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ABSTRACT 

In metal forming processes, friction between tool and workpiece is an important parameter 

influencing the material flow, surface quality and tool life. Theoretical models of friction in metal 

forming are based on analysis of the real contact area in tool-workpiece interfaces. Several 

research groups have studied and modeled the asperity flattening of workpiece material against 

tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim 

to improve understanding of friction in metal forming. This paper aims at giving a review of the 

most important contributions during the last 80 years covering experimental techniques, upper 

bound solutions, slip-line analyses and numerical simulations. Each of the contributions shed light 

on the importance of the real contact area and the influencing parameters including the material 

properties, surface conditions, normal pressure, sliding length and speed, temperature changes, 

friction on the flattened plateaus and deformation of the underlying material. The review 

illustrates the development in the understanding of asperity flattening and the methods of 

analysis. 
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1. INTRODUCTION 

The adhesion theory was the first quantitative theory on friction, which was proposed 

independently by three different research groups around 1940; namely Holm (1938), Ernst and 

Merchant (1940) and Bowden and Tabor (1942). The theory was based on analyzing the individual 

plastic deformation of contacting asperities between two metal surfaces and shearing due to 

adhesion and cold welding of the asperities. Bowden and Tabor observed that the linearity 

between normal pressure and friction in Amontons-Coulomb’s model disappears when the normal 

pressure becomes large. A solution to this problem was proposed by Orowan (1943) in modeling 

of rolling by applying the shear flow stress as an upper limit. The present paper aims at providing a 

concise summary of the most important contributions since these early findings until the present 

state of the art of friction modeling in metal forming. 

 

 

2. CONTRIBUTIONS BEFORE 1970 

Following the theory of friction based on asperity contact by Bowden and Tabor (1942), research 

was intensified in understanding what happens in the junctions at the asperity contacts and how 

the real area of contact develops. Based on slip-line analysis, Green (1954a,1954b) studied the 

stress fields associated with different wedge shaped joints. Fig. 1a shows an illustration of a joint, 

and Fig. 1b shows an example of one of Green’s slip-line fields. Both strong (as in Fig. 1b) and weak 

joints were analyzed and experimental validation of the assumed deformation fields was provided 

by relative movement between wedges of plasticine and mild steel. Plasticine against plasticine 

was used to simulate similar surfaces in contact, and mild steel against plasticine was used to 

simulate a hard surface in contact with a softer surface, which is the typical situation in metal 

forming. In analysis of junction growth upon relative sliding, Tabor (1959) extended the theory of 

asperity flattening to include the increase of real contact area due to reduction of the yield 

pressure by the imposed shear stress upon relative sliding. Shaw et al. (1960) discussed the 

development of the real area of contact in metal forming processes and suggested a smooth 

transition between the already accepted linear increase at low normal pressures and full contact 

area at high normal pressures. The same transition applies for the frictional stress between tool 

and workpiece. Shaw et al. (1960) provided experimental evidence for the smooth transition by a 
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modified Brinell hardness test. The transition can be attributed to subsurface deformation and 

interaction between the deformation fields of the asperities. It was already mentioned by Bowden 

and Tabor (1942) that friction cannot be regarded as a pure surface effect because plastic bulk 

deformation influences the formation of contact area. 

 

 

Additional weight to this statement was later given by Greenwood and Rowe (1965) and Fogg 

(1967-1968). Greenwood and Rowe (1965) showed experimentally by compression tests of 

cylinders with different height to diameter ratios that asperity flattening increases with surface 

expansion. Fogg (1967-1968) showed experimentally that bulk straining results in larger contact 

area at constant nominal normal pressure in an apparatus illustrated in Fig. 2a. Fogg explained it 

by the tangential tensile stresses reducing the yield pressure necessary to flatten the asperities 

similar to the effect of shear stress as explained by Tabor (1959). The study by Fogg had focus on 

stretch forming, where the sheet material experiences elongation at normal pressures not 

resulting in full contact area. The reduction of yield pressure was supported by analysis of effective 

hardness under different tangential loading, e.g. under biaxial stretching at the bottom of a deep 

drawing operation as illustrated in Fig. 2b. 

 

 

 

3. CONTRIBUTIONS IN THE 1970S 

A great deal of the research in the 1970s was focused on theoretical determination of the real 

contact area at high normal pressures, where individual asperity deformation no longer prevails. 

The focus on the real area of contact was further justified at the beginning of the decade by 

Kasuga (1971), who proved that friction is proportional to the real contact area at both low and 

high normal pressure. A common assumption was to neglect bulk deformation except for the 

subsurface layers, where interaction between asperities takes place. Pullen and Williamson (1972) 

stated a lower bound to the real area of contact by simple analytical assumptions to the asperity 

deformation. The analytical expression was in good agreement with their experimental results 
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over a wide range of normal pressures covering the transition zone between low and high normal 

pressures. Wanheim (1973) suggested a slip-line solution inspired by plane strain extrusion for 

theoretical calculation of the real contact area from low to high normal pressures and presented 

validation by experiments. Wanheim et al. (1974) extended the slip-line solution to account for 

frictional sliding (Fig. 3a) and presented real contact area (Fig. 3b) and frictional stress (Fig. 3c) as 

function of normal pressure for different amounts of friction on the flattened plateaus. The 

friction stress was assumed proportional to the real contact area ratio and the shear flow stress 

with the proportionality factor being the friction factor between tool and workpiece in the real 

contact. The model was verified by Bay and Wanheim (1976) in controlled, high pressure sliding 

contact experiments between model asperities and a plane tool surface. The effect of trapped 

lubricant was studied by Nellemann et al. (1977), the resulting surface roughness and average 

effective strain of the deformed asperities were predicted by Bay et al. (1975), and the effect of 

asperities on asperities was analyzed by Steffensen and Wanheim (1977). Wanheim and Bay 

(1978) gave an overview of the model. 

 

 

At the end of the decade, Challen and Oxley (1979) proposed three slip-line models accounting for 

rubbing (Fig. 4a), wear (Fig. 4b) and cutting (Fig. 4c) and predicted on this basis the three regimes 

of asperity deformation depending on the asperity angle between a hard and a soft asperity and 

their mutual friction factor (Fig. 4d). 

 
 

 

4. CONTRIBUTIONS IN THE 1980S 

At the threshold of the 1980s, Wanheim and Abildgaard (1980) suggested plastic waves as a 

mechanism for friction and showed by a slip-line analysis the influence of tool roughness on 

apparent friction. Fig. 5 shows the apparent friction factor versus the asperity angle with the real 

friction factor in the tool-workpiece interface as a parameter. Luo et al. (1984) studied the plastic 

wave phenomena by upper bound solutions, and Bin and Luo (1988) applied the emerging FEM in 

their study to predict strain distributions and apparent friction. These groups also proved the 
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existence of the phenomena by experiments. Challen et al. (1984a,1984b) studied by slip-line 

analyses and experiments the relative sliding between a hard tool with wedge shaped grooves and 

a soft material. The development of the filling of the hard tool and the transition between plastic 

waves and wear were studied. Fig. 6 shows examples of the slip-line fields used by Challen and 

Oxley (1984b) in the study of filling from a low degree (Fig. 6a) to almost complete filling (Fig. 6b). 

Asperity flattening was still a main research topic due to the lack of theoretical modeling involving 

bulk deformation besides the interaction between asperities. Sheu and Wilson (1983) presented 

an upper bound solution for the asperity flattening under bulk deformation by analogy with flat 

hardness indentations. Later refinements of the upper bound solution, Wilson and Sheu (1988), 

allowed matching the theoretical results with rolling experiments. Sutcliffe (1988) suggested the 

slip-line field in Fig. 7a for theoretical determination of the real contact area in asperity flattening 

under bulk deformation. The slip-line field consists of the combination of the slip-line fields for 

indentation into a thick plate and uniform deformation. Solution of the field together with 

geometrical consideration of triangular asperities resulted in a differential equation for the real 

contact area as function of normal pressure, longitudinal strain and flank angle. Fig. 7b shows the 

resulting set of curves for flank angles of 20°. Makinouchi et al. (1988) simulated asperity 

flattening by an FE model including three asperities with free sides (Fig. 8a), where strain 

hardening was included in the analysis. They were able to match experimental and simulated real 

contact area as function of the compression in terms of the height reduction (Fig. 8b). Ike and 

Makinouchi (1990) extended the model to include five asperities and also presented a single 

asperity with periodic boundary conditions. They included longitudinal stresses to extend the 

original model from being with only free sides and were thereby able to analyze different levels of 

subsurface deformation with their models. 

 

 

 

5. CONTRIBUTIONS IN THE 1990S 

Wilson (1991) extended the use of previous work (1983,1988) to include more complex surface 

contact including a rough tool in relative sliding with a softer workpiece material. Korzekwa et al. 

(1992) applied numerical modeling by FEM to simulate asperity deformation under bulk 
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deformation in 3D (Fig. 9a). They analyzed the influence of different straining directions relative to 

the direction of the long 2D asperities. Fig. 9b shows an example of predicted real area of contact 

as function of bulk effective strain for three different loading directions, where φ=0 corresponds 

to plane strain tension perpendicular to the 2D asperities, φ=2.034 is close to uniaxial tension 

parallel to the 2D asperities, and φ=2.678 is close to uniaxial compression perpendicular to the 2D 

asperities. They additionally showed the possibility of simulating asperity flattening with a 3D 

layout of asperities. 

 

 

Saha and Wilson (1994) presented experimental results from a friction test, where the workpiece 

strip material is simultaneously under normal pressure and in-plane elongation. Depending on the 

strip material, they experienced both increasing and decreasing friction with increasing 

elongation, and they explained it by dominant asperity flattening in the former case and dominant 

roughening due to coarse grains in the latter case. A new view of friction modeling was presented 

by Carter (1994), who suggested that the modeling should be based on the deviatoric component 

of the interfacial normal pressure rather than the total normal pressure which was commonly 

used and still is. Carter’s argument was that when the plastic deformation itself is independent of 

the hydrostatic pressure, the friction modeling by the adhesion theory should also be independent 

of the hydrostatic pressure. At the end of the decade, Sutcliffe (1999) proposed theoretical 

modeling of asperity flattening under bulk deformation taking into account different wavelengths 

of the asperities. Sutcliffe was able to calculate the real area of contact as well as the changing 

roughness based on a model with asperities with two different wavelengths and validated the 

predictions by experiments. 

 

 

6. CONTRIBUTIONS SINCE 2000 

Developments of numerical algorithms during the past decades made the use of numerical 

simulations continuously growing since the turn of the millennium. Zhang et al. (2003) 

demonstrated numerical simulation of local tool-workpiece contact to establish a local friction 

model based on specific tool and workpiece roughnesses and applied the model in simulation of 
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deep drawing. Hol et al. (2012,2015) presented multi-scale simulation of the frictional effects in 

sheet metal forming, where surface asperities were modeled by bars and statistical parameters as 

illustrated in Fig. 10a. The asperity flattening was modeled by energy balance taking into account 

the interaction between the deformable bars. Local friction coefficients were estimated based on 

the real surface topographies (Fig. 10b) through the analytical expressions taking in the statistical 

surface parameters. Asperity flattening under normal as well as tangential loading was included 

along with the local material flow near rough tool surfaces. The local information on friction 

coefficients were then supplied to a full scale simulation of sheet metal forming (Fig. 10c). 

 

 

Wang et al. (2014) presented a testing apparatus capable of flatten asperities under bulk 

deformation. They also showed numerical simulation of their five-asperity test with an example of 

the resulting real contact area as function of effective bulk plastic strain (Fig. 11a). They proposed 

a new friction model as shown in Fig. 11b, where a critical normal pressure separates the two 

regimes defined by Amontons-Coulomb’s law at low normal pressures and the constant friction 

model at high normal pressures. They provide an expression for the critical pressure and suggest 

an expression linking the friction coefficient µ and the friction factor m, such that it is enough to 

estimate the friction coefficient at low pressures for determining the full friction model. They take 

into account the fact that the flattened asperities are not in full contact with the tool due to higher 

order real contact areas as described by Steffensen and Wanheim (1977) and roughening of the 

surface due to grain rotation upon elongation. Fig. 11c shows the friction model by Wang et al. 

(2014) together with experimental data. In a later contribution, Wang et al. (2015) included strain 

hardening in their analysis of asperity flattening.  Nielsen et al. (2016) focused on determining the 

real contact area ratio as function of normal pressure and longitudinal bulk strain for strain 

hardening materials by experiments and FE simulations. Results for aluminum 1050 are shown in 

Fig. 12. 

 

 

7. CONCLUSIONS 
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Having presented a subjective overview of the most important contributions to friction modeling 

over the last 80 years, it seems to be necessary to still work on full mapping of the real contact 

area as function of normal pressure, bulk deformation, material properties and surface conditions. 

It is also necessary to work closer to the real sizes of asperities rather than model asperities, and 

finally, it is expected that existing FE codes will more commonly be enhanced by new 

developments of friction modeling in the future. 
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Figures 

 

 

Figure 1. Illustrations by Green (1954a) showing (a) strong junction in relative sliding and (b) the associated slip-line 
field for theoretical analysis. 

 

Figure 2. Illustrations by Fogg (1967-1968) showing (a) compression of asperities under tangential tensile loading and 
(b) hardness indentation under biaxial stretching. 
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Figure 3. Illustrations by Wanheim et al. (1974) showing (a) proposed slip-line field for asperity flattening under 
frictional sliding; (b) theoretical real contact area for different amounts of friction on the flattened plateaus as 
function of normal pressure, and (c) the corresponding frictional sliding. 

 

Figure 4. Different regimes by Challen and Oxley (1979). The three regimes were analyzed by slip-line fields for (a) 
rubbing, (b) wear and (c) cutting, where the latter is here exemplified by the case of restricted contact. The diagram 
(d) shows the three regimes as function of asperity angle and friction. 
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Fig. 5. Apparent friction factor m versus asperity slope  with real friction factor m* as parameter by Wanheim and 
Abildgaard (1980). 

 

 

Figure 6. Slip-line fields by Challen and Oxley (1984b) for the analysis of the transition between (a) local and (b) almost 
full contact during frictional sliding. 
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Figure 7. Illustrations by Sutcliffe (1988) showing (a) a combined slip-line field for hardness indenters and uniform 
deformation for theoretical analysis of asperity flattening with subsurface deformation; (b) resulting contact area ratio 
for different normal pressures as function of longitudinal bulk strain with asperity flank angles of 20°. 
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Figure 8. Finite element analysis of asperity flattening by Makinouchi et al. (1988) illustrated by (a) the three-asperity 
model used for simulation and experimentation and (b) the comparison between experimental and simulated contact 
area ratio as function of height reduction. 

 

Figure 9. Three-dimensional finite element analysis of asperity flattening by Korzekwa et al. (1992), where (a) is the 
boundary value problem to be solved and (b) is an example of the results by contact area ratio as function of bulk 
effective strain and straining direction perpendicular to the normal loading. 
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Figure 10. Friction modeling by Hol et al. (2015). (a) Representation of workpiece surface asperities by bars and 
statistical parameters for calculation of asperity flattening. (b) Measured surface and indication of surface 
deformation. (c) Simulation of cross-die product and locally predicted friction coefficients. 
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Figure 11. Friction law by Wang et al. (2014) illustrated by (a) simulated real contact area as function of effective 
strain, (b) friction law by combining Amontons-Coulomb’s model and constant friction, and (c) friction law with 
experimental data compared to the theoretical model with varying wedge slope. 

 

 

Figure 12. Simulated and experimental real area of contact at different normal pressures as function of subsurface 
longitudinal strain by Nielsen et al. (2016). 
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