

Propane Oxidation at High Pressure and Intermediate Temperatures

Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

Publication date: 2017

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Hashemi, H., Christensen, J. M., & Glarborg, P. (2017). *Propane Oxidation at High Pressure and Intermediate Temperatures*. Poster session presented at 8th European Combustion Meeting, Dubrovnik, Croatia.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Propane Oxidation at High Pressure and Intermediate Temperatures

Hamid Hashemi, Jakob M. Christensen, Peter Glarborg

Department of Chemical Engineering, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark Email: pgl@kt.dtu.dk (P. Glarborg), hah@kt.dtu.dk (H. Hashemi)

Motivations	Results: fuel-lean mixture	
• Dreaments a major common set in IDC	$3 40 \boxed{\begin{array}{c} \hline \\ \hline $	

- Propane: a major component in LPG
- Propane: a minor but sensitive component of natural gas
- Engines and gas turbines: need experimental data at high pressures and intermediate temperatures

Experimental: laminar flow reactor

- ✤ Quartz reactor to minimize surface reactions
- ✤ Steel pressure shell to achieve high pressures MFCI –
- ✤ Temperature: 500—900 K
- ✤ Pressure: 100 bar
- ✤ Isothermal Zone Length: 42—44 cm
- ✤ Residence time: 8—11 s
- ✤ Measurement via GC

Fig 2. Schematic diagram of the high pressure laminar flow reactor

Chemical kinetics model

- \therefore H₂/CO/HC's subsets from recent work by Glarborg et al. [1-4].
- \bullet C₃ subset is reviewed and introduced in the present work.
- Low temperature sequences for propane oxidation is adopted from Goldsmith et al. [5].

Fig 5. Results of experiments under oxidizing conditions (146 ppm C_3H_8 and 3.405% O_2 in N_2 , $\Phi=0.02$) at 100 bar pressure.

Propane concentration dropped sharply at T>600 K for a fuel-lean mixture (oxidizing conditions), and propane vanished from the exhaust at T>725 K. The model predicted slower reactivity compared to the experiments, so the fuel conversion was slightly underpredicted by the model.

Fig 3. Results of experiments under reducing conditions (1285 ppm C_3H_8 and 511 ppm O_2 in N_2 , Φ =12.5) at 100 bar pressure.

The fuel oxidation started at 700–725 K for a fuel-rich mixture (reducing conditions), and the major detected products have been CO, C_3H_6 , CH_4 , and C_2H_4 . The model was able to reproduce the onset of oxidation as well as the concentrations of intermediate components precisely.

Results: stoichiometric mixture

Fig 6. Left: Reaction pathways for propane oxidation under stoichiometric conditions (750 K, 100 bar). *Right:* Sensitivity of C₃H₈ prediction under flow-reactor conditions (RD: reducing, ST: stoichiometric, OX: oxidizing conditions) at 100 bar. The component HOOCH₂CH₂CH₂OO is named "well 1" in above.

According to the results of sensitivity analyses, propane oxidation is largely controlled by Habstraction by HO₂ from propane (R1). The branch leading to iC_3H_7 shows a larger sensitivity compared to the other one (except for oxidizing conditions). The reaction between C_3H_8 and OH (R2) is also sensitive. While the branch to nC_3H_7 promotes the oxidation, the other branch to iC_3H_7 inhibits the fuel conversion. The H-abstraction by CH_3OO from propane (R3) is also sensitive for reducing and stoichiometric conditions.

$C_{3}H_{8} + HO_{2} = nC_{3}H_{7} + H_{2}O_{2}$	(R1a)
$C_{3}H_{8} + HO_{2} = iC_{3}H_{7} + H_{2}O_{2}$	(R1b)
$C_3H_8 + OH = nC_3H_7 + H_2O$	(R2a)
$C_3H_8 + OH = iC_3H_7 + H_2O$	(R2b)
$C_3H_8 + CH_3OO = iC_3H_7 + CH_3OOH$	(R3)
	(1 , 2)

Analysing the reaction pathway of propane oxidation revealed that for stoichiometric conditions and at 750 K, the major path for propane oxidation begins with H-abstraction by OH and HO₂ (R1 & R2). If the H-abstraction results in an iC_3H_7 radical, it will add to molecular oxygen to give iC_3H_7OO , which later decomposes to propene. If R1 and R2 yield nC₃H₇, then decomposition to ethene is favoured compared to addition of nC_3H_7 to molecular oxygen.

Fig 4. Results of experiments under stoichiometric conditions (121 ppm C_3H_8 and 547 ppm O_2 in N_2 , $\Phi=1.1$) at 100 bar pressure.

For a stoichiometric mixture, the fuel conversion started around 725 K. At T>750 K, propane was oxidized almost completely. The major products of the oxidation were CO and CO₂ and the concentration of propene and ethene decreased sharply at T>775 K. The model captured the onset temperature of ignition accurately but it seems that CO oxidation to CO₂ at high temperatures was not precisely captured by the model.

Summary

Propane oxidation at intermediate temperatures (500–900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600-725 K, depending on mixture stoichiometry. The model agreed well with the measurements of fuel-rich and stoichiometric mixtures while the model underpredicted the fuel conversion for fuel-lean conditions. Sensitivity analyses revealed the importance of H-abstraction reactions by HO₂, OH, and CH₃OO in controlling propane oxidation at 750 K.

***** References

[1] H. Hashemi, J. M. Christensen, S. Gersen, P. Glarborg, "Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic modeling", Proc. Combust. Inst. 35 (2015) 553—560. [2] H. Hashemi, J. M. Christensen, S. Gersen, H.B. Levinsky, S.J. Klippenstein, P. Glarborg, "High-pressure oxidation of methane", Combust. Flame 172 (2016) 349-364. [3] J. Lopez, C. Rasmussen, H. Hashemi, M. Alzueta, Y. Gao, P. Marshall, C. Goldsmith, P. Glarborg, "Experimental and kinetic modeling study of C₂H₂ oxidation at high pressure", Int. J. Chem. Kinet. 48 (2016) 724—738. [4] H. Hashemi, J.G. Jacobsen, C.T. Rasmussen, J.M. Christensen, P. Glarborg, S. Gersen, M. Essen, H.B. Levinsky, S.J. Klippenstein, "High-pressure oxidation of ethane", Combust. Flame (2017), accepted. [5] C. F. Goldsmith, W. H. Green, S. J. Klippenstein, "Role of $O_2 + QOOH$ in low-temperature ignition of propane. 1. Temperature and pressure dependent rate coefficients", J. Phys. Chem. A 116 (2012) 3325—3346.