CHO glyco-engineering using CRISPR/Cas9 multiplexing for protein production with homogeneous N-glycan profiles

Amann, Thomas; Hansen, Anders Holmgaard; Pristovsek, Nusa; Singh, Ankita; Min Lee, Gyun; Andersen, Mikael Rørdam; Kildegaard, Helene Fastrup

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
CHO-glyco-engineering using CRISPR/Cas9 multiplexing for protein production with homogeneous N-glycan profiles

Thomas Amann1*, Anders H. Hansen1, Nuša Pristovšek1, Ankita Singh1, Gyun M. Lee1,2, Mikael R. Andersen3, Helene F. Kildegaard1

1The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
2Korea Advanced Institute of Science and Technology, Department of Biological Sciences, Daejeon, South Korea
3Institute for Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
*Correspondence: thoam@biosustain.dtu.dk

1. KEY MESSAGE

Combining the Chinese hamster ovary (CHO) - K1 draft genome1,2, identified CHO glycosyltransferases3 and the power of multiplexing gene knock-outs with CRISPR/Cas9 via co-transfection of Cas9 and one single guiding RNA (sgRNA) per target, we generated 20 Rituximab expressing CHO cell lines differing in amount and combination of insertions or deletions (indels) in the targeted genes. Clones harboring 9, 6 and 4 indels were further investigated for growth, Rituximab productivity and secretome N-glycosylation.

This resulted in clones with prolonged viabilities, no changes in N-galactosyl galactose contents but an increase of mature and sialylated N-glycans in the secretome. Additionally we point out, that multiplexing an increasing amount of genes most likely results in clones only revealing a few of all possible combinations of the targets and is highly driven by the sgRNA efficiency which can differ from each other by factor 4, even after FACS sorting.

2. Introduction: N-glycan engineering

A. Background information

Although CHO cells' strength is the production of similar N-glycans to what is found on glycosylated human proteins, non-engineered CHO cells display a broad variety of N-glycans which often includes N-glycan structures, that have an undesired effect on e.g. efficacy, antibody-dependent cell cytotoxicity (ADCC) or lectin-mediated clearance of the glycoprotein.

In this work, we investigate the limitations of targeting up to 10 genes simultaneously using CRISPR/Cas9 multiplexing in a Rituximab producing CHO cell line. The targets include N-glycosyltransferases, enzymes involved in nucleotide sugar synthesis, N-glycosyltransferase modulator, apoptosis and glutamine synthesis.

3. Experimental Overview

Characterization of sgRNA efficiency

Bulk Sorting of Cell Pools

Characterization of:
 - Genotype: Sequencing of target regions
 - Phenotype:
 - N-glycan profile, growth & viability in batch cultivation

Figure 2: Target transcript levels and workflow of cell sorting after transfection to enrich truncated cell lines via GFP to generate single cell clones in 384 well format.

4. Sequencing of pools and clones

A. Clone Level Sequencing

B. Pool Level Sequencing

5. Results: Growth, Rituximab titers and secretome N-glycosylation

A. Growth and Viability in Batch Experiment

B. Rituximab quantification

C. Secretome N-glycan analysis

Figure 1: Post-translational N-glycan processing with nucleotide sugars and several N-glycanprocessing enzymes anchored in the Golgi membrane to be targeted for improved IgG N-glycan profile.

Figure 2: Target transcript levels and workflow of cell sorting after transfection to enrich truncated cell lines via GFP to generate single cell clones in 384 well format.

Figure 3: Out of 84 screened clones, 20 clones harbor at least one genetic modification after multiplexing with 10 sgRNAs (fig 14 clones shown here).

Figure 4: Frequency of initial generation after pool level sequencing of the different target regions before (blue) and after (red) FAC sorting for GFP-positive cells representing Cas9_2A_GFP expressing populations. The frequency of initial generation increased at least one-fold for all sgRNA targets after FACs and ranged from 1-60%.

Figure 5: Phenotype based GLUL-KO (no growth in glutamine-free medium) and the power of multiplexing gene knock-outs with CRISPR/Cas9 via co-transfection of Cas9 and one single guiding RNA (sgRNA) per target.

Figure 6: The six KO clones display heterogenous titers and productivity, where the 4x KO has the lowest and the 6x KO the highest titer. Within the control group, the two non-engineered clones reveal identical titers and specific Rituximab productivities.

Figure 7: The phenotypes of the secretone from (i) a non-engineered clones and (ii) the 8x KO clone with inserts in (a) Bax, Bak1, GLUL, Target 4, Bak2_1, Bak2_2, Bak2_3 and target 10 (SA + sialic acid).

Acknowledgement: Special thanks to Hesham C. Polakow for assistance with FAC sorting, Xiongxiang Li for N-glycan purification and Zulfiya Sulaim for preparing the Miltrans vectors.

References: