
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 18, 2024

Computational Modeling of Medical Images of Brain Tumor Patients for Optimized
Radiation Therapy Planning

Agn, Mikael

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Agn, M. (2017). Computational Modeling of Medical Images of Brain Tumor Patients for Optimized Radiation
Therapy Planning. Technical University of Denmark. DTU Compute PHD-2016 No. 442

https://orbit.dtu.dk/en/publications/7952b5e4-0d58-4357-b14c-d3e865c20b7b


Computational Modeling of
Medical Images of Brain Tumor
Patients for Optimized Radiation

Therapy Planning

Mikael Agn

Kongens Lyngby 2016
PHD-2016-442



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

PHD-2016-442. ISSN: 0909-3192



Summary (English)

In brain tumor radiation therapy, the aim is to maximize the delivered radiation
dose to the targeted tumor and at the same time minimize the dose to sensitive
healthy structures – so-called organs-at-risk (OARs). When planning a radiation
therapy session, the tumor and the OARs therefore need to be delineated on
medical images of the patient’s head, to be able to optimize a radiation dose plan.
In clinical practice, the delineation is performed manually with limited assistance
from automatic procedures, which is both time-consuming and typically suffers
from poor reproducibility. There is, therefore, a need for automated methods
that can segment both brain tumors and OARs. However, there is a noticeable
lack in the literature of methods that simultaneously segment both types of
structures.

To automatically segment medical images of brain tumor patients is difficult
because brain tumors vary greatly in size, shape, appearance and location within
the brain. Furthermore, healthy structures surrounding a tumor are pushed and
deformed by the so-called mass effect of the tumor. Moreover, medical imaging
techniques often result in imaging artifacts and varying intensity across imaging
centers.

The goal of this PhD-project was to develop automated segmentation methods
that can handle both brain tumors and OARs. In the first part of the project,
we developed a model for tumor shape and used it to develop a fully automated
generative method specifically for brain tumor segmentation. This method per-
formed favorably compared to other state-of-the-art methods. In the second
part of the project, we used a probabilistic atlas-based model capable of de-
tailed modeling of the spatial organization in a healthy brain, and extended it
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to handle various OARs. We incorporated this model into the previously used
modeling framework. In experiments, we showed that the resulting model was
capable of simultaneous segmentation of brain tumors and OARs, while also
being capable of adapting to varying image sequences and images from different
imaging centers.



Summary (Danish)

I strålebehandling af hjernetumorer er målet at maksimere leveret strålingsdosis
til den målrettede tumor og samtidig minimere dosis til følsomme sunde struktu-
rer - såkaldte organs-at-risk (OARs). Når man planlægger en stråleterapi session
skal derfor tumoren og de sunde strukturerne afgrænses på medicinske billeder
af patientens hoved, for at kunne optimere en strålingsdosisplan. I klinisk praksis
udføres afgrænsningen manuelt med begrænset hjælp fra automatiske procedu-
rer, hvilket er både tidskrævende og typisk fører til dårlig reproducerbarhed. Der
er derfor behov for automatiserede metoder, der kan segmentere både hjernetu-
morer og OARs. Der er imidlertid en mærkbar mangel i litteraturen af metoder,
der samtidig kan segmentere begge typer af strukturer.

At automatisk segmentere medicinske billeder af hjernetumorpatienter er van-
skeligt, fordi hjernetumorer varierer meget i størrelse, form, udseende og place-
ring i hjernen. Endvidere skubbes og deformeres sunde strukturer af tumoren.
Desuden resulterer medicinske scanningsteknikker ofte i artefakter i billederne
og varierende intensitet på tværs af billeddiagnostiske centre.

Målet med dette PhD-projekt var at udvikle automatiserede segmenteringsmeto-
der, der kan håndtere både hjernetumorer og OARs. I den første del af projektet
udviklede vi en model der beskriver udformningen af tumorer, og brugte den
til at udvikle en fuldautomatisk generativ metode til segmentering af hjernetu-
morer. Denne metode præsterede fordelagtigt i forhold til andre state-of-the-art
metoder. I den anden del af projektet brugte vi en probabilistisk atlasbaseret
model, som er i stand til detaljeret modellering af den rumlige organisation i
en sund hjerne, og udvidede den til at håndtere forskellige OARs. Vi inkorpo-
rerede denne model i den tidligere anvendte modelleringsramme. Vi viste i eks-
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perimenter, at den resulterende model var i stand til samtidig segmentering af
hjernetumorer og OARs. Den var også i stand til at tilpasse sig til varierende
billedsekvenser og billeder fra forskellige billeddiagnostiske centre.
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Chapter 1

Introduction

The goal of this PhD project was to develop segmentation methods that can be
of use when planning a radiation therapy session to treat patients with brain
tumors. Although radiation therapy can be used to treat many types of brain tu-
mors, we focused mainly on primary glioblastomas, which are the most common
and severe type of tumors originating within the brain [Preusser et al., 2011].
These high-grade tumors are typically treated with a combination of surgical re-
moval of tumor tissue, chemotherapy and radiation therapy [Chinot et al., 2014].
In a radiation therapy session, the patient’s head is subjected to radiation beams
from different directions, with the aim of maximizing the delivered radiation dose
to the targeted tumor while minimizing the dose to sensitive healthy structures
– so-called organs-at-risk [Shaffer et al., 2010].

In the planning of a radiation therapy session, a radiation dose plan need to
be optimized. To be able to optimize this plan, the location of the tumor tar-
get and the organs-at-risk need to be known. Therefore, a number of medical
images are acquired of the patient’s head and the structures of interest are
subsequently delineated on these images. In clinical practice, the delineation
is performed manually by a radiologist with limited assistance from automatic
procedures. This manual procedure is time consuming for the radiologist and
it is known that – even for radiologists – the inter-rater variability is high
[Dolz et al., 2015b, Deeley et al., 2011, Menze et al., 2015]. There is therefore
a need for automated methods that are capable of segmenting both the tumor
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target and the organs-at-risk. However, there is a notable lack in the literature
of methods for simultaneous brain tumor and organ-at-risk segmentation.

To automatically segment medical images of brain tumor patients is difficult for
two main reasons. The first reason is that tumors in themselves are difficult
to model. Brain tumors vary greatly in size, shape and location within the
brain. Furthermore, tumors might have been partly removed by surgery in a
previous treatment stage. The appearance of tumor tissue in medical images
is also complicated due to varying biological changes both between tumors and
within one tumor. The second reason is that healthy structures surrounding a
tumor are pushed and deformed by the growth of the tumor, due to the so-called
mass effect. Many brain tumor patients are also older with co-occurring age-
related abnormalities in the brain. Moreover, the medical imaging techniques
often result in imaging artifacts and varying intensity across imaging centers.
For these reasons, computational modeling of medical images for brain tumor
patients is both a challenging and interesting task.

1.1 Contributions

For paper A, we developed a generative method specifically focused on brain
tumor segmentation. We participated with the method in the Brain Tumor
Segmentation (BRATS) challenge at the Brainles workshop held in conjunction
with the 2015 MICCAI conference. In that challenge, our method was among
the top-performing methods. On tumor core – which is the region of interest
in radiation therapy – our method performed particularly well, obtaining the
highest average Dice score among all methods.

In paper B, we proposed an extension of the previous method aimed to han-
dle organs-at-risk. To be able to also model organs-at-risk, we incorporated
a whole-brain probabilistic atlas into the modeling framework. This atlas has
previously been thoroughly validated for detailed whole-brain segmentation on
healthy subjects. We showed the feasibility of our approach on a small data
set of glioblastoma patients by evaluating the segmentation of tumor core and
two organs-at-risk already included in the atlas – namely hippocampus and
brainstem.

In paper C, we presented the full generative method for simultaneous brain
tumor and organs-at-risk segmentation. To increase the relevance for radiation
therapy planning, we included several other important organs-at-risk in the
probabilistic atlas model. Primarily, we extended the whole-brain atlas to model
non-brain structures in the eye socket region. In this paper, we described the
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full modeling framework in more detail, showed the flexibility of the method in
including new medical images and validated the segmentation performance on a
larger data set and for additional organs-at-risk. To the best of our knowledge,
a simultaneous brain tumor and organs-at-risk segmentation method has not
been presented before.

In Paper D, an approach based on convolutional neural networks (CNNs) was
presented for brain tumor segmentation. Although 3D CNNs have been used
in a few approaches for brain tumor segmentation, CNNs are typically trained
in 2D to reduce the complexity of the filters that need to be learned, and to
lower the computational burden. However, when a CNN is trained only on 2D
patches from e.g., transversal slices, the connectivity between the slices is lost.
To improve on the connectivity between slices, the approach in this paper uses
an ensemble of 2D CNNs. The segmentation is performed in three steps. For
the first step, three CNNs are trained for segmenting the whole tumor region
– one for each image plane, i.e., the transverse, sagittal and coronal plane. A
segmentation is then obtained by performing voxel-wise majority voting on the
outputs of these three CNNs. In the second step, the segmentation is refined
using a cellular automaton-based seed growing method called growcut. Finally,
in the third step, tumor core and enhanced core are segmented within the whole
tumor region by an additional ensemble of 2D CNNs. The method was shown
to give competitive performance on the test data for the 2014 BRATS challenge.
In this work, I helped mainly with formulating the method on a general level,
writing parts of the introduction and also proof-reading the paper.

1.2 Overview of thesis

This thesis consist an overview of the research conducted during the PhD project
and the four papers presented in the previous section. The overview is designed
to act as a complement to the papers. Here, we will present the developed
methods on a higher level of abstraction and further discuss the background,
research and some aspects of the developed models not included in the papers.
The overview is divided into the following chapters:

• Chapter 2 presents an overview of the radiation therapy treatment pro-
cedure and the typical medical images acquired during the planning of a
radiation therapy session.

• Chapter 3 presents an overview of current methods related to the segmen-
tation of medical images for brain tumor patients.
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• Chapter 4 describes the first part of the PhD project, where we focused ex-
clusively on modeling and segmenting brain tumors. This chapter mainly
describes the research related to paper A.

• Chapter 5 describes the second part of the PhD project, where we focused
on the modeling of organs-at-risk and the joint segmentation of brain
tumors and organs-at-risk. This chapter describes the research related to
papers B and C.

• Chapter 6 provides the conclusion of the thesis, where we summarize the
conducted research and the developed methods. Here, we also discuss
possible ways forward to further develop the methods presented in the
thesis.



Chapter 2

Radiation therapy
treatment of brain tumors

This chapter describes the radiation therapy treatment procedure and the med-
ical images acquired when planning a radiation therapy session. The chapter is
divided into the following sections:

• The first section focuses on the medical images acquired to visualize brains
with tumors, which are needed when planning a radiation therapy session.

• The second section briefly describes the planning and realization of a ra-
diation therapy session.

2.1 Medical images of brain tumor patients

When planning a radiation therapy session various medical images are acquired
of the patient’s head. These images are acquired with various imaging techniques
or modalities, such as X-ray computed tomography (CT), magnetic resonance
imaging (MRI) and positron emission tomography (PET). An example of such
a set of images can be seen in figure 2.1. A CT scan is crucial for computing the
optimal radiation dose distribution, as it can be used to calculate the attenuation
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Figure 2.1: Set of medical images often acquired in radiation therapy planning
of glioblastomas. Upper row from left to right: MR-sequences T1c,
T2 and Flair. Lower row: FET-PET on the left, CT on the right.

and scatter of high-energy photon radiation passing through tissues in the head.
However, CT scans have rather poor soft tissue contrast and are thus not optimal
for segmenting brain structures. Instead, Magnetic resonance (MR) scans are
widely used in order to segment the tumor target and the organs-at-risk, as this
imaging modality has excellent soft tissue contrast. Additionally, other imaging
modalities can be used for visualizing certain aspects of tumor tissue, such as
PET that can visualize metabolic information.

MRI uses the fact that hydrogen atoms in an external magnetic field can absorb
and emit radio-frequency radiation. Soft tissue in the human body contains
large amounts of hydrogen atoms, which behave differently depending on their
composition in a tissue. Therefore, MRI can be used to acquire images with
a good contrast between different types of soft tissues. By varying acquisition
parameters in a so-called pulse sequence, soft tissue contrasts highlighting certain
tissue differences can be obtained. To visualize brains with tumors, a series of
sequences are typically acquired, detailed in an imaging protocol. This series
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of acquired images is also referred to as a multi-sequence image. The standard
sequences are detailed in table 2.1.

Table 2.1: Sequence types used in standard MRI protocols for gliomas.

Sequence
short name
T1 T1-weighted sequences are the most commonly used for seg-

menting healthy brain tissue, since they result in images
with a good contrast between gray and white matter struc-
tures in the brain. Especially the 3D-acquired sequence
MPRAGE results in high-quality images with a good res-
olution.

T1c In a contrast-enhanced T1-weighted image, a contrast-
enhancing agent is injected into the patient’s blood stream
prior to scanning. The regions where the agent accumu-
lates will then have an enhanced contrast in the image.
Gadolinium is commonly used for patients with high-grade
gliomas. This agent cannot cross the intact blood-brain bar-
rier. Brain regions with a damaged blood-brain barrier will
thus be contrast enhanced, which is a characteristic of high-
grade gliomas.

T2 In comparison to T1-weighted sequences, T2-weighted se-
quences obtain a superior visualization of many abnormali-
ties – such as edema and tumor tissue. However, the bright
signal intensity of abnormalities in a T2 image is similar to
that of free-flowing fluid such as cerebrospinal fluid (CSF).

FLAIR A T2-weighted fluid attenuated inversion recovery (FLAIR)
sequence suppresses the signal of free-flowing fluid, which
results in a clear visualization of abnormalities in the brain.
As the sequence is fairly time consuming, a scan is usu-
ally acquired in 3-5 mm thick 2D slices. Optimized 3D-
acquisition FLAIR sequences do exist, but are not yet com-
mon in clinical brain tumor imaging protocols.

The specific acquisition parameters used for each type of sequence vary between
imaging centers and scanners. Even when using the same acquisition parame-
ters, the intensity of acquired MR images can vary significantly. Furthermore,
MR images are affected by many artifacts, such as motion and flow artifacts
due to the often long acquisition time. The most significant type of artifact
is perhaps so-called bias fields, which appear as smoothly varying changes in
intensity over the image. Another issue is the partial volume effect (PVE) when
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different types of tissue are mixed in one image voxel.

Various MR sequences are being researched for brain tumor visualization, e.g.,
T2-weighted double inversion recovery (DIR) sequences that suppress signals
of both fluid and white matter, which further increases the visualization of
abnormalities. More advanced MR sequences – such as diffusion-weighted MRI,
perfusion-weighted MRI and magnetic resonance spectroscopic imaging – are
also being researched for this purpose [Sauwen et al., 2016].

PET is becoming more common in radiation therapy planning. Using PET,
physiological images can be obtained by injecting a radioactive compound in the
bloodstream of a patient. The compound is designed to get attached to certain
molecules of interest and send out radiation which is subsequently recorded.
As the recorded signal is fairly weak, PET images have a low resolution. 18F-
FET is an often-used tracer that provides information on tumor metabolism
[Poulsen et al., 2016]. An example slice of FET-PET is shown in figure 2.1.

2.2 Radiation therapy treatment planning

Radiation therapy is an important treatment modality of glioblastomas, which is
used in combination with chemotherapy and surgery. In a radiation therapy ses-
sion, the tumor is radiated with high-energy photon radiation in order to damage
tumorous cells. However, the radiation will also damage healthy tissue. The goal
of the treatment is therefore to deliver a high radiation dose to the tumor target,
while keeping the radiation dose low for surrounding healthy tissue. Ideally, one
would like to deliver a large amount of radiation to all tumorous cells but no radi-
ation at all to healthy cells. There are two main reasons why this is not possible.
The first reason is that currently used medical images are not able to visualize
the location of all tumorous cells. The second reason is that it is not possible to
deliver such a precise dose using conventional external beam linear accelerator-
based photon radiation therapy. Advanced radiation therapy equipment can de-
liver a dose at millimeter-precision by delivering radiation beams from varying
directions with different intensity profiles, e.g., intensity-modulated arc therapy
[Cedric and Tang, 2011, Munck af Rosenschöld et al., 2011] for which an exam-
ple is shown in figure 2.2.

The planning of a treatment session aims to find a balance between irradi-
ating tumor tissue while sparing important healthy structures from radiation.
These important healthy structures are called organs-at-risk. In the head, there
are many important and sensitive structures that can be considered organs-at-
risk [Munck af Rosenschöld et al., 2015]. The optic system – which includes the
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Figure 2.2: Radiation dose plan overlayed on a T1c image. High radiation in
red, low radiation in blue/violet. Lines show edges of important
structures: optic system in red, hippocampus in orange, brain-
stem in green, MR-defined gross tumor volume in magenta, PET-
defined gross tumor volume in cyan and clinical tumor volume in
black.

eyes, optic nerves, optic chiasm and optic tracts – and brainstem are important
organs-at-risk. Sometimes, hippocampi are also included. Figure 2.3 illustrates
these structures in three-dimensions from different angles. In order to deliver
the optimal radiation dose, these organs-at-risk and the tumor target need to
be delineated on the acquired medical images.

In clinical practice, the delineation is done manually with limited assistance from
automatic procedures. However, manual delineation is time consuming and typ-
ically suffers from poor reproducibility [Dolz et al., 2015b, Deeley et al., 2011,
Menze et al., 2015]. The typical mean time for a radiologist to analyze and de-
lineate brain tumor images has been reported to 86 minutes [Dolz et al., 2015b].
Furthermore, the resulting delineation can vary considerably from one manual
rater to another [Dolz et al., 2015b]. This could affect the outcome of the ra-
diation therapy treatment and complicate studies in comparing the outcome of
different radiation therapy approaches. There is therefore a need for automated
segmentation methods that can segment both the tumor target and organs-at-
risk – to save valuable time for the human experts involved and to obtain a
more consistent delineation result. Furthermore, new approaches to radiation
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Figure 2.3: Surface plots of important organs-at-risk from three different view-
ing angles. Optic system in red including eyes, optic nerve, optic
chiasm and optic tract. Hippocampi in orange. Brainstem in
green.

therapy are being researched where MRI images are provided at the same time
as the treatment to enable more effective tumor targeting and organs-at-risk
sparing [Lagendijk et al., 2016]. In such an approach, automated segmentation
would be invaluable.

Segmentation of tumor. As described in the previous section, the tumor
is typically visualized with a number of MR sequences, but also PET is some-
times used. The different types of images visualize different aspects of the
tumor, but none of them visualizes the full extent of tumor cells. The imaged
tumor-affected tissue can be divided into tumor core and peritumoral edema.
Peritumoral edema is tissue surrounding the tumor core that has been affected
by the tumor due to e.g., the pushing of healthy tissue that occurs when a
tumor grows. However, edema does not necessarily contain tumor cells and
the visualization of edema in e.g., a FLAIR sequence is not an indicator of the
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presence of tumor cells. The tumor core is the region of interest when seg-
menting a tumor from medical images. The tumor core is called gross tumor
volume (GTV) in clinical practice [Burnet et al., 2004]. The GTV is the tumor
that can be visualized by medical images. The border of the GTV may differ
between MRI and PET, so they are typically segmented separately and then
merged, as can be seen in figure 2.2 [Munck af Rosenschöld et al., 2015]. Be-
cause the GTV might not include all tumor cells, it is extended with an up to
20 mm large margin within the brain to form the clinical tumor volume (CTV)
[Burnet et al., 2004, Munck af Rosenschöld et al., 2015], which can be seen in
figure 2.2. The CTV is then extended with a small safety margin designed to
allow for uncertainties in planning and treatment delivery to form the planning
tumor volume (PTV) – which is then used when planning the radiation dose.

In this PhD project, the focus is on segmenting the MR-defined GTV, which
we will call the tumor core. The definition of the GTV for glioblastomas is
focused on the enhanced tumor tissue in T1c, i.e., where the blood-brain barrier
is damaged. It also includes other regions in direct connection to the enhanced
tumor: necrotic tumor tissue (seen with dark intensity in figure 2.2), cavities
from surgically removed tumor, and unenhanced tumor tissue directly connected
to the enhanced tumor tissue.
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Chapter 3

Overview of segmentation
methods for medical images

This chapter gives an overview of current automatic and semi-automatic ap-
proaches for segmenting medical images of human heads, i.e., the process of
dividing an image of the head into multiple meaningful segments. We only
list a subset of available approaches with the purpose of relating the research
in this thesis to the research field. Therefore, we will here focus mainly on
segmentation of brain tumors and organs-at-risk, but also discuss more general
whole-brain segmentation methods. As there is a noticeable lack in the literature
of methods for simultaneous segmentation of brain tumors and organs-at-risk,
we will discuss the two types of structures separately. We will start by describ-
ing segmentation methods for brain images on a general level (section 3.1). We
will then describe methods for brain tumor segmentation (section 3.2). Finally,
we will describe methods for healthy tissue segmentation and specifically for
organs-at-risk in radiation therapy (section 3.3).
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3.1 General description of segmentation methods
for brain images

On a general level, segmentation methods are often explained in dichotomies
based on their underlying models. In this thesis, we will use the dichotomies:
discriminative vs. generative, supervised vs. unsupervised, and parametric vs.
nonparametric.

Say we have a multi-sequence MR image denoted by D. We want to find
an optimal segmentation l given the image data in D, with all image voxels
divided into a number of anatomically relevant segments. Here, l will con-
tain one segment label for each image voxel. From a probabilistic perspec-
tive, a discriminative approach aims to find a model that directly predicts l
from D, e.g., by modeling the conditional probability distribution p(l|D). The
name comes from the fact that the model will learn directly how to discrimi-
nate between different segmentation classes given the image intensity informa-
tion. A limitation of discriminative models is that they typically need a large
amount of manually segmented training data to train the model. Here, training
the model refers to estimating proper values for the parameters of the model.
Furthermore, as these models explicitly use the intensity information in the
training data, they are restricted to segmenting images with the same image
contrast. In MRI the intensity information can vary significantly even within
one type of MRI sequence. Therefore, even within one type of sequence, care-
ful preprocessing is crucial – such as intensity normalization [Nyúl et al., 2000,
Roy et al., 2013], bias field correction [Tustison et al., 2010, Larsen et al., 2014]
and skull-stripping [Ségonne et al., 2004, Fennema-Notestine et al., 2006]. To
extend a discriminative method to handle other imaging sequences or modalities,
new manually segmented training data are often needed. Alternatively, contrast
synthesis [Roy et al., 2013, Iglesias et al., 2013a, Andreasen et al., 2015] could
be applied, where an image is not directly segmented but rather used to synthe-
size a new image with the desired image contrast. However, this still typically
requires new data containing both image types to learn a proper synthesis pro-
cess.

Generative approaches, on the other hand, aim to build a cohesive model of the
formation process of the image to be segmented, modeling the joint probability
distribution p(l,D), typically parameterized as p(l,D) = p(D|l)p(l). Because a
generative model is a full probabilistic model of both the labels l and the image
data D, it can be used to generate any of them. An image can be segmented by
applying Bayes’ rule to obtain the conditional distribution p(l|D) ∝ p(D|l)p(l).
The likelihood function p(D|l) models the image intensities given the labels,
usually in the form of Gaussian mixture models (GMMs) where each label is
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connected to some Gaussian distributions. Because the distribution of image
intensities is explicitly modeled, a generative model can often be made to adapt
to the intensities in the image to be segmented. Thus, a generative model often
does not need to be fully retrained to handle new image sequences or images
from different scanners. The prior probability distribution p(l) models prior
knowledge about the structures to be segmented such as the shape, size and
relative spatial organization of structures. The label prior could for example
be a model based on a physical process or a structural model trained with
manual segmentations from training data. A prior model for healthy brain
structures can often be in the form of a probabilistic atlas that encodes the
spatial organization of healthy structures in a brain. The resulting method is
then called an atlas-based method. The atlas can either be stationary – where
it is just affinely co-register with the target subject – or deformable, meaning
that it is capable of deforming during the segmentation process to fit the target
subject. An inconvenience with generative models is the difficulty to transform
human prior knowledge into appropriate probabilistic models.

In supervised learning labeled data is used to train a model, which can sub-
sequently be used to label new data. Discriminative approaches are typically
supervised. In unsupervised learning, on the other hand, a model is used to
find structure in unlabeled data. The different parts that a generative model
is comprised of are often largely unsupervised by themselves – e.g., a GMM
clusters unlabeled data and a prior model can find structure in segmentations.
Lastly, nonparametric methods – in contrast to parametric methods – do not
summarize training data into a set of parameters but instead use the training
data directly to segment an image. This can for example be done in a so-called
multi-atlas approach, where segmented training images are first registered to the
target image. The corresponding segmentations are then warped using the same
transformations and then fused to obtain a final segmentation of the target sub-
ject. Many well-performing brain segmentation methods are non-parametric,
which will be described in the last section of this chapter.

3.2 Methods for segmenting brain tumors

Many methods exist with a singular focus on brain tumor segmentation – with
some achieving a good although not very robust performance. In particular,
the annual Brain Tumor Segmentation (BRATS) challenge held the first time in
conjunction with the 2012 MICCAI conference has benchmarked several well-
performing methods [Menze et al., 2015]. The methods are best divided into
discriminative and generative methods.
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By far most brain tumor segmentation methods are discriminative. Therefore,
they typically rely heavily on the intensity information of annotated training
data, which is used to directly learn how to discriminate between the appear-
ance of tumor and that of other tissue. To incorporate spatial context, different
strategies are employed. Many methods rely on user-engineered image features
that are fed into a classifier, such as random forests, e.g., [Tustison et al., 2015,
Islam et al., 2013, Zikic et al., 2012, Maier et al., 2016] or support vector ma-
chines [Bauer et al., 2011]. Recently, convolutional neural networks (CNNs)
have successfully been employed for brain tumor segmentation, e.g., [Pereira et al., 2016,
Havaei et al., 2016, Kamnitsas et al., 2016]. The key to their success is their ca-
pability of automatically learning image features from training data. CNNs learn
these features in a deep hierarchy that can capture complex interactions in the
data. In paper D of this thesis, a CNN method was developed for brain tumor
segmentation [Lyksborg et al., 2015]. All of these methods are parametric. A
few non-parametric methods have also been used for brain tumor segmentation,
e.g. [Cordier et al., 2016], in a so-called patch-based approach. Patch-based
methods make use of annotated image patches from training data that are com-
pared directly with the images to be segmented.

Generative methods for brain tumor segmentation have generally been atlas-
based, wherein they typically rely on a stationary probabilistic atlas to model
healthy tissues surrounding brain tumors. The difficulty is then to incorporate
prior information about tumor tissue into the model. Tumor tissue has been
modeled as outliers in the intensity model, e.g., in [Menze et al., 2010], or with
more involved models on tumor growth that deforms the atlas according to the
tumor mass-effect, e.g., in [Kwon et al., 2014, Gooya et al., 2012]. To improve
performance, these methods have also been used with a subsequent discrimi-
native step in [Menze et al., 2016, Bakas et al., 2016]. In [Sanjuán et al., 2013],
an extra class prior is added to the atlas designed to pick up abnormal image
voxels. The method proceeds to segment the subject, and then subsequently
uses a fuzzy clustering outlier detection procedure. This procedure compares
the resulting probability maps for healthy tissue to healthy controls. The output
of this procedure is then used to refine the extra class prior, and the algorithm
is run a second time with the updated prior.

3.3 Methods for segmenting healthy brain tissue

Various methods exist for detailed whole-brain segmentation with excellent per-
formance on reasonably healthy brains. In detailed whole-brain segmentation,
numerous neuroanatomical structures are segmented within the brain – where
several structures have an identical intensity distribution and can only be sepa-
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rated by their specific location within the brain. For example, hippocampi have
the same intensity distribution as several other gray matter structures. Gen-
erally, these methods include segmentation of both hippocampi and brainstem.
However, they are typically not designed to handle significant abnormalities in
the brain. Many of the best-performing methods are non-parametric, in the
form of multi-atlas methods, such as [Sabuncu et al., 2010, Wang et al., 2013,
Coupé et al., 2011, Asman and Landman, 2013]. Many parametric whole-brain
segmentation methods are based on generative atlas-based models, such as
[Fischl, 2012, Puonti et al., 2016, Pohl et al., 2006], where a deformable atlas
is used to encode the detailed spatial organization of brain structures.

As described in the previous section, generative atlas-based methods have been
used for the single purpose of brain tumor segmentation, while still also incorpo-
rating some information about healthy tissue. For the purpose of healthy tissue
segmentation, some studies have investigated how to take tumors into account
when deforming atlases [Bauer et al., 2013, Cuadra et al., 2004, Conson et al., 2014].
However, this has not yet been specifically explored for typical organs-at-risk.
An atlas-based method for segmenting organs-at-risk – but not tumors – has
been evaluated on a limited data set of brain tumor patients [Isambert et al., 2008],
with good performance on brainstem and eyes but lower performance on op-
tic nerve and chiasm. A few discriminative methods specifically focused on
brainstem segmentation have been evaluated on brains with tumors, showing
good performance on a limited data set, by using support vector machines
[Dolz et al., 2016b] and denoising autoencoders [Dolz et al., 2016a].

Segmentation of the optic system has generally received little attention because
optic nerve and eye balls are outside the brain, but some methods have been de-
veloped for use in radiation therapy planning. Some focus solely on optic nerve
segmentation by using e.g., support vector machines (SVMs) [Dolz et al., 2015a]
or non-parametric multi-atlas approaches [Panda et al., 2014]. Geometric-driven
methods have been successful in capturing the specific nature of the optic
system, such as in [Noble and Dawant, 2011], and also including eyeballs in
[Deeley et al., 2011, Bekes et al., 2008]. In these methods, the geometrical struc-
ture is explicitly modeled, i.e., that the optic nerves have a tubular structure
with a crossing at the chiasm. CNN-based methods have also been developed
for segmentation of the optic system, such as [Ibragimov and Xing, 2016]. The
head and neck auto-segmentation challenge, held in conjunction with the 2015
MICCAI conference, examined the segmentation on CT images of organs-at-risk
in radiation therapy of head and neck tumors. The challenge test dataset in-
cluded 15 subjects with manual segmentations. Several included organs-at-risk
are not relevant for brain tumors. However, this challenge included segmen-
tation of brainstem, optic nerves and optic chiasm. Among other methods,
a multi-atlas approach [Chen and Dawant, 2015] and a patch-based approach
[Orbes Arteaga et al., 2015] were tried.
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Segmentation of brain tumors and organs-at-risk have been studied separately.
However, to the best of our knowledge, simultaneous brain tumor and organs-at-
risk segmentation has not been fully explored before in the literature. Therefore,
the aim of this project was to fill this gap in the literature.



Chapter 4

Modeling brain tumors with
generative neural networks

In this chapter, we focus on the first part of the PhD project, which deals ex-
clusively with the automatic segmentation of brain tumors. The chapter mainly
describes the research related to paper A, and is divided in the following sections:

• The first section introduces and describes the generative neural network
we use to model the shape of brain tumors: convolutional restricted Boltz-
mann machines. We will describe the model, the estimation of its param-
eters of the model and how it can be used to generate tumor shapes.

• The second section describes how the tumor shape model is used as a prior
in a novel generative method for tumor segmentation in medical images,
specifically multi-sequence MR images.

• In the third chapter, we discuss the method’s performance on segmenting
brain tumors compared to the state of the art in the field.
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Figure 4.1: 1D example of an RBM. Each of the visible units in z are connected
to all hidden units in h through weighted connections, with weights
in W.

4.1 Modeling brain tumors with convolutional re-
stricted Boltzmann machines

We will start by introducing the standard restricted Boltzmann machine (RBM)
model. The model will be presented for a 1D case to avoid cluttered equations,
but it directly generalizes to 3D images.

An RBM is a type of generative neural network that consist of stochastic units in
two layers: a visible layer and a hidden layer [Smolensky, 1986, Fischer and Igel, 2014,
Hinton, 2012]. The two layers are connected through weighted connections. Fig-
ure 4.1 shows a small 1D example of the network structure, with the visible layer
denoted by z and the hidden layer denoted by h. In our case, we will use binary
visible and hidden units.

As with other neural networks, the weight parameters in a restricted Boltzmann
machine can be learned automatically by subjecting the network to training
data. The weights act as filters and the hidden units as feature detectors capable
of detecting typical features in the data. Therefore, there is no need for user-
engineered filters (such as e.g. maximum response filters, seen on the right in
figure 4.2), which have been and is still commonplace to use when developing
segmentation algorithms. On the left in figure 4.2, RBM filters automatically
learned on MNIST (a binary data set of hand-written digits) are shown as an
example.

As the RBM model is a generative model, it learns the distribution of the
training data. Once the parameters of an RBM have been learned, the model
can thus be used to generate new data from the same distribution. RBMs have
been shown to effectively learn the distribution of the binary MNIST data, and
are able to generate new numbers with good quality [Hinton, 2002]. In this PhD
project, we use RBMs to learn a generative model of binary tumor maps.
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Figure 4.2: Filters. On the right: automatically learned RBM filters on
MNIST. On the left: user-engineered maximum response filters.

From another perspective, the RBM model can also be interpreted as a higher-
order Markov random field (MRF) [Fischer and Igel, 2014]. The model can
be contrasted to a traditionally used first-order MRFs, in which only pairwise
interactions between neighboring voxels are modeled. First-order MRFs are
often used as priors in generative models to encode the prior knowledge that
neighboring image voxels often belong to the same label, i.e., that there is a
spatial consistency in an image. In contrast, a higher-order MRF is capable
of taking larger neighborhood structures into account which leads to a more
expressive model.

In the RBM model the probability of a set of visible units is defined as

p(z) =
∑

h

p(z,h),

where the binary visible units are collected in z = (z1, ..., zI) and the binary
hidden units are collected in h = (h1, ..., hJ). The joint probability over both
the visible units z and the hidden units z is

p(z,h) =
1

Z e−ERBM(z,h)

with the energy

ERBM(z,h) = −zTWh− bTh− zTa, (4.1)

where W is the weight matrix that encodes the weighted connections, b is the
hidden bias vector and a is the visible bias vector - jointly denoted by λ. The
purpose of the bias vectors is to encourage units to be enabled or disabled. The
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normalizing constant Z is given by

Z =
∑

z

∑

h

e−ERBM(z,h).

Because there are no connections between units in the same layer in an RBM,
it is straightforward to sample from the model. The conditional distributions
can be derived as

p(hj = 1|z) = σ(
∑

i

wjizi + bj) (4.2)

and
p(zi = 1|h) = σ(

∑

j

wjihj + ai), (4.3)

where the sigmoid function σ(t) = 1/(1 + e−t). The sampling can therefore be
performed with block-Gibbs sampling, which is a Markov chain Monte Carlo
(MCMC) method. Here, all hidden units can be sampled at the same time from
equation 4.2 given the visible units, and all visible units can be sampled at the
same time from equation 4.3 given the hidden units.

RBM training. Appropriate values for the RBM parameters λ are learned
through unsupervised learning on training data (in our case binary tumor maps).
The learning is based on maximum-likelihood estimation, which finds the pa-
rameters that maximize the likelihood of the model given the training data. As
these parameters cannot be found analytically for the RBM model, gradient as-
cent on the log-likelihood is typically used. In gradient ascent, the parameters
are iteratively updated based on the gradient of the log-likelihood. For an RBM,
this gradient can be written as a sum of two terms. The first term is the expec-
tation of the energy gradient under the conditional distribution of the hidden
units given training examples of z and the second term is the expectation of the
energy gradient under the model distribution [Fischer and Igel, 2014]. This can
be expressed as

∇λ =
∂〈log p(z|λ)〉d

∂λ
= −

〈∂ERBM(z,h)

∂λ

〉
d
+
〈∂ERBM(z,h)

∂λ

〉
m
,

where 〈·〉d denotes the expectation under p(h|z)pe(z) (with pe denoting the
empirical data distribution) and 〈·〉m denotes the expectation under the model
distribution p(z,h) [Melchior et al., 2013]. The gradient in respect to each type
of parameter then becomes

∇W = 〈zhT 〉d − 〈zhT 〉m,
∇a = 〈z〉d − 〈z〉m,
∇b = 〈h〉d − 〈h〉m.
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In the gradient ascent algorithm, the parameters are updated in each iteration
by taking a step in the gradient direction, i.e.,

λ = λ+ ω∇λ,

where ω is a user-specified learning rate. The first expectation in the gradient
is easily obtained directly from the observed training examples. The main issue
is to compute the expectation under the model distribution p(z,h), which is in-
tractable to compute exactly for any RBM of a usable size. We can approximate
this term by sampling from the model by Gibbs sampling, using the conditional
distributions of both h and z in equations 4.2 and 4.3 respectively. However,
it takes many samples to obtain an unbiased estimate, which would make the
training time prohibitively long. In a standard setting, the so-called contrastive
divergence (CD) approximation is used instead. This approximation is obtained
by initializing the Gibbs sampler with training examples and running it for just
a few steps. Often, only one step is used, in which case the approximation is
called CD-1 [Hinton, 2002]. In practice – due to computational time considera-
tions – stochastic descent is typically used, where the gradient is approximated
over a subset of the training examples in each iteration.

There are difficulties associated with training an RBM in practice, in part
because of the approximate nature of the gradient computations. The train-
ing is sensitive to the selected training parameters, such as the learning rate.
On small RBMs, where the log-likelihood can be evaluated fairly easily, it has
been shown that the parameters may start to diverge from an optimal solution
[Fischer and Igel, 2014]. Besides this, the larger size of most used RBMs make
the evaluation of the log-likelihood impractical during training. Furthermore,
the training is not invariant to the representation of the data, e.g., an RBM
trained on the MNIST data set will have a better performance than an RBM
trained on the same data set, but where every binary unit has been flipped to the
opposite value (1-MNIST) [Melchior et al., 2013]. This is not due to the model’s
capacity but because of the invariance properties of the gradient. In fact, an
RBM trained on MNIST can be transformed to model 1-MNIST while retaining
the same performance [Melchior et al., 2013]. An approach to solve this invari-
ance problem is the so-called enhanced gradient, which has been shown to be
invariant of the data representation [Cho et al., 2013]. This gradient has been
derived as a weighted sum of the gradients obtained for any combination of flips
on the binary units, and is given by

∇eW =
〈(

z− 〈z〉d
) (

h− 〈h〉d
)T〉

d
−
〈(

z− 〈z〉m
) (

h− 〈h〉m
)T〉

m
,

∇ea = 〈z〉d − 〈z〉m −∇eW
1

2

(
〈h〉d + 〈h〉m

)
,

∇eb = 〈h〉d − 〈h〉m −∇eW
T 1

2

(
〈x〉d + 〈x〉m

)
.
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There are also other training strategies apart from the standard CD-1, e.g., per-
sistent contrastive divergence (PCD) and parallel tempering (PT) [Fischer and Igel, 2014,
Melchior et al., 2013], which have been shown to yield superior performance for
MNIST. Despite this, in early experiments comparing standard CD-1 with PCD
on our data set – with varying learning rates – we found that CD-1 performed
better for our purpose. However, an exhaustive comparison using the enhanced
gradient was not performed, which would probably be appropriate for future
work.

Convolutional RBM. The standard RBM works well on small images with
a pre-defined size, such as the MNIST data set with a set image size of 28× 28
pixels. However, medical images are typically far larger, three-dimensional and
without a set size. Therefore, we instead use a convolutional variant of the RBM
model (cRBM) [Lee et al., 2011] which can cope with this type of images. In
this variant, the connection weights are shared among all locations in the form
of convolutional filters, which only have a fraction of the size of a full image.
Figure 4.3 shows a small 1D example of the cRBM model. The energy in the
cRBM is defined as

EcRBM(z,H) = −
∑

k

hk • (wk ∗ z)−
∑

k

bk
∑

j

hkj − a
∑

i

zi,

where • denotes element-wise product followed by summation and ∗ denotes
convolution. Each hidden group hk ∈ H is connected to the visible units in z
with a convolutional filter wk. There are two main differences from the standard
energy (equation 4.1): (1) the hidden units detect features locally rather than
over the whole image and (2) the visible bias term is a scalar instead of a vector
and acts over the whole image rather than for each image unit. The conditional
distributions of the hidden and visible units can be derived as

p(hkj = 1|z) = σ
(
(wk ∗ z)j + bk

)
(4.4)

and
p(zi = 1|H) = σ

(∑

k

(w̃k ∗ hk)i + a
)
,

where w̃ denotes a mirror-reversed version of the filter w. The parameters of
the cRBM model can be learned in exactly the same way as for the standard
RBM, due to their similar structure.

Tumor shape model. The visible tumor in MRI consist of two parts: the
tumor core, which is the target for radiation therapy, and the peritumoral edema
surrounding the tumor core. To model both structures, we construct a model
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Figure 4.3: 1D example of a cRBM. Visible units in z are connected to hidden
units in a hidden group hk through a convolutional filter wk of size
3. The first illustration shows the model from the hidden layer’s
perspective. The second shows the model from the visible layer’s
perspective, where w̃k is a mirror-reversed version of the filter.
Note that boundary units in the visible layer are set to 0.

combining two cRBMs. The first cRBM models the "whole" tumor region,
which include both the tumor core and the edema. We denote this region by z.
The second cRBM models only the tumor core, which we denote by y. The two
cRBM models are trained separately and then combined to form the full model,
which we define as

p(z,y) =
∑

H,G

p(z,y,H,G) (4.5)

with
p(z,y,H,G) ∝ e−Ecomb(z,y,H,G)

and the combined energy term

Ecomb(z,y,H,G) = Ez(z,H) + Ey(y,G) +
∑

i

f(zi, yi), (4.6)

where G denotes the hidden units connected to the tumor core map y. The
function f(z, y) restricts tumor core to only be allowed within the whole tumor
region and is constructed as follows: f(z, y) = ∞ if z = 1 and y = 0, and
otherwise f(z, y) = 0. Another way to model both labels would be to train them
together as a multinomial distribution, as e.g., in [Salakhutdinov et al., 2007].
However, the construction of a multinomial RBM increases the complexity of the
modeled distribution and would force us to learn filters also for the background
class, which increases the amount of parameters and the computational time in
the segmentation algorithm.

To train the tumor shape model. When constructing a cRBM model,
there are two key aspects to consider: the number of filters k and the size of the
filters. In choosing the number of filters, we have to consider the complexity of
the distribution but we are also limited by the fact that more filters increase
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the computational time. The size of the filters will not affect the computational
time significantly, but this aspect is perhaps more troublesome. A large filter
size could potentially capture long-range features better than a small filter size,
but in a 3D setting the amount of parameters to tune per filter increases fast
with an increasing filter size. In our experiments, we found that a filter size
larger than 7 × 7 × 7 voxels decreased the performance of the model. This
might be due to overfitting to the training data, which is common when many
parameters are estimated on a small training set. It could also be that the
training algorithm did not converge to the maximum-likelihood estimate, which
is common for RBMs and is difficult to measure. To be able to better capture
long-range features, we therefore composed an approach where we tie the filter
weights in (2 × 2 × 2)-blocks, effectively treating each block as one parameter.
Figure 4.4 illustrates this approach in 1D for one single hidden unit. For the
purpose of tumor segmentation, this approach with a filter size of 14× 14× 14
(with 7× 7× 7 parameters) gave the best performance in initial experiments.

Figure 4.5 shows filters trained for tumor core in three different settings. In all
settings, the same learning rate and training data set was used. The training
set consisted of 30 binary three-dimensional maps augmented to 240 by flipping
the maps in 8 different direction. In the first row, filters learned with standard
CD-1 are shown. In the second row, filters learned with CD-1 and enhanced
gradient are shown. In the third row, filters learned with CD-1 and enhanced
gradient in a multinomial cRBM are shown. Although it might not always be
clear from the filters how well the model performs, the filters do show the kind
of features they capture in the data. The filters trained with standard CD-1
do not exhibit the same variety of features as the filters trained with enhanced
gradient and CD-1. Furthermore, a significant amount of CD-1 filters do not
seem to encode any specific feature. The filters trained with enhanced gradient
are all distinct. The filters for the multinomial cRBM illustrates the complexity
of this distribution. CD-1 learning with enhanced gradient on binary units was
found to give a superior performance, and is thus the approach we use in this
thesis.

Generative performance of the cRBM model. To illustrate the genera-
tive performance of the cRBM model, we show a small inpainting experiment
in figure 4.6. In this experiment, a cRBM model trained to model whole tumor
is used to fill in missing data in two whole tumor maps. A three dimensional
checkerboard patterned mask with 3 cm3 large cubes is used to set some of the
voxels to zero in the original maps. The other voxels are kept fixed to their
original values throughout the experiment. Gibbs sampling is then performed
with 600 sampling steps to test the capability of the cRBM model to generate
new data where data is missing. As seen in figure 4.6, the model is capable of
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Figure 4.4: Illustration of the sharing of weights in a 1D example. Adjacent
filter weights are tied to the same parameter, so that a filter of
length 4 has only 2 parameters.

generating new data that captures the general shape of whole tumor well. The
generated data is smoother than in the original maps, which is not surprising
considering that only 40 filters are used to model the highly variable shape of
tumors. Still, we can conclude that the model can connect isolated tumor re-
gions fairly far apart, which is seen clearly in the first case, and fill in large
holes, which is seen clearly in the second case.

4.2 Segmenting brain tumors with a generative
method

In order to use the tumor shape model to segment brain tumors in medical im-
ages, we need to assemble a framework to inform the model about the structure
of the surrounding brain and the properties of medical images. To accomplish
this, we incorporate the tumor shape model as a prior in a generative healthy
tissue segmentation model. This type of generative model has been used exten-
sively for segmenting MR images of the brain, e.g., in [Ashburner and Friston, 1997,
Van Leemput et al., 1999b, Van Leemput et al., 1999a, Van Leemput et al., 2001,
Menze et al., 2010]

4.2.1 Basic generative model for healthy tissue segmenta-
tion

The basic model consist of two parts: a likelihood function modeling image
intensities given segmentation labels and a prior probability modeling the spatial
organization of the labeled brain structures. Let D = (d1, ...,dI) denote the
multi-sequence MR image of a subject, where I is the number of image voxels
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Standard CD-1, 9600 gradient steps, tumor core

CD-1 with enhanced gradient, 9600 gradient steps, tumor core

Multinomial cRBM, CD-1 with enhanced gradient, 11280 gradient steps, tumor
core

Figure 4.5: Comparison of filters relating to tumor core. Each row shows 20 fil-
ters out of 40 filters. First row shows filters learned with standard
CD-1. Second row shows filters learned with CD-1 with enhanced
gradient. Third row shows filters learned for a multinomial cRBM
with a total of 3 labels: tumor core (shown filters), edema and
background.
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Real tumor map Input to cRBM

Inpainting after 600 samples

Real tumor map Input to cRBM

Inpainting after 600 samples

Figure 4.6: Inpainting of whole tumor by sampling from cRBM model.
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D
θ

l

π

Figure 4.7: Graphical representation of basic model for healthy brain segmen-
tation. The atlas-based prior π models healthy tissue labels in l.
The labels in l predict the multi-sequence data D according to the
model parameters θ. Shading indicates observed variables.

and di contains the image intensities at voxel i. Furthermore, let l = (l1, ..., lI)
denote the healthy labels, with li ∈ {1, ..,K} for K labels. The likelihood is
defined as

p(D|l) =
∫

θ

p(D|l,θ)p(θ)dθ, (4.7)

where θ contains free model parameters. The healthy tissue prior p(l) is in the
form of a probabilistic atlas that contains a probability vector for each voxel
encoding the probability of each label to occur, defined as p(l) =

∏
i π

i
li
. The

model is illustrated in figure 4.7. A segmentation of a brain image can then be
obtained by evaluating the posterior

p(l|D) ∝ p(D|l)p(l). (4.8)

Likelihood. The likelihood function models the image intensities by Gaussian
mixture models as illustrated in figure 4.8, one connected to each label. By log-
transforming the MR intensities, the bias field artifacts in MR images can be
modeled as a linear combination of spatially smooth basis functions added to the
log-transformed intensities. Let θl denote the Gaussian parameters connected
to label l and C denote the parameters of the bias field model. A Gaussian
mixture model can then be defined at voxel i as

pi(di|θl,C) =

Gl∑

g=1

γlgN (di −Cφi|µlg,Σlg), (4.9)

where Gl is the number of Gaussian components connected to label l; and
γlg, µlg and Σlg are the weight, mean and covariance matrix of component g.
Furthermore, the vector φi ∈ RP evaluates the P basis functions at voxel i and
C = (c1, ..., cN )T , where cn ∈ RP denotes the parameters of the bias field model
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Figure 4.8: A Gaussian mixture model with three Gaussian components mod-
els the intensity distribution in an image.

for MR sequence n. All voxel probabilities are collected to form the likelihood

p(D|l,θ) =
∏

i

pi(di|θli ,C), (4.10)

where θ contains all parameters connected to the Gaussian mixture models
and the bias field model. Finally, a prior p(θ) is added over these intensity
parameters. For healthy tissue segmentation, it is often enough to just use
uninformative priors.

Modeling of bias field artifacts in MR images. Figure 4.9 shows white
matter segmentations using this basic model on different sagittal slices of one
subject. The figure illustrates the effect of including the bias field correction
in the model. As can be seen, bias field modeling is crucial to obtain accu-
rate segmentations. In many segmentation methods – as almost all discrimi-
native brain tumor segmentation methods and some generative methods such
as [Kwon et al., 2014] – bias field correction is regarded as a pre-processing
step. Here, we explicitly include the bias field correction by modeling the
bias field as spatially smooth basis functions added to the (log-transformed)
MR images, as in [Van Leemput et al., 1999a]. Other approaches exist, as in
[Ashburner and Friston, 2005] where the same basis function model is used di-
rectly as a multiplicative effect. Several types of basis functions, denoted by
φ in equation 4.9, can be appropriate to model bias fields. Throughout this
thesis, we use cosine basis functions. Specifically, if we have P number of basis
functions per dimension of an image, we use the P lowest frequencies of the
discrete cosine transform (DCT). Other works have used e.g, polynomial basis
functions [Van Leemput et al., 1999a] or B-splines [Larsen et al., 2014].
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Figure 4.9: Effect on segmentation performance from bias field correction.
The white matter in T1-weighted images (a) is segmented with-
out bias field correction (b) and with bias field correction (c). The
estimated bias field is shown in (d). The image is taken from
[Van Leemput et al., 1999a].
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Figure 4.10: Tissue probabilities in the affine atlas π overlayed on a T1-
weighted image after affine registration. From left to right: gray
matter, white matter and CSF.

Prior on healthy labels. The probabilistic atlas in p(l) is assumed to be
known and remains constant during the segmentation process, after an initial
affine co-registration with the subject to be segmented. The atlas used in this
thesis is shown in figure 4.10 overlayed on a T1 image. It has been computed
from manually segmented subjects that were affinely registered to each other
and include smooth probability maps of gray matter, white matter and CSF.
Further details on this atlas can be found in [Ashburner and Friston, 1997].

4.2.2 Incorporating the tumor shape model into the basic
generative model

To extend the basic generative model for healthy brain segmentation to also
handle tumor segmentation, we introduce into the model the binary map z to
indicate voxels that are affected by tumor and the binary map y to indicate
voxels that are inside the tumor core. A voxel i with label li will change its
status to tumor when zi = 1. If zi = 1 and yi = 0 the voxel will be part of edema
and if zi = 1 and yi = 1 the voxel will be part of tumor core. Furthermore, we
introduce two new Gaussian mixture models: one to model the data under the
edema label and one to model the data under the tumor core label. We can then
include the tumor shape model in equation 4.5 as a prior in the segmentation
model so that the posterior becomes

p(l, z,y|D) ∝ p(D|l, z,y)p(l)p(z,y). (4.11)
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H
z

y
π

l

D

G

θ

Figure 4.11: Graphical representation of model focused on brain tumor seg-
mentation. The atlas-based prior π models healthy tissue labels
in l. The complete tumor label z and core label y are connected
to the hidden units of their cRBM models H and G, respectively.
The labels l, z and y jointly predict the multi-sequence data D
according to the model parameters θ. Shading indicates observed
variables.

To make clear how the two introduced Gaussian mixture models relate to the
tumor prior, the likelihood in equation 4.10 will change to

p(D|l, z,y,θ) =
∏

i





pi(di|θli ,C) if zi = 0 and yi = 0, (healthy)
pi(di|θe,C) if zi = 1 and yi = 0, (edema)
pi(di|θc,C) if zi = 1 and yi = 1, (core)
(yi = 1 and zi = 0 prohibited by prior, eq. 4.5)

,

where θe contains the Gaussian parameters related to edema and θc contains
the Gaussian parameters related to tumor core. Figure 4.11 shows a graphical
representation of the new extended model.

Robustness of the intensity model. A key difference between the atlas-
based healthy tissue prior and the cRBM-based tumor shape prior is that the tu-
mor shape prior does not include any prior information about location of tumors
within the brain. Expected location of tumors could have been modeled by the
visible bias term in the cRBMmodel, as in e.g., [Puonti and Van Leemput, 2016]
for multiple sclerosis lesions. However, to model this accurately for tumors a
lot more training examples would be needed than we had access to. Even if
we would have access to a multitude of training examples, this aspect would
probably not make a lot of sense to model for brain tumors, as they can appear
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virtually anywhere within the brain. Nevertheless, this lack of location informa-
tion has some impact on the robustness of the segmentation model. The healthy
tissue segmentation model described in section 4.2.1 is usually used with unin-
formative priors on the Gaussian parameters, because the location information
in the atlas is enough to estimate appropriate values. For tumor segmentation,
the need arises to include some informative prior on these parameters.

As described in section 2.1, the intensity distribution of MR images obtained
with the same MR sequence tends to vary significantly. Therefore, it is difficult
to include prior information related to intensity parameters without loosing the
adaptability that generative models are known for. However, we can assume
e.g., that tumor tissue – especially edema – will be significantly brighter than
any healthy tissue in a FLAIR image and that some parts of the tumor core
in a high-grade glioma will be significantly brighter than healthy white matter
and gray matter in a T1c image. To encode this prior knowledge, we use an
informative prior on the mean vectors related to tumor. This prior introduces
linear constraints on mean values, e.g.,

p(µe,µWM ) =

{
∝ 1 if µe,FLAIR ≥ αµWM,FLAIR

0 otherwise
.

Here, the scalar α defines the limit of how close µe,FLAIR can be to µWM,FLAIR.
Appropriate values of these constraints can be estimated on training data which
optimally include images from several imaging centers. We have found this type
of prior to work well in making the segmentation method more robust. However,
it does limit the model’s flexibility in the sense that some reconsideration is
required if e.g., FLAIR is not present for a subject.

A related issue is the number of Gaussian components for the Gaussian mixture
models related to healthy structures. If one compares the number of components
used for healthy structures in a healthy tissue segmentation method – e.g.,
[Puonti et al., 2016] – with the number of components in Paper A or C, one can
see that we use less components to model each structure. This is also due to the
lack of tumor location information. If we use a large number of healthy Gaussian
components, we run into the risk that one healthy component incorrectly starts
to model tumor tissue. However, the small number of healthy components can
result in the opposite situation, that the Gaussian components related to tumor
tissue starts to incorrectly model healthy tissue. Therefore, we regularize the
values of the covariance matrices by introducing informative conjugate priors.
In Paper A and B, we imposed priors specifically on the covariance matrices
related to tumor, which we used in a nonstandard way. However, we later found
that a more general proper prior on all covariance matrices achieves a similar
performance. This prior was used in Paper C.
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4.2.3 Inference

To obtain a segmentation of an image, we need to evaluate the posterior in equa-
tion 4.11. However, there are two complications with our model that hinder us
from directly inferring the optimal segmentation: (1) the tumor shape model
does not factorize over voxels and (2) the likelihood model contains a marginal-
ization over the intensity parameters in θ, which results in an intractable inte-
gration. If we for the moment disregard the tumor shape model, we have the
healthy tissue model defined in equation 4.8, where the second complication
is still present. This type of model is commonly solved with the expectation-
maximization (EM) algorithm [Dempster et al., 1977]. The EM algorithm focus
on the posterior of the intensity parameters given the data, instead of the pos-
terior of the labels in 4.8. Using Bayes’ rule, the posterior of the intensity
parameters is given by

p(θ|D) ∝ p(D|θ)p(θ)

=

(∑

l

p(D|l,θ)p(l))
)
p(θ).

The EM algorithm is designed to find the parameter values that maximize this
function. It iterates between two steps: the E-step (expectation step) and M-
step (maximization step). In the E-step, the algorithm builds a lower bound to
the objective function which can be optimized analytically. This lower bound is a
local approximation that touches the objective function at the current parameter
estimates. In the M-step, the current parameter estimates are then updated to
the values that maximize the lower bound, which are given in analytical form.
The algorithm is guaranteed to increase the objective function at each iterative
step, and will thus find at least a local maximum of the parameter posterior.

However, the bias field model we use complicates the M-step slightly. Analytical
expressions of the update rules for the intensity parameters can be found only if
the bias field parameters are kept fixed and vice versa. Alternating between up-
dating the two parameter sets will eventually give the values that maximize the
lower bound. In practice, however, it is enough to update the two parameter sets
once, which will not maximize the lower bound but still guarantee an increase
of the objective function at each iterative step. This is then called a generalized
expectation-maximization (GEM) algorithm [Van Leemput et al., 1999a].

Once the maximum a-posteriori (MAP) estimates of the intensity parameters
have been obtained, a segmentation can be obtained by using the empirical
Bayes approximation, where the parameters are fixed to these estimates. The
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approximate posterior of the labels then becomes

p(l|D) ≈ p(D|l, θ̂)p(l).

The maximum a-posteriori (MAP) estimates of the labels can then easily be ob-
tained, as the label posterior now factorizes over the voxels. The MAP estimate
at one voxel will simply be the label with the highest posterior probability at
that voxel.

As the tumor shape model does not factorize over the voxels, it is not possible to
directly use the GEM algorithm to evaluate the tumor segmentation posterior
defined in equation 4.11. One approach to evaluate this posterior is to sample
from the model using block-Gibbs sampling. In practice, we would sample
from the joint distribution p(l, z,y,G,H,θ|D) by iteratively sampling from the
conditional distribution of each set of variables given the other variables. All of
these conditional distributions are easy to sample from, because each of them
factorizes over its components. We then simply collect samples of l, z and y; and
perform a voxel-wise majority voting across the collected samples to obtain the
final segmentation. However, if the values used to initialize the sampling chain
are far away from appropriate values and the state space is high-dimensional,
a Gibbs sampler may need an impractically large number of sampling steps to
reach a stationary distribution and may become trapped in one isolated region
of the state space. Therefore, for an efficient Gibbs sampler for our model, it is
important to have reasonable initial values.

We therefore developed an inference algorithm with two steps: in the first step
we use GEM and in the second step we use Gibbs sampling. To be able to use
GEM, we temporarily replace the energy term in the tumor shape model (defined
in equation 4.6) with a simple factorizable energy term. This temporary energy
term essentially defines uniform spatial prior probabilities for z and y. The
effect of the temporary energy term is that the tumor Gaussian distributions
will model tissue that is not well explained by the healthy Gaussian distributions.
We then use the MAP estimates of l, z and y to initialize a Gibbs sampler, where
we reintroduce the proper energy term of the tumor shape model. Note that
we did not sample from the conditional distribution of the bias field parameters
in paper A, but instead kept them fixed to their MAP estimates obtained from
GEM. However, later in the PhD project, we also implemented this.

A potential improvement of the inference could be to incorporate the tumor
shape model into the GEM procedure. In [Van Leemput et al., 1999a], a first-
order MRF – which also does not factorize over voxels – was used as a prior
in the basic healthy tissue model defined in section 4.2.1. By using a mean
field approximation, the resulting model could be evaluated with GEM. For
the tumor shape model however, this approach both becomes computationally
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demanding and seems to result in a poor approximation of the complicated true
distribution, judging from experiments we carried out. However, this could be
studied further.

4.3 Results and discussion

In paper A, we describe the participation of the above method in the brain
tumor segmentation (BRATS) challenge at the BrainLes workshop, which was
held in conjunction with the 2015 MICCAI conference. In that challenge, the
segmentation performance of 12 brain tumor segmentation methods was com-
pared on a test data set of 54 subjects – including both high- and low-grade
gliomas. The data set included the MR-sequences FLAIR, T1c, T2 and T1.
All images were skull-stripped by the challenge organizers, re-sampled to 1 mm
isotropic resolution and registered to a common space. Each participating team
had two days to segment the images and subsequently uploaded the result-
ing segmentations to an online platform [Kistler et al., 2013] for comparison to
manual ground truth segmentations. In the challenge, our method was one
of the top-performing methods. Figure 4.12 shows box plots of the reported
scores for our method (method 1) and three other top-performing methods.
Method 2 is based on a semi-automated generative method which incorporates
a tumor growth model and a discriminative post-processing step designed to
improve performance [Bakas et al., 2016]. Method 3 and 4 are discriminative
CNN-based methods [Pereira et al., 2016, Havaei et al., 2016]. Scores were re-
ported for three regions: enhanced core, tumor core (which includes enhanced
core) and whole tumor (which includes tumor core and edema). The tumor core
region corresponds to y in our model and the whole tumor region corresponds
to z in our model. As the region of interest in radiation therapy is tumor core,
we show scores for this region, but also for whole tumor to show the full perfor-
mance of our tumor shape model. Two types of scores were reported: (1) Dice
score which measure the overlap between a segmentation and the ground truth,
where a score of 1 means perfect overlap and 0 means no overlap; (2) robust
Hausdorff distance which is a measure of the distance between the segmentation
borders.

As can be seen from the figure, our method performed particularly well on tumor
core, judging from the Dice score. However, the average Hausdorff distance is
somewhat lower than at least two of the other methods, which is probably
explained by the post-processing used by the other methods. In general, none
of these state-of-the-art methods can be categorized as robust, considering the
wide range of scores for each method. The test data set has been designed to be
particularly difficult, with many complicated high-grade tumors and low-grade
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Figure 4.12: Comparison between top performing methods in BRATS 2015 on
Dice scores and Hausdorff distances for tumor core and whole tu-
mor. Method 1 is the method presented in this section, method 2
is a generative method with a discriminative post-processing step
to enhance performance [Bakas et al., 2016] and method 3-4 are
CNN-based methods [Pereira et al., 2016, Havaei et al., 2016].
Circles show mean values, red central lines show median values,
red crosses show outliers and whiskers show full range of values
excluding outliers.

tumors included and with a wide range of tumor sizes. Nevertheless, these
results illustrate the general robustness of current state-of-the-art methods well
and shows the high complexity in modeling brain tumors. Figure 4.13 shows a
representative subject together with the automatic segmentation by our method.
In the image slices, we can see the complicated appearance of particularly tumor
core. The T2 image exhibit a ringing artifact, which is a fairly common MRI
artifact. Furthermore, our method has incorrectly segmented some areas around
the ventricles as edema, because of their bright appearance in FLAIR, which
result in a large Hausdorff distance.

Figure 4.14 shows two subjects where our method segmented the tumor poorly.
In both these subjects, some inner parts of the core exhibit a similar appearance
to healthy white matter. Here, we can clearly see a limitation of the tumor shape
model. The learnt features in the cRBMs are mainly focused on the shape of
the tumor border, which results in a model that is strong at the borders but
fairly weak when it comes to modeling the inner parts of a tumor. The model
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Figure 4.13: Example slice of tumor segmentation. From left to right: MR
sequences FLAIR, T1c, T2, T1; and final segmentation. Shades
of blue: healthy tissues, white: tumor core, lilac: edema.

Figure 4.14: Examples where tumor prior fail to segment inner part of tumor.
From left to right: MR sequences FLAIR, T1c, T2, T1; and final
segmentation. Shades of blue: healthy tissues, white: tumor
core, lilac: edema.

still works well for most tumors because the appearance of inner parts of a
tumor typically deviates sufficiently from the appearance of healthy structures.
However, in a few cases – such as the ones in the figure – this is not true, which
results in a poor segmentation. A deeper architecture in the cRBM models with
more than just one hidden layer could potentially result in a more global tumor
shape model that could handle these cases better. A convolutional deep belief
network (cDBN) is an example of a generative deep neural network that uses
cRBMs as building blocks [Lee et al., 2011]. However, a cDBN is even harder
to train than a cRBM and would increase the computational time considerably.
More recent generative neural networks, such as variational autoencoders could
potentially be considered [Kingma and Welling, 2013, Bengio et al., 2013].



Chapter 5
Combined segmentation of

brain tumors and
organs-at-risk

In this chapter, we focus on the second part of the PhD project, which deals
with the simultaneous automatic segmentation of brain tumors and organs-at-
risk (healthy structures that are important to spare in radiation therapy). The
chapter describes the research related to papers B and C, and is divided into
the following sections:

• The first section introduces and describes the probabilistic deformable
atlas-based model that we use to model the healthy brain in more de-
tail than the atlas used in the previous chapter. This allows us to seg-
ment many more structures than just white matter, gray matter and cere-
brospinal fluid. This section also describes how we extend this brain atlas
to handle non-brain organs-at-risk.

• The second section describes how we incorporate this deformable atlas
into the modeling framework for brain tumor segmentation presented in
the previous chapter.

• In the third chapter, we discuss the method’s performance on segmenting
organs-at-risk and brain tumors simultaneously.
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5.1 Building a mesh-based atlas for modeling healthy
brain structures

In the previous chapter, healthy brain tissues were modeled by a affinely-registered
atlas that remained constant during the inference over the model. This type of
atlas is easy to include in the modeling framework and seems to be sufficient
to differentiate the appearance of tumor from that of healthy tissue. In this
chapter, however, we turn our attention to the segmentation of specific anatom-
ical structures in the brain – specifically to the detailed segmentation of several
organs-at-risk. For this purpose, the previously used atlas lacks the necessary
complexity. Although the general structure of healthy human brains is the
same, individual shape differences are fairly large (which is the reason for the
smoothness of the atlas in figure 4.10). In addition, large tumors often deform
healthy structures, and brains with tumors frequently include other co-occurring
pathologies. Therefore, we instead include a more complex framework that can
model both the tissue probabilities at certain locations and the deformation of
those locations.

In contrast to voxel-based approaches such as [Ashburner and Friston, 2005,
Fischl et al., 2002], we use a mesh-based approach. This mesh-based atlas is in
the form of a tetrahedral mesh, which consists of a number of vertices. The
positions of the vertices are collected in η. Each of these vertices is associ-
ated with a probability vector, where each element of the vector specifies the
probability of a label to occur around that vertex. During the atlas building
process, the number of vertices is locally adapted, which results in a mesh that
is sparse in areas with less information and dense in areas with more informa-
tion. This allows for a compact representation of the structure of the brain. An
example of this type of atlas is shown in figure 5.1. The model was first intro-
duced in [Van Leemput, 2009] and further described and validated for detailed
healthy brain segmentation in [Puonti et al., 2016]. It has also been used suc-
cessfully for detailed segmentation of hippocampus and brainstem subregions
[Iglesias et al., 2015a, Iglesias et al., 2015c].

Fundamentally, we want to be able to predict the probability of seeing a seg-
mentation given a number of manual training segmentations. In this thesis, we
used the expert segmentations from a data set of 39 subjects scanned with a
T1-weighted MR sequence – including 28 healthy subjects and 11 subjects with
varying severity of Alzheimer’s disease, with an age range from under 30 years
to over 60 years old [Sabuncu et al., 2010]. The segmentations were performed
by a validated semi-automated segmentation protocol [Caviness et al., 1989,
Caviness et al., 1996, Kennedy et al., 1989]. The segmentations consist of 39
brain structures – including three important organs-at-risk: brainstem, hip-
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Figure 5.1: An example of a mesh-based brain atlas. Lines show connec-
tions between vertices and smooth color variation show prob-
ability of different brain structures. Image is taken from
[Van Leemput, 2009].

pocampi and optic chiasm. This data set has also been used to build the atlases
in the well-known publicly available software package FreeSurfer [Fischl, 2012]
and in [Puonti et al., 2016], both for healthy whole-brain segmentation. An
example slice of one of the segmented subjects is shown in figure 5.2.

As it was shown in [Puonti et al., 2016] that the segmentation performance does
not increase substantially by using more than 10 training subjects for whole-
brain segmentation, we selected 10 representative subjects – including both
healthy subjects and subjects with varying progression of Alzheimer’s disease.
As we are interested only in organs-at-risk, we merged most of the 39 labels to
the following labels: the organs-at-risk labels hippocampi (HC), brainstem (BS)
and optic chiasm (CH); as well as remaining white matter (WM), remaining gray
matter (GM), cerebrospinal fluid (CSF) and background.

Some important organs-at-risk are not included in the available manual seg-
mentations. Structures outside of the brain are clearly not included i.e., eyes,
eye lenses and optic nerves. Also, the optic tracts are not included. Therefore,
we manually segmented these on the T1 images of the 10 selected subjects. In
simplified terms, an eye includes fluid within the eye, a solid outer layer and the
lens. Fluid has a different intensity profile in MRI than solid tissue. Thus, we
segmented it separately. In order to model a structure well, it is important to
give some context around the structure. Consequently, we decided to segment
the whole eye socket, which – apart from eye and optic nerve – also includes
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Figure 5.2: A slice of a subject used in building the atlas. From left to
right: T1 image of the subject’s head and corresponding expert
segmentation into 39 neuroanatomical structures. Figure from
[Puonti et al., 2016].

muscles and fatty tissue.

To be able to predict the probability of seeing a segmentation l given the 10
training segmentations, we first build a generative model of how segmentations
are formed. We define a reference mesh over the image domain with vertex
positions ηr and a label probability vector associated with each vertex, with all
probability vectors collected in α. We define a prior on the deformation of a
mesh with vertex positions η from the reference mesh as

p(η|ηr, β) ∝ exp

(
−β
∑

t

Ut(η,ηr)

)
,

where t denotes a tetrahedron in the mesh, Ut(·) is a penalty for deforming
tetrahedron t from its reference position to its actual position, and β is a user-
defined constant that controls the stiffness of the mesh. The deformation penalty
is the same as proposed in [Ashburner et al., 2000]. This penalty prevents the
mesh from tearing or folding onto itself.

We can now build an atlas by refining the reference mesh and learning appro-
priate values for α given the manual training segmentations. The algorithm
is initialized with a reference mesh of high resolution, and by defining a mesh
for each segmentation. The algorithm then alternates between two steps. In
the first step, the probabilities in α and the vertex positions for each training
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segmentation mesh are updated iteratively until convergence. While keeping
the mesh vertex positions fixed, α is updated using an EM algorithm. The
mesh vertex positions are then updated by performing a group-wise non-rigid
registration, while keeping α fixed. In the second step of the algorithm, the
topology of the reference mesh is optimized given the MAP estimates of α and
the vertex positions in the training segmentation meshes. For further detail of
this atlas building process, see [Van Leemput, 2009].

Our atlas model is then defined as

p(l|α̂, η̂r) =

∫

η

p(l|η, α̂)p(η|η̂r, β)dη,

where the hat variables have been learned in the atlas building process. For the
rest of the thesis, we drop the dependency on these learned variables and simply
write

p(l) =

∫

η

p(l|η)p(η)dη (5.1)

where we define
p(l|η) =

∏

i

p(li|η).

Note that we use interpolation to go from vertex positions in the mesh to image
voxels. Figure 5.3 shows a slice of the resulting atlas.

5.2 Incorporating mesh-based atlas in the gener-
ative brain tumor segmentation model

We now want to incorporate this new deformable atlas model – defined in equa-
tion 5.1 – into the segmentation model we used in the previous chapter. We
do this by replacing the fixed affine atlas with this new more advanced atlas.
However, as the new atlas include the eye socket region, there are some com-
plications involved in this change of atlas model. As there is no barrier such as
the blood-brain barrier in parts of the eye socket these parts are enhanced in
T1c images, which can result in a similar appearance to enhanced tumor core.
Furthermore, the fine organization of tissues with varying image appearance –
such as muscles, fatty tissue, blood vessels and nerves – the issue with partial
volume effects is more severe. Therefore, we found it necessary to model a re-
striction for tumor tissue to only appear within the brain. Although tumors
can appear virtually anywhere in the body, high-grade gliomas that we focus
on in this thesis are confined to the brain. In rare cases, high-grade gliomas
can metastasize and spread to other parts of the body and primary gliomas can
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Figure 5.3: The resulting atlas including the eye socket. Eye fluid is in yellow.
Lenses and the solid outer layers of the eyes are in light orange.
Optic nerves are in red. Hippocampi are in dark orange. Brain-
stem is in green. Other healthy structures included in the atlas
are shown in varying shades of blue.

appear in e.g., the optic nerve, but these cases would entail a different treatment
protocol and are thus outside of the scope of this thesis.

To model the restriction for tumors to only exist within the brain, we form a
joint prior on both the healthy labels l and the tumor maps z and y. Using
the atlas model defined in equation 5.1 and the tumor shape model defined in
equation 4.5, we can form a joint prior defined as

p(l, z,y) =

∫

η

p(l, z,y|η)p(η)dη

with
p(l, z,y|η) =

∑

H,G

p(l, z,y,H,G|η),

where
p(l, z,y,H,G|η) ∝ e−Ecomb(z,y,H,G)+

∑
i log p(li|η)−s(zi,li).

Here, the added restriction function s(z, l) is constructed as follows: s(z, l) =∞
if z = 1 and l 6= B, where B denotes healthy brain labels. For all other
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combination of values s(z, l) = 0. Note that without this function, the prior
would devolve to simply p(l)p(z,y). The updated segmentation posterior is
now

p(l, z,y|D) ∝ p(D|l, z,y)p(l, z,y).
The full model is illustrated in figure 5.4.

The posterior can be evaluated with the same two-step procedure used in the
previous chapter, with just two differences. The most important difference re-
lates to the positions of the mesh vertices η that did not exist in the model
of the previous chapter. These parameters also need to be taken into account
during the inference. Another difference is of course that the simpler energy
term that temporarily replaces the combined energy term in the tumor shape
model – in the first step of the algorithm – also needs to have the restriction
added that tumors can only exist inside the brain.

In the first step of the inference – similar to the previous chapter – we focus
on evaluating the posterior of the model parameters, here including both the
intensity parameters and the mesh vertex positions. Using Bayes’ rule, this
posterior is given by

p(θ,η|D) ∝ p(D|θ,η)p(θ)p(η)

=


∑

l,z,y

p(D|l, z,y,θ,η) ptmp(l, z,y|η)


 p(θ)p(η),

where ptmp(l, z,y|η) denotes the prior probability where the cRBM energy term
have been replaced with the temporary factorizable energy term, similar to
section 4.2.3.

We already know that we can find MAP estimates of the intensity parameters
with the GEM algorithm. However, MAP estimates of the vertex positions can-
not be found with GEM. Therefore, the posterior is evaluated with a coordinate
ascent algorithm. In coordinate ascent, the objective function is maximized
iteratively by maximizing in one coordinate direction in each iteration. Here,
the posterior is maximized with respect to the intensity parameters by GEM,
while keeping the vertex positions fixed. Then, the posterior is maximized with
respect to the vertex positions while keeping the intensity parameters fixed. For
this, we use a standard conjugate gradient optimizer [Shewchuk, 1994], where
the vertex positions are updated iteratively by using the gradient. The algo-
rithm alternate between updating each set of parameters while keeping the other
fixed until convergence. A detailed description of this approach can be found in
[Van Leemput, 2009].

Similar to the previous chapter, we reintroduce the tumor shape model in the
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Figure 5.4: Graphical representation of full segmentation model. The mesh-
based healthy tissue atlas is defined by node locations in η and
probabilities in α. The complete tumor label z and core label y
are connected to the hidden units of their cRBM models H and
G, respectively. The labels l, z and y jointly predict the multi-
sequence data D according to the model parameters θ. Shading
indicates observed variables.

second step of the algorithm and initialize a Gibbs sampler with the MAP esti-
mates of the labels – obtained from step 1. We keep the mesh vertex positions
fixed throughout the sampling procedure. We could sample from the vertex
positions as well, as in e.g., [Iglesias et al., 2013b], which could potentially im-
prove performance. However, as this is time consuming, we chose to keep them
fixed. Another problem is that the tumor segmentation is still somewhat sen-
sitive to the initialization of the algorithm. A more robust approach could
potentially be to include the sampling in an iterative scheme together with the
first inference step, although this would require some further development of
the inference algorithm. A further development could perhaps be inspired by
the tumor segmentation approach in [Sanjuán et al., 2013]. In this approach,
the algorithm is run two times, where the results from the first run is used to
refine the segmentation in the second run.

Illustrating the inference algorithm. Figure 5.5 illustrates the different
steps of the inference on a representative subject. The first row in the figure
shows the included MR sequences for this subject, the second row shows the
posterior at different steps of the algorithm overlayed on the T1c image and the
third row shows the deformation of the atlas for the first step of the algorithm.
In the initialization of the algorithm, the atlas is affinely registered to the subject
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and the intensity model is initialized based on the atlas (except for the two tumor
Gaussians, which are initialized in relation to the average image intensities).
Clearly, the atlas does not represent the subject well. In the end of step 1,
the atlas has adapted to the subject, which is most clearly seen for the eyes
and hippocampi that have moved to the right locations. Note that the left
optic nerve is slightly off, which is due to the noticeable inconsistencies between
the images – which could be due to eye movements, small registration errors
between the images or partial volume effects. Furthermore, in the end of step
1, the tumor Gaussians are modeling edema and enhanced core fairly well. In
step 2 of the algorithm, after 200 sampling steps, the tumor shape prior has
cleaned up the tumor segmentation considerably and the cavity from surgically
removed tumor tissue has been included in the tumor core segmentation. Note
that the atlas does not deform during the second step of the algorithm.

5.3 Results and discussion

In Paper C, we validated the presented segmentation method on a data set of 42
glioblastoma patients that underwent radiation therapy treatment at Rigshos-
pitalet in Denmark around 2012. The patients were scanned with three MR
sequences: FLAIR, T1c and T2. Also, a CT scan and a FET-PET scan were
acquired. As part of the treatment planning, the following structures have been
manually segmented: tumor core, brainstem, hippocampi, eyes, optic nerves,
optic chiasm, optic tracts, lens and whole brain. The manual segmentations
were performed on the MR images resampled to fit the CT image (with a slice
thickness of around 3 mm). This is the standard work-up for radiation therapy of
glioblastoma patients at Rigshospitalet. The full planning procedure is detailed
in [Munck af Rosenschöld et al., 2011, Munck af Rosenschöld et al., 2015]. In
the validation, we chose to focus on the most important structures: tumor core,
brainstem, hippocampi, eyes, optic nerve and optic chiasm.

As in the previous chapter, we evaluated the automatic segmentations by com-
paring to the corresponding manual segmentations using Dice scores and Haus-
dorff distances, i.e., we treat the manual segmentations as the ground truth.
The Dice score measures overlap; a perfect overlap results in a score of 1 and
no overlap results in a score of 0. Hausdorff distance measures distance between
the segmentation borders. Figure 5.6 shows box plots of the results. The scores
for tumor core are fairly consistent with the scores on the BRATS data set in
figure 4.12. The scores are somewhat better here, because the BRATS data
included many low-grade tumors – for which tumor core is less defined – and
also some quite challenging high-grade tumors.
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FLAIR T1c T2

Initialization of step 1 Posterior after step 1 Posterior after step 2

Initial atlas positions Deformed atlas positions

Figure 5.5: Illustration of the two steps of the algorithm for one subject. First
row: MR sequences of the subject. Second row, from left to right:
prior of organs-at-risk and tumor after initial affine coregistration
of the atlas with the subject, posterior after step 1, posterior after
200 sampling steps in step 2. Third row, from left to right: initial
position of atlas after affine registration, deformed atlas after step
1. Note that atlas positions are kept fixed in step 2.
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Figure 5.6: Boxplot of Dice scores and Hausdorff distances for the following
structures: tumor core (TC), brainstem (BS), hippocampi (HC),
eyes (EB), optic nerves (ON), chiasm (CH). Middle red line indi-
cates median value and cyan circle indicates mean value.

The scores for brainstem are consistent over the subjects, but the average Dice
score is not very high. Figure 5.7 shows a comparison of the automatic and
manual segmentation for one representative subject, to illustrate the differences.
In general, both the automatic and manual segmentations capture the brain-
stem well – although the automatic segmentations seem to be slightly under-
segmented. However, the segmentation protocols differ for the training segmen-
tations used to build the atlas and the segmentations from the clinic. Most
importantly, a large part of the midbrain is not included in brainstem in the
protocol used for the training segmentations.

At first sight, the numerical scores for hippocampi seems to suggest a fairly
low performance. However, a careful inspection of the automatic and manual
segmentations revealed that the quality problem is rather in the manual segmen-
tations. Although they do capture the central parts of the hippocampus region,
they tend to undersegment the full region in a rather inconsistent manner. The
hippocampus segmentation of a representative subject is shown in figure 5.8.
In this figure, we can see that the automatic segmentation appears to be su-
perior. However, our method tends to slightly oversegment some parts of the
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Figure 5.7: Representative example of brainstem segmentation, where the au-
tomatic segmentation is shown in red and the manual ground truth
segmentation in green. First row show segmentations overlayed on
a sagittal slice of the T1c image. Second row show surface plots
of the segmentations.

hippocampus, which can be seen in the closest hippocampus in the surface plot.

The scores for eyes show a fairly good and consistent performance. However, the
scores for other parts of the optic system, i.e., optic nerves and chiasm, are not
optimal. The Hausdorff distances seem somewhat high, but most importantly
the Dice scores are low. In part, this is because the Dice score measures overlap
and is thus more sensitive for small and thin structures than large structures.
This can be seen for a representative subject in figure 5.9. Although the optic
nerve segmentations are reasonably close, the Dice score is only 0.33. To further
illustrate this point, we can compare to the inter-rater variability shown in
[Deeley et al., 2011], which reported an average inter-rater Dice score as low as
0.50 for optic nerves and 0.39 for optic chiasm. Still, our average Dice scores
are lower than these results.

To demonstrate our method’s flexibility in handling varying MR sequences as
input, we conducted a small exploratory experiment on a data set of 7 tumor
patients. In contrast to the other data sets we have used in the project, this data
set includes a double-inversion recovery (DIR) image but no T1 image. Another
difference is that the images were acquired in 3D rather than in 2D slices. The
only two changes we did in the algorithm was to (1) affinely register the atlas to
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Figure 5.8: Representative example of hippocampus segmentation, where the
automatic segmentation is shown in red and the manual ground
truth segmentation in green. First row show segmentations over-
layed on a sagittal slice of the T1c image. Second row show surface
plots of the segmentations.

T2 instead of T1c in the initialization, and (2) initialize the tumor mean values
in DIR the same way as for FLAIR. Unfortunately, this data set did not include
any manual segmentations to compare against, but a visual inspection revealed
that the method performed similar as for the other data sets. A representative
subject is shown in figure 5.10.

For radiation therapy, FET-PET is an important modality to include in the seg-
mentation process, because it visualizes metabolic activity of tumors. Theoret-
ically, a PET image could easily be included in the same way as DIR. However,
there are two main issues when considering PET: PET images are substantially
smoother in comparison to MR images and, more importantly, the boundary
of tumor core often differs between PET and MR. Therefore, in practice, the
inclusion of PET might not be as straight forward and is in this project left for
future work.

In general, the results demonstrate the feasibility of the method for simulta-
neous segmentation of tumors and organs-at-risk for application in radiation
therapy. However, to further validate the automatic segmentations, it would be
relevant to study the effect they would have on the radiation dose plan com-
putations. Furthermore, it seems clear that a ground truth with higher quality
should be obtained to better validate the model. As the inter-rater variability
is usually high [Deeley et al., 2011], a ground truth obtained by fusing segmen-
tations from several experts would be ideal. Another issue with using segmen-
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Figure 5.9: Representative example of optic system segmentation (including
eyes, optic nerve and chiasm), where the automatic segmenta-
tion is shown in red and the manual ground truth segmentation
in green. First row show segmentations overlayed on a sagittal
slice of the T1c image. Second row show a surface plot of the seg-
mentations, where automatic segmentation is in black and manual
segmentation in green.

Figure 5.10: Segmentation of a subject with MR DIR sequence. From left to
right: MR sequences DIR, FLAIR, T2; and automatic segmen-
tation by the proposed method.
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tations from radiation therapy planning is that organs-at-risk far away from
the tumor target might not be carefully segmented by the radiologist, as they
would not be expected to have a significant effect in the dose plan computation
anyway. Furthermore, the atlas should be updated to the same segmentation
protocol for brainstem as in the clinic. As we only need 10 manual segmen-
tations to build the atlas, it would be quite feasible to simply adjust each of
these segmentations. Another approach could be to fuse the atlas with an atlas
with the appropriate segmentation protocol. A framework for this has been
presented in [Iglesias et al., 2015b] and investigated for detailed hippocampus
segmentation in [Iglesias et al., 2015a] and detailed brainstem segmentation in
[Iglesias et al., 2015c].

The segmentation performance on optic nerves and chiasm could probably be im-
proved by incorporating prior knowledge about their specific geometrical struc-
ture, e.g., we know that the optic nerves will extend all the way from the eyes
to the chiasm without any breaks. Another related issue is that there can be
inter-sequence inconsistencies in the appearance of healthy structures, due to
small registration errors and imaging artifacts. For most structures, this does
not usually pose a problem, but for the thin optic nerve it does. In addition, the
optic nerve might move during scanning due to eye movements, which is harder
to control than movement of the head. We could consider to weigh the intensity
model for optic nerve more heavily on certain sequences, such as T1c – which
often have the highest resolution and clearest visualization of this structure.
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Chapter 6

Conclusions and future work

In this PhD project, we have developed generative models capable of modeling
the shape and structure of brain tumors and several organs-at-risk with ap-
plication in radiation therapy. We have used the models to incorporate prior
knowledge of these structures in generative segmentation methods of medical
images, specifically for multi-sequence magnetic resonance images. We have
shown that these generative methods have a good segmentation performance
for brain tumors with varying grade of severity and several organs-at-risk. Fur-
thermore, the generative framework allows the methods to adapt to changes in
the intensity distribution of the input images. Although the methods rely on
certain MR sequences to be present, previously unseen MR sequences can also
easily be included.

In the first part of the PhD project, we concentrated on the modeling of brain
tumors – with a specific interest in high-grade tumors. We developed a tumor
shape model based on convolutional restricted Boltzmann machines (cRBMs),
which are generative networks capable of automatically learning features from
training data. We used cRBMs to learn tumor shape features from binary
tumor maps. From a fairly small amount of training data, we were able to
automatically learn prior information about the shape of tumors that resulted
in a well performing brain tumor segmentation method. In comparison to other
state-of-the-art methods, the method performed especially well on tumor core,
which is the tumor target in radiation therapy. However, as with other brain
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tumor segmentation methods, further development is needed to obtain a truly
robust segmentation performance.

In the second part of the PhD project, we turned our focus to modeling organs-
at-risk. For this purpose, we used a previously validated probabilistic atlas-
based model capable of detailed modeling of the spatial organization in a healthy
brain. The parameters of the model are learned from training data in the form
of manual brain segmentations. As a small amount of training data is needed
to reach an optimal segmentation performance, the atlas can fairly easily be
extended to handle new structures or differing segmentation protocols. In this
project, we extended the atlas to handle also non-brain organs-at-risk. We
incorporated the atlas into the modeling framework that we used in the first
part of the project. In experiments, we showed that the updated method was
capable of segmenting both the tumor and the organs-at-risk simultaneously.
Although more validation is needed with a ground truth of higher quality, the
final fully automated segmentation method seems feasible for use in clinical
radiation therapy planning. It would work well as an aid in manual segmentation
to decrease inter-rater variability and save time for the radiologist. However,
further development is needed to be able to use the method in a fully automated
radiation therapy planning pipeline.

6.1 Future work

In this section, we will briefly discuss some possible ways forward to further
develop the segmentation method developed in this project.

A further validation of the segmentation performance on organs-at-risk is needed.
In hindsight, the manual segmentations used in clinical radiation therapy plan-
ning are not a good choice as ground truth segmentations. This is both due to
the fairly high inter-rater variability but also because some structures far away
from the tumor target might not be carefully segmented. At least a careful
review of the segmentations would be needed, but fused segmentations from
several raters would be ideal. Furthermore, the effect on the radiation dose plan
would be appropriate to measure. The brainstem segmentation protocol used
for the atlas should also be updated to better adhere to the protocol used in
the clinic. In addition, also other organs-at-risk should be validated, such as the
lens of the eye and the optic tracts, which were actually included in the atlas.

Although PET is not routinely used in radiation therapy planning at this mo-
ment, the use will most probably increase. Therefore, further research on how
the segmentation method could handle this modality would be reasonable. How-
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ever, PET images are substantially smoother than MR images – which increase
the problem with partial volume effects – and more importantly differ compared
to MR in the visualization of the tumor border. Therefore, it is probably not
as straight forward to include PET as it is with a new MR sequence. Possibly,
the PET image could be treated separately by the segmentation method, which
would require a more involved development of the modeling framework. As an
example, the generative method in [Menze et al., 2010] treats all MR sequences
separately to segment different parts of the tumor.

The modeling of the optic chiasm and optic nerves could be further developed.
As these structures are both considerably smaller and thinner in comparison
to other validated organs-at-risk, the segmentation of these is more sensitive to
imaging artifacts, partial volume effects and small registration errors between
the images. In addition, the optic nerve can move depending on eye position.
One approach could be to focus on one of the images for the segmentation
of these structures. Another approach would be to incorporate further prior
information on the specific shape of these structures, e.g., that a healthy optic
nerve always will extend from the eye to the chiasm without any gaps.

The tumor shape model works well in the sense that it results in a segmentation
method with highly competitive segmentation performance. However, it is still
fairly limited to local modeling of tumor shape. A model with a more global
capability could potentially be obtained with a deeper architecture with more
than one hidden layer. The cRBM model has been used in such an architecture,
i.e., in deep belief networks. However, these models are even harder to train
than a cRBM and would increase the computational time considerably. Alter-
native generative networks, such as variational autoencoders could potentially
be considered.

Improvements in the inference of the model could be considered, to obtain a
more robust segmentation performance. A limitation in the current inference
algorithm is that the tumor shape model does not inform the deformation of
the healthy atlas, as it is introduced in the second step of the algorithm. An-
other problem is that the tumor segmentation is still somewhat sensitive to the
initialization of the algorithm. A more robust inference could perhaps be ob-
tained by a more iterative approach, such as in [Sanjuán et al., 2013], where the
algorithm is run two times and the results from the first run is used to refine
the segmentation in the second run. Finally, the Gibbs sampler is a fairly basic
sampler which does not necessarily explore the full space of possible parameter
combinations efficiently. Thus, a more advanced sampler could possibly improve
robustness.
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Abstract. In this paper, we present a fully automated generative
method for brain tumor segmentation in multi-modal magnetic reso-
nance images. The method is based on the type of generative model often
used for segmenting healthy brain tissues, where tissues are modeled
by Gaussian mixture models combined with a spatial atlas-based tissue
prior. We extend this basic model with a tumor prior, which uses convo-
lutional restricted Boltzmann machines (cRBMs) to model the shape of
both tumor core and complete tumor, which includes edema and core.
The cRBMs are trained on expert segmentations of training images, with-
out the use of the intensity information in the training images. Exper-
iments on public benchmark data of patients suffering from low- and
high-grade gliomas show that the method performs well compared to
current state-of-the-art methods, while not being tied to any specific
imaging protocol.

1 Introduction

Brain tumor segmentation from multi-modal magnetic resonance (MR) images
is of high value in radiotherapy planning. Automatic tumor segmentation is chal-
lenging since tumor location, shape and appearance vary greatly across patients.
Moreover, brain tumor images often exhibit significant intensity inhomogeneity
as well as large intensity variations between subjects, particularly when they are
acquired with different scanners or at different imaging facilities.

Most current state-of-the-art methods in brain tumor segmentation use a
discriminative approach, which exploits the specific intensity contrast informa-
tion of annotated training images, e.g., [1–3]. This may hinder their applicability
to images acquired at different centers, because the intensity contrast depends
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on the scanner and the imaging protocol that has been used. Many discrimina-
tive methods have been based on the random forest (RF) classification scheme,
which predicts segmentation labels from user-engineered image features. One
such a method is the winner of the 2013 brain tumor segmentation (BRATS)
challenge [4], developed by Tustison et al. [1]. Another large group of discrimi-
native methods are based on deep convolutional neural networks (CNNs) that
are capable of automatically learning features from image intensity information.
CNNs have recently proved successful in many segmentation tasks. At the 2015
BRATS challenge, two such methods achieved a high segmentation accuracy:
Havaei et al. [2] developed a two-way architecture of CNNs that captures both
local details and larger contexts; whereas Pereira et al. [3] trained one CNN
for high-grade gliomas and another for low-grade gliomas, which proved useful
because of the differences between these two types of tumors. However, the latter
method requires the user to manually select one of the CNNs.

In contrast to these discriminative methods, Kwon et al. [5] developed a suc-
cessful semi-automatic generative method, which does not use intensity informa-
tion from training images. This method, however, requires the user to manually
assign tumor seed points and radii to initialize the tumor growth model used
in the method. For the 2015 BRATS challenge, the same group extended a ver-
sion of this generative method with a discriminative post-processing step using
a gradient boosting multi-class classification scheme followed by a patient-wise
refinement step, which increased the segmentation accuracy [6]. Some fully auto-
mated generative approaches have previously been proposed, such as [7,8], but
with generally lower segmentation accuracy.

In this paper we propose a fully automated generative method that achieves
segmentation accuracy comparable to state-of-the-art discriminative methods
while being contrast-adaptive. To achieve this, we incorporate a prior on tumor
shape into an atlas-based probabilistic model for healthy tissue segmentation.
The prior models tumor shape by convolutional restricted Boltzmann machines
(cRBMs), which are higher-order Markov random fields (MRFs) capable of mod-
eling more complex interactions than traditionally used first-order MRFs. The
features of the cRBMs are learned automatically from expert segmentations
of training data without the use of the intensity information corresponding to
these segmentations. This allows the model to adapt to varying intensity con-
trasts during the segmentation phase. Experiments on the test data sets of the
2013 and 2015 BRATS challenges show that the method compares well to the
current state-of-the-art.

2 Generative Modeling Framework

Let D = (d1, ...,dI) denote the multi-contrast MR data of a subject, where
I is the number of voxels and di contains the (log-transformed) intensities at
voxel i. We aim to segment each voxel i into either one of K healthy tissue
labels li ∈ {1, ...,K} or tumor tissue zi ∈ {0, 1}, and within tumor tissue into
either edema or core yi ∈ {0, 1}. We also aim to segment the voxels in the
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core that are enhanced in T1c (see [4] for a description of the tumor tissue
labels). For this purpose we build a generative model that describes the image
formation process, illustrated in Fig. 1. We then use this model to obtain a
fully automated segmentation algorithm by focusing on the posterior of the
segmentation variables given the data:

p(l, z,y|D) ∝ p(D|l, z,y)p(l)p(z,y) with (1)

p(D|l, z,y) =

∫

θ

p(D|l, z,y,θ)p(θ)dθ,

where l = (l1, ..., lI), z = (z1, ..., zI) and y = (y1, ..., yI); and θ contains free
model parameters. The model consists of the likelihood function p(D|l, z,y,θ),
which links labels to MR intensities; and the priors p(l), p(z,y) and p(θ).

Fig. 1. Graphical representation of the model. The atlas-based prior πl models healthy
tissue labels l. The complete tumor label z and core label y are connected to the hidden
units of their RBM models H and G, respectively. The labels l, z and y jointly predict
the multi-contrast data D according to the model parameters θ. Shading indicates
observed variables.

For the likelihood p(D|l, z,y,θ), we use Gaussian mixture models (GMMs)
to model the relationships between tissue labels and image intensities. Further-
more, we model bias fields corrupting the MR scans as linear combinations of
spatially smooth basis functions added to the scans [9]. Specifically, we define
the likelihood as

p(D|l, z,y,θ) =
∏

i

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pi(di|θli ,C) if zi = 0 and yi = 0, (healthy)

pi(di|θe,C) if zi = 1 and yi = 0, (edema)

pi(di|θc,C) if zi = 1 and yi = 1, (core)

(yi = 1 and zi = 0 prohibited by prior, see Eq. 11)

, (2)
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where θx denotes the parameters of the GMM connected to tissue x and
C = (c1, ..., cN ), where cn denotes the parameters of the bias field model for
MR contrast n. All GMM and bias field parameters are collected in θ. We define
a Gaussian mixture model, with Gx Gaussian components, as pi(di|θx,C) =∑Gx

g=1 γxgN (di − CT φi|μxg,Σxg), where subscript g denotes a Gaussian com-
ponent within the Gaussian mixture model; N (·) denotes a normal distribution;
and the parameters γxg, μxg and Σxg are the weight, mean and covariance of

the corresponding Gaussian. Furthermore, φi evaluates the basis functions of
the bias field model at voxel i. We assume that one of the Gaussian components
of the core will correspond to the enhanced parts of the core.

For the healthy tissue prior p(l), we use a probabilistic affine atlas computed
from segmented healthy subjects [10], defined as p(l) =

∏
i πi

li
. In the ith voxel,

πi
WM, πi

GM, πi
CSF and πi

BG denote the prior probability for white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and background (BG) respectively.
Note that the atlas does not include a vessel label, i.e., vessels are not directly han-
dled by the model. However, they do not typically affect the final tumor segmenta-
tion due to their small size. The affine registration of the atlas is often insufficient
for capturing the displacement of healthy tissues seen in many tumor patients due
to the so-called mass effect of tumors. We therefore add an extra healthy label
OTHER to the atlas with a constant prior probability πi

OTHER = 0.1, to put some
probability mass in otherwise unexpected places. We then re-normalize the prob-
ability maps to ensure that they sum to one.

For the prior p(θ) on the distribution parameters, we use uniform priors on
C and most mean vectors. However, we found it beneficial to use a prior with a
linear constraint for edema and WM. We model these two tissues with just one
Gaussian component each, and define a prior over their mean vectors as

p(μe,μWM ) =

{
∝ 1 if μe,FLAIR ≥ α μWM,FLAIR

0 otherwise
, (3)

to encode our prior knowledge that edema appears brighter than WM in FLAIR.
Here, the scalar α defines the limit of how close μe,FLAIR can be to μWM,FLAIR.

For each GMM’s mixture weights, collected in vector γx, we use the conjugate
prior

p(γx) = Dir(γx|β), (4)

which is Dirichlet distributed [11, Ch. 3.4]. Each element of β is set to 1000 to
discourage the removal of Gaussian components. For each GMM’s covariances,
we use the conjugate prior

p(Σxg) = W−1(Σxg | v0
xgΣ0, v0

xg), (5)

which is inverse-Wishart distributed [11, Ch. 4.6]. The matrix Σ0 is our prior
belief of the covariance structure. We set off-diagonal elements in Σ0 to zero and
diagonal elements to the variances of the intensities in the whole brain divided
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by the number of Gaussians in the full model. The scalar v0
xg defines the strength

of the prior. As healthy tissues are rather well-defined, we set v0
xg to zero for the

healthy Gaussians to obtain uniform priors. For the tumor Gaussians, we set v0
xg

to 20 % of their estimated volumes (cf. Sect. 3.1 for details).
Finally, for p(z,y) we use a convolutional RBM model, defined below.

2.1 Tumor Prior

We model tumor shape by RBMs, which are higher-order MRFs that are capable
of modeling higher-order interactions. An RBM is a graphical model with a set
of visible units and a set of hidden units, where connections exist between the
two sets but not between the units within each set. This restriction facilitates
inference with the model. To allow for more efficient inference over large images
without a predefined size, we use convolutional RBMs (cRBMs), where the con-
nection weights are shared among all locations [12]; see Fig. 2 for an example.
In particular, for modeling tumor label z we use a binary cRBM of the form
p(z) =

∑
H p(z,H), with p(z,H) ∝ e−E(z,H) and the energy term

E(z,H) = −
∑

k

hk • (wk ∗ z) −
∑

k

bk

∑

j

hkj − a
∑

i

zi, (6)

where • denotes element-wise product followed by summation and ∗ denotes
convolution. Here the model is defined in 1D to avoid cluttered equations; it is
trivial to extend it to 3D images. Each hidden group hk ∈ H is connected to
the visible units in z with a convolutional filter wk, which models interactions
between the hidden and visible units, effectively detecting specific features in z.
Furthermore, each hidden group has a bias bk and visible units have a bias a,
encouraging units to be enabled or disabled.

Fig. 2. A small 1D example of a cRBM. Visible units in z are connected to hidden units
in a hidden group hk through a convolutional filter wk of size 3. The first illustration
shows the model from the hidden layer’s perspective. The second shows the model from
the visible layer’s perspective, where w̃k is a mirror-reversed version of the filter. Note
that boundary units in the visible layer are set to 0.

We train a cRBM for the complete tumor label z, where we learn the filters
and bias terms from expert segmentations of the complete tumor obtained from
training data. This is done by stochastic gradient ascent with the contrastive
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divergence (CD) approximation of the log-likelihood gradients with one block-
Gibbs sampling step (persistent CD was also tried as an alternative to standard
CD, but yielded inferior results in our experiments) [13]. We use the so-called
enhanced gradient together with the CD approximation to obtain more distinct
filters [14]. Due to the structure of the cRBM model, the conditional distributions
needed for block-Gibbs sampling are easily obtained as p(z|H) =

∏
i p(zi|H) and

p(H|z) =
∏

k

∏
j p(hkj |z), where

p(zi = 1|H) = σ((
∑

k

w̃k ∗ hk)i + a) (7)

and p(hkj = 1|z) = σ((wk ∗ z)j + bk). (8)

Here, σ(t) = 1/(1 + e−t) and tilde denotes a mirror-reversal of the filter in each
direction. Similarly, we train a cRBM for the tumor core label y, with conditional
distributions

p(yi = 1|G) = σ((
∑

k

ũk ∗ gk)i + c) (9)

and p(gkj = 1|y) = σ((uk ∗ y)j + dk), (10)

where G denotes the hidden units connected to y; u the filters; and c and d the
bias terms. After the training phase we combine the two cRBMs to form the
joint tumor shape prior:

p(z,y) =
∑

H,G

p(z,y,H,G) (11)

with p(z,y,H,G) ∝ e−E(z,H)−E(y,G)−∑i f(zi,yi),

which models both edema and core simultaneously. Here, f(zi, yi) = ∞ if zi = 0
and yi = 1, and otherwise 0, restricting tumor core to only exist within the
complete tumor.

2.2 Inference

Exact inference of p(l, z,y|D) requires an intractable integration over all possible
combinations of model parameters. Moreover, even if the model parameters were
known the model does not factorize over the voxels, as the cRBM introduces non-
local dependencies between them. Therefore, we resort to Markov chain Monte
Carlo sampling (MCMC) to generate samples of l, z and y from p(l, z,y|D), and
perform a voxel-wise majority voting across the collected samples to obtain the
final segmentation. In particular, we generate samples of l, z,y,H,G and θ by
block-Gibbs sampling from the distribution p(l, z,y,H,G,θ|D), and ignore the
samples of H,G and θ as they are of no interest to us.

Block-Gibbs sampling is straightforward to implement as each of the con-
ditional distributions factorizes over its components: the labels l, z and y are
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sampled simultaneously from the conditional distribution p(l, z,y|D,H,G,θ),
for each voxel independently:

p(li, zi, yi|di,H,G, θ)∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi(di|θli ,C) p(zi = 0|H) p(yi = 0|G) πi
li

if zi � 0, yi � 0

pi(di|θe,C) p(zi = 1|H) p(yi = 0|G) πi
li

if zi � 1, yi � 0

pi(di|θc,C) p(zi = 1|H) p(yi = 1|G) πi
li

if zi � 1, yi � 1

0 if zi � 0, yi � 1

.

The hidden layers H and G are sampled from the conditional distributions
p(H|z) and p(G|y), given by Eqs. (8) and (10). For the GMM parameters, we
iteratively assign voxels to individual GMM components and sample the parame-
ters accordingly ([11, p. 840]). We use rejection sampling to satisfy the constraint
of Eq. (3). Note that we could also easily sample from the bias field model, since
its conditional distribution is a multi-variate Gaussian. However, this was not
implemented. Instead, we use the point estimates of the bias field model para-
meters C obtained with the initialization algorithm described below.

We initialize the MCMC sampler with the maximum a posteriori segmenta-
tion obtained with a generalized expectation-maximization algorithm (GEM) [9].
Since we are only interested in a good parameter initialization at this stage, we
temporarily replace the combined cRBM’s energy with a simple energy of the
form: −∑

i[li �= BG](zi log w +(1− zi) log(1−w)), where w represents the prob-
ability of a voxel to be tumor. This reduces the model to the same form as in [9]
(with the addition of p(μe,μWM )). We set w to the average fraction of tumor tis-
sue within brain tissue in the training data. At this stage we simply use uniform
priors on all covariance matrices.

3 Experiments

We demonstrate the performance of our method on the data of the BRATS
brain tumor segmentation challenges. The data sets include high- and low-
grade gliomas and consist of four MR-sequences: FLAIR, T2, T1 and contrast-
enchanced T1 (T1c). The data are publicly available at the virtual skeleton
online platform [15]. Previous to the release of the data sets, all data were skull-
stripped and resampled to 1 mm isotropic resolution and the four MR-sequences
of each subject were co-registered.

To learn the parameters of the cRBM model, we used the expert segmen-
tations of the BRATS 2013 training data, consisting of 20 high-grade gliomas
(HGGs) and 10 low-grade gliomas (LGGs). To internally test our method, we
used the 2015 training data with available ground truth segmentations. This
data set contains 200 HGGs and 44 LGGs (we excluded the subset of BRATS
2013 training subjects). We then tested the method on two independent test data
sets from 2013: the data set used in the 2013 on-site challenge with 10 HGGs,
and the leaderboard data set with 25 subjects used for an off-site evaluation
including both HGGs and LGGs [4]. Furthermore, we participated in the 2015
challenge where the test data set consisted of 53 subjects, including both HGGs
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and LGGs. Note that the ground truth segmentations and tumor grades of the
test data sets were not publicly available. Instead, we evaluated our method and
compared to other methods by uploading segmentations to the online platform.

3.1 Implementation

We used 40 filters of size (7× 7× 7) for each cRBM, corresponding to 40 hidden
groups. Each cRBM was trained with 9600 gradient steps of size 0.1. A subset
of 10 training examples was used to compute the gradient at each step. As the
training data set is small, we augmented it by flipping the tumor segmentations
in 8 different directions. Furthermore, to reduce the number of parameters to
be estimated, we let each element in an cRBM filter model two neighboring
elements in z or y, i.e., a filter of size 7 will span over 14 visible units.

We registered the healthy tissue atlas by an affine transformation and log-
transformed the MR intensities, to account for the additive bias field model [9].
The number of components in each GMM was chosen as follows: we represented
the core label y with one Gaussian during GEM initialization, and three during
MCMC: one for enhanced core and two for unenhanced core. Before starting the
MCMC procedure, the unenhanced core Gaussians were initialized by randomly
setting yi = 1 to a fraction of the voxels with zi = 1 and yi = 0 in the GEM
segmentation. The fraction was chosen so that the total fraction of core within
the complete tumor equaled the average fraction in the training data set. All
other labels were represented by one Gaussian each, except CSF and BG that
were represented by two Gaussians each.

The healthy tissues’ GMM parameters were initialized based on the atlas,
except for the label OTHER’s mean values which were initialized as the 30th
percentile of the brain intensities in each MR-contrast. For tumor tissue, we
used the knowledge that edema is always brighter than healthy tissue in FLAIR
and T2, and additionally that enhanced core is brighter than any other label in
T1c. We therefore initialized the mean values to the percentiles {90, 70, 50, 50}
and {90, 70, 50, 95} in FLAIR, T2, T1 and T1c for edema and core respectively.
When validating the method, we found that this initialization is adequate in
most cases, i.e., the algorithm is able to adapt to the intensity distribution of
a subject. However, the method might fail if e.g., the intensity distribution of
tumor tissue is not sufficiently different from healthy tissue due to a bias field.

Due to the large size variation of tumors, we found it necessary to individu-
alize the bias term a connected to z in Eq. (7) to better represent the tumor to

be segmented. We therefore added log
(

pzs(1−pzt)
pzt(1−pzs)

)
to a, where pzs denotes the

fraction of tumor within the GEM-segmented brain and pzt denotes the average
tumor size in the data used to train the cRBM. We did the same for the bias
term connected to y in Eq. (9), matching it with the average fraction of core
within complete tumor in the training data set.

As discussed previously for the Gaussians modeling tumor tissue, we set the
strength of the covariance priors (v0

xg in Eq. 6) to 20 % of the number of voxels
belonging to each Gaussian in the initial segmentation. However, due to the large
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changes of tumor size during sampling, we found it necessary to re-estimate v0
xg

to 20 % of the volumes in the updated segmentations during sampling. Note that
this is non-standard and a more proper use of the priors is left for future work.

Finally, we estimated the limit parameter α (in Eq. 3) to 1.08 by estimating
the means on the BRATS 2013 training subjects using the described GEM, but
with tumor labels fixed to the ground truth, and subsequently building statistics
of the FLAIR mean values in edema and WM.

All computations were done on a i7-5930K CPU and a GeForce GTX Titan
Black GPU in MATLAB 2014b. The training phase of each cRBM took around
3 days on the GPU. The full segmentation algorithm takes approximately 30 min
per subject, including atlas registration (CPU), GEM-initialization (CPU) and
sampling (GPU). The sampling is the most time consuming part, taking 25 min
on average, mainly due to the many convolutions that are involved. We gener-
ated 15 samples after a burn-in period of 200 samples and obtained the final
segmentation by majority voting on these 15 samples.

3.2 Results

In Table 1, we compare our method on the three test data sets described in
the beginning of this section to the five state-of-the-art methods discussed in the
introduction. The evaluated labels are the complete tumor (which includes tumor
core and edema), the core region of the tumor, as well as the enhancing regions
within the core. Our method performed comparably well on complete tumor and
core, but not as well on enhanced core. When comparing average Dice scores in
the 2015 challenge, out of 13 participants we ranked 2nd for complete tumor,
1st for core and 6th for enhanced core. The lower performance on enhanced core

Fig. 3. (a) Box plot of Dice scores, 2015 challenge. Circles show mean values, central
lines show medians, edges of boxes show the 25th and 75th percentiles, and outliers
are marked with ‘+’. (b) 5 learned cRBM filters for complete tumor.
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Fig. 4. Slices of five exemplary subjects, 2015 training data. The last subject has a
low-grade tumor and the rest high-grade tumors. From top to bottom: MR-contrasts:
FLAIR, T1, T1c and T2; ground-truth segmentation; initial GEM-segmentation; and
final segmentation. Healthy labels are in blue to cyan, edema is in lilac and core is in
different shades of yellow (Color figure online).
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Table 1. Average Dice scores (%) for the BRATS test data sets [15].

Data set: 2013 Challenge 2013 Leaderboard 2015 Challenge

Comp Core Enh Comp Core Enh Comp Core Enh

Our method 87 82 70 83 71 54 81 68 65

Random forest method [1] 87 78 74 79 65 53 – – –

Two-way CNN method [2] 88 78 73 81 67 55 79 62 72

Grade-specific CNN method [3] 88 83 77 84 72 62 78 65 75

Generative method [5] 88 83 72 86 79 59 – – –

Generative-Discriminative [6] – – – – – – 82 59 74

Fig. 5. Slices of two failed segmentations, 2015 test data. From left to right: MR-
contrasts, initial GEM segmentation and final segmentation. Dice scores (%) of com-
plete tumor, core and enhanced core: (54, 12, 18) and (36, 87, 0).

is not surprising, as we base this segmentation on a single Gaussian intensity
distribution without any spatial prior to separate it from the rest of the core.

Figure 3a shows a box plot of the resulting Dice scores for the test data of
the 2015 challenge. We can see that the method on average performs well on
complete tumor and core, but with a considerable amount of more or less failed
segmentations. It performs substantially worse on the enhanced core. Figure 3b
shows five of the automatically learned filters of the complete tumor cRBM.

A few example segmentations by the proposed method are shown in Fig. 4,
together with initial GEM-segmentations, the ground truth segmentations and
the MR data. Here we can see that the method is capable of capturing varying
tumor shapes, removing many false positives from the initial segmentation (e.g.,
vessels) and recovering when a large part of the core initially has been labeled as
healthy tissue. However, the rather localized shape model does have limitations,
e.g., it has difficulties to remove sizable ventricular CSF flow artifacts and it
tends to oversmooth the tumor border. Furthermore, the intensity difference
between edema and core is not always clear; the last subject has a typical low-
grade tumor appearance, where this difference is almost non-existent.



Brain Tumor Segmentation Using a Generative Model 179

Figure 5 shows two failed subjects. In the first subject, large parts of the
core exhibit a similar intensity distribution to GM, mainly due to a bias field
in FLAIR combined with low enhancement in T1c. The interaction between the
strong edge detecting cRBM filters and the smooth affine healthy atlas is not
ideal in this case. For the second subject, a large part of non-tumor tissue is
better explained by the intensity distribution of tumor than the healthy labels.

4 Discussion

In this paper, we have proposed a fully automated generative method for brain
tumor segmentation, with a tumor prior that uses convolutional restricted Boltz-
mann machines to model tumor shape. We have shown that the method’s perfor-
mance compares well to current state-of-the-art methods on public benchmark
data sets. Moreover, it is not tied to any specific imaging protocol as the optimal
parameters of the tumor model are estimated only from expert segmentations of
annotated training images, without using intensity information.

Described here is a work in progress with many potential paths of improve-
ment still to be explored. The structure of healthy tissues could probably be
better explained by a deformable atlas. Furthermore, it was observed that the
proposed sampling method only explores a small part of the total space of pos-
sible configurations. This is due to the Gibbs sampling framework and the fairly
strong edge detecting filters obtained by training the cRBM model, which result
in a slow mixing of the MCMC chain. Although the method is effective in the
sense that just a few sampling steps are needed to produce competitive seg-
mentations, it could be more efficient and less dependent on initialization when
using a better sampling framework. Future work will involve further experimen-
tation with different filter configurations and deformable atlases, exploration of
more efficient sampling frameworks and simultaneous segmentation of important
healthy structures for radiotherapy.
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ABSTRACT

We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in
multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique
with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The
method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume,
peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method
on a manually delineated clinical data set of glioblastoma patients by comparing segmentations of gross tumor
volume, brainstem and hippocampus. The preliminary results demonstrate the feasibility of the method.

1. INTRODUCTION

When planning for radiotherapy of brain tumors, several structures need to be segmented from multi-modal
magnetic resonance (MR) images. Important structures are healthy sub-cortical structures that should be
spared from radiation (so-called organs-at-risk) and the MR-defined gross tumor volume (GTV). Automatic
segmentation of tumor-affected brains is challenging since the location, shape and appearance of tumors, as
well as the effect of tumors on surrounding healthy tissue, vary greatly across patients. Moreover, brain tumor
images often exhibit significant intensity inhomogeneity as well as large intensity variations between patients,
particularly when they are acquired with different scanners or at different imaging facilities.

A number of methods have been proposed for automatic brain tumor segmentation, including e.g., [2,3] and
other methods evaluated within the MICCAI brain tumor segmentation (BRATS) challenges [1]. However, these
methods have typically been focused solely on the segmentation of tumors and are difficult to extend to also
segment healthy organs-at-risk. In contrast, there are many successful methods for healthy brain segmentation
which are capable of segmenting even small structures with a fair level of accuracy, such as [4, 5]. However,
these methods typically have difficulties handling abnormal brain tissue such as tumors. A method capable
of segmenting healthy brain structures in detail while at the same time being able to handle tumors or other
types of abnormal tissue still remains an open problem. Some research with atlas-based methods for brain
tumor segmentation have started to look in this direction, e.g., in [6] a semi-automatic method was presented to
non-linearly register a healthy atlas to brains with tumors; and in [7] an automatic method was presented for
simultaneous segmentation of tumors and sub-cortical healthy structures, but the accuracy was not validated on
important organs-at-risk.

In this paper we propose a fully automated generative method to segment brain tumors and organs-at-
risk simultaneously. The method is a further development of a previously presented method for brain tumor
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segmentation that has been validated within the BRATS challenge on a publicly available data set of gliomas [8].
Similarly to this previous work, we use a spatial tumor prior consisting of convolutional restricted Boltzmann
machines (cRBMs), which are a type of Markov random fields (MRFs) capable of modeling more complex
interactions than traditionally used first-order MRFs. We learn the cRBM features automatically from expert
segmentations without the use of the intensity information corresponding to these segmentations. Therefore, the
model is able to adapt to varying intensity contrasts during the segmentation phase. In contrast to our previous
method [8], here we combine the cRBM tumor shape prior with a whole-brain segmentation method for healthy
brains [5]. The resulting probabilistic atlas-based method is capable of spatially adapting to individual brains,
enabling us to obtain detailed segmentations of healthy structures, such as organs-at-risk in radiotherapy, in
addition to delineations of the tumor itself.

As an initial evaluation, we test the proposed method on a manually delineated clinical data set of 20
glioblastoma patients. We report segmentation accuracy on GTV and two important organs at risk, brainstem
and hippocampus, compared to the manual segmentations. These preliminary results demonstrate the feasibility
of the method.

2. MODELING FRAMEWORK

Let D = (d1, ...,dI) denote the multi-contrast MR data of a subject after logarithmic transformation, where I is
the number of voxels and di ∈ RN contains the log-transformed intensities at voxel i, where N is the number of
MR contrasts. We aim to assign one of the following labels to each voxel i: tumor (that is to say the MR-defined
GTV), peritumoral edema or one of K healthy tissue labels. For this purpose we build a generative model that
describes the image formation process and use this model to obtain a fully automated segmentation algorithm.

Let l = (l1, ..., lI)T denote the healthy segmentation, where li ∈ {1, ...,K}. We introduce a binary map
y = (y1, ..., yI)T to indicate voxels that are part of a tumor, and another binary map z = (z1, ..., zI)T to indicate
all tumor-affected voxels, i.e., voxels that are part of either tumor or peritumoral edema. This means that an
edema voxel will be indicated by zi = 1 and yi = 0, and a tumor voxel by zi = 1 and yi = 1. Our generative
model then consist of a likelihood function p(D|l,y, z) that links labels to MR intensities, and a prior distribution
on labels p(l,y, z) = p(l)p(y, z), where p(l) encodes prior knowledge of healthy brain anatomy and p(y, z) models
the shape of tumor and edema.

For the likelihood p(D|l,y, z), we use Gaussian mixture models (GMMs) to model the relationship between
tissue labels and MR intensities. Furthermore, we model bias fields that typically corrupt MR scans as linear
combinations of spatially smooth basis functions added to the scans. Letting θ denote all GMM and bias field
parameters with a prior p(θ), the resulting likelihood is given by

p(D|l,y, z) =

∫
θ

p(D|l,y, z,θ)p(θ)dθ with

p(D|l,y, z,θ) =
∏
i


pi(di|θli ,C) if zi = 0 and yi = 0, (healthy)

pi(di|θe,C) if zi = 1 and yi = 0, (edema)

pi(di|θt,C) if zi = 1 and yi = 1, (tumor)

(yi = 1 and zi = 0 prohibited by prior, see Eq. (1))

.

Here θx denotes the parameters of the GMM connected to tissue x and C = (c1, ..., cN ), where cn denotes
the parameters of the bias field model for MR contrast n. We define a Gaussian mixture model, with Gx

Gaussian components, as pi(di|θx,C) =
∑Gx

g=1 γxgN (di−CTφi|µxg,Σxg), where subscript g denotes a Gaussian
component within the Gaussian mixture model; N (·) denotes a normal distribution; and the parameters γxg,
µxg and Σxg are the weight, mean and covariance of the corresponding Gaussian. Furthermore, φi evaluates the
basis functions of the bias field model at voxel i. We restrict healthy structures with similar intensity properties
to have the same GMM parameters. We use the following superstructures: non-brain tissues, cerebrospinal
fluid, gray matter structures (including hippocampus) and white matter structures (including brainstem). For
the prior p(θ), we follow the formulations in [8]; with uniform priors on C and most mean vectors, conjugate
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priors on weights and covariances, and a prior with a linear constraint on the mean vectors related to edema and
healthy white matter structures.

For the healthy segmentation prior p(l), we use a probabilistic atlas learned from manual annotations in
39 subjects as described in [5]. Among many other structures, the atlas includes spatial probability maps of
brainstem and hippocampus. The atlas is parametrized by a sparse tetrahedral mesh with node positions η.
Assuming conditional independence of the labels between voxels given η, the prior is given by

p(l) =

∫
η

p(l|η)p(η)dη with

p(l|η) =

I∏
i=1

pi(li|η),

where p(η) is a topology-preserving deformation prior [9].

Finally, for p(y, z) we use a cRBM model, defined below.

2.1 Spatial tumor prior using convolutional RBMs

We model the shape of tumor-affected tissue by restricted Boltzmann machines (RBMs), a type of MRFs that
are capable of modeling higher-order interactions between voxels through local connections to hidden units.
Connections directly between voxels or between hidden units do not exist, which facilitates inference with the
model. To allow for more efficient inference over large images without a predefined size, we use convolutional
RBMs (cRBMs), where the connection weights are shared among all locations [10]. As in [8], we combine two
separate cRBMs to form the tumor prior: one that models interactions in the tumor-affected map z and one
that models interactions in the tumor map y.

In particular, the cRBM that models z is defined by p(z) =
∑

H p(z,H), with p(z,H) ∝ e−E(z,H) and the
energy term

E(z,H) = −
∑
k

hk • (wk ∗ z)−
∑
k

bk
∑
j

hkj − a
∑
i

zi,

where • denotes element-wise product followed by summation and ∗ denotes convolution. Here the model is
defined in 1D to avoid cluttered equations; it is straightforward to extend it to 3D images. Each hidden group
hk ∈ H is connected to the visible units in z with a convolutional filter wk, which models interactions between
the hidden and visible units, effectively detecting specific features in z. Furthermore, each hidden group has a
bias bk and visible units have a bias a, encouraging units to be enabled or disabled.

The two cRBMs, defined by p(z) with hidden units H and p(y) with hidden units G, are trained separately.
During the training phase we learn the filters and bias terms from expert segmentations of tumor and edema
obtained from training data. This is done by stochastic gradient ascent with the contrastive divergence (CD)
approximation of the log-likelihood gradients with one block-Gibbs sampling step [11]. We use the so-called
enhanced gradient together with the CD approximation to obtain more distinct filters [12,13].

After the training phase we combine the two cRBMs to form the joint tumor shape prior:

p(y, z) =
∑
G,H

p(y, z,G,H)

with p(y, z,G,H) ∝ e−Ecomb(y,z,G,H)

where Ecomb(y, z,G,H) = E(y,G) + E(z,H) +
∑
i

f(yi, zi), (1)

which models both the tumor and the surrounding edema simultaneously. Here, f(zi, yi) = ∞ if zi = 0 and
yi = 1, and otherwise 0, restricting tumor to be within the tumor-affected region.
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2.2 Inference

Exact inference of p(l,y, z|D) requires an intractable integration over all possible combinations of model pa-

rameters. To side-step this difficulty, we use the approximation p(l,y, z|D) ' p(l,y, z|D, θ̂, η̂), where {θ̂, η̂} are
the parameter values that maximize p(θ,η|D). We first use the same model parameter optimization algorithm
as in [5] to maximize p(θ,η|D). After this, we sample from p(l,y, z|D, η̂) by using Markov chain Monte Carlo
sampling (MCMC) and subsequently use voxel-wise majority voting to obtain the final segmentation.

To maximize p(θ,η|D) we can use coordinate ascent as in [5], where the atlas deformation parameters η
are optimized with a conjugate gradient algorithm, and the intensity model parameters θ with a generalized
expectation-maximization (GEM) algorithm. The optimization is done by iteratively alternating between keep-
ing the deformation parameters fixed while optimizing the intensity model parameters and vice versa until
convergence. However, the cRBM model introduces non-local dependencies between the voxels. We therefore
temporarily replace the combined cRBM’s energy Ecomb(z,y,H,G) with a simple energy of the form

Etmp(z) = −
I∑

i=1

[li 6= NB]
(
zi
(
yi log(wv) + (1− yi) log(w(1− v)

)
+ (1− zi) log(1− w)

)
,

where NB denotes non-brain tissues, and w and v are user-specified parameters that essentially define uniform
spatial prior probabilities for tumor-affected tissue and tumor, respectively, to occur within the brain. This
reduces the model to the same form as in [5], so we can use the same optimization method.

After the initial parameter estimation, we replace the temporary energy with the original cRBM energy
and use MCMC to generate samples of l, y and z from p(l,y, z|D, η̂). Note that we keep the parameters η
fixed to η̂ during sampling, as these atlas deformation parameters are difficult to sample from. In particular,
we generate samples of l,y, z,G,H and θ by block-Gibbs sampling from the distribution p(l,y, z,G,H,θ|D, η̂).
After that, we discard the samples of G,H and θ as they are of no interest to us, and perform voxel-wise majority
voting across the collected samples of l, y and z to obtain the final segmentation. Block-Gibbs sampling is
straightforward to implement as each of the conditional distributions p(l,y, z|D,G,H,θ, η̂), p(G|y), p(H|z) and
p(θ|D, l,y, z, η̂) factorizes over its components. We initialize the MCMC sampler with a maximum a posteriori

segmentation obtained by evaluating the posterior probability p(l,y, z|D, θ̂, η̂) of the initial optimization method.

3. EXPERIMENTS

We demonstrate the performance of the proposed method on a clinical data set of 20 glioblastoma patients that
have undergone radiotherapy treatment at Rigshospitalet at Copenhagen University Hospital. These patients
have been scanned with a CT scanner and a Siemens Magnetom Espree 1.5T MRI scanner. The data set includes
three MR-sequences: FLAIR, T2 and contrast-enhanced T1 (T1c); with a voxel size of (1 × 1 × 3), (1 × 1 × 3)
and (0.5 × 0.5 × 1) mm respectively. The CT scans have a voxel size of (0.5 × 0.5 × 3) mm. As part of the
treatment planning, the MR-defined GTV and several organs-at-risk (such as hippocampus, brainstem, eyeballs
and optic nerve) have been manually delineated on the transversal slices of the CT scan of each patient, with
the MR-sequences transformed and resampled to the CT scan.

In our method, we use the three MR-sequences to automatically segment the GTV, hippocampus and brain-
stem. Note that our method do not currently segment eyeballs and the optic nerve, as they are not part of the
healthy atlas we are using. These structures will be included in the future. As the only pre-processing step
before running the algorithm, we co-register the MR scans and resample them to 1 mm isotropic resolution. As
a post-processing step, we transform and resample the resulting segmentations to the CT scan, before comparing
with the manual segmentations.

To learn the parameters of the cRBM model, we used the expert segmentations of the training data for
the MICCAI Brain Tumor Segmentation challenge of 2013, consisting of edema and tumor segmentations of 20
high-grade gliomas and 10 low-grade gliomas [1]. As this training data set is small, we augmented it by flipping
the segmentations in 8 different directions.
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3.1 Implementation

For the initial model parameter optimization method, we closely follow the implementation details of the whole-
brain segmentation method described in [5]. For the sampling and the training of the cRBM model, we closely
follow the implementation details in [8]. We used 40 filters of size (7× 7× 7) for each cRBM, corresponding to
40 hidden groups. Furthermore, to reduce the number of parameters to be estimated, we let each element in an
cRBM filter model two neighboring elements in y or z, i.e., a filter of size 7 will span over 14 visible units.

For the GMMs connected to the different structures, we used the following number of Gaussians: three for
non-brain tissues, two for cerebrospinal fluid, one for gray matter structures (which includes hippocampus),
one for white matter structures (which includes brainstem), one for tumor and one for edema. The healthy
GMM parameters were initialized based on the structure probabilities given by the atlas prior model after affine
registration to the subject. We initialized the mean vectors of the tumor and edema Gaussians to the percentiles
{90,70,95} and {90,70,50} respectively, in FLAIR, T2 and T1c. Before starting the MCMC sampler, we added
two more Gaussian for tumor. We initialized the Gaussians by randomly setting yi = 1 to a fraction of the voxels
with zi = 1 and yi = 0 in the segmentation used to initialize the sampler, as detailed in [8].

We implemented the algorithm in MATLAB 2015a, except for the atlas mesh deformation part which was
implemented in C++. The full segmentation algorithm (including both the initial parameter estimation and the
subsequent sampling) was performed on a Core i5-2400 3.1 GHz CPU, taking roughly 2 hours per subject. After
a burn-in period of 100 samples, we generated 100 samples and obtained the final segmentation by majority
voting on these 100 samples.

3.2 Results

Figure 1 shows four exemplary segmentations by the method. Although the method can segment many more
structures [5], we focus here on the structures that we can validate against the manual segmentations and that
are important for radiotherapy, i.e., brainstem, hippocampus and GTV. As can be seen, the atlas is able to
deform well to fit the subjects. The method also captures GTV well although the segmentations are slightly
underestimated compared to the manual segmentations. Furthermore, brainstem and hippocampus are captured
well, although the hippocampus is slightly larger than in the manual segmentations.

Figure 2 shows a brainstem segmentation by the method from a sagittal view compared to the corresponding
manual segmentation. The method captures brainstem well, but as can be seen from this view a part of the
midbrain is missing in the method’s segmentation. This is due to the different protocols used by the experts
at the clinic and for the healthy subjects used to construct the atlas, where this part of the midbrain has been
labeled as ventral diencephalon.

Figure 3 shows three hippocampus segmentation by the method from a sagittal view compared to the corre-
sponding manual segmentations. Note that the manual segmentation appear blocky as they are delineated on the
transversal slices of the CT scans. In the two first examples, the hippocampus is well captured by the method. In
contrast, the manual segmentations are missing parts of the hippocampus. It is clear that the protocol used for
the manual segmentations is quite conservative. In the last example however, the method slightly overestimate
the hippocampus.

In figure 4, we show quantitative results evaluating the spatial overlap in the structures brainstem, hippocam-
pus and GTV; for the 20 test subjects. In order to compare our method to the manual segmentations, we use
Dice score D = TP

(FN+FP+2 TP)/2 , true positive rate TPR = TP
TP+FN and positive prediction value PPV = TP

TP+FP

as performance metrics. Here, TP, FP and FN count the true positive, false positive and false negative voxels
compared to the manual segmentations. For all metrics, a perfect overlap would give a score of 1 and no overlap
a score of 0. From left to right, the columns in each plot shows the scores for brainstem, hippocampus and GTV,
respectively. The scores for brainstem are the most consistent, with a fairly high average Dice score. The trend
of the TPR and PPV shows that brainstem is clearly underestimated compared to the manual segmentations,
which is mainly due to the different protocols. Hippocampus, on the other hand, has a low Dice score as in gen-
eral it is overestimated compared to the manual segmentations. This is mainly due to the conservative protocol
of the manual segmenters, but the hippocampus is also sometimes overestimated by the method. It should be
noted that hippocampus is a small structure, with an average volume which is 10 times less than the other two
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structures in this study. This makes the scores more sensitive to segmentation differences. For most subjects,
GTV gets fairly well segmented, but fails for a few subjects which drags down the average scores considerably.

Figure 5 shows two failed segmentation. In the first subject, the method has difficulties to include a resection
with a similar intensity distribution as cerebrospinal fluid. This issue affected the segmentations of three subjects
in the data set. In the second subject in the figure, the method captures an old infarct in another region of the
brain and adapts to its intensity distribution, which has the unfortunate effect that the enhanced ring of the
tumor gets labeled as peritumoral edema. In one other subject, the method segmented the GTV fairly well but
also segmented a tumor that was not to be included for radiotherapy.

Figure 1. Slices of four exemplary subjects. From left to right: MR-contrasts: FLAIR, T2 and T1c; segmentation by
method; and manual segmentation. GTV is in yellow, brainstem is in green, hippocampus is in orange, edema is in lilac,
non-brain tissue is in black and healthy superstructures are in shades of blue.
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Figure 2. Sagittal view of brainstem. From left to right: T1c, segmentation by the proposed method, and manual
segmentation.

Figure 3. Sagittal view of hippocampus in three subjects. From left to right: T1c, segmentation by the proposed method,
and manual segmentation.
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Figure 4. Box plots showing Dice scores, TPR and PPV of brainstem (BS), hippocampus (HC) and GTV. Circles show
mean values, central lines show medians, edges of boxes show the 25th and 75th percentiles, and outliers are marked with
’+’.

Figure 5. Slices of two failed subject. From left to right: MR-contrasts: FLAIR, T2 and T1c; segmentation by method;
and manual segmentation. GTV is in yellow, brainstem is in green, hippocampus is in orange, edema is in lilac, non-brain
tissue is in black and healthy superstructures are in shades of blue.

4. DISCUSSION

In this paper, we have proposed a fully automated generative method for simultaneous brain tumor and organs-
at-risk segmentation for radiotherapy planning. The method combines an existing whole-brain segmentation
method with a tumor prior that uses convolutional restricted Boltzmann machines to model tumor shape. It
is not tied to any specific imaging protocol as the parameters of the tumor model are estimated only from
expert segmentations of annotated training images, without using intensity information. To initially test the
feasibility of the method, we have evaluated its performance on a manually delineated clinical data set of 20
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glioblastoma patients. We have reported the segmentation accuracy on gross tumor volume and two organs
at risk in radiotherapy, i.e., brainstem and hippocampus; with varying but promising results. The evaluation
revealed some misalignment between the protocols used by the segmentation experts of the test data set and the
protocols used when constructing the healthy atlas. Future work will involve further experiments to improve the
tumor prior and use more informed priors on the GMM parameters; inclusion of other important organs at risk
in the atlas, such as eyeballs and the optic nerve; and validation on a larger data set.
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Simultaneous Segmentation of Tumor and
Organs-at-Risk for Radiation Therapy Planning of
Glioblastomas using a Sequence-Adaptive Method
Mikael Agn*, Per Munck af Rosenschöld, Laura Mancini, Anastasia Papadaki, Steffi Thust, John Ashburner,

Ian Law, Koen Van Leemput

Abstract—When planning a radiation therapy session to treat
a brain tumor patient, the tumor target need to be segmented
and also so-called organs-at-risk, which are healthy structures
that should be spared from radiation. In this paper, we present
a fully automated generative method that can simultaneously
segment both types of structures. The method extends an existing
generative whole-brain segmentation method to also handle
organs-at-risk outside of the brain, and combines this method
with a spatial tumor shape model. The method uses a mesh-based
probabilistic atlas modeling the organization of healthy structures
coupled with an intensity model, modeling the image intensity
distribution together with imaging artifacts. The shape of tumors
are modeled by convolutional restricted Boltzmann machines.
The method is capable of adapting to varying image sequences
and protocols. We validate the method on a clinical dataset with
multi-contrast MR data as well as on a public benchmark dataset
of glioma patients from several imaging centers. In addition, we
demonstrate the method’s flexibility on a small dataset with a
differing set of MR contrasts. Our experiments indicate that
the segmentation of brain tumor compares well to the state-of-
the-art and that we achieve a good performance on brainstem,
hippocampi and eyes; while the performance on optic nerves and
chiasm was generally lower.

I. INTRODUCTION

GLIOBLASTOMAS are the most common type of tu-
mors originating within the brain [1]. Current treatment

practice involves a combination of surgical resection, conmit-
tant and adjuvant chemotherapy, and radiation therapy [2].
During radiation therapy, the patient is typically subjected to
radiation beams from different directions and with different
intensity profiles, with the aim of maximizing the delivered
radiation dose to the targeted tumor while minimizing the
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dose to sensitive healthy structures [3]. When planning the
radiation therapy session, many structures therefore need to
be delineated on medical images of the patient’s head – most
importantly on multi-contrast Magnetic Resonance (MR) scans
[4]. The MR-defined gross tumor volume (GTV) need to be
delineated and also so-called organs-at-risk (OARs). OARs
are healthy structures that need to be spared from radiation.
The specific OARs used vary between clinics; in this paper
we will focus on optic nerves, optic chiasm, eyes, brainstem
and hippocampi [5]. In clinical practice, the delineation is
performed manually with limited assistance from automatic
procedures. However, manual delineation is time consuming
and typically suffers from poor reproducibility [6], [7], [8].
Therefore, there is a need for automated segmentation methods
that can segment both brain tumors and healthy structures in
brain tumor patients.

To automatically segment medical images of brain tumor
patients is difficult for two main reasons. The first reason
is that tumors in themselves are difficult to capture as they
vary greatly in size, shape, appearance and location within the
brain; and additionally they might have been partly removed
by surgery in a previous treatment stage. The second reason
is that the healthy structures surrounding a tumor are pushed
and deformed by the growth of the tumor (so-called mass
effect). Furthermore, patients suffering from brain tumors
fairly frequently have other abnormalities such as enlarged
ventricles due to their age, making the segmentation task
challenging. Moreover, MR scans often exhibit significant
intensity inhomogeneity – so-called bias fields – as well as
large intensity variations across imaging centers. In addition,
the visualization of tumors through medical images is an active
research area with potentially interesting imaging protocols
and techniques emerging [9].

There is a notable lack in the literature of methods that
simultaneously segment brain tumors and organs-at-risk [10].
In contrast, many methods exist with a singular focus on brain
tumor segmentation – with some achieving a good although
not very robust performance. In particular, the annual Brain
Tumor Segmentation (BRATS) challenge held the first time in
conjunction with the 2012 MICCAI conference have bench-
marked several well-performing methods [8]. Such methods
can be divided into two broad categories: discriminative and
generative methods.

Discriminative methods typically rely heavily on the inten-
sity information of annotated training data, which is used to
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directly learn how to discriminate between the appearance of
tumor and that of other tissue. To incorporate spatial context,
different strategies are employed. Patch-based methods make
use of annotated image patches from training data that are
compared directly with the images to be segmented, e.g., [11].
Many methods rely on user-engineered image features that are
fed into a classifier, such as random forests, e.g., [12], [13],
[14], [15], or support vector machines (SVMs) [16]. Recently,
convolutional neural networks (CNNs) have successfully been
employed for brain tumor segmentation, e.g., [17], [18], [19],
[20]. The key to their success is their capability of automati-
cally learning image features from training data. CNNs learn
these features in a deep hierarchy that can capture complex
interactions in the data. Because discriminative methods ex-
plicitly depend on training data intensity information, they are
limited to the imaging protocols and modalities included in
the training data. Even within one imaging protocol, careful
preprocessing is crucial – such as bias field correction, skull-
stripping and intensity normalization. Additionally, these type
of methods often need a large amount of annotated training
data. To train a discriminative method to handle a new image
contrast, additional training data typically have to be acquired
that include the new contrast.

Generative methods, on the other hand, aim to build a
cohesive model of the formation process of the data to be
segmented. Instead of directly relying on the intensity informa-
tion of training data, a generative model typically incorporates
detailed prior knowledge of behaviors of brain structures
and imaging artifacts coupled with an adaptive model on
the distribution of intensities. Therefore, these methods are
more flexible in adapting to varying situations than discrim-
inative methods, such as unseen images. An inconvenience
with generative methods however is the difficulty to encode
detailed human prior knowledge into appropriate probabilistic
models. For brain tumor segmentation, generative methods
have generally been atlas-based, wherein a probabilistic atlas
encodes the spatial organization of healthy brain structures.
The difficulty is then to incorporate prior information about
tumor tissue into the model. Tumor tissue has been modeled
as outliers in the intensity model, e.g., in [21], or with more
involved models on tumor growth, e.g., in [22], [23]. To
improve performance, these methods have also been used with
a subsequent discriminative step in [24], [25].

Various methods exist for detailed whole-brain segmentation
with excellent performance on reasonably healthy brains –
such as [26], [27], [28], which all include hippocampus
and brainstem segmentation. However, they are typically not
designed to handle significant abnormalities in the brain. As
described in the previous paragraph, generative atlas-based
methods have been used for the single purpose of brain tu-
mor segmentation, while the employed atlas also incorporates
some information about healthy tissue. Some studies have
investigated how to take tumors into account when deforming
atlases, for the purpose of healthy tissue segmentation [29],
[30], [31]. However, this has not yet been specifically explored
for OARs. An atlas-based method for segmenting OARs but
not tumor has been evaluated on a limited dataset of tumor
patients [32], with good performance on brainstem and eyes

but lower performance on optic nerves and chiasm. A few
discriminative methods specifically focused on brainstem seg-
mentation have been evaluated on brains with tumors, showing
good performance on a limited dataset, by using SVMs [10]
and denoising autoencoders [33].

Segmentation of the optic system has generally received
little attention because optic nerves and eyes are outside the
brain, but a few methods have been developed for use in
radiation therapy planning. Some focus solely on optic nerve
segmentation by using e.g., SVMs [34] or multi-atlas ap-
proaches [35]. Geometric-driven methods have been successful
in capturing the specific nature of the optic system (i.e., optic
nerves have a tubular structure with a crossing at the chiasm)
such as in [36], and also including eyes in [7], [37].

In this paper, we present a fully automated generative
method for application in radiation therapy planning that
is capable of simultaneously segmenting brain tumors and
OARs. To the best of our knowledge, this is the first time a
segmentation method has been presented that encompass both
types of structures. The method builds on prior work from our
group in whole-brain segmentation, which has been thoroughly
validated on healthy brains in [38]. The method uses a mesh-
based probabilistic atlas for detailed segmentation of healthy
brain structures, including hippocampi and brainstem. This
atlas is coupled with a Gaussian mixture model for modeling
the distribution of image intensities together with a model for
bias field artifacts. It was first presented in [39] and also used
in [40], [41] for hippocampus and brainstem substructure seg-
mentation. Because the model of brain anatomy is separated
from the model of image intensity, the method can adapt
to the intensity distribution of the images to be segmented.
Thus, varying types of images can easily be included and no
preprocessing is needed such as intensity normalization, bias
field correction or skull-stripping.

To handle tumor segmentation in this paper, we extend
this method by incorporating a model on tumor shape based
on convolutional Restricted Boltzmann Machines (cRBMs).
A cRBM is a generative neural network and thus, similar
to CNNs, it can automatically learn features from training
data. However, we learn features on the tumor segmentations
from annotated training data, without using the corresponding
intensity information. Early works of this model appeared in
[42], [43]. In [42], we proved that cRBMs are suitable for brain
tumor segmentation. As a proof-of-concept demonstration in
[43], we demonstrated the feasibility of combining the whole-
brain segmentation framework with the tumor shape model.
Here, we extend the method to include the OARs optic
nerves, optic chiasm and eyes; and update the intensity model
to a more robust version. Furthermore, we add a detailed
description of our method and validate it on more subjects
from different imaging centers and with varying MR image
contrasts.

II. MODELING FRAMEWORK

We aim to automatically partition a multi-contrast MR scan
of a patient’s head into K healthy tissue labels and two tumor-
affected tissue labels. To reach this aim, we build a generative
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model that describes the image formation process of an MR
scan and then use this model to obtain a fully automated
segmentation algorithm. To build the model, we combine
a previously validated atlas-based approach for whole-brain
segmentation [38] with a spatial prior on tumor shape.

We denote the MR scan D = (di, ...,dI), where I is the
number of voxels in the scan. The column vector di ∈ RN

contains the log-transformed intensities at voxel i for N MR
contrasts.

We call the two tumor-affected tissue labels core and edema.
The core label corresponds to the MR-defined gross tumor
volume (GTV) used in radiotherapy, while the edema label
corresponds to the visible peritumoral edema surrounding the
core. To capture these labels, we introduce two binary maps:
z = (zi, ..., zI)T and y = (yi, ..., yI)T . The z map indicates
all tumor-affected voxels, and the y map indicates voxels
inside the core. An edema voxel i will thus be indicated by
{zi = 1, yi = 0} and a core voxel i by {zi = 1, yi = 1}.

We represent the healthy segmentation with the vector l =
(li, ..., lI)T , where li ∈ {1, ...,K}. A voxel i with a label li
will change its status to tumor when zi = 1. As glioblastoma is
an intracranial disease, we restrict this status change to labels
located inside the brain.

The generative model consist of a prior and a likelihood.
The prior is a probability distribution over the labels p(l,y, z)
combining two spatial distributions: one over the healthy tissue
labels and one over the tumor tissue labels. The likelihood
function p(D|l,y, z) connects the labels to the intensities
in the MR scan. We will first describe the healthy tissue
prior distribution in section II-A, then the tumor tissue prior
distribution in section II-B and how the two are combined to
form the full prior in section II-C. The likelihood is described
in section II-D, followed by a description of the inference of
the model in section II-E and implementation details in II-I.

A. Atlas-based prior on healthy tissue

To model the spatial configuration of healthy tissue, we use
an atlas-based prior that was introduced in [39] and further
validated in [38]. The model consist of a deformable mesh-
based atlas. Each node in the tetrahedral mesh is associated
with a probability vector containing the probabilities of healthy
labels to occur at that node.

The probability of a label k to occur at voxel i is given by
πi(k|η), where η contains the node positions of a deformed
mesh. We obtain the voxel probability by interpolating from
the nodes of the tetrahedron in which the voxel lie. Assuming
that labels at different voxels are conditionally independent
given the node positions, we have

p(l|η) =

I∏

i=1

πi(li|η).

Adding a topology-preserving deformation prior p(η) (as
in [39], [38]) the final healthy tissue prior is

p(l) =

∫

η

p(l|η)p(η)dη. (1)

The probability vectors and spatial configuration of the atlas
mesh are automatically learned from manual segmentations
obtained from training data, as described in section II-F.

B. Using convolutional RBMs to form a spatial prior on tumor
tissue

We use restricted Boltzmann machines (RBMs) to design
a spatial prior on the configuration of tumor tissue. An RBM
is a Markov random field (MRF) that can model high-order
interactions between visible units through local connections
to hidden units [44]. We use the convolutional variant of
the RBM (cRBM), where the weights of the connections
are shared among all locations [45]. This allows us to infer
over large images without a predefined size. We combine two
separate cRBMs: one that models interactions between the
binary units in the tumor-affected map z, and one that models
interactions between the binary units in the core map y.

We start by describing the cRBM that models z. A small
example of the model can be seen in figure 1. This cRBM is
defined by

p(z) =
∑

H

p(z,H)

with
p(z,H) ∝ e−Ez(z,H),

where H denotes the hidden units, which are binary, and
Ez(z,H) is an energy term. Note that we present the model
in 1D with the sole purpose of avoiding cluttered equations,
but it directly generalizes to 3D images. The energy term is
defined as

Ez(z,H) = −
∑

m

hm•(wm∗z)−
∑

k

bzm
∑

j

hmj−az
∑

i

zi,

where • denotes element-wise product followed by summation
and ∗ denotes convolution. Each hidden group hm ∈ H
is connected to the visible units in z with a convolutional
filter wm. The filter models interactions between the hidden
and visible units, effectively detecting specific features in z.
Furthermore, each hidden group has a bias bzm and visible
units have a bias az . These bias terms encourage units to be
enabled or disabled.

wm
wm

~
m4m3m2m1m4m3m2m1

Fig. 1. A small 1D example of a cRBM. Visible units in z are connected to
hidden units in a hidden group hm through a convolutional filter wm of size
3. The first illustration shows the model from the hidden layer’s perspective.
The second shows the model from the visible layer’s perspective, where w̃m

is a mirror-reversed version of the filter. Note that boundary units in the visible
layer are set to 0.

The computational appeal of this model is that no direct
connections exist between two visible units or two hidden
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units, so that the visible units are independent of each other
given the state of the hidden ones, and vice versa:

p(z|H) =
∏

i

p(zi|H) and p(H|z) =
∏

k

∏

j

p(hmj |z)

with
p(zi = 1|H) = σ

(∑

m

(w̃m ∗ hm)i + az

)

and
p(hmj = 1|z) = σ

(
(wm ∗ z)j + bzm

)
,

where σ(t) = 1/(1 + e−t) and w̃ denotes a mirror-reversed
version of the filter w. This property enables efficient Markov
chain Monte Carlo (MCMC) sampling of the model using a
blocked Gibbs sampler.

For the tumor core map y, we use a similar cRBM model:

p(y) =
∑

G

p(y,G), p(y,G) ∝ e−Ey(y,G)

with hidden units G and an energy Ey(y,G) that depends on
convolutional filters um, a visible bias ay and hidden biases
bym.

As we detail in section II-H, the cRBM filter weights and
biases can be learned automatically from a set of manually
labeled tumor maps. ’

C. A joined healthy and tumor tissue prior
To form the prior on all labels, we incorporate the two tumor

tissue priors defined in section II-B into the healthy tissue
prior in section II-A. As we are interested specifically in brain
tumors, we assume that tumor tissue only will occur inside
the brain. Furthermore, we restrict core tissue to only occur
inside the tumor-affected region z. Specifically, we define the
following distribution

p(y, z, l,G,H|η) ∝ e−E(y,z,l,G,H|η)

with energy

E(y, z, l,G,H|η) = Ez(z,H) + Ey(y,G)

−
∑

i

log πi(li) +
∑

i

f(yi, zi, li),

where we have used a restricition function defined as

f(y, z, l) =





∞ if z = 0 and y = 1

∞ if z = 1 and l /∈ B
0 otherwise,

(2)

where B denotes the collection of healthy labels that are
located inside the brain (see table I for a precise definition of
healthy labels we categorize as being inside the brain). This
function encodes that a core voxel can never appear outside
the tumor-affected region z, and that a tumor-affected voxel
can never appear outside the brain.

The resulting joint prior on the segmentation labels y, z and
l is obtained as

p(y, z, l) =

∫

η

∑

G

∑

H

p(y, z, l,G,H|η)p(η)dη.

Note that without the restriction function f(y, z, l), this prior
would simply devolve into p(l, z,y) = p(l)p(z)p(y).

D. Likelihood

The likelihood p(D|l, z,y) links the labels in the model
to MR intensities. As in [38], each label is associated with
a Gaussian mixture model (GMMs) that models the intensity
distribution of that label. MR scans are typically corrupted by
a multiplicative low-frequency imaging artifact referred to as
a bias field. By log-transforming the MR intensities, we can
model the bias field as a linear combination of spatially smooth
basis functions added to the log-transformed intensities.

Let x denote a label indicating which of K + 2 possible
segmentation assignments are given to any given voxel: one of
the K healthy tissues (when z = 0), edema (z = 1 and y = 0),
or core (y = 1). (Note that the combination (z = 0, y = 1)
will never occur due to the restriction function of Eq. (2) in
the prior.) We define a local Gaussian mixture model at voxel
i as

pi(di|θx,C) =

Gx∑

g=1

γxgN (di|µxg + Cφi,Σxg),

where

N (d|µ,Σ) =
1√

(2π)N |Σ|
e−

1
2 (d−µ)T Σ−1(d−µ)

denotes a multivariate normal distribution with mean µ and
covariance Σ; Gx is the number of Gaussian components con-
nected to label x; and γxg , µxg and Σxg are the weight, mean
and covariance matrix of component g, jointly collected in the
parameter set θx = {γxg , µxg , Σxg,∀g}. The weights satisfy
the constraints γxg ≥ 0 and

∑Gx

g γxg = 1. Furthermore, the
column vector φi ∈ RP evaluates P bias field basis functions
at voxel i and C = (c1, ..., cN )T denotes the parameters of
the bias field model, where cn ∈ RP are the parameters of
the bias field model for MR contrast n.

Letting θ = {{θx,∀x},C} collect all the bias field param-
eters and the mixture model parameters of all segmentation
labels, we model the (log-transformed) MR intensities in all
voxels to be conditionally independent given the segmentation
labels:

p(D|l, z,y,θ) =
∏

i

pi(di|li, zi, yi,θ)

with

pi(di|li, zi, yi,θ) = pi(di|θli ,C)(1−zi)

pi(di|θe,C)zi(1−yi)

pi(di|θc,C)yi ,

where e denotes the edema label, c denotes the core label and
li is any of the healthy labels.

We use a restricted conjugate prior p(θ) on the parameters
of the likelihood model:

p(θ) ∝





∏
x

[
Dir(γx|α0)

∏Gx

g=1 NIW(µxg,Σxg|m0, κ0, υ0,S0)
]

if certain constraints on {µxg} are satisfied
0 otherwise,

(3)
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where we have used a uniform prior on the bias field pa-
rameters C and conjugate priors on the mixture parame-
ters, following the definitions in [46]: symmetric Dirichlet
distributions Dir(γ|α0) that discourage removal of compo-
nents if α0 > 0, and normal-inverse-Wishart distributions
NIW(µ,Σ|m0, κ0, υ0,S0) where the hyperparameters can be
interpreted as prior mean m0 with strength κ0 and prior
scatter matrix S0 with strength υ0. We add certain constraints
on {µxg} to encode prior knowledge about overall tumor
appearance relative to normal brain tissue in typical MR
sequences for brain tumor imaging. These constraints and the
setting of the hyperparameters will be specified in section II-G.

The final likelihood function is given by

p(D|l, z,y) =

∫

θ

p(D|l, z,y,θ)p(θ)dθ.

E. Inference

To obtain a segmentation of an MR-scan using the described
model we would like to evaluate the posterior p(l,y, z|D).
However, exact inference of this segmentation posterior is
intractable because it marginalizes over all of the uncer-
tainty in the model parameters and the hidden units of the
cRBM models. We therefore resort to Markov chain Monte
Carlo (MCMC) techniques to sample from all unknown vari-
ables (except the atlas deformation parameters η, as detailed
below), followed by voxel-wise majority voting on the seg-
mentation samples to obtain the final segmentation. Although
it is possible to also sample from η, as shown in [47],
this is considerably more difficult to implement and was not
attempted in this paper. Instead, we first estimate a reasonable
estimate of good atlas deformation parameters η̂ using a
simplified model, and subsequently estimate segmentations
from the conditional posterior p(l,y, z|D, η̂) in which the
uncertainty on deformations is removed, yielding the following
two-step inference algorithm:

1) Step 1: For the purpose of estimating good atlas de-
formation parameters η̂, we use a simplified model in which
the non-local dependencies between the voxels introduced by
the cRMB shape models is removed. In particular, we set the
filter weights wm and um to zero values, effectively removing
the hidden units from the model, and use log-odds visual bias
values of az = log(w/(1 − w)) and ay = log(v/(1 − v)),
yielding an overall model in which a user-specified fraction
w of healthy brain voxels is expected to be tumorous, and
within these voxels a fraction v is expected to be tumor core.
We used values of w = 0.1 and v = 0.5 throughout this
paper. This reduces the model to the same form as in the one
used in [38], and we can therefore use the same approach
for optimization, i.e., by alternating between optimizing the
atlas deformation parameters η with a conjugate gradient
algorithm [48] and optimizing the likelihood parameters θ
with a generalized expectation-maximization (GEM) algorithm
[49]. Further details on this algorithm are provided in appendix
B.

After convergence, we record η̂ and compute the maximum

a posteriori segmentation

{̂l, ẑ, ŷ} = arg max
l,z,y

p(l,y, z|D, θ̂, η̂)

= arg max
{li,zi,yi}

∏

i

p(li, zi, yi|di, θ̂, η̂),

which are used in the subsequent second step of inference.
2) Step 2: In the second inference step, we clamp the

atlas deformation parameters to the values η̂ estimated during
the first step, and generate samples {l(s), z(s),y(s)}Ss=1 from
p(l, z,y|D, η̂) using a Markov chain Monte Carlo sampler
initialized at {̂l, ẑ, ŷ}. The final segmentation is then obtained
by performing voxel-wise majority voting across the collected
samples: the ith voxel is declared tumor core if yi = 1 in half
of the samples, else the voxel is declared edema if zi = 1
in half of the samples, else the voxel is declared the most
frequent healthy label in the samples.

In order to generate the required samples from
p(l, z,y|D, η̂), we sample from p(l, z,y,H,G,θ|D, η̂)
using a partially collapsed blocked Gibbs sampler, and
discard the samples of G,H and θ. The sampler iteratively
samples each set of variables from its conditional distribution
given the other variables; with the exception of θ this is
straightforward to implement as each conditional distributions
factorizes over its components:

p(H|l, z,y,G,θ,D, η̂) =
∏

m

∏

j

p(hmj |z),

p(G|l, z,y,H,θ,D, η̂) =
∏

m

∏

j

p(gmj |y),

and

p(l, z,y|H,G,θ,D, η̂) =
∏

i

p(li, zi, yi|di,H,G,θ, η̂)

with

p(li, zi, yi|di,H,G,θ, η̂) ∝ p(di|li, zi, yi,θ)πi(li)

exp

[
zi

(∑

m

(w̃m ∗ hm)i + az

)]

exp

[
yi

(∑

m

(ũm ∗ gm)i + ay

)]

exp [−f(li, zi, yi)] .

Sampling from the remaining conditional distribution

p(θ|l, z,y,H,G,D, η̂) = p(θ|l, z,y,D)

is more difficult due to interdependencies between the various
components of θ, and is detailed in Appendix C.

F. Learning parameters for atlas-based prior on healthy tissue

To learn the parameters of the healthy tissue atlas described
section II-A, we used brain segmentations from a dataset
consisting of 39 subjects. This is the same training dataset used
in [38] and the publicly available software package FreeSurfer
[26]. The dataset include segmentations of 39 neuroanatomical
structures within the brain, which were obtained using a
validated semi-automated protocol developed at the Center for
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Morphometric Anlysis (CMA), MGH, Boston [50], [51], [52].
The complete dataset consists of 28 healthy subjects and 11
subjects with varying severity of Alzheimer’s disease, with an
age range from under 30 years to over 60 years old [27]. The
scans were acquired on a 1.5T Siemens Vision scanner with
a voxel size of 1× 1× 1.5 mm3 We selected a representative
subset of 10 subjects for the atlas building process. This
number was chosen as the atlas building process is time
consuming and Puonti et al. [38] have shown that adding
more subjects does not substantially increase segmentation
performance.

As we are specifically interested in structures applicable
to radiation therapy, we merged some of the 39 segmented
structures into larger labels before building the atlas. We keep
the segmentations for the organs-at-risk hippocampi (HC),
brainstem (BS) and optic chiasm (CH); and the background
label. All other structures were merged into the following la-
bels: cerebrospinal fluid (CSF), remaining white matter (WM)
and remaining gray matter (GM). Two important organs-at-
risk where not included in the original segmentations, as they
are located outside of the brain – namely optic nerves (ON)
and eyes (EB). We therefore performed additional manual
delineations for these two extra structures. To provide some
context around these structures, we also delineated the muscles
and fat in the eye socket into two separate labels. Eyes were
further separated into two labels: eye fluid describing the fluid
and gel inside an eye and eye tissue describing the lens and
the solid outer layer of an eye.

The parameters of the healthy tissue atlas were learned on
these 10 updated segmentations, following the details in [39],
[38]. When segmenting a subject, we added an additional label
designed to capture healthy tissue that is not specified in the
atlas, such as blood vessels. In each mesh node’s probability
vector, we added this label with a constant prior probability
of 0.01 and re-normalized the probability vector to ensure that
the values sum to one. Thus, we used K = 13 healthy labels in
this paper, namely: hippocampi, brainstem, optic chiasm, optic
nerves, eye fluid, eye tissue, eye socket fat, eye socket muscles,
CSF, WM, GM, unspecified brain tissue and background.

G. Settings for likelihood
The settings in this section are mainly based on initial exper-

iments on the training dataset of the brain tumor segmentation
(BRATS) challenge that was held in conjunction with the
BrainLes workshop at the 2015 MICCAI conference. It con-
sists of 220 high-grade gliomas and 54 low-grade gliomas of
varying types, with publicly available ground truth segmenta-
tions of tumor. 30 subjects were manually segmented (20 high-
grade, 10 low-grade), while the rest had fused segmentations
from highly ranked algorithms from previous challenges. The
included MR contrasts are T2-weighted FLAIR (varying 2D
acquisition), T2-weighted (2D acquisition), T1-weighted (2D
acquisition) and T1-weighted with contrast enhancement (T1c,
3D-acquisition). The scans have been acquired at different
centers, with varying signal strength and resolution.

The number of Gaussian components per label is shown
in table I, together with the division between brain and non-
brain structures. We group labels with similar intensity profiles

into superstructures with shared Gaussian components. Note
that optic nerves and chiasm are included into the same
superstructures as surrounding tissue. This is because they are
small and hence severely affected by partial volume effects.
Some data we tested our method on are skull-stripped (see
section III-A). For these images, non-brain structures are
therefore missing. Hence, we include all non-brain labels into
a non-brain superstructure when segmenting these subjects.

For tumor core, we use one Gaussian component in the first
inference step and introduce two more Gaussian components
in step 2. Tumor core can include regions with widely differing
intensity distributions such as degraded blood-brain barrier,
necrotic tissue and regions with surgically removed tumor.
Some of these regions have an intensity distribution similar to
edema and some a distribution similar to healthy tissues. They
can be identified by their vicinity to each other. However, in the
first inference step, the temporary tumor prior is spatially flat
– which means that we rely on intensity alone in this step. The
easiest region to recognize by intensity is the degraded blood-
brain barrier. Therefore, we use just one Gaussian component
for tumor core in step 1, specifically targeted at this region.
In the second step of the algorithm, we then add two more
Gaussian components to better represent other tumor core
regions. These are initialized by randomly changing a fraction
of edema voxels (zi = 1 and yi = 0) to core voxels (zi = 1
and yi = 1). The fraction is chosen so that the total fraction
of core within the whole tumor equals the average fraction in
the employed training data.

TABLE I
NUMBER OF GAUSSIAN COMPONENTS PER SUPERSTRUCTURE, FOR

DATASETS WITH RAW MR-SCANS AND THE SKULL-STRIPPED DATASET

Label Raw MR-scan Skull-stripped

no
n-

br
ai

n

Background 3

Eye socket fat 2

Eye socket muscle

Optic nerves (ON) 3 2

Eye tissue (part of EB)

Eye fluid (part of EB)

br
ai

n

Chiasm 2 2

Cerebrospinal fluid

Grey matter 1

Hippocampi (HC)

White matter 1

Brainstem (BS)

Unspecified brain tissue 1

Peritumoral edema 1

Tumor core (TC) 1 (step 1) / 3 (step 2)

For all Gaussian components, we set the hyperparameters
in p(θ), defined in equation 3, as

m0 =

∑
i di

I
, κ0 = 1, α0 = 10−4I, ν0 = 10−3I,

where I is the number of voxels. The prior scatter matrix is
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set to

S0 =
10−3

S2
Dg
(∑

i

(di −m0)(di −m0)T
)
,

where S is the number of superstructures in the model
and Dg(@A) denotes a diagonal matrix that only retains the
diagonal elements of matrix @A. Because the unspecified brain
tissue label should catch any unspecified brain tissue, we use
a wider prior scatter matrix for this label, with S set to 1.

The linear constraints used in prior p(θ), defined in equation
3, can be seen in table II. Details on how these constraints are
formulated in the model framework is given in appendix A.
We set the constraints relating to tumor labels by building
statistics of mean values from the training data. We estimated
the mean values using our method, but with tumor labels fixed
to the ground truth. The constraints relating to the unspecified
brain tissue label were set as to ascertain that this label will
not interfere with the tumor segmentation.

TABLE II
CONSTRAINTS ON MEAN VALUES OF GAUSSIAN COMPONENTS

Edema (TE)

µ FLAIR,TE ≥ 1.04 µ FLAIR,WM

µ T2,TE ≥ µ T2,WM

Core, fist Gaussian component (denoted TC1)

µ T1c,TC1 ≥ 1.01 µ T1c,GM

µ T1c,TC1 ≥ 1.01 µ T1c,WM

µ FLAIR,TC1 ≥ µ FLAIR,WM

µ T2,TC1 ≥ µ T2,WM

Unspecified brain tissue (US)

µ FLAIR,US ≤ 1.02 µ FLAIR,WM

µ T1c,US ≤ 1.01 µ T1c,GM

H. Learning parameters of tumor shape prior

To learn suitable values for the filters and the biases of
the cRBMs described in section II-B, we used the 30 manual
tumor segmentations in the BRATS training dataset, defined
in section II-G. As the number of subjects is small, we aug-
mented the dataset by flipping the segmentations in 8 different
directions, yielding a dataset of 240 tumor segmentations.

The values are learned through stochastic gradient ascent.
To efficiently approximate the log-likelihood gradients, we use
the contrastive divergence (CD) approximation with one block-
Gibbs sampling step [44]. Additionally, we use the so-called
enhanced gradient together with the CD approximation which
have been shown to improve learning [53], [54].

We used the same settings for both the whole tumor cRBM
for z and the tumore core cRBM for y. The filter size and
number of filters were set by initial experiments. Choosing a
larger filter size will increase the number of parameters which
may result in overfitting, while a smaller filter size might not
capture long-range features. Therefrom, we found that by tying
neighboring parameters in a filter we can reduce the number
of parameters while still capturing long-range features. We tie
filter parameters in (2×2×2)-blocks, effectively treating each

block as one parameter. We use 40 filters of size (14×14×14)
(i.e. 7×7×7 blocks) corresponding to 40 hidden groups. This
configuration performed better than other combinations of 20,
30 and 40 filters of sizes between 10 and 18. Each cRBM was
trained with 9600 gradient steps of size 0.1. A subset of 10
segmentations was used to compute the gradient at each step.

When segmenting a subject, we found it necessary to
individualize the cRBM bias term az connected to z to better
represent the tumor to be segmented. This is due to the
large size variation of tumors. In step 2 of the inference, we
therefore added log

(
pzs(1−pzt)
pzt(1−pzs)

)
to az . Here, pzs denotes the

fraction of tumor within the brain as segmented by step 1 and
pzt denotes the average tumor size in the data used to train
the cRBM. We did the same for the bias term ay connected to
y, matching it with the average fraction of core within whole
tumor in the training data.

I. Implementation details for inference

The algorithm is initialized by affinely registering the atlas
to the target image by using the method described in [55].
We then smooth the atlas map for the background class using
a Gaussian kernel with a standard deviation of 4 mm, and
subsequently exclude all voxels with a probability larger than
0.99 in this smoothed map.

The image intensities are log-transformed to accommodate
the additive bias field model we use. To model the bias field,
we use the lowest frequency components of the 3D discrete
cosine transform (DCT) as basis functions. We set the number
basis functions to 4 per dimension, which gives a total of
P = 43 = 64.

The optimization in step 1 of the algorithm is performed on
two resolution levels. For the first level, we smooth the atlas
probabilities using a Gaussian kernel with a standard deviation
of 2 mm to capture mesh deformations on a larger scale. In
the second level, we refine the registration on a smaller scale
without any smoothing. For this step, we use the same stopping
criteria as in [38].

All Gaussian component parameters are initialized based on
the atlas, except the mean values for tumor core and edema
as these labels have spatially flat priors in the first step of
the algorithm. We initialize these mean values in one image
contrast based on the distance (measured in standard deviation)
from the average data intensity in that contrast. Reasonable
distance values can be found with knowledge of typical tumor
intensities in an included image contrast or by estimates from
subjects with already delineated edema and core. Based on
initial experiments on the BRATS training dataset from section
II-G, we set the distances for MR contrasts {FLAIR, T2, T1}
to {1, 0.7, 0.2} standard deviations for both tumor core and
edema. For T1c we set the distance to 0.2 for edema and 1.5
for core (as we model specifically enhanced core in the first
step of the algorithm). One of the datasets we test our method
on includes the MR contrast T2-weighted DIR (see section
III-A). For this contrast, we set the distance to the same as for
FLAIR, without any initial experiments.

In step 2 of the algorithm, we generate 50 samples of l, z
and y after an initial burn-in period of 200 samples. The final



DECEMBER 22, 2016 8

segmentation is then obtained by performing majority voting
on these 50 samples.

The segmentation of one subject with our method took on
average around two hours, with roughly equal time spent on
the first and the second step of the algorithm. The algorithm
was implemented in MATLAB 2015a, except for the atlas
mesh deformation part which was implemented in C++, and
performed on a Core i5-2400 3.1 GHz CPU with 8 GB of
RAM.

III. EXPERIMENTS

We will present segmentation results on three different
datasets. In this section, we first describe these three datasets
(section III-A), and then briefly describe the methods that
we compare our method’s performance against on tumor
segmentation (section III-B). Finally, we describe the setup
of the evaluation (section III-C).

A. Data

The first dataset consists of 42 glioblastoma patients that
have undergone radiation therapy treatment at our institute
(GTV size range: 6-130 cm3). As part of their radiation
therapy workup, these patients have been scanned with a
CT scanner and a Siemens Magnetom Espree 1.5T MRI
scanner. The dataset includes three MR-contrasts: T2-weighted
FLAIR (transversal 2D-acquisition), T2-weighted (transversal
2D-acquisition) and T1-weighted with contrast enhancement
(T1c, 3D-acquisition); with a voxel size of 1 × 1 × 3 mm3,
1× 1× 3 mm3 and 0.5× 0.5× 1 mm3 respectively. The CT
scans have a voxel size of 0.5× 0.5× 3 mm3. As part of the
treatment planning, the MR-defined GTV (corresponding to
tumor core) and several organs-at-risk (including hippocampi,
brainstem, eyes, optic nerves and chiasm) have been manually
delineated on the transversal slices of the CT scan of each
patient, with the MR-sequences registered and resampled to
the CT scan. As the only pre-processing step, we co-register
the MR scans and resample them to 1 mm isotropic resolution.
We will refer to this dataset as the clinical dataset.

The second dataset is the test dataset of the brain tumor
segmentation (BRATS) challenge that was held in conjunction
with the BrainLes workshop at the 2015 MICCAI conference,
where we participated with a previous version of our method
[42]. The dataset is publicly available at the virtual skeleton
online platform [56]. It consists of 53 patients from different
imaging centers, with varying types of high- and low-grade
gliomas. Some of the patients have had tumor resections. The
included MR contrasts are T2-weighted FLAIR (varying 2D
acquisition), T2-weighted (2D acquisition), T1-weighted (2D
acquisition) and T1-weighted with contrast enhancement (T1c,
3D-acquisition). The scans have been acquired at different
centers, with varying signal strength and resolution. All data
were resampled to 1 mm isotropic resolution, aligned to the
same anatomical template and skull-stripped by the challenge
organizers. The dataset includes manual annotations of peritu-
moral edema and tumor core, which are not publicly available.
Instead, the performance of a method can be evaluated by

uploading segmentations to the online platform. We will refer
to this dataset as the BRATS test dataset.

The third dataset consists of 7 patients with varying low-
and high-grade gliomas. The patients have been scanned with
a Siemens Trio 3T scanner at Institute of Neurology, UCL,
London. No manual segmentation have been performed. The
following MR-contrasts are included in the dataset, with 1
mm isotropic resolution: T2-weighted (3D acquisition), T2-
weighted FLAIR (3D acquisition) and T2-weighted double
inversion recovery (DIR, 3D-acquisition). In contrast to the
other datasets, this dataset lacks T1-weighted contrasts and
includes a new contrast: DIR. We will refer to this dataset as
the DIR dataset.

B. Benchmark methods

We compare our method’s performance in tumor segmen-
tation to that of four methods that participated in the 2015
BRATS challenge. These four methods where all among the
top-performing methods in the challenge.

1) Previous version of our method [42]: This method is a
previous version of the method presented in this paper, focused
on segmenting tumor only. The main difference is that the
method uses an affinely registered atlas, instead of the mesh-
based deformable atlas. It also differs in the initialization and
prior distribution for the Gaussian parameters. The method
segments a subject in around 30 minutes on a Nvidia TITAN
black GPU.

2) GLISTRboost [25]: This semi-automated method is
based on a modified version of the generative atlas-based
method GLISTR [22], [23], which uses a tumor growth model
to model the tumor. The method requires manual input of a
seed-point for each tumor center and a radius of the extent
of the tumor. To increase the segmentation performance, the
method is extended with a discriminative post-processing step
using a gradient boosting multi-label classification scheme
followed by a patient-wise refinement step. The segmentation
time was not reported, but GLISTR took around 85 minutes
on a Intel Core i7 3.4 GHz CPU in [22].

3) Grade-specific CNNs [17]: This semi-automated method
uses a discriminative 2D Convolutional Neural Network
(CNN) approach. The method takes advantage of the fact that
high- and low-grade tumors exhibit differences in intensity and
spatial distribution. To do this, it uses two CNNs: one trained
on high-grade tumors and one trained on low-grade tumors.
The CNN to use for a specific subject is then chosen manually
based on visual assessment, which is the only manual step in
the method. The method is fast after the initial assessment,
taking around 8 minutes to segment a tumor in a subject on a
Nvidia 980 GPU.

4) Cascaded two-way CNN [18]: This fully automated
method uses a discriminative 2D CNN approach as the pre-
vious method. The architecture has two pathways, where
intensity features are automatically learned: one learning local
details of tumor appearance and one for learning larger con-
texts. In the first part of the method, each voxel is predicted
without taking local dependencies of labels into account. These
voxel-wise predictions are then added as additional input to a



DECEMBER 22, 2016 9

second CNN with the same architecture, forming a cascaded
architecture. The method is fast, taking only 3 minutes to
segment the tumor in a subject on a Nvidia TITAN black
GPU.

C. Evaluation setup

We employ the two widely used metrics Dice score and
Hausdorff distance to evaluate our method and compare its
performance to that of other methods. For both metrics,
we compare the automatic segmentation of a structure to
the corresponding manual segmentation. Assuming that the
manual segmentation captures the structure well, the obtained
scores can be said to measure the method’s performance.

The Dice score measures the overlap between two segmen-
tations. Let a be a binary map of the automatically segmented
structure and m be a binary map of the manually segmented
structure, where 1 indicates presence of the structure. The Dice
score is then computed as

Dice(a,m) =
2
∑

i aimi∑
i ai +

∑
imi

,

where a score of zero means no overlap and a score of one
means perfect overlap between the segmentations. The Dice
score is more sensitive to segmentation differences in small
structures than large structures, e.g., if a similar displacement
is present in two structures the larger structure will normally
still have a larger overlap.

In contrast, the Hausdorff distance evaluates the distance
between the surfaces of two segmentations. Let A and M
denote the sets of points on the two surfaces. We first find the
shortest euclidean distance d(a,m) for each point a in A to
any point in set M and then find the longest of these distances.
We do the same for set M and return the maximum distance
given either from comparing A with M or M with A. This is
the Hausdorff distance dH(A,M), defined by

dH(A,M) = max{max
a∈A

min
m∈M

d(a,m), max
m∈M

min
a∈A

d(m, a)}.

As the original Hausdorff metric can be substantially influ-
enced by small outlying subregions, we instead use a more
robust version of the metric. In this robust metric, the 95th
percentile is returned instead of the maximum in the list of
shortest distances.

For the clinical dataset, we will evaluate the segmentation
of our method on tumor core (which corresponds to the
manually segmented GTV) together with the following organs-
at-risk: hippocampi (HC), brainstem (BS), chiasm (CH), optic
nerves (ON) and eyes (EB). Before computing Dice score and
Hausdorff distance, we transform and resample the automatic
segmentations to the CT scan of each subject to be able to
compare them to the manual segmentations. For the BRATS
test dataset, we are especially interested in evaluating the
segmentation of tumor core although we also evaluate the
segmentation of the whole tumor region (i.e., both tumor
core and edema). Note that enhanced core was also separately
evaluated in the BRATS challenge, but it is not included in
this paper as it is not directly relevant for radiation therapy.
For this dataset, we will compare the scores obtained with our

method to the scores from the benchmark methods presented
in the previous section. As the DIR dataset contains no manual
segmentations, we only do a visual inspection of the results
– to indicate the ability of our method to adapt to varying
situations.

IV. RESULTS

In this section, we present the results on the three datasets
described in the previous section. We first present the results
for the BRATS test dataset where we compare to the bench-
mark methods (section IV-A), then we present the results for
the clinical dataset (section IV-B), and finally we present the
results for the DIR dataset (section IV-C).

A. BRATS test dataset

As the BRATS test dataset is skull-stripped, our method
only segmented structures located within the brain (as spec-
ified in table I). Furthermore, we only evaluate this dataset
for tumor segmentation, as manual segmentations for healthy
structures are not available. Figure 2 shows box plots of
the Dice scores and Hausdorff distances for this dataset. We
show scores for our method (method 1) on tumor core and
whole tumor together with the four benchmark methods that
participated in the 2015 BRATS challenge. Note that the
online platform does not report Hausdorff distance, while it
was reported for the challenge. Thus, the plots of this metric
only include the benchmark methods. The first benchmark
method (method 2) is the previous version of our method
that participated in the challenge. As expected, the average
and median Dice scores show a similar performance for the
method presented in this paper and the previous version. Com-
paring to the other benchmark methods, our method performs
particularly well on tumor core and comparable to the other
methods on whole tumor. The range of values are very large
for all methods, illustrating the difficulty of this dataset. The
dataset includes many subjects with large resections and a wide
variety of tumors, e.g., low-grade tumors that has been shown
to be difficult to segment in [8]. The Hausdorff distances for
our previous version are somewhat worse than for at least two
of the other methods, which could be explained by the post-
processing used by the other methods.

Figure 3 shows slices of three representative segmentations
with: FLAIR, T1c, T2 and T1, and segmentation by our
method. Note that the manual segmentations compared against
are not publicly available. We can see that the atlas deforms
well to the subjects, and brainstem and hippocampi are well-
captured. Furthermore, our method can segment brain tumors
with large variations in size, location and appearance. Also
note the low resolution and image quality in some of the
images.

B. Clinical dataset

Figure 4 shows box plots of the Dice scores and Hausdorff
distances for the clinical dataset, with the following structures:
tumor core (TC), brainstem (BS), hippocampi (HC), eyes
(EB), optic nerves (ON) and chiasm (CH). Note that this
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Fig. 2. Box plots of Dice scores and Haussdorf distances for tumor core and whole tumor (including edema and core) on the BRATS 2015 test dataset.
Method 1 is the method presented in this paper, with scores as reported from the online platform (not including Hausdorff distance). The scores for the other
methods are from the challenge. Method 2 is the previous version of our method used in the challenge [42], method 3 is the discriminative-generative method
[25], method 4 is the grade-specific CNN method [17] and method 5 is the two-way CNN method [18]. On each box, the central line is the median, the circle
is the mean and the edges of the box are the 25th and 75th percentiles. Outliers are shown with +.

Fig. 3. Segmentations of 3 representative subjects of the BRATS test dataset. Slices of FLAIR, enhanced T1-weighted scan, T2-weighted scan and standard
T1-weighted scan; and automatic segmentation. Label colors: white = tumor core, lilac = edema, green = brainstem, dark orange = hippocampi, shades of
blue = other brain tissues. Note that the images are skull-stripped by the BRATS challenge organizers.



DECEMBER 22, 2016 11

TC BS HC EB ON CH

Structures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ic

e
 s

c
o
re

TC BS HC EB ON CH

Structures

0

10

20

30

40

50

60

70

80

90

100

110

H
a
u
s
d
o
rf

f 
d
is

ta
n
c
e
 [

m
m

]

Fig. 4. Boxplots of Dice scores and Hausdorff distances for structures in
clinical dataset. 42 subjects in total. On each box, the central line is the
median, the circle is the mean and the edges of the box are the 25th and 75th
percentiles. Outliers are shown with +.

dataset does not include the T1 image contrast, which is
included in the BRATS test dataset, but the method readily
adapts to this without the need for adjustment. Here, we
have compared the automatic segmentations of our method
to the manual segmentations that were used when planning
the radiation therapy session of each subject. The median and
average Dice scores for tumor core are consistent with the
scores for the BRATS test dataset in figure 2. The range of
Dice scores is smaller and only one outlier score is very low.
The Hausdorff distances are also much lower than in figure 2,
with only two outliers with high values. The smaller range is
expected, as the dataset includes images with better quality and
only includes glioblastomas – high-grade tumors with usually
large contrast-enhanced tumor core regions. The Dice scores
for eyes are high, except one outlier that was affected by a
very thin outer eye wall, and the Hausdorff distances are low,
indicating a good performance. The Dice scores for brainstem
are not very high, but are consistent across the subjects as are
the Hausdorff distances. Hippocampi, on the other hand, have
a fairly large range and generally fairly low Dice scores. The
Hausdorff distances are also fairly large, with two outliers.
In the outliers, the method has segmented the hippocampus
near to the tumor border while the manual segmentations lack
the hippocampus in that brain hemisphere. Finally, the Dice
scores for optic nerves and chiasm are generally low and with
a large range. These structures are very small and thin, which
significantly effect this metric. The Hausdorff distances for
these structures are fairly low, which indicates that the manual
and automatic segmentations are fairly close.

Figure 5 shows slices of seven representative segmentations
with: T1c, FLAIR, T2, segmentation by the method and
manual segmentation. From the images, we can see that the
atlas deforms well to fit subjects with varying shapes. The
method is capable of segmenting tumor cores with varying
size, shape and intensity profile; although it underestimate the
tumor size in some cases. Eyes, hippocampi and brainstem

seem to be captured well. However, the method’s hippocampus
segmentation is larger than the manual segmentation. In the
first case, neither the automatic or manual segmentation for
optic nerves seems optimal, although the automatic segmen-
tation seems better in this case. Furthermore, the MR slices
show the ambiguity in the intensity profile for this structure,
which is present in many subjects.

Figure 6 shows sagittal slices of three representative seg-
mentations of hippocampi, together with surface plots of the
segmentations. Note that the manual segmentations appear
blocky because they have been delineated on the transversal
slices of the CT scans. In all cases, the automatic segmen-
tations are larger and capture the hippocampi better than the
manual segmentations. As can be seen in the surface plots, the
manual segmentations are not very consistent to each other.
This explains to a large extent the fairly low and inconsistent
Dice scores. However, our method slightly oversegments the
hippocampi in some cases, as can be seen in the surface plot
of the first case.

Figure 7 shows sagittal slices of three representative seg-
mentations of brainstem, together with surface plots of the seg-
mentations. The method captures the brainstem well, although
it seems to slightly undersegment the structure. However, the
method misses a large part of the midbrain that is present in
the manual segmentations. This is because the protocols for
brainstem segmentation are different for the manual segmenta-
tions and the healthy segmentations used to build the method’s
atlas. The protocol difference lowers the Dice scores, but keeps
the scores consistent across subjects.

Figure 8 shows transversal slices of three representative
segmentations of the optic system (including eyes, optic nerves
and chiasm), together with surface plots of the segmentations.
The method captures the eyes well, although in some cases
the wall of the eye is slightly oversegmented. The method also
has some difficulties when a subject has the eye lids open, as
the solid wall between eye and air becomes very thin. The
optic nerve (the thin nerve going from an eye in one end to
the chiasm in the other end) is clearly a difficult structure
to segment. Both the automatic segmentation and manual
segmentation seems suboptimal. From the surface plots, it is
also clear that although the two segmentations are fairly close
and follow the same path, the overlap is often small. In most
cases, the chiasm seems to be fairly well captured by the
method, but as it is a small structure a small difference to
the manual segmentation can have a large effect on the Dice
scores. Furthermore, the segmentation protocol for the healthy
subjects used to build the atlas seems to be slightly different
than for the manual segmentations. The chiasm seem to extend
further upwards in the brain in this protocol.

Figure 9 shows slices of two problematic tumor core seg-
mentations, which can be seen as outliers in figure 4. In the
first case, the method segments the tumor core well, but also
captures an old infarct in another part of the brain. One other
case had a similar problem, where the tumor core of interest is
captured well but also a benign brain tumor in the cerebellum.
The second case includes a very large resection at the border
of the brain, which the method has difficulty to adapt to.
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Fig. 5. Segmentations of 7 representative subjects of the clinical dataset. Slices of enhanced T1-weighted scan, FLAIR and T2-weighted scan, automatic
segmentation and manual segmentation. Label colors: white = tumor core, lilac = edema, green = brainstem, dark orange = hippocampi, yellow/light orange
= eyes, red = optic nerves, shades of blue = other brain tissues. For tumor core: Dice scores = {0.83, 0.91, 0.89, 0.92, 0.83, 0.63, 0.84}, Hausdorff distance
= {11, 3, 3, 4, 6, 19, 7}.
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Fig. 6. Hippocampi on three representative subjects of the clinical dataset. Automatic segmentations in red and manual segmentations in green. Slice of
segmentation overlayed on the T1-weighted scan and 3D surface plot of full structure. Dice score = {0.54, 0.45, 0.57}, Hausdorff distance = {12, 14, 11}.

Fig. 7. Brainstem on three representative subjects of the clinical dataset. Automatic segmentations in red and manual segmentations in green. Slice of
segmentation overlayed on the T1-weighted scan and 3D surface plot of full structure. Dice score = {0.77, 0.78, 0.78}, Hausdorff distance = {10, 10, 7}.
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Fig. 8. Optic system on three representative subjects of the clinical dataset. Automatic segmentations in red and manual segmentations in green. Slice of
segmentation overlayed on the T1-weighted scan and 3D surface plot of full structure. Scores for eyes, optic nerves and chiasm: Dice = {0.90, 0.91, 0.87},
{0.17, 0.41, 0.33} and {0.32, 0.46, 0.38}; Hausdorff = {3, 4, 5}, {6, 3, 6} and {6, 6, 5}.

Fig. 9. Two problematic tumor core segmentations of the clinical dataset. Slices of enhanced T1-weighted scan, FLAIR, T2-weighted scan, automatic
segmentation and manual segmentation. For tumor core: Dice scores = {0.47, 0.08}, Hausdorff distance = {107, 32}.
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C. DIR dataset

Figure 10 shows slices of three representative segmentations
with: DIR, FLAIR, T2 and segmentation by the method. The
same structures were segmented as for the clinical dataset.
As seen in the figure, our method can easily be made to
segment MR-scans that lack a T1 contrast and include a DIR
contrast. Visual inspection of all 7 segmentations revealed
no significant deviations from other results presented in this
section. However, a few observations can be made: the DIR
images have a lower signal-to-noise ratio that some-what
affects the segmentations, segmentation of high-grade gliomas
typically benefit from a T1c contrast and the optic nerves seem
to be better visualized on a T1-weighted contrast.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a fully automated gener-
ative method for simultaneous segmentation of brain tumors
and an extensive set of organs-at-risk (OARs) applicable to
radiation therapy planning. The method combines a previously
validated atlas-based model for detailed healthy tissue seg-
mentation with a model for brain tumor segmentation based
on convolutional restricted Boltzmann machines. The method
separates the modeling of anatomy from the modeling of
image intensities. Thus, the method is adaptable to varying
image sequences and modalities. To learn the parameters of
the anatomy model, just 10 training segmentations were used
for the healthy anatomy and 30 training segmentations for
the tumor anatomy (without using any intensity information
from the training data). The small number of needed training
subjects makes the method fairly easy to extend to handle new
structures.

A few parameters relating to tumor tissue in the intensity
model were set by using intensity information from training
data. We found that this was necessary to guide the model to
the correct intensities for tumor in the MR-contrasts FLAIR
and T1c. Although this is a limitation, we can conclude from
the validation results that the method is still adaptable to
FLAIR and T1c images from varying imaging centers with
varying sequence protocols. Furthermore, our experiments
indicate that the method can adapt when new contrasts are
included, such as double-inversion-recovery sequences, and
when some are missing, such as T1 (cf. clinical dataset).
To adapt the method to other image contrasts than those
encountered in this paper should be easy, without the need
for dedicated training data.

Our experiments show that the method’s performance in
segmenting tumors compares well to other state-of-the-art
methods in brain tumor segmentation, while also being capable
of segmenting the OARs hippocampi, brainstem, eyes, optic
nerves and optic chiasm. We evaluated the OAR segmentations
in 42 patients with manual segmentations used when planning
a radiation therapy session. The evaluation showed a generally
good performance in segmenting hippocampi (HC), brainstem
(BS) and eyes (EB); but lower performance in segmenting
the very small structures optic nerves (ON) and chiasm (CH).
The performance can be compared to the inter-rater variability

shown in [7], where 8 experts segmented OARs in 20 high-
grade glioma patients. The inter-rater variability in [7] mea-
sured in average Dice scores was: BS: 0.83, EB: 0.84, ON:
0.50, CH: 0.39. This can be compared to the average Dice
scores for our method for these structures: BS: 0.77, EB: 0.86,
ON: 0.31, CH: 0.29. It is clear that the Dice scores for optic
nerves and chiasm are low even for experts, although not as
low as for our method.

In our experiments, the Dice score for brainstem was sig-
nificantly affected by differing delineation protocols between
the experts at the clinic and the segmentations used to train
the atlas in our method. Differences in segmentation protocols
are fairly common. As just 10 training subjects are used
to build the atlas, it would be fairly feasible to update the
segmentations of these subjects to adhere to a differing pro-
tocol. The manual segmentations at the clinic for hippocampi
was found to be fairly variable in quality, which was also
true for some optic nerve and chiasm segmentations. To
use manual segmentations from radiation therapy planning as
ground truth might not be optimal, as structures far away from
a tumor might not be carefully delineated because they will
not significantly affect the radiation therapy plan. Furthermore,
because of the large inter-rater variability, a superior ground
truth would be obtained by fusing segmentations from several
experts.

It is clear that further research is needed to obtain optimal
chiasm and optic nerve segmentations. At the moment, the
atlas deformation process is the same for all structures. A
way forward could be to incorporate geometrical information
in the prior, e.g., about the tubular structure of the optic nerves
which was successfully used by the discriminative approach
in [36]. The tumor segmentation performance compares well
to other brain tumor segmentation methods, but can still be
improved. The tumor shape model is still fairly local, which
can affect the segmentation when e.g., inner parts of the tumor
have a similar appearance to healthy structures. A model with
a deeper structure with more layers of hidden units, similar to
the deep structure used in CNNs, could potentially improve
the performance on a more global scale. Finally, a potential
improvement could be achieved if the tumor shape model
would inform the deformation of the atlas.

APPENDIX A
CONSTRAINTS IN PRIOR

The linear constraints in the prior p(θ), in equation 3, is
formulated in the form

Av ≤ b, where v =



µ1
...

µS


 , (4)

Here, S denotes the total number of mean vectors in the model,
i.e. for all labels. Let R denote the number of constraints.
Matrix A = (a1, ...,aR)T , where column vector ar ∈ R(S×N)

encodes one constraint. Column vector b ∈ RR contains zeros.
The first constraint in table II will for example be encoded,
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Fig. 10. Three representative segmentations from the DIR dataset. Slices of DIR, FLAIR, T2-weighted scan and automatic segmentation.

for N = 3 contrasts where the first contrast is FLAIR, as

aT
1 =

(
1.04 0 0 −1 0 · · · 0

)
, with v =



µWM
µTE

...


 .

APPENDIX B
INFERENCE, STEP 1

Here we describe how we maximize p(η,θ|D) in the first
step of the inference. Throughout this appendix, we use x
to denote the K + 2 segmentation labels (K normal tissue
classes, edema and tumor core) given by the combination
{l, z, y}. Taking the logarithm of p(η,θ|D), we can rewrite
this problem as a maximization of the following objective
function:

{θ̂, η̂} = arg max
{θ,η}

[∑

i

log
(K+2∑

x=1

pi(di|x,θ)pi(x|η)
)

+ log p(η) + log p(θ)
]
,

where p(x|η) refers to the simplified model of the label prior.
We optimize the atlas deformation parameters η and the

likelihood parameters θ with a coordinate ascent algorithm
as in [38], which alternates between optimizing each set of
parameters. The atlas deformation parameters η are optimized
with a standard conjugate gradient optimizer [48], while keep-
ing θ fixed. The likelihood parameters θ are optimized with a
generalized expectation-maximization (GEM) algorithm [49],
while keeping η fixed. The GEM algorithm alternates between

two steps: the E-step and the M-step. In the E-step, the follow-
ing voxel-wise soft assignment is computed to each Gaussian
component, based on the current parameter estimates:

qxgi =
γxgN (di|µxg −Cφi,Σxg)pi(x|η)

∑K+2
x′=1 pi(di|x′,θ)pi(x′|η)

In the M-step, the parameters are subsequently updated. In
the following we have defined Nxg =

∑
i q

xg
i . The weights

are updated according to

γxg ←
Nxg + α0 − 1

∑Gx

g′=1(Nxg′ + α0 − 1)
.

For the mean vectors, we first define the updates that would
be obtained if the constraints in prior p(θ) would be removed:

µ̄xg =
κ0m0 +

∑
i q

xg
i (di −Cφi)

κ0 +Nxg
.

We can then update the mean vectors according to

v← arg max
v

[1

2
vTQv + fTv

]
s.t. Av ≤ b, (5)

with

Q =




(N1 + κ0)Σ
−1
1 0 · · · 0

0 (N2 + κ0)Σ
−1
2 · · · 0

...
. . . . . .

...
0 · · · 0 (NS + κ0)Σ

−1
S


 ,

f = −Q



µ̄1
...

µ̄S


 , and v =



µ1
...

µS


 ,
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where S denotes the total number of Gaussian components
in the model, i.e., for all labels. Here, A and b relate to the
constraints in the prior p(θ), and are defined in appendix A.
Solving equation 5 is known as quadratic programming, for
which an implementation is directly available in MATLAB.
For a current estimate of the covariances {Σs}, equation 5 is
solved to obtain the updated means {µs}. With those updated
mean values, the covariances are then updated according to

Σxg ←
S0 + Sxg + κ0m0m

T
0 − (κ0 +Nxg)µxgµ

T
xg

ν0 +D + 2 +Nxg
,

where Sxg =
∑

i

qxgi (di −Cφi)(di −Cφi)
T .

The bias field parameters in C are updated according to



c1
...

cN


←




ΦTS1,1Φ · · · ΦTS1,NΦ
...

. . .
...

ΦTSN,1Φ · · · ΦTSN,NΦ




−1

·




ΦT (S1,1r1,1 + · · ·+ S1,Nr1,N )
...

ΦT (SN,1r1 + · · ·+ SN,NrN,N )


 ,

where

Φ =



φ11 · · · φ1P
...

. . .
...

φI1 · · · φIP


 , Sm,n = diag (sm,n

i )

and rm,n = (rm,n
1 , ..., rm,n

I )T , with

sm,n
i =

∑

x

Gx∑

g=1

sm,n
ixg , sm,n

ixg = qxgi (Σ−1xg )m,n

and rm,n
i = dni −

∑
x

∑Gx

g=1 s
m,n
ixg (µxg)n

∑
x

∑Gx

g=1 s
m,n
ixg

.

It can be shown that the objective function is guaranteed to
increase with respect to θ with these update rules in each GEM
iteration [49].

APPENDIX C
INFERENCE, STEP 2: SAMPLING

Here we describe how we sample from p(θ|l, z,y,D). We
first describe a sampler of a distribution q(θ|l, z,y,D) that is
identical to p(θ|l, z,y,D), except that the constraints on the
means in the prior p(θ), in equation 3, are removed. Using
the notation i ∈ x to denote which of the K+ 2 segmentation
labels (one of the K normal tissue classes, edema, or core) the
ith voxel belongs to according to its combination {li, zi, yi},
this new distribution is given by

q(θ|l, z,y,D) ∝
∏

x

[(∏

i∈x
pi(di|θx,C)

)
Dir(γx|α0)

Gx∏

g=1

NIW(µxg,Σxg|m0, κ0, υ0,S0)

]
.

Introducing the auxiliary variable t = (t1, . . . , tI)T , with
ti ∈ {1, . . . , Gx}, i ∈ x indicating which individual Gaussian

component in the relevant mixture model the ith voxel is
assocated with, this distribution is obtained as a marginal
distribution

q(θ|l, z,y,D) =
∑

t

q(θ, t|l, z,y,D)

of

q(θ, t|l, z,y,D) ∝
∏

x

[(∏

i∈x
γxtiN (di|µxti + Cφi,Σxti)

)

Dir(γx|α0)

Gx∏

g=1

NIW(µxg,Σxg|m0, κ0, υ0,S0)

]
.

Therefore, samples of q(θ|l, z,y,D) can be obtained with a
blocked Gibbs sampler of q(θ, t|l, z,y,D) that cycles through
the following conditional distributions, and discarding the
samples of t (in the following, we have defined Nxg =∑

i∈x I(ti = g) and denote the inverse Wishart distribution
as IW(·)):

q(t|θ, l, z,y,D) ∝
∏

x

∏

i∈x
γxtiN (di|µxti + Cφi,Σxti),

q({γx}|θ\{γx}, t, l, z,y,D) =
∏

x

Dir({α0 +Nxg}Gx
g=1),

q({µxg}|θ\{µxg}, t, l, z,y,D) =
∏

x

∏

g

N (µxg|mxg,Vxg)

where Vxg =
1

κ0 +Nxg
Σxg, mxg =

κ0m0 +Nxgd̄xg

κ0 +Nxg

and d̄xg =

∑
i∈x I(ti = g)(di −Cφi)

Nxg
,

q({Σxg}|θ\{Σxg}, t, l, z,y,D) =
∏

x

∏

g

IW(Σxg|Sxg, υxg)

where

Sxg = S0 +
∑

i∈x
I(ti = g)(di −Cφi − µxg)(di −Cφi − µxg)T

and υxg = υ0 +Nxg,

and finally

q(c|θ\c, t, l, z,y,D) = N (µc,Σc)

with

c =




c1
...

cN


 , Σc =




ΦTS1,1Φ · · · ΦTS1,NΦ
...

. . .
...

ΦTSN,1Φ · · · ΦTSN,NΦ




−1

and µc = Σc




ΦT (S1,1r1 + · · ·+ S1,NrN )
...

ΦT (SN,1r1 + · · ·+ SN,NrN )


 .

Here,

Φ =



φ11 · · · φ1P
...

. . .
...

φI1 · · · φIP


 , Sm,n = diag

((
Σ−1xti

)
m,n

)

and rn = (rn1 , ..., r
n
I )T , with rni = dni − (µxti)n.
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Using this scheme to sample from the unconstrained distri-
bution q(θ|l, z,y,D), samples from the distribution of interest
p(θ|l, z,y,D) – which contains constraints on {µxg} as spec-
ified in table II – can be obtained by performing rejection sam-
pling in the sampling step of q({µxg}|θ\{µxg}, t, l, z,y,D),
i.e., by repeatedly generating unconstrained samples of {µxg}
until values are obtained for which the constraints on {µxg}
are fullfilled.

In our implementation, rather than repeating the Gibbs
sampler steps described above until the Markov chain reaches
equilibrium and an independent sample of θ is obtained, we
only make a single sweep before obtaining new samples of G,
H, and {l, z,y} in the main loop described in section II-E,
effectively implementing a so-called partially collapsed Gibbs
sampler [57].
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“Integrated segmentation of brain tumor images for radiotherapy and
neurosurgery,” International Journal of Imaging Systems and Technol-
ogy, vol. 23, no. 1, pp. 59–63, 2013.

[30] M. B. Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure,
and J.-P. Thiran, “Atlas-based segmentation of pathological MR brain
images using a model of lesion growth,” IEEE transactions on medical
imaging, vol. 23, no. 10, pp. 1301–1314, 2004.

[31] M. Conson, L. Cella, R. Pacelli, M. Comerci, R. Liuzzi, M. Salvatore,
and M. Quarantelli, “Automated delineation of brain structures in
patients undergoing radiotherapy for primary brain tumors: From atlas to
dose–volume histograms,” Radiotherapy and Oncology, vol. 112, no. 3,
pp. 326–331, 2014.

[32] A. Isambert, F. Dhermain, F. Bidault, O. Commowick, P.-Y. Bondiau,
G. Malandain, and D. Lefkopoulos, “Evaluation of an atlas-based
automatic segmentation software for the delineation of brain organs at
risk in a radiation therapy clinical context,” Radiotherapy and oncology,
vol. 87, no. 1, pp. 93–99, 2008.

[33] J. Dolz, N. Betrouni, M. Quidet, D. Kharroubi, H. A. Leroy, N. Reyns,
L. Massoptier, and M. Vermandel, “Stacking denoising auto-encoders in
a deep network to segment the brainstem on MRI in brain cancer pa-
tients: A clinical study,” Computerized Medical Imaging and Graphics,
vol. 52, pp. 8–18, 2016.

[34] J. Dolz, H.-A. Leroy, N. Reyns, L. Massoptier, and M. Vermandel, “A
Fast and Fully Automated Approach to Segment Optic Nerves on MRI
and its application to radiosurgery,” in 2015 IEEE 12th International
Symposium on Biomedical Imaging (ISBI), pp. 1102–1105, IEEE, 2015.

[35] S. Panda, A. J. Asman, M. P. DeLisi, L. A. Mawn, R. L. Galloway,
and B. A. Landman, “Robust optic nerve segmentation on clinically ac-
quired ct,” in SPIE Medical Imaging, pp. 90341G–90341G, International
Society for Optics and Photonics, 2014.

[36] J. H. Noble and B. M. Dawant, “An atlas-navigated optimal medial axis
and deformable model algorithm (NOMAD) for the segmentation of
the optic nerves and chiasm in MR and CT images,” Medical image
analysis, vol. 15, no. 6, pp. 877–884, 2011.

[37] G. Bekes, E. Mt, L. G. Nyl, A. Kuba, and M. Fidrich, “Geometrical
model-based segmentation of the organs of sight on CT images,”
Medical Physics, vol. 35, no. 2, pp. 735–743, 2008.

[38] O. Puonti, J. E. Iglesias, and K. Van Leemput, “Fast and sequence-
adaptive whole-brain segmentation using parametric Bayesian model-
ing,” NeuroImage, vol. 143, pp. 235–249, 2016.

[39] K. Van Leemput, “Encoding probabilistic brain atlases using Bayesian
inference,” IEEE Transactions on Medical Imaging, vol. 28, no. 6,
pp. 822–837, 2009.

[40] J. E. Iglesias, J. C. Augustinack, K. Nguyen, C. M. Player, A. Player,
M. Wright, N. Roy, M. P. Frosch, A. C. McKee, L. L. Wald, et al., “A
computational atlas of the hippocampal formation using ex vivo, ultra-
high resolution MRI: application to adaptive segmentation of in vivo
MRI,” Neuroimage, vol. 115, pp. 117–137, 2015.

[41] J. E. Iglesias, K. Van Leemput, P. Bhatt, C. Casillas, S. Dutt, N. Schuff,
D. Truran-Sacrey, A. Boxer, B. Fischl, A. D. N. Initiative, et al.,
“Bayesian segmentation of brainstem structures in MRI,” NeuroImage,
vol. 113, pp. 184–195, 2015.

[42] M. Agn, O. Puonti, P. Munck af Rosenschöld, I. Law, and K. Van Leem-
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Abstract. Accurate tumor segmentation plays an important role in
radiosurgery planning and the assessment of radiotherapy treatment
efficacy. In this paper we propose a method combining an ensemble
of 2D convolutional neural networks for doing a volumetric segmenta-
tion of magnetic resonance images. The segmentation is done in three
steps; first the full tumor region, is segmented from the background by
a voxel-wise merging of the decisions of three networks learned from
three orthogonal planes, next the segmentation is refined using a cellu-
lar automaton-based seed growing method known as growcut. Finally,
within-tumor sub-regions are segmented using an additional ensemble of
networks trained for the task. We demonstrate the method on the MIC-
CAI Brain Tumor Segmentation Challenge dataset of 2014, and show
improved segmentation accuracy compared to an axially trained 2D net-
work and an ensemble segmentation without growcut. We further obtain
competitive Dice scores compared with the most recent tumor segmen-
tation challenge.

Keywords: Tumor segmentation · Convolutional neural network ·
Ensemble classification · Cellular automaton

1 Introduction

Segmentation of brain tumors plays a role in radiosurgery, radiotherapy plan-
ning, and for monitoring tumor growth. Segmentation is challenging since tumor
location and appearance vary greatly between patients.

Many successful method for doing voxel-based segmentation are based on
the random forest (RF) classification scheme which predicts segmentation labels
from user engineered image features. Tustison et al. [15] proposed a two-stage
RF approach, with features derived from a Gaussian mixture model followed
by a Markov random field segmentation smoothing. The RF was also used by
Reza et al. [12] who designed features using textons and multifractional Brow-
nian motion. Menze et al. [10] proposed a generative probabilistic atlas-based
model which adapts to the intensity distribution of different subjects and later
combined it with the RF classifier [9]. An example of a successfull method that
does not use a RF classifier is the patch-based approach [2]. Here voxels are

c© Springer International Publishing Switzerland 2015
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segmented by comparing image patches to a dictionary consisting of training
patches where the corresponding expert labels are used for segmentation.

In recent years and due to advancements in computational power, deep neu-
ral networks have been revived. In the most recent Brain Tumor Segmentation
Challenge 2014 (BraTS2014), this was reflected by a number of contributions
using deep neural networks. The work by Davy et al. [3] presented a 2D con-
volutional network trained from an axial perspective. Two others presented 3D
networks [16], [18], and while their implementations differed, the results indi-
cated a benefit of using 3D information. An important property of a network
is that it learns image features relevant for the specific segmentation problem.
This alleviate researchers from having to engineer such features.

We revisit the idea of Davy et al. [3] but instead of using one 2D network to
do voxel-based segmentations, we learn an ensemble of networks, one for each of
the axial, sagittal and coronal planes and fuse their segmentations into a more
accurate 3D informed segmentation. Unlike previous works using convolutional
networks we do not segment the tumor and its sub-regions using a single multi-
label classifier. Instead, we split the problem into two sequential segmentation
problems. The first segmentation separates tumor from healthy tissue and refine
the segmentation using a growcut algorithm [17]. The second segmentation per-
forms the within-tumor sub-region segmentation using the tumor mask of the
first segmentation to select voxels of interest.

The method (Fig. 1) is demonstrated on the BraTS2014 dataset. We were
able to achieve improved ground truth segmentation accuracy compared to a 2D
axially trained network [3] and Dice scores [4] just below the top methods of the
challenge leaderboard (https://www.virtualskeleton.ch/BRATS/Start2014).

2 Data

Two datasets were downloaded from the BraTS2014 website (November, 2014).
The first dataset (data1) consisted of 106 high grade glioma (HGG) and 25

low grade glioma (LGG) subjects (no longitudinal repetitions), all with ground
truth segmentations of the tumors. It was randomly split into a training set
of 76 HGG/15 LGG subjects, and the rest (30 HGG/10 LGG) were used as
test data. For each subject, we used a set of multimodal magnetic resonance
imaging (MRI) volumes, consisting of two T2-weighted images (Fluid-attenuated
inversion recovery (FLAIR) and (T2)) and a T1-weighted image with gadolinium
contrast (T1c). The MRIs were skull stripped, rigidly oriented according to MNI
space and re-sliced to 1 mm3 as described in [6]. The ground truth segmentation
consisted of five labels (background=0, necrosis=1, edema=2, non-enhancing=3,
enhancing=4).

The second dataset (data2) consisted of 187 multi-modal MRI volumes from
88 different subjects with 99 longitudinal repetitions. Since only the BraTS2014
challenge organizers know the ground truth segmentations, it allowed for a
blinded segmentation evaluation via the challenge website.
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3 Method

The proposed method, outlined in Fig. 1, consists of four steps. First, the MRI
volumes are bias corrected for scanner field inhomogeneity and standardized to
similar cross subject intensities. Second, an ensemble of convolutional networks
segments the tumor from healthy tissue. The third step (growcut) post processes
the segmentation to improve the segmentation. The fourth step does the within-
tumor segmentation using an additional ensemble of networks. The four steps of
the method are detailed successively in section 3.1-3.4.

Fig. 1. Shows a schematic, outlining the pipeline of our method. The multi-modal MRI
data is pushed through four successive stages of 1) bias correction, 2) whole tumor
segmentation (tumor vs. none tumor), 3) localized post-processing of the segmentation
and 4) a within-tumor segmentation stage.

3.1 Bias Correction and Standardization

MRI generally exhibits large intensity variations even within the same tissue type
of a subject, largely due to field inhomogeneity of the scanner. To minimize this
bias, the N4 method [14] was applied to each MRI.The N4 method works under
the assumption that the bias field can be modeled by a smooth multiplicative
model which is fitted iteratively to maximize the high frequency content of the
MRI intensity distribution. To further standardize across different scanners, the
maximum peak of each MRI intensity histogram was found, and the intensities
scaled according to I = Ic · (Ib/Ip), where Ic is the N4 bias corrected image
volume, Ip is the maximum peak intensity of Ic and Ib is a reference value which
we fixed to Ib = 200. To achieve equal importance of the multi-modal MRI, their
intensities were further standardised using a normal transformation applied to
each of the different modalities.

3.2 Convolutional Network Ensemble: Whole Tumor

To segment tumor tissue, three convolutional neural networks were trained using
a multi-modal image patch of dimension 46 × 46. Each 2D network learned to
classify the same center voxel but viewed from an axial, sagittal and coronal
perspective. Combining this ensemble of 2D networks enabled the segmentation
method to become 3D aware.
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The 2D networks are described by the architecture in Fig. 2. It shows a
network consisting of 6 layers. Each perform an algebraic operation on the input
data x and passes the result as input to the next layer. The process is repeated
until reaching layer 6 which predicts the most probable classification label.

Fig. 2. Depicts a 2D deep neural network architecture consisting of six layers. The first
three are convolutional layers, followed by two fully connected layers and a softmax
layer where the arrows indicate the connections between layers. The squares illustrate
the 2D nature of the input (x) and the intermediate representations (h) of the convolu-
tional layers, where x = [x1...xn] is a 3D matrix of n input patches and h = [h1...hm],
is the concatenation of m 2D filter response. The circles of the fully connected layers
indicate its 1D nature with n being the number of neurons (=the circles), such that
x = [x1...xn]T and h = [h1...hn]T are the 1D vector representations of the input and
the neuronal activations.

Convolutional layers: The convolutional layers apply filtering and downsam-
pling operations to image patches. The first layer uses a filter bank of size
40 × 3 × 7 × 7 which it applies to the 3 × 46 × 46 image patch. This produces a
feature map h of size 40 × 40× 40, where the first dimension indexes the feature
maps, while the second and third dimensions indexes (row, column) coordinates.
More specifically the jth map is calculated by hj = bj +

∑n
i=1(wij ∗ xi), where i
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indexes the input channel and a trainable filter wij , the ∗ operator denotes 2D
convolution and n = 3 is the number of input channels. Subsequently a 2×2 max
pooling strategy is used to downsample h to size 40 × 20 × 20 and the rectified
linear unit function, σ(h) = max(0, h) is applied. The remaining convolutional
layers (two and three) perform the same type of operations but using filter banks
of size 50×40×5×5 and 60×50×5×5 for the respective layers. The application
of these filters and downsampling steps result in a number of the intermediate
feature maps with the dimensionalities listed in the top part of Fig. 2.

Fully connected layers: Layer 4, 5 and 6 are fully connected layers meaning
each neuron is exposed to the full input x of the previoues layer. Each of the
800 neurons in layer 4, evaluates the product hj = wT

j x + bj and applies the
non-linear activation function σ(hj). Thereby transforming the 240 dimensional
vector x into an 800 dimensional vector σ(h) which is passed to layer 5. Layer
5 works similar to layer 4, but now generating a 500 dimensional feature vector
σ(h) which is propagated to layer 6. Layer 6 evaluates the softmax function

p(Y = y|x,w, b) =
ewyx+by

∑
j ewjx+bj

, (1)

generating posterior probabilities for a number of classification labels, y = {0, 1}.
Here wj refer to a vector of linear parameters for the jth class, bj is a bias weight
and x is the 500 dimensional response vector from the previous layer.

Network Training Each of the 2D networks were trained by minimizing the
following cost function

C(W,B) =
1

nd
·

nd∑

i=1

− ln(p(Y = yi|xi,W,B)) + λ ·
nw∑

j=1

W 2
j . (2)

The first term of eq. (2) is the mean negative log-likelihood of the softmax
probability and we have used capitalized (W,B) to indicate that it is a function
of (w, b) parameters from different types of layers. Further, the training patches
are denoted xi, yi, corresponding to the patch intensities and ground truth label
of the ith training example. The second term of eq. (2) is a regularization term
that adds robustness to the optimization problem by limiting the solution space
to models with smaller parameter weights. It does so by penalizing the 2-norm of
the parameters and through experimentation we found λ = 0.0001 to be suitable.

The cost function was minimized using a stochastic gradient descent (SGD)
which relied on the back propagation algorithm to estimate gradients. The SGD
performed iterative updates based on gradients estimated from mini-batches
with a batch size of 200 where an update occurred after each mini-batch. Each
gradient update was further augmented by a moment based learning rule [13]
which updated the parameters as a weighted combination of the current gra-
dients and the gradients of previous iteration update. We used a momentum
coefficient of 0.9. Layer 4 and 5 were trained using the dropout learning [5]
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(dropout rate=0.5) which activates half the neurons for each training example.
As a consequences the activations of these layers(σ(h)) were divided by 2 when
a network was applied to an unseen test image patch.

A GPU implementation for training the three 2D networks was achived using
Theano [1].

Network Ensemble Merging Having learned the parameters of the three
networks, their complementary decision information were merged. This was done
using the posterior probablities of the last layer (layer 6). If the networks agreed
on the same label we were highly confident in this classification and assigned the
label of voxel x with probability p(Y |x) = 1. Otherwise a majority vote decided
the class label and the probability was set to reflect this uncertainty by averaging
the class probabilities of the three networks, p(Y |x) = (1/3)

∑3
i=1 pi(Y |x,w, b).

The resulting label segmentations and their probabilities were then used as input
for the growcut algorithm.

3.3 Cellular Automaton: Growcut

The growcut algorithm was initially proposed as a continuous state cellular
automata method for automated segmentation based on user labeled seed vox-
els [17]. From these labels and a local intensity transition rule the algorithm
decides whether voxels should be re-labelled.

We used the algorithmic formulation of [17] which we extended to 3D. The
algorithm models each voxel as a cell with a state set S(Θ, l, C) consisting of a
strength value Θ ∈ [0, 1], a label l and an intensity feature vector C. It is an
iterative algorithm and for each iteration the strength and labels of the previous
iteration remain fixed. During an iteration each image cell r is attacked by its
neighboring cells s ∈ N(r) where N(r) denote the 3 × 3 × 3 neighborhood of a
volume and only if g(Cr, Cs) · Θs > Θr, will Θr, and lr be updated before the
next iteration. The local transition rule is given by

g(C1, C2) = 1 − ||C1 − C2||2
k

(3)

Where we have normalized the intensities of C to be in the range [0, 1] such that
for k =

√
3, the value of g(C1, C2) ∈ [0, 1]. Since g(C1, C2) can never exceed 1,

any cells with strength Θ = 1 will remain constant throughout the algorithm.
To use the growcut on the ensemble segmentations, the feature vector C was

set to the multi-modal MRI intensities and the values of l, Θ were initialized
with the labels and probability maps of the convolutional network ensemble.
This initialization served as a strong prior for growcut segmentation, assuming
that the segmentation was already near optimal.

Once growcut converged to a stable segmentation (100 iterations), a heuristic
rule was used to identify the tumor. It was based on a connected components
analysis to remove any spatially coherent clusters of voxels which were less than
80% of the biggest cluster.
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3.4 Convolutional Network Ensemble: Within-Tumor

This ensemble of convolutional networks was used to segment the within-
tumor sub-regions. The architecture of each network is similar to the previously
described, but considers a smaller image patch and has only two convolutional
layers, two fully connected dropout layers and softmax probability layer. The
input patch size is 3× 34× 34 and the first convolutional layer uses a filter bank
of size 50×3×7×7 while the second one uses a filter bank of size 60×50×5×5.
The justification of choosing a smaller patch size is that the within-tumor seg-
mentation uses information on a smaller scale compared to the whole tumor
segmentation. As with the previously described networks, the fully connected
layers use 800 and 500 neurons respectively while the softmax layer, predicts
one of four possible classification labels. The SGD optimization was again used
to train the networks but for these specific networks we used λ = 0.00005.

Network Ensemble Merging The voxel-based decisions of the ensemble of
axial, sagittal and coronal networks were either set to the label they all agree on,
or according to the most probable average probability of the softmax probability.

4 Results

4.1 Test and Phenotype Performance

Testing our method on the 40 left out subjects (data1), resulted in the segmen-
tation performances of Table 1. This table shows ground truth scores for three
methods; A 2D convolutional network applied to the axial plane similar to [3], a
method using only the ensemble part of our method (ensem) and our full method
which is ensem in combination with growcut (ensem+grow). The scores of the
table are given for pathologically relevant tumor regions. These are the whole
tumor (labels: necrosis, edema, non-enhancing, enhancing), the enhanced tumor
region and the tumor core (labels: necrosis, non-enhancing, enhancing). We see
that using an ensemble improved the segmentation relative to a 2D network and
achieved further improvement by including growcut post-processing. As a visual
comparison example, two tumor segmentations based on our method and their

Table 1. Average segmentation performance scores of three convolutional neural net-
work methods evaluated on 40 subjects of data1. The scores (Dice, positive predictive
and sensitivity) were calculated for the different tumor regions.

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

axial 0.744 0.642 0.629 0.732 0.624 0.642 0.811 0.746 0.707

ensem 0.786 0.686 0.676 0.786 0.707 0.693 0.825 0.743 0.717

ensem+grow 0.810 0.697 0.681 0.833 0.718 0.701 0.825 0.750 0.720
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Fig. 3. This visual comparison shows both the proposed segmentation method and
corresponding ground truth for two subjects. The Dice scores of subject 1 were 0.825
(whole), 0.795 (core) and 0.842 (enhanced) and for subject 2 they were, 0.892 (whole),
0.840 (core) and 0.854 (enhanced).

ground truth, are shown in Fig. 3. By dividing the test subjects based on tumor
types (HGG/LGG), we evaluated their impact on method performance. This
comparison (Fig. 4), reveals higher Dice scores with less variance for the HGGs,
indicating a methodological bias towards the tumor type.

4.2 Blinded Challenge Performance

Testing our method on the blinded challenge dataset previously denoted data2
and performing an on-line evaluation of the segmentations, resulted in the aver-
age performance scores of Table 2. It lists the scores for the first time point of the
99 subjects (cross sectional) and the full challenge data (full data) where similar
performances are achieved. It also includes the top 3 scores of the BraTS2014
challenge where our method is ranked amongst.
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Fig. 4. Ground truth Dice scores performance for two different types of tumors (HGG
and LGG). Red line indicate mean Dice score, blue boxes show the 25 and 75 percentiles
of the scores while extreme observations are show with red dots.

Table 2. Shows the average segmentation performance scores of our method in grey
(cross sectional and full data), for the BraTS2014 challenge data (data2). Also listed
are the top three of the challenge (15/12-2014), ranked according to their whole tumor
Dice scores. These are Urbag [16], Kleej [7], Dvorp [8].

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

Cross sectional 0.801 0.637 0.586 0.803 0.682 0.554 0.857 0.715 0.745

Full data 0.799 0.631 0.625 0.783 0.629 0.580 0.861 0.736 0.776

Urbag 0.87 0.76 0.72 0.91 0.80 0.69 0.85 0.76 0.81

Kleej 0.87 0.76 0.73 0.90 0.73 0.66 0.85 0.83 0.87

Dvorp 0.60 0.30 0.29 0.86 0.58 0.56 0.53 0.27 0.28

5 Discussion

We have presented a method, combining an ensemble of 2D convolutional net-
works with the growcut method for making a 3D informed segmentation. It
showed improved accuracy compared to a 2D network and an ensemble seg-
mentation without growcut thereby validating the usefulness of the proposed
method. The investigation of tumor type showed better performance for HGG,
likely due to the imbalanced training data distribution (76 HGG/15 LGG). It
could also indicate the presence of a measurable pathologic difference. If so, the
training of a segmentation method for each type could lead to improved segmen-
tations for both types. This would require knowing the tumor type in advance,
information that was not readily available for the blinded challenge data. Our
challenge results showed a nice performance although sub-par to the top two
methods of the challenge but was superior to the remaining 11. It is noted that
our methods performance is in the Dice score range that manual annotators
can achieve according the results of [11]. They reported the Dice accuracy of
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annotators to be in the range of (0.74-0.85). This is comparable to the pro-
posed method. A simple strategy for improving our work would be to extend
the ensemble to use 3D network (computationally costly) or to investigate the
inclusion of networks trained from more than orthogonal planes. In addition, the
usage of using longitudinal information could also play a role towards improving
segmentations.
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