Development and Application of Efficient Forward and Reverse Genetic Tools

Baker, Jonathan P.; Saez, Javier; Ingemann Jensen, Sheila; Wiechmann, Anja; Bengelsdorf, Frank; Beck, Matthias; Fernandez-Sanchis, Elvira Maria; Müller, Volker; Nielsen, Alex Toftgaard; Dürre, Peter

Total number of authors:
13

Published in:
Proceedings of C1net Conference 3

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Acetobacterium woodii represents one of the most studied and, therefore, best understood anaerobic acetogens. Currently the CO2CHEM consortium (comprising the Universities of Ulm, Frankfurt and Nottingham, together with the Novo Nordisk Foundation Center for Biosustainability, Siemens and LanzaTech) seek to exploit its potential as a chassis for chemical and fuel manufacture through ERA-IB funding. Essential to this goal are the availability of effective gene tools for genome engineering, both by directed and random mutagenesis. These systems have been implemented through adherence to our recently published roadmap for gene system development [1].

As a first step we established a high efficiency transformation system for A. woodii, allowing for the subsequent use of suicide vectors to create a pyrE knockout strain. This uracil auxotroph provides the background for an ACE knockout system which has been exemplified through phenotypic studies of substrate pathway gene deletions.

An orthogonal expression system based on the unique Clostridium difficile sigma factor TcdR, has been shown to act exclusively on the toxin tcdA/B gene promoters and so are not recognized by E. coli RNA polymerase. To ensure expression solely in the target host (A. woodii), the tcdR gene was introduced into the A. woodii genome using an ACE cargo vector at the pyrE locus. This allowed for the use of tcdB to drive a mariner transposon system on a suicide vector to create a library of mutants for both phenotypic and high-throughput genome sequencing studies; further increasing our understanding of this important chassis strain.