCMC sampler will often collapse everything into one

cluster and learn hyperparameters that reinforce that solution. Similarly, if the level of

noise is too low all elements are often placed in singleton clusters. In both cases, the

model is initialized near a bad local posterior mode which the MCMC sampler struggles

to escape from.

We will therefore investigate a number of different initialization strategies that build

on the idea of providing an appropriate initialization of the clustering followed by

Metropolis-Hastings proposals to infer reasonable values for the hyperparameters be-

fore running the full inference procedure.

2.4 Measures of similarity between clusterings

To quantify the reliability of the inferred clusters we will use the following three fre-

quently used measures of similarity between clusterings; Normalized Mutual Informa-

18



tion (NMI) (Strehl and Ghosh, 2002), Adjusted Mutual Information (AMI) (Vinh et al.,

2010), and the Adjusted Rand index (AR) (Hubert and Arabie, 1985). The NMI and

AMI measures have several variants and we have used the following:

NMI =
MI(zz, z2)√
H(z1)H(z2)

(41)

and

AMI =
MI(zz, z2)− E[MI(zz, z2)]

max(H(z1), H(z2))− E[MI(zz, z2)]
, (42)

where MI(zz, z2) is the mutual information between clusterings zz and z2, H is the en-

tropy and E[MI] is the expected mutual information which is the expectation for random

clusterings of the given number of clusters. The Adjusted Rand index is given by

AR =
RI− E[RI]

max(RI)− E[RI]
, (43)

where RI is the Rand index and E[RI] is the expected rand index. These adjusted mea-

sures are a way of compensating for the fact that two random clusterings tends to have

higher rand index and normalized mutual information as the number of clusters in-

creases and should therefore be a better measure for comparing the reliability of two

clusterings that have a different number of clusters.

2.5 Implementation

Both the Gaussian and the von Mises-Fisher mixture models have been implemented

in Matlab in an object oriented framework. This means that the code for the Gibbs

and split-merge sampling can be reused and that the framework is easily extendible

with additional statistical clustering models. Our code and examples are available at

https://brainconnectivity.compute.dtu.dk.
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Variational inference based von Mises-Fisher clustering models have previously

been applied to a variety of document topic modelling datasets (Gopal and Yang, 2014).

The code is not available online and we therefore compare the results of our implemen-

tation to theirs on the publicly available CNAE-9 dataset (Gopal and Yang, 2014) based

on normalized mutual information between the inferred clusters and ground truth. This

comparison can be found in Appendix A where we observe that our implementation is

at least on par with the variation inference based procedure.

3 Results and Discussion

To analyze aspects of the proposed vMF model related to the MCMC integration tech-

nique and initialization strategy, and to illustrate and compare the model to the GMM,

we first applied the models to synthetic data simulated from the generative model such

that ground truth about the clustering was known. Next, we applied the model to multi-

subject resting state fMRI dataset and compared the results with the GMM approach.

3.1 Analysis of MCMC integration

The computational complexity of the inference procedure scales linearly with the num-

ber of samples used to approximate the integral described in section 2.4; however, if an

insufficient number of samples is used, the inference procedure will not provide a good

data fit.

To analyze how many samples are needed, we generated a small dataset according to

the model, ie. we fixed the clustering toK = 10 with 20 elements in each cluster, gener-
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Figure 1: The likelihood of the model as a function of the number of MCMC samples

used to approximate the integral. The data used for this comparison is generated ac-

cording to the VMF model with parameters T = 50, N = 200, K = 10, avg(τk) =

30, std(τk) = 2. Note that the red graph is just a close-up of the blue.

ated τk ∼ N (τavg, τstd) for (τavg, τstd) = (30, 2), and finally generated xi ∼ vMF(e1, τk)

where e1 is the first canonical unit vector for each i = 1, . . . , N . This procedure was

used for the generation of each of the synthetic datasets used for the analyses in this

section. We then varied the number of samples used to approximate the integral. The

results are presented in Fig. 1. With only one sample used to approximate the integral,

the standard deviation of the approximated integral is less than 3 pct. of the actual value.

In order to answer the question of how many samples are needed for inference

to converge we generated a number of datasets and ran the inference procedure with

varying number of samples used to approximate the integral. From the results given

in Fig. 2a and 2b we observe that on datasets with low variance in the concentration

parameter between clusters it is sufficient with only one sample whereas increasing

variance also increases the required number of samples.

For each of the following applications we used between three and ten samples for

the approximation of the integral based on ad hoc tests on each of the datasets.
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Figure 2: The effect of different number of samples used in approximating the inte-

gral on inference. It is clear that as the clusters differ more in concentration param-

eter the more samples are needed for sufficient inference. The colored regions are

± the standard deviation over six restarts on different datasets. The data used for

this comparison is generated according to the vMF mixture model with parameters

T = 50, N = 200, K = 10, avg(τk) = 30.

3.2 Analysis of initialization

To investigate the impact of initialization we compared four different initialization

strategies on synthetic data:

ones Initializing all elements to the same cluster followed by the evaluation of 100

MCMC proposals for each hyperparameter.

rand Initializing each label at random among K clusters followed by the evaluation of

100 MCMC proposals for each hyperparameter.

KM Initializing the clustering to a K-means solution followed by the evaluation of 100

MCMC proposals for each hyperparameter.

KMrand Like KM but assigning each label at random after learning hyperparameters.
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We initialized the model with each of the four initialization strategies and performed

200 MCMC iterations to infer the clustering and parameters. We repeated this six times

and the results are given in Fig. 3. We achieve must faster convergence with the K-

means initialization but we also observe that the other initialization strategies reach

similar solutions when the models have converged. For the remainder of the paper we

have used the KMrand initialization strategy as it avoids initializing to a local minimum.
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Figure 3: Comparing four different initialization strategies. The solid lines are the mean

of the runs while the colored areas are ± the standard deviation. The data used for this

comparison is generated according to the VMF model with parameters T = 50, N =

200, K = 10, τavg = 35, τstd = 2.

3.3 A 3-dimensional example

To illustrate the model we generated a small 3 dimensional dataset comprised of 6

clusters with 40 elements in each cluster. We generated the mean directions from a von

Mises-Fisher distribution with mean direction as the 3rd canonical unit vector e3 and

τ0 = 0.01. For each cluster we generated the concentration parameter randomly from

N (50, 202).
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We ran three samplers using either 1, 3, or 100 samples to estimate the integral and

stopped the inference chains after 200 Monte-Carlo iterations. For each of the three

runs we present the clustering from the highest likelihood sample in Figs. 4a, 4b, and

4c. The circles on the spheres represents the 95 pct. credibility regions. To emphasize

the difference we plot the posterior distribution for the concentration parameters for the

prior and for each of the clusters in Fig. 4d.

Finally, we present the log joint probability and the NMI for each iteration of the

inference chains in Figs. 4e and 4f. It is clear that there are significant differences in

the inference using only a single sample while the difference between using 3 and 100

samples is negligible. For the chain with a single sample, we see that the mode of the

posterior densities are concentrated too heavily around the prior compared to the other

two chains and therefore the confidence regions are either too small or too large.

3.4 Comparison of GMM and vMF

To analyse the differences between using a Gaussian and von Mises-Fisher based mix-

ture model we generated several datasets according to the generative model for the

mixture of von Mises-Fisher distributions and applied the GMM based on spherical

(GMMs) and elliptical covariance (GMMd) as well as the vMF mixture model.

We generated two sets of datasets with either T = 240 or T = 1000 such that

the temporal dimension of the datasets generated matched respectively the resting state

fMRI dataset and the CNAE-9 dataset used in Appendix A. Subsequently, we generated

τk ∼ N (τmean, τstd) with τ0 = 0.4 · mean(τk), std(τk) = 0.6 · mean(τk) and τmean in a

suitable range such that the signal to noise ratios ranged from easy to hard clustering
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(e) The log joint probability over MCMC itera-

tions.
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(f) The NMI over MCMC iterations.

Figure 4: The 3D example. The data on the sphere is presented on the top. The center

color denotes the actual clustering while the border is the clustering inferred. The 95%

credibility region is marked by the black circle. For the generated data, the model is

able to infer the correct clustering.
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Figure 5: Results on simulated datasets. We see that there is little difference in the

ability of the vMF and GMM based models to recover the correct clustering as measured

by the normalized mutual information. For each the datasets we have generated 10

clusters of 100 observations.

problems.

For each dataset generated, we ran 10 repetitions of the GMMs and VMF mixture

models and computed the normalized mutual information between the highest likeli-

hood sample and the true clustering configuration. The results are presented in Fig. 5

and show no significant difference in how closely the inferred clusterings resemble the

true clustering between the three models even though the data was generated according

to the von Mises-Fisher distribution.

Next, we explored how the Gaussian and vMF non-parametric models handled data

generated from a mixture of vMFs with parameters N = 100, K = 5, T = 30, τ0 = 30,

τstd = 25, and τmean = {20, 25, and 30} for high noise, medium noise, and low noise

datasets respectively. For each of the three settings we generated τk ∼ N (τmean, τstd)

and then generated the dataset. We ran the infinite vMF, GMMs, and GMMd models

for 200 MCMC iterations for each dataset.

Results, based on the number of clusters in the highest likelihood sample, are pre-
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sented in Fig. 6. It is clear that the vMF based nonparametric models infer a number of

cluster much closer to the truth compared to both the spherical and ellipsical Gaussian

mixture models. This emphasizes the importance of modeling data using directional

statistics in determining the complexity of a dataset.

3.5 Resting state fMRI analysis

Functional brain connectivity can be assessed by analysing fluctuations in the Blood

oxygenation level dependent signal (BOLD). Statistical dependencies across brain ar-

eas are typically measured by correlation such that highly correlated regions constitute

estimates of functional networks. Resting state, i.e. fMRI recorded during rest (without

explicit task) has become prominent for probing functional connectivity in the resting

brain (Biswal et al., 2010). Often, these functional networks are extracted by defining a

seed region and evaluating correlation to this region throughout the brain (Biswal et al.,

1995). Rather than specifying seeds, clustering methods extract prominent latent activa-

tion profiles and identifies corresponding brain networks (Craddock et al., 2012). These

latent class models are useful as they don’t rely on a priori specification of seeds and

can provide an overview of the functional organization across large high-dimensional

datasets. The interpretation of these networks hinges on their reliability. However, la-

tent variable models can be plagued by issues of reproducibility across data splits thus

reliability is an important issue to address for their utility (Strother et al., 2002; Thirion

et al., 2014; Churchill et al., 2016). As correlation is formed by the inner product of

standardized fMRI time-series thus naturally complying with the von Mises-Fisher dis-

tribution assumptions the von Mises-Fisher mixture model is attractive for clustering
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Figure 6: Results from non-parametric synthetic analysis. In the top image of each the

NMI between the inferred solutions and truth for each repetition of the experiment can

be seen and on the bottom histograms of the inferred number of clusters in the solutions.

We see that the von Mises-Fisher based non parametric mixture models in general finds

solutions closer to the truth both in terms of NMI and the inferred number of clusters.

28



resting-state fMRI data as clusters are explicitly formed by their correlation to the ex-

tracted latent activation profiles.

In this study we apply the clustering models to a resting state fMRI dataset consist-

ing of 30 healthy subjects scanned on a Siemens 3T MRI scanner. The dataset has been

previously used in (Andersen et al., 2014). During the functional scans the participants

were instructed to keep their eyes closed and to refrain from any voluntary motor or

cognitive activity while the 480 brain volumes were scanned over 20 minutes with a

repetition time of 2.49s.

Data was preprocessed using the SPM12 software package (SPM12, Well-

come Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/

spm/software/spm12/) with the following steps: (1) Rigid body realignment, (2)

co-registration, (3) spatial normalization to the MNI 152 template, (4) reslicing of im-

ages into MNI space at 3 mm isotropic voxels, (5) spatial smoothing was applied with

a 6 mm FWHM isotropic Gaussian filter. Finally, a rough grey matter mask consisting

of 48799 voxels was applied.

We divide the dataset into two groups of five subjects and for each group we select

the first 240 brain volumes allowing us to quantify the generalizability of the clustering

to new subjects. Then we apply the parametric models (vMF, GMMs, and GMMd)

with number of clusters, K = {50, 250, 500, 750, 1000} to the time series data using

the KMrand initialization strategy. For each model we perform 100 MCMC iterations

and repeated the process four times on each of the two datasets for each of the three

models and for each of the four settings of K resulting in a total of 96 runs. Note that

even though we apply sampling based inference the solutions found will be subject to
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local maxima and suffer from poor mixing due to the size of the problem.

We evaluate the results based on three different metrics of similarity between the

clusterings inferred across the two different groups of five subjects: Normalized Mu-

tual Information (NMI), Adjusted Mutual Information (AMI), and the Adjusted Rand

index (AR). The results are presented in Fig. 7 and in Figures 8 and 9 the best likeli-

hood sample from the vMF, GMMs, and GMMd models are visualized with axial slices

and surface plots for the solutions with 50 and 250 regions of interest. The GMMd

model in a slightly different formulation with a distance dependent Chinese restaurant

process prior on the clustering has produced promising results in parcellating the Stria-

tum (Janssen et al., 2015). The results here clearly shows that the vMF based model

outperforms both the models based on Gaussian densities in terms of all three measures

of similarity of the obtained clusterings, thus, providing a more reliable whole brain

segmentation.

To verify that five subjects is sufficient to get stable clusterings we applied the clus-

terings to two groups of 15 subjects for the three parametric models with NOC = 50

or 250. The mean of the measures of clustering consistency from these clusterings are

well within the error bars of the plots in Fig. 7 further emphasizing the results.

We then applied the vMF model on the two datasets with number of clusters varying

between 200 and 3000 again with the KMrand initialization strategy. After 100 MCMC

iterations we stopped the sampler and computed the predictive likelihood on the left-out

group of subjects based on the hyperparameters and clustering configuration from the

highest likelihood sample. In Fig. 10 the results of this predictive analysis are given

and show that the non-parametric models require in the order of a few thousand parcels
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Figure 7: In (a), (b), and (c) are normalized mutual information, rand index, and ad-

justed mutual information between groups of 5 subjects.

to explain the data. These results are consistent with the analysis in (Thirion et al.,

2014) where Ward clustering of task activated b-maps evaluated based on goodness of

fit showed support for up to 5000 clusters.

Finally, we employ the non-parametric models, again using the KMrand initializa-

tion strategy assigning the voxels to 1000 clusters at random after the hyperparameters

have been learned for 100 MCMC iterations. Each run of the vMF based model is pre-

sented as a circle in Fig. 10a whereas boxplots of the number of clusters inferred as well

as NMI across the two groups of subjects is presented in Fig. 10b. These results do not

solve the problem of determining the number of functional units in the brain but suggest

that whole brain fMRI segmentation requires in the order of a few thousand clusters in

order to adequately account for the functional organization of the fMRI data and that

the non-parametric models by identifying a large number of clusters are not overfitting

to the data.
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Figure 8: Visual comparison of axial slices of the solutions from the vMF, GMMs, and

GMMd clustering methods for K = 50 and K = 250.
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Figure 9: Visual comparison of the surface of the clustering solutions from the vMF,

GMMs, and GMMd clustering methods for K = 50 and K = 250.
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Figure 10: Predictive analysis to determine the number of clusters that is support for in

the data is shown in (a) along with the non-parametric results from the vMF model in

circles. In (b) you see the comparison between the repetitions of the iVMF, iGMMs,

and iGMMd models.

4 Conclusion

In this paper, we presented a thorough comparison of the effect of modeling directional

data using von Mises-Fisher based distributions in comparison to assuming the data is

Gaussian distributed considering both synthetic data and large scale clustering of rest-

ing state whole-brain fMRI time series. We demonstrated that there is a significant

improvement in terms of the stability of solutions across groups of subjects when cor-

rectly imposing that the data resides on a hyper-sphere over the standard assumption

of Gaussian distributed observations. We have further shown that it is computation-

ally feasible to apply sampling based inference on multi subject whole-brain fMRI time

series data.

The predictive analysis show that employing Bayesian non-parametrics can be an

cheap substitute for using, the computationally expensive, predictive cross validation

in determining the complexity of the data. Both the predictive cross-validation analy-
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sis and the Bayesian non-parametric analysis show that the resting state fMRI dataset

supports a number of clusters in the order of a few thousands which is in correspon-

dence with recent findings (Thirion et al., 2014). Modelling directional data using the

appropriate directional distributions shows great promise and this is an area worth more

attention. Therefore, a natural extension of this work would be to employ more ad-

vanced distributions on the hypersphere that has a more complex covariance structure

such as the Kent or Fisher Bingham distribution. We presently considered mixture mod-

eling applications, however, we anticipate the use of the von Mises-Fisher distribution

may turn useful in general when modeling standardized fMRI time-series.

Appendix A: Document topic modelling

Document topic modelling is an application where variational inference based von

Mises-Fisher models have shown great promise (Gopal and Yang, 2014) and to con-

firm that our implementation of sampling based inference is at least on par with the VI

vMF we apply our clustering method to the CNAE-9 dataset.

The CNAE-9 dataset consists of 1080 documents and each document is a vector of

the frequency of occurrence for 857 words, i.e. N = 1080 and T = 857. The documents

are divided into 9 categories, and the true clustering is thus available. Before clustering

we perform term frequency - inverse document frequency (tf-idf) on the dataset which is

a standard preprocessing step for topic modelling and known to increase performance

(Salton and McGill, 1986). First we use the parametric models with the number of

clusters set to K = 10 and apply the initialization method KMrand such that we use
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Figure 11: NMI with truth of the methods implemented. The solid black line is the

results of averaging 10 repetitions of the VI implementation of the mixture of vMF

model reported by Gopal et al. (Gopal and Yang, 2014).
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Figure 12: The predictive likelihood on the 10 pct. hold out data. The line is the result

of running the vMF models with a fixed number of clusters averaged over 36 repetitions

and the black dots are the result of 36 repetitions of the non-parametric vMF models.

the K-means solution only to compute reasonable hyperparameters and then continue

with a random initialization of the clustering. We repeat this process 60 times and in

each repetition all models are initialized to the same K-means solution for the initial

parameter estimation and the same random initialization afterwards. We perform 500

MCMC iterations for each model and repetition and select the highest likelihood sample

for comparison.

In order to confirm that the difference between the vMF and GMM based models is
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not a question of mixing we continue a spherical GMM model from each of the vMF

clustering solutions and perform another 500 MCMC iterations. Similarly, for each of

the spherical GMM solutions we continue in a vMF model for 500 MCMC iterations.

The results are presented and compared to Gopal et al. (Gopal and Yang, 2014) in

Fig. 11.

We use the same initialization procedure for the non-parametric von Mises-Fisher

model and observe that it converges to around 300 clusters. In order to validate that the

data has support for that number of clusters we ran finite models with the number of

clusters varying from 10 to 300 on a training set that consists of 90 pct. of the data and

computed the predictive likelihood on the hold out set. These results can be seen in Fig

12. We see that the non-parametric implementations of the vMF model are able to use

the more advanced inference steps in split-merge to increase the predictive performance

and that the inferred number of clusters are in a regime also supported by the predictive

likelihood on hold-out test data.
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Abstract

Analysis of human brain data has been driven by advances in functional mag-
netic resonance imaging (fMRI), but challenges with poor signal to noise ratio,
multiple comparison issues, and misalignment as well as variability between sub-
jects can affect the reliability of the results. By parcellating and aggregating
the fMRI data at a suitable spatial resolution, the signal to noise ratio can be
increased, yet existing parcellation methods do not well account for the men-
tioned challenges, and require specifying the number of clusters in advance. We
propose a non-parametric probabilistic model for whole-brain parcellation, that
targets the signal caused by slow changes in cerebral blood flow and incorporates
spatio-subject signal and noise heteroscedasticity. The model learns the number
of clusters from data and utilizes efficient sampling based inference, allowing it
to handle most typical group fMRI datasets. We compare the model to tradi-
tional parcellation approaches including Gaussian mixture models and k-means
clustering on both synthetic data and two fMRI datasets. On synthetic data we
demonstrate that it better recovers the true clustering, achieves higher correla-
tion with the generating time series, and better copes with subject variability
and spatial inconstancy. On fMRI data we find support for the heteroscedastic
signal and noise model, and the reliability of the inferred parcellations is on
par with the simpler Gaussian models. Furthermore, parcellated SPM analyses
of regions of task activation and resting state networks show increased relia-
bility in a test-retest framework compared to traditional voxel based analysis.
The proposed fMRI parcellation method is able to find a compact and denoised
representation of the data at a suitable spatial resolution, and we believe the
method has utility as a general starting point for fMRI based analyses at the
representation of the identified salient functional units.
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1. Introduction1

Functional Magnetic Resonance Imaging (fMRI) utilizes the Blood Oxygena-2

tion Level Dependent (BOLD) signal to measure the level of activation for each3

voxel of the brain over time and is a prominent method for the non invasive4

study of the function of the human brain. The voxel wise analysis of the brain5

has provided highly detailed information about the function of the brain using6

analysis tools such as Statistical Parametric Mapping (SPM) (Friston et al.,7

1994). There are, however, significant challenges associated with analysis using8

the voxel wise data due to the high level of noise apparent at voxel level as well9

as variability in the level of noise and signal across the brain caused by artifacts10

such as receive coil inhomogeneity (Wiggins et al., 2009; Kaza et al., 2011) or11

misalignment across subjects in group studies (Thirion et al., 2007; Mikl et al.,12

2008). Of primary interest in fMRI is the temporally smooth part of the signal13

that is caused by the slowly varying changes in the BOLD signal, however fMRI14

data is strongly contaminated by several noise sources of physiological or tech-15

nical origin (Friston et al., 1996; Glover et al., 2000; Lund et al., 2006). Another16

challenge is the dimensionality of the problem since the univariate voxel wise17

tests applied in SPM analyses needs to be corrected for multiple comparisons18

across thousands of voxels imposing assumptions that are problematic(Eklund19

et al., 2016) whereas more advanced methods such as dynamic causal modeling20

(Friston et al., 2003) and other dynamic modeling approaches to fMRI (Zalesky21

et al., 2014) are typically not interested in or unable to work with data of the22

dimensionality of fMRI at the single voxel scale. Popular approaches to reduce23

the dimensionality includes the use of principal or independent components24

(McKeown et al., 1997; Calhoun et al., 2001) or using a number of regions of25

interest (ROI) that are either chosen from an atlas derived from anatomic anal-26

yses (Talairach and Tournoux, 1988), from multiple modalities (Glasser et al.,27

2016) or computed using data-driven parcellation methods (Goutte et al., 1999).28

The data-driven parcellation techniques have the advantage of increased inter-29

pretability compared to factorization methods and a better description of the30

latent prominent structure in the data compared to a priori selection of ROIs31

from a prespecified atlas.32

There are a variety of clustering methods that have been utilized to de-33

fine data-driven parcellations of fMRI voxels on a group of subjects. Popular34

methods include spectral clustering methods (Thirion et al., 2006; Craddock35

et al., 2012; Shen et al., 2013), region growing methods (Blumensath et al.,36

2012), hierarchical agglomerative clustering (Thirion et al., 2014) and proba-37

bilistic parcellation methods of voxel time series (Ryali et al., 2013; Janssen38

et al., 2015), resting state network (Mørup et al., 2010; Andersen et al., 2014;39

Baldassano et al., 2015), or activation maps (Lashkari and Golland, 2009; Yeo40

et al., 2011) as well as mixture modeling approaches imposing consistent con-41

nectivity profiles while admitting subject specific signal and noise modulation42

(Churchill et al., 2016).43
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In this paper we introduce a probabilistic method for parcellating the brain44

into functional units, which exploits that the underlying BOLD signal is smooth45

and takes the variability in signal and noise across voxels into account. The46

model is formulated as a non-parametric Bayesian mixture, which allows it to47

flexibly adapt to the complexity of the data and thereby automatically identify48

a suitable number of clusters to account for the salient functional structure in49

the fMRI data.50

Our approach is inspired by the extensive literature exploring properties of51

the temporal dynamics of the BOLD signal where models have been proposed52

using Finite Impulse Response (FIR) filters or Linear Time Invariant (LTI)53

systems on top of a physiological model such as the Balloon model (Goutte54

et al., 2000; Buxton et al., 1998) to account for the signal dynamics of fMRI.55

Recently, models employing Gaussian Process (GP) priors (Josef et al., 2016)56

including our own preliminary work Røge et al. (2015) have been used to model57

the hemodynamics in fMRI allowing the models to focus on changes on the58

temporal scale defined by the length scale parameter of the GP and still deviate59

from the prior if the data is not in agreement. In the present work, we use a GP60

as prior for the parcel time series with a length-scale that is fixed to optimally61

fit the canonical hemodynamic response function. This means that changes in62

the data at this temporal scale is assigned more importance compared to more63

rapidly varying noise and that the posterior mean for each parcel will therefore64

potentially better reflect the changes in the cerebral blood flow.65

We further build on previous work showing the utility of modeling the66

changes in noise and signal across the brain (Churchill et al., 2016; Hinrich et al.,67

2016). By imposing voxel specific signal and noise parameters, the model is able68

to group together voxels that differ in signal amplitude while reducing the in-69

fluence of noisy observations. For group analyses, these parameters modulating70

the signal and noise are specified individually for each subject. Thereby, sub-71

jects that are in disagreement with the group parcellation, for instance caused72

by misalignments, can be down-weighed and their contribution to defining the73

parcellation reduced.74

The combined effect of using the Gaussian Process as prior for the group75

time series and the per voxel parameters for modeling the scaling of the noise76

and signal are that the representation of the data can be more compact: Clusters77

are invariant to signal magnitude, and the posterior time series of each parcel78

can be robustly estimated when facing model misspecification and variability in79

signal and noise both within and across subjects.80

We perform a thorough comparison of the presented model with two versions81

of the Gaussian mixture model (GMM) as well as with several non-probabilistic82

clustering methods: K-means (Goutte et al., 1999), Ward’s clustering algorithm83

(Ward Jr, 1963; Thirion et al., 2014), hierarchical clustering based on region84

growing (Blumensath et al., 2012), and the normalized cut divisive clustering85

algorithm (Shi and Malik, 2000; Craddock et al., 2012). Using synthetic data,86

we assess the ability of the models to infer the true clustering under different87

levels of noise and model misspecification. We subsequently apply the method88

to real task- and resting-state fMRI datasets. We use the predictive likelihood89
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to determine whether the model with per voxel parameters for noise and signal90

are necessary to characterize the data. We further examine the reliability of91

the inferred clusterings across different groups of subjects or across test/retest92

scanning sessions, and compare with the traditional GMM models and the non-93

probabilistic clustering algorithms. Finally, we verify the utility of the method94

using the inferred posterior cluster time series for parcellation based SPM anal-95

ysis, comparing the Dice index on a temporal split-half analysis to that of single96

voxel SPM analysis. Previous studies have focused on the single subject relia-97

bility of the inferred regions of task activation (Gorgolewski et al., 2013) and98

parcellation based SPM analyses have previously shown promising results in a99

framework working with a number of randomized parcellations (Da Mota et al.,100

2014) and more recently Glasser et al. (2016) also argued for parcellation based101

analyses of task fMRI . We perform a similar SPM analysis to test the effect102

from using a parcellation based analysis on the reliability of the correlation net-103

works of two regions traditionally associated with resting state networks (Fox104

et al., 2005).105

This paper presents the nonparametric Gaussian mixture model with a Gaus-106

sian process prior (GMMGP) that is designed to model the artifacts encountered107

in fMRI data: The parcel time series model is targeted at the part of the fMRI108

signal that is caused by slow changes in cerebral blood flow, down-weighing109

the influence of voxels with high noise or low correspondence with the parcel110

time series. The model is further invariant to the signal magnitude and these111

features allows for a more compact represenation when the Bayesian nonpara-112

metrics adapts to the required complexity of the data. In §2.1 we describe113

the clustering method, in §2.2 and 2.3 we describe our methods of validation,114

and in §2.4-2.6 we describe the synthetic dataset and three fMRI datasets. In115

§3 we argue that traditional GMMs are unable to adequately model several of116

the artifacts encountered in fMRI data on synthetic data motivating the use of117

the proposed method. We finally present parcellation based SPM analysis on118

task-fMRI as well as resting-state-fMRI analysis of correlation with posterior119

cingulate cortex (PCC) and medial prefrontal cortex (MPF) using the represen-120

tation induced by the probabilistic parcellation framework.121

2. Methods122

2.1. Probabilistic clustering model123

The proposed probabilistic model for clustering fMRI time series data uses124

a modified Gaussian mixture model that imposes a Gaussian Process prior for125

the cluster time series previously considered by Ross and Dy (2013); Røge et al.126

(2015) as well as the ability of both signal and noise to be modulated across127

voxels (Churchill et al., 2016). The model can be visualized as the graphical128

model in Fig. 1 and is given by the following generative process:129
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Gaussian Mixture model with a GP prior (IGMMGP)

Cluster assignments z∼ CRP(γ)
Cluster mean time series µk,s∼ GP(0, βsΣSE)
Voxel time series xi,s∼ N (wi,sµz(i),s, σ

2
i,sI)

130

Voxel time series xi,s are thereby modeled by a T dimensional multivariate131

Gaussian distribution with a voxel (i) and subject specific (s) signal scaling132

parameter wi,s of the cluster mean time series µz(i),s and noise parameter σ2
i,s.133

Using the voxel specific parameters for scaling both the signal and noise we134

ensure that the voxels with a high signal to noise ratio contributes more to the135

cluster mean time series while the model thereby is able to group voxels together136

that differs in signal amplitude. The parameter z is a cluster assignment vector

(a) (b)

Figure 1: In the left panel is the generative model visualized as a directed graphical model and
in the right is a visualization of the effect of having a Gaussian Process prior for the cluster
time series with covariance ΣSE .

137

such that voxel n is assigned to cluster zn. Using the Chinese Restaurant Pro-138

cess (CRP) prior for the clustering assignment we get a distribution over any139

possible clustering with an arbitrary number of clusters. This means that the140

model can automatically determine an appropriate number of clusters for which141

there is support in the data (Rasmussen, 1999; Aldous, 1985). In order to better142

compare with parametric clustering methods and the traditional Gaussian mix-143

ture models we also implement a version that employs the multivariate Pólya144

(compound Dirichlet-Categorical) distribution for the prior, see Appendix A for145

details.146

The cluster mean time series are generated from a Gaussian Process with a147

covariance structure that is given by a squared exponential kernel function with148

a fixed length-scale. This kernel provides a covariance structure that allocates149

more significance to time series with a temporal smoothness that matches the150

length-scale of the squared exponential. We fix the length-scale such that the151

temporal smoothness matches that of the hemodynamic response function which152

means the model will focus on the part of the signal with this particular temporal153

dynamic. Since the influence of the prior will decrease as the clusters increase in154

size, the model will penalize small clusters more heavily in terms of smoothness.155
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The combined effect of using voxel specific parameters for noise and for156

scaling the signal and the Gaussian Process as prior for the cluster time sries157

are that the model is highly specialized in recovering the hemodynamic signal in158

the time series of each cluster such that the clustering can be better driven by159

these smooth dynamics than potential confounds having fast fluctuations while160

providing a compact representation in which the same cluster can be used to161

represent voxels having different signal and noise amplitudes.162

We extend the model to incorporate multi-subject analysis, such that sub-163

jects normalized to the same space can share the same clustering while main-164

taining subject specific parameters. Incorporating signal from multiple subjects165

in this manner can potentially eliminate the need for long sessions of fMRI mea-166

surements to have adequate data to inform the clustering. Furthermore, with167

the voxel specific parameters for scaling the signal and noise, the model is better168

able to handle misspecifications for instance caused by misalignment of voxels169

across subjects, as these misaligned voxels can automatically be down-weighted170

through the heteroscedastic noise model. Finally, since all the hyper parameters171

are specific to each subject there is no need to standardize the data as the model172

will learn the appropriate scale for each subject.173

Variation Likelihood Description

(S,N) xi,s ∼ N (wi,sµz(i),s, σ
2
i,sI) Per voxel signal scaling and noise

parameters.
(-,N) xi,s ∼ N (wsµz(i),s, σ

2
i,sI) Voxels share signal scaling pa-

rameter, per voxel noise parame-
ter.

(S,-) xi,s ∼ N (wi,sµz(i),s, σ
2
sI) Per voxel signal parameter, vox-

els share noise parameter scaling
parameter.

(-,-) xi,s ∼ N (wsµz(i),s, σ
2
sI) Voxels share both signal scaling

and noise parameters.

Table 1: Description of the variants of the GMMGP model considered here.

In order to analyze the influence and utility of the voxel specific parameters174

for scaling and noise we implement the corresponding models also without these175

parameters resulting in a total of four combinations of model specifications176

to be considered as described in Table 1. We compare the different model177

specifications on simulated data based on their ability to both infer the correct178

clustering configuration, the correct task activations and on their predictive179

likelihood on a test dataset and finally we compare the different versions on real180

fMRI data based on their predictive performance.181

Combining the equations for the generative model provides an expression for182

the joint distribution of the parameters and the data. We are interested in the183

distribution of the parameters given the data but this expression is intractable184

analytically and instead we apply MCMC sampling techniques to generate sam-185

ples from the posterior distribution. For each MCMC iteration we perform one186
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Gibbs sweep where we draw the clustering configuration for each voxel from the187

posterior conditional distribution of the voxel clustering followed by a number of188

split-merge proposals (Jain and Neal, 2004) and sample the hyper-parameters,189

wi,s, σ
2
i,s, and γ, using Metropolis-Hastings proposals. A detailed derivation of190

the joint distribution and the posterior distributions for each of the parame-191

ters can be found in Appendix A. Since we cannot expect the inference method192

to fully converge within a limited number of MCMC iterations, we accept the193

highest posterior density sample as the final clustering solution.194

The covariance matrix for the prior on the cluster mean time series, βΣSE,195

i.e. of full rank, and computing the inverse thus requires O(T 3) time, where T196

is the dimensionality of the voxel time series or the number of brain volumes.197

Using the Cholesky factorization of ΣSE , it is possible to reduce this complexity198

to linear time as demonstrated in Røge et al. (2015). This means that the199

temporal complexity for each Gibbs sweep and the entire MCMC sampling200

procedure becomes O(NTKS), with N the number of voxels, K the number of201

components, and S the number of subjects. We find that implementations with202

at most this temporal complexity are necessary for sampling based inference in203

a Bayesian mixture model to be tractable at the scale of whole-brain modeling.204

We compare the proposed mixture model with the traditional Bayesian205

Gaussian mixture model and four non-probabilistic clustering methods; the206

K-means clustering algorithm (Hartigan and Wong, 1979), Ward’s algorithm207

for hierarchical agglomerative clustering (Ward Jr, 1963; Thirion et al., 2014),208

clustering based on region growing (Blumensath et al., 2013), and the Normal-209

ized cut clustering method (Shi and Malik, 2000; Craddock et al., 2012). Note,210

that Ward, region growing, and Ncut are all spatially constrained to contigu-211

ous clusters. Sampling based inference in a Bayesian mixture of Gaussians was212

explored in a univariate case by Richardson and Green (1997) and extended to213

an infinite number of mixtures by Rasmussen (1999). Note that inference in a214

Gaussian mixture model with full covariance is dependent on inverting a full215

rank covariance matrix and thus requires at minimum O(T 2) even when using216

the Cholesky factorization. Since this is not tractable we restrict the covariance217

maxtrix to a diagonal matrix, ie. xi ∼ N (µzi ,diag(σ2
zi)) and we refer to the218

infinite mixture model based on this model specification as the iGMMd model219

with the CRP prior or GMMd with the multivariate Pólya distribution as prior220

on the clustering. We furthermore implement a version where the covariance221

matrix is restricted to a diagonal matrix where the elements are identical, ie.222

xi ∼ N (µzi , σ
2
ziI) for the spherical Gaussian mixture model denoted GMMs or223

iGMMs.224

At the website https://brainconnectivity.compute.dtu.dk/ we will make225

the code and examples from this paper publicly available.226

2.2. Evaluation of clusterings227

We evaluate the performance of the clustering on synthetic data based on228

three criteria: Reproducibility of the models, the predictive likelihood on hold229

out data, and the ability to recover the cluster time series. On fMRI data230

there is no truth available regarding the cluster time series or a true clustering231
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configuration; instead we assess the reproducibility of the clustering on different232

sets of subjects and we explore the effect of using the time series inferred by the233

model on both resting state and task fMRI data.234

We measure the reproducibility of the model using the Adjusted Mutual
Information (AMI) (Vinh et al., 2010) given by

AMI =
MI(z1, z2)− E{MI(z1, z2)}

max(H(z1), H(z2))− E{MI(z1, z2)} , (1)

where MI(z1, z2) is the mutual information between two clusterings z1 and z2235

and E{MI(z1, z2)} is the expected mutual information for two random clus-236

terings with the same number of clusters as z1 and z2. For the analysis on237

simulated data we have ground truth available and therefore compute the AMI238

between the true and inferred clusterings. On the fMRI dataset we have no239

ground truth and instead evaluate the reliability of the clusters by the AMI240

between inferred clusterings on two different groups of subjects.241

The predictive likelihood is the posterior distribution of the test data given242

the training data and is for our model specification not possible to evaluate243

analytically. We use a split-half analysis of each subject such that we are given244

a new dataset where we can assume to know the signal scaling and noise pa-245

rameters. In this case we can approximate the predictive likelihood by246

p(X∗ |X) ≈ 1

M

M∑

m=1

p(X∗ | θ(m)), (2)

where θ(m) for m = 1, . . . ,M are M samples from the posterior distribution for247

the parameters wi,s, σ
2
i,s, γ, and z.248

The third metric of how well the modeling recovers truth is how closely the249

inferred parcel mean time series resemble that of the true parcels. In the case for250

synthetic data we can directly assess this by the maximum correlation between251

the posterior parcel time series with the task design time series used to gener-252

ate the data but with real fMRI data we naturally have no such information.253

Instead we compare the results of SPM analysis on the parcellated data with a254

traditional voxel based SPM analysis.255

The posterior distribution of the parcel time series can be computed analyt-256

ically (details can be found in Appendix A),257

p(µk,s | X,θ) ∼ N
([

Σ−1SE +
∑

i∈Zk

w2
i,s

σ2
i,s

I
]−1

x̄k,
[
Σ−1SE +

∑

i∈Zk

w2
i,s

σ2
i,s

I
]−1)

(3)

where θ = {γ, {w}, {σ2}, z}, Zk = {i ∈ 1, . . . , N : zi = k} is the index set258

of observations in cluster k, and x̄k =
∑
i∈Zk

wi,s

σ2
i,s
xi,s. The posterior mean259

is therefore
[
Σ−1SE +

∑
i∈Zk

w2
i,s

σ2
i,s
I
]−1
x̄k. From this expression we observe that260
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the mean is a sum of the voxel time series in the cluster weighted by wi,s/σ
2
i,s.261

Voxels with increased noise or voxels that do not match the cluster time series262

will thus be down-weighted. Furthermore, the sum is smoothened with (Σ−1SE +263

∑
i∈Zk

w2
i,s

σ2
i,s
I)−1 which mean that the smoothing kernel ΣSE is balanced against264

the sum and large clusters will thus be smoothened less compared to small265

clusters. Both these effects contribute to recovering more accurate cluster time266

series.267

3. Data268

3.1. Simulated data269

With the hypothesis that it is beneficial to model the scaling of the signal and270

the noise across voxels and subjects we examine the effect of data generated with271

those effects and compare the results with the traditional clustering methods.272

We simulated 2D brain slices consisting of four square 10× 10 clusters with
100 time points for four subjects for both a training and a test dataset. For
each cluster we draw a task activation from µk ∼ N (0, 5I), where I is the 100
dimensional identity matrix and convolve the task activation with the Hemody-
namic Response Function, h, with TR= 2.49s to get the expected task signal,
µ̃k = µk ∗ h. For each voxel we scale the corresponding task time-course with
wi,s. Subsequently, we add the same random Gaussian vector, ε0 ∼ N (0, I), to
all clusters to introduce a non-smooth artifact into the clusters and draw the
time series with white noise εi.s ∼ N (0, I) that is subsequently scaled to have
standard deviation λ. Finally we introduce regions with a five-fold increase in
the noise denoted by a set of indices for observations Anoise and let δi,Anoise be
1 if i ∈ Anoise and zero otherwise. The process for generating vector xi,s can be
summarized by the following expression, i.e.,

xi,s = wi,sµ̃zi + ε0 + λ(1 + 4δi,Anoise)εi,s. (4)

The generated dataset is illustrated in the top panel of Fig. 2. In order to273

validate our assumptions on the model, i.e. that it is beneficial to model changes274

in signal and noise across the brain, we generate 10 datasets for each level of275

noise as controlled by the λ parameter (λ = {1, 3, . . . , 37, 39}) in Eq. 4. For each276

generated dataset we also generate a test dataset used for predictive comparison277

of the proposed models.278

3.2. fMRI datasets279

We apply the model to a finger tapping task and resting state fMRI datasets280

with the same 30 healthy subjects scanned on a 3T MRI scanner, and of those 30281

subjects we use the first 20. The rs-fMRI consists of 480 brain volumes scanned282

over 20 minutes with a repetition time (TR) of 2.49s and further details can be283

found in Andersen et al. (2014). The task dataset consists of 240 brain volumes284

scanned over 10 minutes, also with a TR of 2.49s and has previously been used285

in Rasmussen et al. (2012b,a); Røge et al. (2015).286
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The datasets were preprocessed using the SPM12 software package (SPM12,287

Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/288

spm/soft-ware/spm12/) with Rigid body realignment, co-registration, spatial289

normalization to the MNI 152 template, reslicing of images into MNI space at 3290

mm isotropic voxels, spatial smoothing with a 5 mm FWHM isotropic Gaussian291

filter, a high-pass filter (128 Hz), and finally a rough grey matter mask consisting292

of 48799 voxels for the rs-fMRI and 44820 for the task fMRI was applied.293

We split the subjects into two groups using the first 10 for the first group294

and the 10 following for the second group. The time series were then split into295

a training and testing set to consisting of 240 time points for the rs-fMRI and296

120 time points for the task fMRI dataset. This means we have 2 datasets for297

training and 2 for testing for both the rs-fMRI and for the task fMRI datasets.298

For the task dataset the stimulation cycle of 20 s right handed finger tapping,299

10 s rest, 20 s left handed finger tapping, and 10 s rest was repeated 10 times.300

The finger tapping tasks were assisted by a visual cue.301

4. Results and discussion302

In theory the procedure for initizalizing the parameters of the model is of303

little importance since, given enough samples, the Markov chain will approach304

the posterior distribution. In practice, given the size of the problem, we are305

limited to only a few hundred samples and it is very important that the state306

of the model for the initialization is supported by the posterior distribution.307

Therefore, we initialize the clustering configuration of the model using the K-308

means clustering algorithm and then evaluate 100 Metropolis-Hastings proposals309

for the other parameters of the models. In order to not initialize the model to a310

local minimum we then set the clustering configuration to a random clustering311

before starting the actual inference procedure.312

The scale of the problem makes it impossible to generate a number of sam-313

ples from the posterior distribution sufficient to reach the stationary distribu-314

tion. However, this does not prevent the sampling procedure from reaching315

good solutions and we find that the sampler rather quickly converges to a solu-316

tion. On synthetic data this typically happens within a few iterations following317

the described initialization procedure, and for the fMRI datasets we find that318

around 20 MCMC iterations provides good solutions. For the experiments in319

this contribution we allowed the inference chains to run for 100 MCMC itera-320

tions and select the highest likelihood sample to use for further analysis. and321

after 100 MCMC iterations to be sufficient. On a 2.4 GHz core i7 processor the322

duration for each MCMC iteration consiting of one Gibbs sweep, evaluating as323

many split-merge proposals as there are cluster, and Metropolis-Hastings pro-324

posals for hyperparameters was approximately 1 hour on a fMRI dataset with325

10 subjects, 240 brain volumes and 44820 voxels.326

4.1. Simulated analysis327

For each generated dataset we perform model inference with the four versions328

of the GMMGP models for both the parametric and nonparametric versions.329
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(a) Scheme for generation
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(b) The adjusted mutual information and mean correlation averaged over the 10 repetition.

(c) Clustering for all models and signal and
noise parameters for iGMMGP(S,N) at λ = 3
as marked by A.

(d) Clustering for all models and signal and
noise parameters for iGMMGP(S,N) at λ = 19
as marked by B.

Figure 2: Comparison of different nonparametric clustering models on the simple synthetic
dataset. The clusterings presented are from the first repetition at the level of noise designated
by the vertical line in the top left plot. The grey dashed line in the top right plot denotes
the correlation using the average voxel time courses of the correct clustering. The bottom
line is the inferred signal and noise parameters for the iGMMGP(S,N) model averaged over
10 samples.
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Figure 3: Predictive results on synthetic analysis. The predictive logjlikelihood is reported
relative to the iGMMGP (S,N) model.

We allow each model to perform 100 MCMC iterations and select the sample330

attaining the highest value of the joint distribution. We evaluate the perfor-331

mance based on AMI with ground truth, predictive posterior probability, and332

in terms of the mean correlation with the simulated BOLD signal, µ̃k. We333

compare the GMMGP model with the nonprobabilistic clustering models and334

the traditional Gaussian mixture models (both parametric and nonparametric)335

with either spherical or elliptical (i.e. diagonal) covariance structure on the data336

and on a version of the data where the time series of each voxel is normalized to337

have unit length. In Fig. 2 we highlight the performance of the non-parametric338

model specifications and the nonprobabilistic clustering models. We only in-339

clude the best performing of the traditional Gaussian mixture models which is340

is the version with spherical noise using the normalized dataset. Each line in341

Fig. 2b is the average AMI and average mean correlation over the 10 repetitions.342

The AMI for the remaining probabilistic models are given in Appendix B. In343

Fig. 3 we present the predictive comparison of the 4 versions of the GMMGP344

models.345

From the results we see that the proposed iGMMGP model is able to use346

the temporal dynamics imposed by the Gaussian Process to better extract the347

underlying simulated BOLD signal compared to just averaging the true parcels348

or using conventional clustering. The models with the Gaussian Process prior349

are thus significantly better at both recovering the true clustering and infers350

cluster means that are better correlated with the simulated BOLD responses.351

We further observe that the models without heteroscedastic modeling of noise352

cannot handle areas of increased noise. In the bottom panel of Fig. 2 we353

further see that the fully heteroscedastic model is able to correctly identify the354

regions of increased noise. Inspecting the predictive performance of the four355

model specifications in Fig. 3 we observe that both models with heteroscedastic356

modeling of noise are approximately equivalent in predictive performance and357

we also here observe that the heteroscedastic signal modeling is only beneficial358

in regimes with high SNR, i.e. low values of λ. While it is somewhat surprising359

heteroscedastic signal modeling has no benefit facing low SNR we attribute this360
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to the high level of noise making the differences in the heteroscedasticity of the361

signal off less importance.362

4.2. Clustering performance on fMRI datasets363

We first establish which of the four variants of the iGMMGP model, i.e.,364

with and without heteroscedastic modeling of signal and noise, best account for365

the structure in real fMRI time data. For this purpose we use the predictive366

likelihood and split each subjects data into two halfs such that we use the first367

half for training and the second half for testing. For each of the datasets we368

perform 100 full MCMC iterations and select the highest likelihood sample. In369

Fig. 4 we plot the predictive likelihood as function of the number of clusters,370

for five repetitions of this inference process. The fully heteroscedastic model371

(i.e., iGMMGP(S,N)) finds the most compact representation of the data while372

still yielding the best predictive likelihood on all the considered datasets. This373

supports our initial hypothesis and confirms the results from Churchill et al.374

(2016) where similar modeling of the signal and noise was also found to improve375

on generalizability. For brevity and clarity of results we therefore choose to only376

continue with the full version of the model, i.e. using the iGMMGP(S,N).377

In Fig. 5 we visualize the inferred parameters of the model. In the figure378

is shown the extracted clustering and the inferred {σ} and {w} parameters for379

axial brain slices using the highest likelihood sample of the MCMC inference380

chain based on the rs-fMRI dataset with subjects 1 to 10 . We see from the381

highlighted areas that the model finds that areas near the rim closest to the382

skull have high noise magnitudes such that the influence from these regions in383

defining clusters are reduced. From the plot of the average signal to noise ratio384

it is clear that averaged over all subjects the model assigns most probability to385

the center of each cluster.386

With the selected version of the iGMMGP model we compare the clustering387

performance to that of the spherical Gaussian mixture model (GMMs) and the388

elliptical Gaussian mixture model (GMMd) based on reproducibility of cluster-389

ing over different groups of subjects. We perform 100 MCMC iterations with390

both the finite and infinite versions of the GMMs and GMMd models on the391

fMRI datasets and present the Adjusted Mutual Information between the two392

groups of subjects in Fig. 6. Note that we cannot directly compare the AMI393

of clustering solutions inferred by the infinite versions of the models since the394

inferred number of clusters will vary from around 8-900 for the iGMMGP mod-395

els to 1500-2300 for the two traditional Gaussian mixture model. Furthermore396

we cannot compare the models based on predictive likelihood either since the397

iGMMGP model due to the Gaussian Process (GP) prior is tailored to focus398

on the temporally smooth part of the signal and will therefore be inferior in399

modeling high frequency content present in the data.400

4.3. Parcellation effect on reliability of task activations401

In order to investigate the hypothesis, that the inferred parcel time series402

more accurately reflect the changes in the BOLD signal due to neural activity403
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Figure 4: Predictive likelihood as a function of the number of clusters for each of the 5
repetitions on the considered datasets. Note that the considered task and resting state fMRI
datasets are divided into subjects 1-10 and 11-20. The most complex model with heteroscedas-
tic modeling of both signal and noise, i.e. iGMMGP(S,N), is marked with blue crosses and it
provides both the most compact representation and the best predictive performance.

compared to the voxel time series, we compare the regions of task activation404

on a temporal split-half on the finger tapping task fMRI dataset. We therefore405

apply the statistical model to get parcellations on the training and test split of406

the dataset as previously described, i.e. the data is divided into two groups of407

10 subjects and each subject is temporally split into a test and training dataset.408

Then we apply the model to each of the four datasets to get four independent409

parcellations, where each parcellation is trained on 10 subjects.410

We use SPM12 to perform a GLM (Friston et al., 1994) analyses to esti-411

mate the task response by fitting a design matrix with autoregressive AR(1)412

filtering and the task regressors are extracted on both the original data and413

on the parcelled data using the estimated posterior cluster mean time courses.414

The left and right handed finger tapping tasks were modelled with a boxcar re-415

gressor convolved with the canonical hemodynamic response function. We then416

applied the two contrasts Right-Left and Left-Right to get the contrast maps.417

The thresholded activation maps were computed corrected by family wise er-418

ror (FWE) with a threshold set to 0.05 for the voxel based SPM analysis. For419

the parcel based analysis we used Bonferroni correction to account for multiple420

comparisons as defined by the number of parcels. The tresholded activation421

maps for the voxel and parcel based analysis for the first subject along with the422

parcel and voxel time series with the highest Z-score are presented in Fig. 7.423

The regions of task activation are considerably larger and the maximal Z-424

score is considerably higher for the parcel based compared to the voxel based425

analysis and this is in general the case. Furthermore, the posterior mean parcel426
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the signal, noise and signal to noise ratio for subject 1. Looking at the red rectangle we see
that the noise modeling infers high noise along the edge of the grey matter thereby reducing
its influence on the parcel mean time series. In the bottom panel are the signal to noise ratio
averaged over all subjects and it is clear that on average the center of the clusters are most
important in determining the parcel mean time series.
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Figure 6: A comparison of the adjusted mutual information between parcellations of subjects
1-10 and 11-20 for the rs-fMRI and task-fMRI datasets inferred by the finite versions of the
two Gaussian mixture models with the infinite GMMGP and GMM. Note that it is difficult
to compare AMI for clusterings with approximately 900 clusters to one with more than 2000
clusters we have therefore included for comparison also the finite GMM.
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Figure 7: Comparison between the results from voxel and parcel based SPM analysis on the
first subject of the Hvidovre task dataset. The time series of the most significant voxel time
series are presented in blue and the most significant parcel time series in red along with the
design matrix for the corresponding task.

time series is clearly smoothed by the Gaussian Process prior.427

We compute the Dice score between activation maps from the training and428

test temporal split-half and to illustrate the difference in inferred activated429

regions we plot the activated regions colored by the number of times a voxel or430

cluster was activated in Fig. 8. Furthermore, we perform two additional SPM431

analyses where only the brain volumes from the first two task repetitions were432

included and present these results in the right column of Fig. 8. Note that if433

there is no activation or no overlapping activation between the training and test434

activation maps the Dice score is set to zero penalizing the result. This especially435

affects the results from the SPM analysis including only two repetitions of the436

task causing the high variance in the reported Dice score.437

Using a paired t-test we find that the inferred regions of task activation are438

significantly more reliable for the Left-Right contrast using all five repetitions439

(p< .5) while the difference is not significant for the Right-Left contrast. Using440

only two task repetitions, the reliability advantage is significant for both con-441

trasts. This suggests that using the posterior mean time series for SPM analyses442

increase the reliability and sensitivity to task activation.443

The Dice score depends on the level of activation, thus, the Dice score would444

be 1 for a model where the entire brain is active. This is especially problematic445

when comparing two methods of inference where one method with higher sensi-446

tivity identifies a larger part of the brain as active. In order to account for this447

phenomenon we also compute the Dice score as a function of the percentage of448

activated voxels, see Fig. 9.Using two repetitions of the task, the dice curves449

for the voxel based analyses are dominated by the parcel based analysis. Using450

all five repetitions of the task the same is the case when more than 0.005 and451

16



5 Repetitions 2 Repetitions

C
on

tr
as

t:
R

ig
h
t-

L
ef

t V
ox

el
P

ar
ce

l
C

on
tr

as
t:

L
ef

t-
R

ig
h
t V

ox
el

P
ar

ce
l

Figure 8: The regions of inferred task activation for the traditional voxel and parcel based
SPM analyses colored by the number of times each voxel had significant task activation. The
paired t-test show that the parcel based analyses is significantly more reliable for 3 of the 4
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Figure 9: The Dice score as a function of the percent activated voxels of the brain for each of
the two contrasts. In the left panel the brain volumes from all 5 repetitions is used while in
right panel we use only those of the first two repetitions.

0.01 pct. voxels are active for the two contrasts. The low Dice scores for the452

parcel based analysis for the small percentages of active voxels is due to the fact453

that the Dice score is limited by how closely the two parcellations overlap in the454

active regions.455

4.4. Parcellation effect on resting state networks456

We finally investigate the effect of a parcellation based analysis on the relia-457

bility of functional resting state networks. Two brain regions known for a task458

negative correlation (Fox et al., 2005) are the posterior cingulate cortex (PCC;459

-5, -49, 40) and medial prefrontal cortex (MPF; -1, 47, -4) and we use 6 mm460

spheres around the two region of interest for regressors in both voxel and parcel461

based SPM analyses.462

In order to compute the regressor for the parcel based analysis we recon-463

struct the voxel time series of the voxels within the sphere such that the time464

series of each voxel will be the posterior parcel time series weighted with wi,s465

and then compute the regressor as for the voxel based analysis. The SPM anal-466

ysis was then performed using the computed regressors for the MPF and PCC467

with autoregressive AR(1) filtering. For each of the two regions of interest, we468

perform a 2nd level analysis using the contrast maps from the 1st level SPM469

analysis for each subject as input. The thresholded 2nd level Z-maps are pre-470

sented Fig. 10 and from a visual comparison it is difficult to distinguish parcel471

and voxel based analyses.472

Next we compute the Dice score as a function of the number of active voxels,473

similarly to the analysis of task reliability. The Dice score for the parcel based474

analyses generally dominates the curves for the voxel based analyses, see Fig. 11.475

Here, we only include the positively correlated voxels for the analysis. Before476

computing the Dice score we exclude a 12-mm-radius sphere around the seed477

region from the active region to not bias the curve by the seed region. The point478
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of the 6mm radii spheres around the medial prefrontal cortex (MPF) and posterior cingulate
cortex (PCC) was as regressors and for the parcel based analysis we used the posterior mean
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Figure 11: The Dice score as a function of the pct. active voxels in the second level analysis.
Note that the parcel based analyses are consistently more reliable except when only a very
small number of voxels are active. The black dots on the curve correspond to the level of
activation and Dice score for the tresholds used in Fig. 10.
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on each curve marked by a black dot shows the threshold corresponding to the479

threshold selected for the visualization in Fig. 10.480

For this illustration we analysed the reliability of connectivity of two task481

negative regions, PCC and MPF. Both regions show increased reliability of cor-482

relations to the rest of the brain when splitting the time series of each voxel in a483

test and retest dataset. This shows promise in improving the reliability of net-484

work analysis using the iGMMGP model representation for deriving functional485

networks.486

5. Conclusion487

We have presented the iGMMGP, a probabilistic method for whole-brain488

parcellation. The model exploits Bayesian non-parametrics to automatically489

quantify the number of parcels needed to describe the fMRI data thereby not490

requiring the number of clusters to be specified apriori. The model further uses491

Gaussian Process priors to incorporate smoothness into the extracted cluster492

time series in order to focus on the part of the fMRI signal that is caused by493

slowly varying changes in cerebral blood flow. Finally, voxel and subject specific494

signal and noise scaling parameters are used to account for changes across space495

and subjects making the model robust to noise and model misspecification while496

at the same time providing a more compact representation of the data in terms497

of parcels constituting salient functional units.498

In comparison with traditional clustering methods, the proposed IGMMGP499

method is more reliable on both synthetic, rs-fMRI and task-fMRI datasets.500

Compared to traditional SPM analysis of task activation, we show that using the501

method to denoise the data the model provides a compact representation having502

increased reliability both when estimating regions of task activation and when503

estimating functional networks compared to conventional voxel based analyses.504

This suggests the utility of using the parcellation method as a starting point for505

future analysis of fMRI data.506

The approach can in general identify salient functional units in fMRI data at507

a group level and is robust to model misspecification as it accounts for subject508

and voxel specific noise and signal fluctuations. Compared to traditional atlas509

based approaches the iGMMGP being data driven define parcels in order to510

optimally account for the distinct functional patterns in the fMRI data. Simi-511

lar to atlas based approaches the parcel based analysis can in general address512

the issue facing voxel based analysis of multiple comparisons by substantially513

reducing the number of regions providing a compact and noise reduced repre-514

sentation that compared to atlas based approaches are tailored to the data. We515

presently considered a radial basis function kernel with length scale defined by516

the canonical hemodynamic response function when specifying the covariance.517

On synthetic data we observed that the GP prior had a significant effect on the518

ability to extract the underlying generated signals. Notably, the covariance can519

be further tailored to the assumptions of fMRI and the iGMMGP framework520

readily generalizes to other covariance specifications that may better account521

for the assumptions of the fMRI data at hand.522
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The generative model is given by666

z ∼CRP (γ) groups, (A.1)

µk,s ∼GP (0, βΣSE) group time series, (A.2)

xi,s ∼N (wi,sµz(i),s, σ
2
i,sI) voxel time series, (A.3)
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For a finite model the Chinese Restaurant Process is replaced by the Pólya
or marginalized Dirichlet-multinomial distribution, with parameters αk = α/K
for all k = 1, . . . ,K where K is the number of clusters, given by

p(z | α) =

∫
p(zi | π)p(π | α)dπ =

Γ(α)

Γ(N + α)

K∏

k=1

Γ(nk + α/K)

Γ(α/K)
, (A.4)

For the following we use the CRP prior but the calculations for the Pólya667

distribution is equivalent. Multiplying expressions (A.1)-(A.3) together we get668

the joint probability669

p(z, {µs} , {Xs} |
{
σ2
s

}
, {ws} ,β,Σ, γ) (A.5)

=

[∏

s

p(Xs|µs,ws,σ
2
s)p(µs|β,Σ)

]
p(z|γ).

We rearrange and marginalize over the nuisance parameters µs using conju-
gacy of the Gaussian Process:

p(z, {Xs} |
{
σ2
s

}
, {ws} ,Σ, γ) =

∏

s

[∫
p(Xs|µs,ws,σ

2
s)p(µs|Σ)dµs

]
p(z|γ))

=
Γ(γ)γK

∏K
k=1 Γ(nk)

Γ(N + γ)
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i,s

(2πσ2
i,s)
−T/2 exp
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− 1

2σ2
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2
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x̄>k,sS
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k,sx̄k,s

}
, (A.6)

where

x̄k,s =
∑

Z(i)=k

wi,s
σ2
i,s

xi,s, Sk,s =


βsΣ−1 +

∑

z(i)=k

w2
i,s

σ2
i,s

I


 . (A.7)

To get from the marginalized joint distribution to the posterior distribution670

for zi we use Bayes theorem. This expression is a categorical distribution over671

the possible cluster assignments, which is all the populated clusters and one672

unpopulated cluster. The posterior probability to assign zi to the populated673

cluster k is:674

p(zi = k |X,Σ, {σn}, {wn}, z) = (A.8)

nk

|Sk,s +
w2

i,s

σ2
i,s
I|−1/2 exp
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I
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xi)

}
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{

1
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k,sx̄k,s

} ,
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and similarly to assign zi to an unpopulated cluster we get

p(zi =K + 1 |X,Σ, {σn}, {wn}, z) = (A.9)

α
|βsΣ−1 +

w2
i,s

σ2
i,s
I|−1/2
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exp
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I

)−1
wi,s
σ2
i,s
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 .

We employ Metropolis-Hastings sampling for the hyper parameters using Gaus-675

sian proposal distributions. The parameters σi,s, γ, and β are required to be676

positive and to achieve to do this while maintaining the symmetric Gaussian677

proposal distribution we sample in the log-transformed domain.678

Appendix A.1. Posterior quantities679

The posterior mean time series, p(µk | X,
{
σ2
s

}
, {ws} ,Σ, γ), can similarly680

be evaluated analytically for a fixed clustering assignment. This is given by681

p(µk,s |X,
{
σ2
s

}
, {ws} ,Σ, γ) ∼ (A.10)

N ((Σ−1SE +
∑

i∈Zk

w2
i,s

σ2
i,s

I)−1x̄k, (Σ
−1
SE +

∑

i∈Zk

w2
i,s

σ2
i,s

I)−1))

Appendix B. Additional results682

The adjusted mutual information between the true clustering and the cluster-683

ing inferred by the compared models are presented in Fig. B.12 for the synthetic684

dataset.685
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Figure B.12: Synthetic analysis on the simple dataset in the top panel and the hard dataset
in the bottom panel.
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Figure B.13: A comparison of the spatially constrained clustering methods with the GMMs
and iGMMGP models. Ncut (rand) is the Ncut algorithm with the similarity matrix randomly
permuted to test whether the high AMI is caused by information on the voxel location or by
the functional connectivity.
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