

Off-Pathway Intermediates in the Conversion of Sugars to Plastic

Tosi, Irene; Riisager, Anders; Taarning, Esben; Meier, Sebastian

Published in: Book of Abstracts Sustain 2017

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

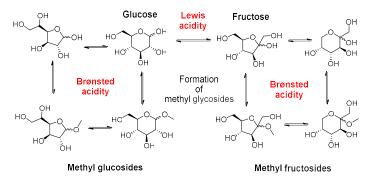
Citation (APA): Tosi, I., Riisager, A., Taarning, E., & Meier, S. (2017). Off-Pathway Intermediates in the Conversion of Sugars to Plastic. In Book of Abstracts Sustain 2017 Article C-3

General rights

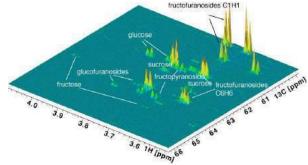
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



Off-Pathway Intermediates in the Conversion of Sugars to Plastic


Irene Tosi*1, Anders Riisager1, Esben Taarning2, Sebastian Meier1

- 1: Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800-Kgs. Lyngby, Denmark.
- 2: Haldor Topsøe A/S, Haldor Topsøes Allé 1, 2800-Kgs. Lyngby, Denmark.
- *Corresponding author email: itosi@kemi.dtu.dk

Carbohydrates are the most abundant compounds forming biomass and their conversion into chemicals is a central topic in the research of alternative resources for replacing the use of fossil feedstock. Using heterogeneous catalysts, simple sugars can be converted into chemicals and fuels. Recently, Lewis acidic zeolites have received much attention for their ability to bind and convert sugars. Particularly Sn-beta zeolite has been studied as catalyst for the production of methyl lactate and other monomers for bio-based polymeric materials. The process is carried out in short-chain alcohol, normally methanol, because the catalyst shows higher stability in alcohol than in water. Under these conditions, the sugar molecules react with the solvent to form methyl glycosides, resulting in complex reaction mixtures of isomeric glycosides (pyrano-furano and α - β forms) (Scheme 1). We use 2D 1 H- 13 C HSQC to identify and quantify all different forms of sugars as off-pathway intermediates in the conversion of sugars to plastic (Figure 1).

Scheme 1.. Equilibrium between glucose and fructose in methanol using Sn-beta as catalyst the presence of Lewis acidity catalyzes the isomerization while the Brønsted acidity promotes the formation of methyl glycosides.

Figure 1. In the $^{1}\text{H}^{-13}\text{C}$ HSQC spectra of the reaction mixtures it is possible to identify and quantify sugars and their methyl glycosides in their pyrano-furano and alfa-beta forms.

References:

¹ S. Tolborg, S. Meier, I. Sádaba, S. G. Elliot, S. K. Kristensen, S. Saravanamurugan, A. Riisager, P. Fristrup, T. Skrydstrup, E. Taarning, *Green Chem.*, 2016, *18*, 3360-3369

² S. Saravanamurugan, I. Tosi, K. H. Rasmussen, E. E. Jensen, E. Taarning, S. Meier, A. Riisager, Catal. Sci. Technol., 2017, 7, 2782-2788