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Abstract 

Increasing pressure to the environment due to human activities manifests the necessity of 

applying new approaches to determine the environmental impact of a new product before scale-

up. Nanoadsorbents as an emerging product and a special application of nanomaterial play an 

important role in the control and removal of environmental pollutants. This application is still an 

emerging technology at the early stages of development. Hence, the heart of this study enables 

an environmental assessment of nanoadsorbents as an emerging product. In addition, the 

environmental impacts of synthesized adsorbents including cumulative energy demand, climate 

change, water use, human toxicity, and ecotoxicity are investigated by a stepwise procedure 

during their synthesis processes, regarding their potential to remove mercury from polluted 

water. Accordingly, characterization results showed that although the process of the 

functionalization of nanoadsorbents leads to the increase of the adsorption capacity of 

nanoadsorbents, it is also paired with a significant enhancement of negative environmental 

impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact 

categories for 1 kg Hg removal between MGO-NH-SH and Fe3O4@SiO-NH-SH estimated 

approximately 37, 34, 40, 31, and 26% more for climate change, water use, cumulative energy 

demand, human toxicity, and ecotoxicity, respectively for the latter. Hence, according to the 

results, Fe3O4@SiO-NH-SH revealed the larger environmental impacts from the same functional 

unit, 1 kg Hg removal, compared with MGO-NH-SH. Finally, not only does this study represents 

the LCA of two different kinds of mercury adsorbents, but it also provides a guideline for 

determining the environmental impacts of similar nanoadsorbents. 

Keywords: LCA, Nanoadsorbents, Mercury, Removal, Prospective approach 
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1. Introduction 

The presence of various pollutants (e.g. toxic metal ions) in water and wastewater causes serious 

environmental concerns (Cui et al., 2015b; Guo et al., 2014a). One of these is mercury which is a 

hazardous and pervasive environmental pollutant (Cui et al., 2015a; Hadavifar et al., 2014). This 

is for example seen in Japan where many people in the past decades have been adversely affected 

and thousands of people have died of Minamata disease, caused by a chemical plant’s release of 

wastewater containing elevated levels of mercury pollution (Graeme and Pollack, 1998; Igata, 

1994). Elevated mercury levels in the environment is caused by a variety of anthropogenic 

sources, including coal combustion in power plants, chlor-alkali production, alumina production 

from bauxite, oil refining, and mercury emissions (Diagboya et al., 2015; Hadavifar et al., 2014). 

In aqueous systems, mercury can be present in one or more different oxidation states: Hg0 

(metallic), Hg2
2+ (mercurous), and Hg2+ (mercuric). The solubility of different compounds of 

mercury differ greatly in water. Solubility in water increases in the following order: elemental 

mercury < mercurous chloride < methylmercury chloride < mercuric chloride (Boening, 2000; 

O’Driscoll et al., 2005; S. Zhang et al., 2013). Among mercury species, it is largely Hg2+ that can 

react with various organic compounds in water and sediment by biotic reactions mediated by 

sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in 

conversion into organic mercury compounds, such as methylmercury (MeHg). MeHg is known 

as a bioaccumulative and toxic substance for humans and the environment. For example, when 

ingested into the human body, it undergoes oxidation and reduction reactions, which transforms 

it into bivalent inorganic mercury. When MeHg undergoes these reactions, oxygen radicals are 

released, causing extensive injury to cells by activating the chain of lipid peroxidation in the cell 

membrane. In addition, it has been confirmed that MeHg has high fat solubility; hence, it is 
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especially toxic to the organs of the body that have a high fat content (Boening, 2000; Graeme 

and Pollack, 1998; Hadavifar et al., 2014; O’Driscoll et al., 2005; Shen et al., 2014; Starvin and 

Rao, 2004; S. Zhang et al., 2013). Therefore, mercury (II) was selected in this study to examine 

its removal from wastewater and polluted water. 

Methods including reverse osmosis, biological treatments, chemical precipitation, ion exchange, 

coagulation, electrochemical treatment, and adsorption have been utilized to remove metal ions 

and other pollutants from water before discharge into the environment (Hadavifar et al., 2016; 

Oehmen et al., 2014; H. Wang et al., 2011). Most of these methods are inefficient and not 

suitable considering environment and economy, particularly for wastewater with only trace 

amounts of mercury. Hence, developing different efficient technologies for removing Hg(II) and 

other pollutants is essential. With increasingly strict environmental regulations on the release of 

pollutants and growing demands for clean water with the lowest levels of pollutants, extensive 

attention by researchers has been paid to producing nanoadsorbents for removing pollutants from 

water and wastewater (Li et al., 2011; Pan et al., 2012) and the use of nanoadsorbents to remove 

mercury (II) from water and wastewater has received considerable attention in chemical 

engineering and environmental science (Cui et al., 2015b; Hadavifar et al., 2016; Lopes et al., 

2014; S. Zhang et al., 2013). To increase the adsorption rate and selectivity of adsorbents, they 

are organized into different functional groups (e.g. amine, thiol, …) (Ke et al., 2011; Li et al., 

2011; Ma et al., 2016; Monier, 2012; Pan et al., 2012). Although nanoadsorbents are still in early 

stages of technological development, further development of them is expected to soon advance. 

However, each new material or development has its own negative and positive environmental 

impacts in production, use, and disposal. For example, it is illogical to use a nanoadsorbent for 

pollutant removal if its production demands large amounts of energy and water, and other 
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pollutants are emitted into the air, soil, and water contributing to e.g. climate change, ecotoxicity, 

and human toxicity.  

As we know, each development starts with an idea, leads to research and lab work, progresses to 

publication of scientific papers, is followed by semi-industrial pilots, and finally, industrial 

development will occur. Accordingly, assessing the environmental impacts already during the 

initial stages of development can help identify potential trade-offs and possibly leads to 

development of more sustainable nanoadsorbents with fewer negative environmental impacts. 

Life cycle assessment (LCA) of different nanomaterials (e.g. nanoadsorbents) enables a 

prospective approach to assessment of environmental impacts of products and their uses at early 

stages of technological development (Arvidsson et al., 2014; Gavankar et al., 2015; Hischier and 

Walser, 2012). Hence, assessing the environmental impacts of each product at the first stages of 

development is essential for identification and understanding of negative environmental impacts 

at different stages of production, use, and disposal, and avoidance of these by changing or 

modifying these stages. Unfortunately, environmental impacts of nanoadsorbents’ production are 

hardly ever found in the literature. Hence, this study investigates for the first time the 

environmental impacts of nanoadsorbents’ production and functionalization. 

We study the environmental impacts in the production and use stages of two nanoadsorbents 

with graphene-based and Fe3O4-based composites, which function with a similar thiol group for 

Hg(II) removal. Graphene-based and Fe3O4-based composite nanoadsorbents are recognized for 

their high efficiency in removing environmental pollutants (Ai et al., 2011; Cui et al., 2015a; 

Dubey et al., 2015; Guo et al., 2014b; Liu et al., 2011). Graphene-based nanoadsorbents, 

especially if they possess magnetic properties, and Fe3O4-based nanoadsorbents, with their 
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magnetic properties, can easily be separated from water and wastewater solution, and can be 

repeatedly reused (Ai et al., 2011; C. Wang et al., 2011; Wang et al., 2015; Yu et al., 2015). 

2. Materials and methods 

2.1. Goal and scope of the study 

This study compares the environmental impacts of the functionalization of the GO-based and 

Fe3O4-based composites for the removal of 1 kg Hg(II) from polluted water. Nanoadsorbents are 

in early stages of technological development in the laboratory; therefore, the investigation of 

environmental impacts in their production and use stages is still highly uncertain. Hence, 

sensitivity analysis will be employed to determine these uncertainties for scale-up production. 

LCA of nanostructure products and their applications is relatively new (Healy et al., 2008; Kim 

and Fthenakis, 2013; Klöpffer et al., 2007). This study is an LCA of nanoadsorbents as a special 

application of nanomaterials for the removal of pollutants from the environment. The LCA is 

attributional, with prospective analysis of emerging and immature products, similar to the studies 

by Walser et al. (2011), Healy et al. (2008), and Arvidsson et al. (2015 and 2014) albeit with 

different system boundaries. As mentioned above, the main goal of the study is to assess cradle-

to-use life cycle impacts of thiol-functionalized magnetic graphene oxide, and 

superparamagnetic Fe3O4@SiO2, for application in water and wastewater treatment. Since the 

produced adsorbents have different adsorption capacities, the functional unit was determined to 

be 1 kg Hg removal of pollutant water. In environmental evaluations, total adsorption capacity 

for both nanoadsorbents was calculated based on an adsorption-desorption cycle of more than 

90% (Cui et al., 2015b; Hadavifar et al., 2014). Table 1 of Supporting Information (SI) presents 

the adsorption capacities and number of adsorption-desorption cycles (more than 90%) for each 
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adsorbent. Fig. 1 shows the scope and system boundaries of the stepwise procedure of both 

synthesized adsorbents that were functionalized with a similar thiol functional group (N-

acetylcysteine).  

 

Fig. 1. Flowchart describing the cradle-to-use life cycle of adsorbents production, thiol-
functionalized magnetic graphene oxide, and superparamagnetic Fe3O4@SiO2, for 1 kg Hg 
removal of polluted water, respectively. 
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2.2. Life cycle inventory 

Life cycle inventory (LCI) analysis is the second phase in an LCA study. The LCI is the data 

collection portion of all recognized inputs/outputs to or from the system boundary (Rajaeifar et 

al., 2016). On this basis, our laboratory experiments provided the process data for assessing 

cradle-to-use life cycle impacts of the produced adsorbents. Sections 1 and 2 of SI detail the 

synthetization of both adsorbents. Inputs and outputs in each stage were converted to the scale of 

1 kg Hg(II) removal. Tables 1 and 2 present the life cycle inventory for generating final products, 

including MGO-NH-SH and Fe3O4@SiO-NH-SH, based on 1 kg Hg(II) removal. Tables 2 and 3 

in SI display the LCI data for producing GO, MGO, MGO-NH2, and Fe3O4, Fe3O4@SiO2, 

Fe3O4@SiO-NH2 for 1 kg Hg(II) removal. The Ecoinvent 3.2. database was the source of 

inventory data for all input materials and energy in this study; however, there were no data for 

APTMS, DCC, NHS, or N-AC in this database or elsewhere. Consequently, 

hexamethyldisilazane from the ecoinvent database was used as proxy data for APTMS. Lacking 

production data for DCC, NHS, and N-AC, their production was modeled in detail based on the 

stoichiometric formula (see Section 3 in SI). Electricity was the predominant source of energy 

used in the lab experiments, mainly for heating and cooling. The inventory of electricity use was 

gained from the Ecoinvent 3.2. database, based on the electricity mix produced in Iran.  
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Table 1 
The synthesis process and inventory data of MGO-NH-SH for 1 kg Hg removal from pollutant 
water 
Production stage  

Synthesis process for graphite oxide  CAS Number Amount used 
Input Graphite 7782-42-5 0.25 kg 

 NaNO3 7631-99-4 0.17 kg 
 H2SO4 7664-93-9 9.97 L 
 H2O2 7722-84-1 2.49 L 
 HCl 7647-01-0 11.22 L 
 Water  1520 L 
 Electricity  382.93 kWh 

Output Graphite oxide  0.225 kg 
Synthesis process for MGO Graphite oxide  0.225 kg 

Input FeCl3.6H2O 10025-77-1 1.21 kg 
 FeCl2.4H2O 13478-10-9 0.44 kg 
 NH4OH 1336-21-6 33.67 L 
 Ethanol 64-17-5 56.13 L 
 Water  1347.28 L 
 Electricity  1670.63 kWh 

Output MGO  0.73 kg 
Synthesis process for MGO-NH2 MGO  0.73 

Input EDA 107-15-3 1.82 L 
 NHS 6066-82-6 0.25 kg 
 DCC 538-75-0 0.42 kg 
 Ethanol 64-17-5 729.57 L 
 Electricity  1167.32 kWh 

Output MGO-NH2  0.79 kg 
Synthesis process for MGO-NH-

SH 
MGO-NH2  0.79 kg 

Input Acetylcysteine 616-91-1 0.33 kg 
 Methanol 67-56-1 198.85 L 
 NHS 6066-82-6 0.28 kg 
 DCC 538-75-0 0.45 kg 
 Ethanol 64-17-5 795.26 L 
 Electricity  1273.80 kWh 

Output MGO-NH-SH  0.83 kg 

Use stage    
Input MGO-NH-SH  0.83 kg 

 HCl 7647-01-0 13.18 L 
 Water  236 L 
 Electricity  263.54 kWh 

Output Hg(II) removal  1 kg 
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Table 2 
The synthesis process and inventory data of Fe3O4@SiO-NH-SH for 1 kg Hg removal of 
pollutant water 
Production stage  

Synthesis process for Fe3O4@SiO2  CAS Number Amount used 
Input FeCl3.6H2O 10025-77-1 0.89 kg 

 FeCl2.4H2O 13478-10-9 0.43 kg 
 NH4OH 1336-21-6 8.60 L 
 TEOS 78-10-4 4.30 
 Ethanol 64-17-5 275.16 L 
 Water  343.95 L 
 Electricity  485.92 kWh 

Output Fe3O4@SiO2  1.70 kg 
Synthesis process for Fe3O4@SiO-NH2 Fe3O4@SiO2  1.70 kg 

Input APTMS 13822-56-5 1.64 L 
 Toluene for synthesis 108-88-3 84.34 L 
 Toluene for washing 108-88-3 202.43 L 
 Electricity  5076.99 

kWh 
Output Fe3O4@SiO-NH2  1.85 kg 

Synthesis process for Fe3O4@SiO-NH-SH Fe3O4@SiO-NH2  1.85 kg 
Input Methanol 67-56-1 467.78 L 

 NHS 6066-82-6 0.65 kg 
 DCC 538-75-0 1.07 kg 
 Acetylcysteine 616-91-1 0.76 kg 
 Ethanol 64-17-5 1859.15 L 
 Electricity  2974.64 

kWh 
Output Fe3O4@SiO-NH-SH  1.98 kg 

Use stage    
Input Fe3O4@SiO-NH-SH  1.98 kg 

 HNO3 7697-37-2 41.58 L 
 Water  255.42 L 
 Electricity  313.63 kWh 

Output Hg(II) removal  1 kg 

 

2.3. Impact Categories 

 LCI results may be allocated to environmental matters of concern through impact categories. In 

this study, four common impact categories (water use, cumulative energy demand, human 
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toxicity, and ecotoxicity) were investigated similarly to other studied such as Arvidsson et al. 

(2014). These four impact categories represent to a large extent non-overlapping impact and they 

are relevant since high volumes and amount of water, acids, and other organic and inorganic 

materials were used in production processes of both nanoadsorbents. Climate change was studied 

as one of the more common impact categories in LCA, because the two compared 

nanoadsorbents use high values of electricity in the production processes. Water use consider the 

water used during production and use stages of both adsorbents in foreground and background 

systems. Cumulative energy demand in foreground and background systems in LCA may change 

fundamentally upon maturation of products. Nevertheless, we investigated total cumulative 

energy demand (including; all of renewable and non-Renewable energy, and as well direct and 

indirect), measured in MJ,  as a key impact category, which can correlate with other 

environmental impacts (Arvidsson et al., 2015; Huijbregts et al., 2006; M. A. J. Huijbregts et al., 

2010). The influence of this assumption, especially about electricity use in the foreground 

system, was examined through sensitivity analysis. Climate change is an another important 

global environmental issue (Change, 2013). The characterization factor of climate change is 

expressed as Global Warming Potential (GWP). In this study, a time horizon of 100 years was 

investigated (Arvidsson et al., 2015; Healy et al., 2008; Kim and Fthenakis, 2013). Human 

toxicity and ecotoxicity include all used substances, chemicals, and their emissions that are toxic 

to humans and the environment (Arvidsson et al., 2014). 

Water uses and climate change impact categories were investigated based on impact assessment 

from the ReCiPe midpoint method. The indicators are evaluated in reference units, i.e. kilograms 

of CO2 equivalents (eq) per year for GWP and cubic meters (m3) for water use (Goedkoop et al., 

2008). The cumulative energy demand (CED) method was used for calculating cumulative 
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energy demand, expressed in MJ (Frischknecht et al., 2007). Human toxicity and ecotoxicity 

impact categories were operationalized by the USEtox® model (Hauschild et al., 2008; 

Rosenbaum et al., 2008). In the USEtox® model, the unit of the characterization factor for human 

toxicity is cases kg-1 emission and for ecotoxicity PAF m3 day kg-1 emission both summarized as 

Comparative Toxic Unit (CTU) to stress the comparative nature of the characterization factors, 

through a subscript “h” and “e” to show human toxicity and ecotoxicity, respectively (M. 

Huijbregts et al., 2010). 

2.4. Sensitivity and Statistical Analyses 

 Regarding production and application of immature products, uncertainty exists about their 

environmental impacts in early stages of technological development. “What-if” sensitivity 

analysis can consider how variations in different input parameters (X1, X2, …, Xn) can affect the 

output and result (y) (Pianosi et al., 2016). Therefore, to assess these uncertainties from a “what-

if” perspective, parameters including acid (HCl + H2SO4), ammonia, ethanol, methanol, DCC, 

NHS, water recovery, and electricity were considered based on functional unit 1 kg Hg(II) 

removal for both adsorbents. 

All laboratory experiments were carried out in triplicate for each condition and repeated at least 

twice. The Shapiro-Wilk test investigated normality distributions of data. One-way analysis of 

variance (ANOVA) and Duncan tests were used to compare the environmental impacts of 

functionalized GO-based and Fe3O4-based composites for 1 kg Hg(II) removal from polluted 

water. A t-test was performed to determine any significant differences between the 

environmental impacts of MGO-NH-SH and Fe3O4@SiO-NH-SH for 1 kg Hg removal. Analyses 

of mean differences between all included impact categories in the MGO-NH-SH and 

Fe3O4@SiO-NH-SH were considered by the independent t test in a significant difference (sig < 
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0.05).  All statistical analyses were carried out using SPSS 17.0 and Excel 2007. Significance 

level for all tests was set at 0.05. 

3. Results and Discussion  

3.1. Effect of functionalized GO and Fe3O4 

Table 3 presents results of comparing cradle-to-use life cycle impacts of Hg(II) removal by 

functionalized GO-based and Fe3O4-based composites. In Table 3, the results of ANOVA and 

Duncan tests display significant differences between different stages in both adsorbents for 1 kg 

Hg(II) removal in all five impact categories including climate change, water use, cumulative 

energy demand, human toxicity, and ecotoxicity. Results showed that functionalization increases 

capacity adsorption for both adsorbents (see Table 1 in SI). However, for all included impact 

categories in both adsorbents except water use in GO-based, the functionalization increases them 

for 1 kg Hg(II) removal. The results suggest that the environmental impacts of both studied 

adsorbents increase during functionalization, despite the increase in their adsorption capacity. 

Table 3 
Comparison and effect of functionalizing on impact categories studied based on 1 kg Hg removal  

Material Climate change 
kg CO2 eq 

Water use 
M3 

Cumulative 
energy demand 

MJ 

Human toxicity 
CTUh 

Ecotoxicity 
CTUe 

GO 5993.3 ± 278.8 
c
 47.3 ± 2.2 

a 98896.2 ± 4602.4 
c 9.37E-07 ± 4.35E-08 

c
 8.8 ± 0.4 

d
 

MGO 7852.5 ± 273.2 
a
 37.6 ± 1.6 

b 133998.5 ± 4662.8 
b
 9.01E-07 ± 3.14E-08 

c
 10.9 ± 0.3 

c
 

MGO-NH2 7567.8 ± 130.0 
a
 37.1 ± 0.6 

b 143842.8 ± 2455.2 
a
 1.15E-06 ± 1.92E-08

b
 59.7 ± 0.9 

b
 

MGO-NH-SH 7024.2 ± 120.5 
b
  36.5 ± 0.6 

b 147837.0 ± 2543.0 
a
 1.28E-06 ± 2.19E-08

a
 81.7 ± 1.4 

a
 

Material      
Fe3O4 1990.6 ± 67.7 

d
 11.2 ± 0.3 

d
 47663.1 ± 1619.8 

d
 1.54E-07 ± 5.26E-09

d
 2.8 ± 0.0 

d
 

Fe3O4@SiO2 2486.9 ± 119.6 
c
 20.1 ± 0.9 

c
 60235.9 ± 2858.9 

c
 1.89E-07 ± 9.25E-09 

c
 4.0 ± 0.1 

c
 

Fe3O4@SiO-NH2 8741.6 ± 251.5 
b
 38.5 ± 1.1 

b
 167047.7 ± 4810.3 

b
 8.37E-07 ± 2.40E-08

b
 11.1 ± 0.3 

b
 

Fe3O4@SiO-NH-SH 11007.2 ± 113.2
a
 56.1 ± 0.5 

a
 243784.1 ± 2433.7 

a
 1.83E-06 ± 1.88E-08

a
 109.9 ± 1.0 

a
 

NOTE: Different letters (e.g. a, b, c, and d) indicate significant differences between different stages and similar 

letters (e.g. a and a) indicate non-significant differences between different stages at P≤0.05 as determined by 
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ANOVA followed by a multiple range test (Duncan). The decrease of values for the applied abbreviations (e.g. a, b, 

c, and d) are followed as: a>b>c>d. 

 

 

 

3.2. Comparison between MGO-NH-SH and Fe3O4@SiO-NH-SH 

 Fig. 2 depicts the results of t-test comparing the cradle-to-use life cycle impacts of studied 

impact categories for 1 kg Hg removal between MGO-NH-SH and Fe3O4@SiO-NH-SH. The 

results indicated that the average values of climate change, water use, cumulative energy 

demand, human toxicity, and ecotoxicity in MGO-NH-SH and Fe3O4@SiO-NH-SH were in the 

ranges of 7024.2 and 11007.2 kg CO2 eq, 36.5 and 56.1 M3, 147837.0 and 243784.1, 1.28E-06 

and 1.83E-06 CTUh, and 81.7 and 109.9 CTUe, respectively. In total, Fe3O4@SiO-NH-SH is 

higher in all five impact categories than MGO-NH-SH for 1 kg Hg removal; approximately 37, 

34, 40, 31, and 26% more climate change, water use, cumulative energy demand, human 

toxicity, and ecotoxicity, respectively. All results of impact categories indicated that MGO-NH-

SH is more environmentally friendly adsorbent than Fe3O4@SiO-NH-SH for 1 kg Hg(II) 

removal. 
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Fig. 2. Comparison of studied impact categories for 1 kg Hg removal between MGO-NH-SH and 
Fe3O4@SiO-NH-SH; A: Climate change potential, B: Water use, C: Cumulative energy demand, D: 
Human toxicity, and E: Ecotoxicity. 
 

According to Figs 3 and 4, the results for climate change potential are similar for both 

adsorbents. Based on these results, the main factors affecting climate change potential for MGO-

NH-SH and Fe3O4@SiO-NH-SH are use of electricity for heating and cooling (58 and 71%) in 

the synthesis process, similarly to that described in the study of Pini at al.,(Pini et al., 2015) and 

the input of chemical ethanol for washing (21 and 18.5%) in the production stage. Additionally, 

DCM as a solvent in functionalization with an amine group (EDA) contributes with 12% to the 

climate change in MGO-NH-SH. The contributions of other materials for both adsorbents in total 

are less than 10%. Therefore, a reduction of ethanol, DCM, and energy used can decrease 

climate change significantly. These scenarios are tested in sensitivity analysis. 

Regarding water use for both adsorbents, the use of ethanol for washing during the production 

stage of both adsorbents is the main use of water, chiefly owing to water use in the production of 

ethylene and subsequently ethanol. Electricity production is the next contributor to water use. 

Fig.s 3 and 4 show that using toluene in Fe3O4@SiO-NH-SH production and DCC in production 

of both adsorbents has a significant impact on water use for adsorbents. The effect of electricity 

decrease, ethanol, toluene, water, and DCC recovery are further investigated in the sensitivity 

analysis scenarios. 
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                     E: Ecotoxicity 

Fig. 3. The results of all impact categories separately for MGO-NH-SH based on 1 kg Hg 
removal; A: Climate change potential, B: Water use, C: Cumulative energy demand, D: Human 
toxicity, and E: Ecotoxicity. NOTE: the length of the dotted line show effect of every input on 
different impact categories. 

 

The results of cumulative energy demand for both adsorbents are similar to those of the climate 

change potential. Cumulative energy demand (approximately 50%) is the use of electricity (for 

heating, cooling, and sonication) in the production stage. Producing chemical ethanol as a 
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solvent for washing in the production stage of MGO-NH-SH and Fe3O4@SiO-NH-SH 

contributes with 39 and 32% of the cumulative energy demand, respectively. The effects of other 

materials are less than 15% in total. Consumption of energy is so different on laboratory and 

industrial scales that a 95% decline in electricity consumption was investigated as a scenario in 

the sensitivity analysis. The results of study Gavankar et al. (2015) on scaled-up of carbon 

nanotube production showed that scaling up and production volume could reduce 84% to 94% of 

its cradle-to-gate impacts. 
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Fig. 4. The results of each impact category for Fe3O4@SiO-NH-SH based on 1 kg Hg removal; 

A: Climate change potential, B: Water use, C: Cumulative energy demand, D: Human toxicity, and E: 

Ecotoxicity. NOTE: the length of the dotted line show effect of every input on different impact 

categories. 

  

The main contributor to human toxicity and ecotoxicity has been the use of DCC as a coupling 

reagent in the production of both adsorbents. In human toxicity, the main contributor is pyridine, 

used in production of cyclohexyl isocyanide and, subsequently, DCC in the production of both 

adsorbents. Electricity use also has a high effect on human toxicity for studied adsorbents. In 

ecotoxicity, the main contributor is the use of rhodium in the production of cyclohexylamine and 

then of using cyclohexylamine in the production of N-cyclohexyl formamide, and as well as 

using pyridine in the production of cyclohexyl isocyanide and subsequently DCC for production 

of both adsorbents. (See DCC production in SI) After DCC, the use of methanol in the thiol-

functionalization stage has higher impact then other inputs on ecotoxicity. The potential effect of 

reducing these highly-used materials and energy as a results of scale-up, is investigated in 

scenarios including DCC and methanol recovery, and electricity reduction in the sensitivity 

analysis. 

3.3. Sensitivity analysis 
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 Adsorbents, specifically nanoadsorbents, play an important role in water and wastewater 

treatment, and their production is still primarily at laboratory scale (Cui et al., 2015b; W. Zhang 

et al., 2013). Clearly, laboratory scale and industrial scale differ, particularly in term of LC 

(Arvidsson et al., 2015; Gavankar et al., 2015; Kim and Fthenakis, 2013). Hence, sensitivity 

analysis can be important in assessing uncertainty in environmental impacts for scale-up 

production. Furthermore, understanding the main contributing processes in industrial-scale 

production can reduce the number of unknown environmental impacts (Arvidsson et al., 2014). 

The parameters investigated in sensitivity analysis for MGO-NH-SH included recovery of water 

used for washing in the production stage and reduction of electricity use (0–95%), and as well 

acid (HCl + H2SO4), ammonia, ethanol, methanol, DCC, and NHS recovery (0–90%). For 

Fe3O4@SiO-NH-SH, the parameters included water recovery and reduction of electricity use (0–

95%) and ammonia, ethanol, methanol, toluene, DCC and NHS recovery (0–90%), see the Fig. 5 

and 6, and Table S.7 and S.8. 

As the results of sensitivity analysis in Figs 5 and 6 show, recovery of water directly used as a 

washing agent during the productions process of both adsorbents does not create a considerable 

change in the studied impact categories; only a small change (almost 7%) was calculated in the 

water use impact category of MGO-NH-SH. 

As expressed above, due to the difference between electricity used in the laboratory and on an 

industrial scale (Kim and Overcash, 2003), the baseline scenario’s reduction of electricity use by 

95% reduces all impact categories between 30 to 50%, except ecotoxicity (less than 8%). The 

slight decrease in ecotoxicity is mostly due to lower emissions of phenol during production of 

electricity in fossil fuel power plants. This result suggests that the decrease in electricity used by 

fossil fuel power plants can reduce all studied impact categories on an industrial scale; clearly, 
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using green electricity in industry may reduce all included impact categories in this study, as well 

as those not included.  

Recovery of 90% of the acids used in the graphite oxidation process via the Hummer method for 

MGO-NH-SH production showed that all five impact categories studied scarcely ever change 

(Fig. 5). However, the study of Arvidsson et al. (2014) on LCA of 1 kg graphite oxide 

production by the Hummer method demonstrated that 90% acid recovery reduces water use by 

almost two-thirds. But, consistent with our study, they saw no significant change on other 

impacts (cumulative energy demand, human and eco toxicity) (Arvidsson et al., 2014). The 

difference in water use between this study and theirs may be caused by less use of acid in the 

production of MGO-NH-SH due to difference between functional unit of this study ‘1 kg Hg 

removal’ and theirs ‘1 kg graphite oxide production’. Acid recovery is very important on an 

industrial scale, because it can positively affect many other environmental impacts (Arvidsson et 

al., 2014; Uihlein and Schebek, 2009). Recovery of ammonia that as a precipitating agent in co-

precipitation method in magnetization of adsorbents play a vital role, is important as well. 

Hence, while 90% recovery was investigated for both adsorbents, all five impact categories 

scarcely changed; only a minor change was observed, of almost 4% less water use for MGO-NH-

SH than for the baseline (Figs. 5 and 6). 
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Fig. 5. The results of the sensitivity analysis for MGO-NH-SH, showing the importance of the 
single scenarios for the reduction of each impact category in percentage  
 

 

As Figs. 5 and 6 show, DCC recovery reduced climate change, water use, and cumulative energy 

demand by almost 3 to 10% for both adsorbents. The largest reduction was attributed to human 

toxicity and ecotoxicity, roughly 50 and 70% for both studied adsorbents, respectively. As 

mentioned in the previous section, changing from 90% recovery of DCC and baseline of human 

toxicity and ecotoxicity in both adsorbents is mostly the result of emissions of pyridine and 

rhodium during process of DCC production. Therefore, DCC recovery can significantly affect 

the reduction of human toxicity and ecotoxicity on an industrial scale. The recovery of NHS as 

another coupling reagent in the production of both adsorbents scarcely ever changed any of the 

studied impact categories.  
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Fig. 6. The results of the sensitivity analysis for Fe3O4@SiO-NH-SH, showing the importance of 
the single scenarios for the reduction of each impact category in percentage 

 

 

Ethanol recovery during the production process of both adsorbents reduced climate change 

almost 20%, water and cumulative energy demand almost 30%, and less than 3% for human 

toxicity and ecotoxicity. These increases in climate change, water, and cumulative energy 

demand impact categories in the baseline by greater than 90% ethanol recovery are mostly due to 

use of water and energy in production of ethylene and then hydration of ethylene to ethanol. 

These results demonstrate that chemical ethanol recovery is useful and important for reduction of 

environmental impacts in industrial scale production of these adsorbents.  

4. Conclusion 

This study developed an environmental assessment of nanoadsorbents as a special application of 

nanoproducts. The results demonstrate that functionalization of both studied nanoadsorbents in 
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order to increase their adsorption capacity cause a large increase in their environmental impacts 

and may differ for other nanoadsorbent products.  

Fig. 2, with the results of all included impact categories for both studied nanoadsorbents (MGO-

NH-SH and Fe3O4@SiO-NH-SH, suggest that MGO-NH-SH has a lower environmental impact 

in all included impact categories compared to Fe3O4@SiO-NH-SH for 1 kg Hg removal. 

Furthermore, in a prospective approach, finding factors that perform as the main contributors in 

all five impact categories for both nanoadsorbents is advisable. For example, Arvidsson et al. 

(2014) showed that the hydrazine and diethyl ether used in graphene production by chemical 

reduction and ultrasonication, respectively, are strong contributors in all studied impact 

categories. In this study, electricity used for heating and cooling and chemical ethanol used in 

washing in production are the main contributors in cumulative energy demand, water use, and 

climate change. Similarly, DCC plays an important role in human toxicity and ecotoxicity. In 

industrial production of these nanoadsorbents, material recovery can play a big role in reducing 

impacts in all included impact categories, but it is important to know where efforts to recover has 

the largest effect. For example, the recovery of 90% of DCC in the production stage of MGO-

NH-SH and Fe3O4@SiO-NH-SH reduces human toxicity and ecotoxicity by about 50 and 70%, 

respectively, whereas the NHC recovery had no visible effect in any impact category.  

Overall, these results lead to a generalized finding, that the production of nanomaterials, 

particularly in specialized applications, e.g. nanoadsorbents, can be optimized through 

performing an assessment of the environmental impacts of their production and use at an early 

stage of technological development, which assist in understanding of their thought environmental 

impacts. 
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