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Preface

This thesis was prepared at the Department of Bio - and Health informatics, at
the Technical University of Denmark (DTU) in fulfilment of the requirements
for acquiring a Ph.D. degree. It describes the use of genomics to characterize
phages in a commerical cocktail as well as sewage samples from different
locations around the world, and mathematical modeling to study the factors of
phage susceptiblity in Staphylococcus aureus. The thesis consists of a general
introduction, two research papers and one manuscript in prepartion produced
during the period 2014 - 2017.

The work was carried out under the supervision of professor Morten Nielsen
as well as the external supervisors Mette Voldby Larsen (CEO of GoSeqlt,
formerly associate professor at DTU Systms Biology) and Henrik Hasman
(special consultant at Statens Serum Institute, formerly senior researcher at
DTU Food). The Ph.D. was funded by DTU.

Lyngby, November 2017
Henrike Zschach
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Abstract

Bacteriophages, viruses that prey on bacteria, have been applied since the
1920’s to treat and prevent bacterial infection. After the discovery of antibi-
otics, this route was however largely abandoned. Now, with antimicrobial
resistance in human-pathogenic bacteria on the rise and a dire need for alter-
natives, phage therapy once again takes center stage.

Phage therapy holds the promise of substantial benefits both from the economic
as well as the public health perspective but also holds distinct challenges. The
aim of this PhD was to address how bioinformatics tools, specifically genomics
and mathematical modelling, can be applied to move the field towards a future
of actual phage therapy in humans. It is composed of three related research
projects.

The first part of this thesis is an introduction to various topics and methods
relevant to the research projects that jointedly make up this PhD. Chapters
1 - 3 deal with phages, their use in therapy and the nosocomial pathogen
Staphylococcus aureus. Following that, Chapter 4 and 5 provide an overview
of Next Generation Sequencing as well as commonly employed genomics tools,
while Chapter 6 details basics of Machine Learning.

The second part, divided into three chapters, presents the three research
projects. In project 1, an important commercial phage cocktail with a long
history was sequenced and its component phages analyzed. It was found that
the cocktail is composed of at least 23 different phage types, which were present
in differing abundances. Some of these phage types were successfully amplified
on a collection of in-house bacteria corresponding to the cocktail’s stated
bacterial targets. Further, no harmful genes were detected in the cocktail.

Project 2 deals with phage communities in sewage by comparing samples from
around the world to each other as well as to databases of available phage
genomes. It revealed a great diversity in the sequences, many of which were
distant from all known phages. The phage content of the different sample
locations exhibited a rather stable genomic distance that was not influenced
by whether the locations were geographically close or not.

Project 3 had the goal of identifying gene families in the extensive accessory
genome of the hospital pathogen Staphylococcus aureus that influence its sus-
ceptibility to clincal phage preparations. This was done by phage testing a set
of patient-derived S. aureus isolates against a panel of phage preparations. We
then sought to model the results using the bacteria’s genetic background as
features. Doing so, we built nine models with sufficient explanatory power over
the susceptibility outcome and from them identified a set of 167 gene families
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relevant for phage susceptibility.

The third part of the thesis consists of conclusive remarks and a critical re-
flection on how each of these projects has impacted the field and how they are
connected as well as pointing out directions for future investigations.

In summary, the work included in this this thesis focuses on applying genomics
and mathematical modelling to questions related to phage therapy.
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Dansk resumé

Bakteriofager, virus der inficerer bakterier, er blevet anvendt til forebyggelse
og behandling af bakterielle infektioner siden 1920’erne. Efter opdagelsen af
antibiotika blev denne praksis dog i det store og hele opgivet. Med den kraftige
stigning i antibiotikaresistens blandt humane sygdomsfremkaldende bakterier,
og det deraf fremkomne akutte behov for alternativer til antibiotika, treeder
fag-terapi endnu engang frem péa hovedscenen.

Fag-terapi beerer potentialet til store gkonomiske savel som sundhedsmaessige
fordele, men indeholder ogsé specifikke udfordringer. Formalet med denne PhD
var at addressere hvordan bioinformatiske metoder, i seerdeleshed genomics og
matematisk modellering, kan anvendes til styrkelse af det videnskabelige felt
med henblik pa en fremtid hvor fag-terapi i mennesker er en realitet. PhD’en
er opbygget af tre relaterede forskningsprojekter.

Fgrste del af athandlingen udggres af en introduktion til diverse emner og
metoder med relevans for de forskningsprojekter, der tilsammen udggr PhD’en.
Kapitel 1-3 omhandler fager, deres terapeutiske brug og den nosokomielle
patogen Staphylococcus aureus. Efterfglgende giver kapitel 4 og 5 et overblik
over Next Generation Sequencing samt metoder, der ofte bruges i genomics.
Kapitel 6 omhandler basale maskinleeringsprincipper.

Den anden del, opdelt i tre kapitler, preesenterer de tre forskningsprojekter.
I projekt 1 blev en vigtig kommerciel fag-cocktail med en lang historik se-
kventeret, og de enkelte fager, der udggr cocktailen, blev analyseret. Det blev
fundet at cocktailen bestod af mindst 23 forskellige fag-typer, som var tilstede
i forskellig maengde. Nogle af disse fager blev med succes opformeret v.h.a.
en lokal samling af bakterier, der repreesenterede de typer bakterier, som co-
cktailen var rettet imod. Der blev ikke fundet nogen skadelige gener i cocktailen.

Projekt 2 omhandler fag-samfund i spildevand, hvor prgver fra verden over blev
sammenlignet med hinanden og med fag-genomer i databaser. Dette viste en
hgj diversitet i sekvenserne, hvoraf mange kun lignede de kendte fager meget
fjernt. Fag-indholdet i prgverne udgjorde en forholdsvis stabil genomisk for-
skellighed, der ikke blev pavirket af den geografiske teethed hvormed prgverne
var blevet taget.

Projekt 3 havde til formal at identificere gen-familier i den del af genomet af
Staphylococcus aureus, der varierer indenfor arten, og som péavirker bakteri-
ens fglsomhed overfor kliniske fag-blandinger. Dette blev gjort ved at teste
et seet af S. aureus isoleret fra patienter mod et panel af fag-blandinger. Vi
forsggte dernaest at modellere resultaterne i forhold til bakteriernes genetiske
baggrund. I denne proces byggede vi ni modeller, der i tilstreekkelig grad kunne
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forklare den observerede fglsomhed, og fra disse modeller identificerede vi 167
gen-familier med relevans for bakteriernes folsomhed overfor fager.

Den tredje del af denne athandling udggres af de afsluttende konklusioner samt
en kritisk refleksion over hvilken indflydelse hver af disse projekter har haft
pa det videnskabelige felt og hvordan de er forbundne. Derudover udpeges
retningslinjer for fremtidige undersggelser.

Summa summarum, det arbejde, der er inkluderet i denne afthandling, fokuserer
pa anvendelsen af genomics og matematisk modellering til spgrgsmal relateret
til fag-terapi.
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3 CHAPTER 1. PHAGES

1 Phages

1.1 Phage biology

Bacteriophages, shortly referred to as phages, are viruses that infect bacteria.
They are the most abundant biological entity on the planet, with 103! phage
particles estimated in the biosphere [1]. A cartoon of a T4-phage is shown in
Figure 1.1.

The two principal lifestyles observed in phages are the lytic and the lysogenic
cycle. Both begin with phage adsorption to a suitable host cell and injection
of the phage DNA. In the lytic cycle, the host metabolism is taken over by the
invading phage DNA and tuned to replicate said DNA as well as transcribe
it to the proteins necessary to produce new phage particles. Once the new
phages are assembled, the host is lysed. In short, during the lytic cycle, phage
progeny is produced and released.

Figure 1.1. Cartoon representation of a T4-phage. It is struc-
turally composed of a capsule or head, a tail shaft and tail fibers.

During the lysogenic cycle however, the phage DNA remains inside the bac-
terial cell, usually as an integrated prophage or more rarely as a plasmid. It
then replicates together with the host cell, effectively creating a new copy of
the phage every time the host divides. In this state, the bacterial host may be
referred to as a lysogen. An intact prophage may switch back to the lytic cycle
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and initiate production of phage progeny and host lysis as described above.
It is thought that this switch occurs as a response to stress on the host cell,
which can indicate that prospects of survival and further division of the host
are unlikely [2].

1.2 Phage taxonomy and genomics

The official authority of phage taxonomy is the International Committee on
Taxonomy of Viruses (ICTV). In the broadest context, phages are classified
based on their morphology and type of genetic material. Both single-stranded
and double-stranded RNA and DNA genomes have been observed, as well as a
range of different morphologies, but by far the most common (90%) are tailed
phages with double-stranded DNA genomes [3]. Those phages belong to the
order of the Caudovirales, which can further be subdivided into three families:
Myoviridae, Siphoviridae and Podoviridae.

® O
B Qc

Figure 1.2. Morphology of the three families within the Caudovi-
rales. A: Myoviridae. B: Siphoviridae. C: Podoviridae. Adapted
from [4].

All Caudovirales are tailed phages composed of a capsid or head with cubical
symmetry that contains the DNA and a helical tail shaft [3]. Additionally,
they often have structures at the end of the tail to facilitate host-recognition
and docking, such as base plates, spikes or tail fibers.The three families have
distinct tail morphologies and are identified by electron microscopy. Myoviri-
dae are marked by long, contractile tails, Siphoviridae by long, non-contractile
tails and Podoviridae by short tails. Examples for each family can be seen
in Figure 1.2. This division highlights the major problem of the current clas-
sification system: It requires isolation and visualization of the virion. It is
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therefore not possible to officially classify phages known only from metagnomic
sequencing or prophages identified in bacterial genomes.

As of now, genome-based taxonomy remains difficult because there are no
genes shared among all phages that could serve as a marker such as 16s for
all cellular life forms [1]. While it is true that bacterial species identification,
especially in the epidemiology context, has moved towards sampling a larger
proportion of the genome, the sampling of rRNA genes has evolutionized the
phylogeny of cellular life by enabling researches to draw a tree of life and
place every know lifeform in it. The same is not possible for phages, though
efforts have been made to build trees based on overall genome similarity as for
example the Phage Proteomic tree by Rohwer and Edwards [1].

Those efforts are hindered by the fact that phage sequences are extremely
diverse. This is especially true for phages with non-overlapping host ranges, to
the extent where two phages of different hosts seldom share extensive stretches
of nucleotides unless they are closely related [5]. In concert with their bacterial
hosts, phages have been described to constitute the greatest genetic diversity
on earth [6]. The evolution of both phage and bacterial genomes are hugely
driven by their interaction with each other, locked in an evolutionary battle of
defense-counter-defense mechanism [7].

Phage genomes also range widely in size from 2.4 kb in Leuconostoc phage L5
[5] to ~ 500 kb in Bacillus phage G [6]. Further, their genomes are extensively
mosaic, which may be a consequence of frequent horizontal gene transfer [7].
Nonetheless, genes for related functions tend to cluster together into segments
[3]. Different segments may have a distinct evolutionary history [7].

In October 2017, 6377 phage genomes were available in NCBI’s genbank and
2943 in the phantome database, a dedicated phage resource. There is some
overlap across databases. After homology reduction on 100% sequence identity,
there are 5570 unique phage genomes known.

In accordance with the enormous diversity described above, the majority of
open reading frames found on new phage genomes typically code for proteins
with no known function or homolog [8].
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2 Phage therapy

The application of phage to treat bacterial infection, commonly referred to as
phage therapy, is a promising alternative to antibiotic treatments which are
proving increasingly difficult with the spread of antibiotic resistance. Phages
can either be used as purified single phage preparations or as cocktails com-
posed of many different phages. Both procedures are in use today [9].

2.1 Bacterial phage resistance mechanisms

As with antibiotics, bacteria may develop resistance towards phage infection.
There are several strategies: Evasion of phage recognition, recognition and
degradation of phage DNA, general interference with the phage reproductive
cycle, and altruistic abortive infection where host cells go into cell death before
the phage has finished producing progeny [10].

The first step of phage infection is recognition of and irreversible binding of the
phage particle to the host cell. Seeking to evade this recognition by modifying
the phage binding site or masking the receptor is an obvious strategy and there
are many examples of this in the literature as well as examples of counter-
mutation by the phage tail fiber to recognize the altered receptor [11-14].

After successful injection of the phage DNA, the infection can still be stopped
by degrading the phage DNA before it takes over the host metabolism. The two
most widely-known systems for that are restriction-modification and CRISPR-
Cas. Restriction-modification is a 2-component system in which a methylase
introduces a specific methylation pattern to the host DNA. DNA that lacks this
methylation pattern, i.e. invading foreign DNA, is cut by the accompanying
restriction enzyme [10]. Though being a wide-spread phenomenon in bacteria,
CRISPR systems are curiously absent in the opportunistic hospital pathogen
Staphylococcus aureus [15] which is the focal pathogen in this thesis. They will
therefore not be described in detail.

Finally, the successful production of phage progeny can be thwarted by the
host cell by interfering with one or several steps in the phage replication
process. Those systems are referred to as abortive infection systems and, un-
like the defense systems described above, result in the death of the host cell [10].
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There have also been examples of quorum sensing regulating receptor expres-
sion in E. coli and thereby reducing the number of phage infections when it
is growing in dense populations [16]. In addition to these bacteria-encoded
defense mechanism, acquiring a prophage may protect the bacterial host via
the superinfection exclusion system [10].

Despite the plethora of defense mechanisms present, phage therapy can still
succeed since, in contrast to antibiotics, phages constantly evolve in concert
with their host. Furthermore, there is evidence that the use of cocktails con-
taining complementary phages may reduce the emergence of resistance [17, 18].

2.2 Beginnings

The beginnings of phage therapy go back all the way to the discovery of phages
in the late 1910’s. In 1915, the Englishman Frederick Twort discovered an
agent with bacteriocidal potential on a culture of Staphylococcus. The agent
was transferable between cultures and could not be inactivated by Chamber-
land filtration, meaning it must be extremely small. He published his findings
in the Lancet but was unable to follow up on them due to the disruption by
First World War. Two years later, in 1917 the Frenchman Felix d’Herelle made
similar observations. He went on to perform animal studies as well as human
trials to test the potency of this agent, which he dubbed ‘bacteriophage’ in
preventing and mitigating bacterial infection. From there on, therapeutic use
of phages quickly expanded during the 1920’s [19].

However, controversy about the nature of phages remained and many phage-
derived treatments were carried out in poor understanding. Detailed reasons
for this are listed by Harper et al in a review paper titled ‘Phage therapy:
Delivering on the promise’ [19]. Overall, the supporting evidence for phage
treatment was found unconvincing. Phage therapy was therefore deemed
inferior to newly discovered antibiotics and was eventually abandoned in the
Western world around the 1940’s.

2.3 Phage therapy today

Today, phage therapy is almost exclusively available in Russia and Georgia.
There are exceptions under the experimental treatment umbrella, see below. In
both Russia and Georgia, phage preparations may be purchased as ready-for-
use products in pharmacies. The main producers are the companies Microgen
(Russia) and Eliava Bio Preparations (Georgia). In this thesis, the focus will



2.3. PHAGE THERAPY TODAY 9

be on Georgian phages.

Eliava Bio Preparation is affiliated with the Eliava Institute, whose roots
go back to the very beginning of phage therapy. In 1923, d’Herelle was
convinced by his colleague George Eliava to co-found an institute for bac-
teriophage research in Eliava’s native country, Georgia. A photograph of
d’Herelle and Eliava working together, presumably taken in Georgia, is shown
in Figure 2.1.Though Eliava was later executed and turbulent times followed
during the break-up of the Soviet Union, the institute still exists today. It
is now known as the George Eliava Institute of Bacteriophages, Microbiology
and Virology (Eliava Institute for short) and has accumulated an immense
amount of knowledge. The Eliava Institute offers 6 different phage prepara-
tions, among them the INTESTT cocktail which has been analyzed in this thesis.

Figure 2.1. Photograph of Felix d’Herelle (mid) and George
Eliava (right), ca. 1930’s. Taken from the Eliava In-
stitute’s website at http://eliavaphagetherapy.com/about-eliava-
institute/george-eliava-about-eliava-institute/.

In addition to that, phage therapy is offered to specific cases in the phage
therapy unit of the Hirszfeld Institute in Wroclaw, Poland. This use-case
is possible as an experimental therapy under the umbrella of the Helsinki
declaration, available as a last resort treatment for patients suffering from
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chronic, treatment-resistant bacterial infections [20].

Figure 2.2. Multiple phages of species 'ISP’ attached to their
host Staphylococcus aureus. Bar: 500nm. Reprint from [21].

There are several challenges connected with the use of phage therapy in the
Western world. They are both of legislative and regulative as well as practical
nature [22]. In the dogma of evidence based medicine a therapeutic should
be both effective and safe as well as have a well-characterized mode of action.
Phages are generally regarded as a viable solution to the antibiotic crisis by
legislation authorities'. Their ubiquitous presence in nature and their inherent
inability to interact with eukaryotic cells suggests that they should be safe
to use in human therapy. However, it holds true that phages carry bacterial
virulence factors and in many human-pathogenic bacterial species phages and
phage associated mobile genetic elements have been identified as essential to
their pathogenicity. It is therefore necessary to thoroughly characterize a
candidate therapeutic phage on a genetic level.

L As evidenced both by the fact that FDA does give approvals for phages as emergency
INDs and by their stated commitment to "facilitating the testing of phage therapy in clinical
trials” [23]
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Further, for phage therapy to be effective it is necessary to either identify
the infecting bacteria down to strain level and test it against a library of
phages, or to use a single very broad phage or phage cocktail. In case of the
broadband approach the advantage of phages as highly specific agents over
antibiotics may be lost. On the practical side, there are questions regarding
the mode of delivery since phages are much larger than chemical drugs and it
is not clear which sites of the body can be reached effectively by simple oral
administration. Another practical consideration is whether phages can induce
immune reactions when given in the blood stream as some suggest as mode of
delivery.

The way to legislate phage therapy is to go through the legislative channels
commonly applied to all medical drugs. However, the very nature of phages
as viruses makes them not very suitable for approval criteria that have been
designed for chemical drugs, which will not change their composition over time
nor be amplified when in contact with their target. Nevertheless, the interest
in finding a feasible way to fit phages into the drug legislation is considerable
and those challenges will eventually be overcome. There are several initiatives
currently underway that aim to provide sufficient evidence regarding efficacy
and non-toxicity of phage therapy. Most outstanding is Phagoburn, a phase
I-IT clinical trial in which a phage preparation is used to treat burn wounds
infected with Pseudomonas aeruginosa. It was initiated by the French company
Pherecydes Pharma and is being carried out in collaboration with 3 partners
and 11 clinical sites (see http://www.phagoburn.eu/). This is a landmark
clinical trial that hopefully will aid to pave the way for phage therapy in
Europe and the USA.
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3 Staphylococcus aureus

Staphylococcus is a genus of gram-positive spherical bacteria that grow in
grape-like clusters. There are several species, but in humans mainly S. aureus
and S. epidermidis are clinically relevant [24]. Both species have been found
in the normal bacterial flora of healthy individuals with about 20 - 30% of the
human population colonized asymptomatically by S. aureus [25]. S. aureus
is known to colonize the nasal passage, skin and mucosal surfaces while S.
epidermidis is a prevalent colonizer of the skin [26].

In addition to asymptotic colonization S. aureus is also known as an oppor-
tunistic pathogen that frequently causes wound and skin infections as well
as life threatening conditions like pneumonia, sepsis and endocarditis [26-28].
According to Deurenberg et al the majority of nosocomial infections today are
caused by S. aureus [29].

Such infections are especially problematic when caused by methicillin-resistant
S. aureus (MRSA). In recent years, the spread of MRSA has increased greatly
in hospital environments, which is a substantial threat to immunocompromised
patients. In addition to hospital-acquired MRSA (HA-MRSA) there are also
incidents of community acquired MRSA (CA-MRSA), which signifies MRSA
strains that originate from non-hospital environments. CA-MRSA can still
spread in hospitals once introduced. CA-MRSA often has additional virulence
factors compared to HA-MRSA, e.g. Panton-Valentine-Leukocidin (PVL) [29].
CA-MRSA is regarded as a particular health-threat because of its ability to
infect young healthy people who lack the known risk factors for MRSA, as
opposed to HA-MRSA which is prevalently a problem in immunocompromised
individuals [26, 30].

Genetically, S. aureus has been described as a highly clonal species whose
core genome is very conserved. Mobile genetic elements, most of which are of
phage origin, are what mainly accounts for the diversity of S. aureus strains
and not least many of the bacterium’s virulence factors [15]. That means that
the evolution in S. aureus seems to be largely phage-driven. Deghorain et al
report that the ’accessory genome’ may constitute as much as up to 25% of a
S. aureus genome, making the species highly adaptable [28]. Only two years
after the introduction of penicillin, a resistant S. aureus strain was detected
in 1942 and the same repeated two years after the introduction of methicillin
[29], which drastically underlines the speed with which S. aureus adapts.



14 CHAPTER 3. STAPHYLOCOCCUS AUREUS

Furthermore, it seems that pathogenic S. aureus strains favor the mobilization
and atypical genomic integration of phages compared to strains that are purely
colonizing. This again emphasizes the role of phage derived mobile genetic
elements for the pathogenesis of S. aureus [28].
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4 Sequencing Technologies

4.1 Second generation sequencing

Second generation sequencing, also referred to as next generation sequencing
or massive parallel sequencing, is currently the most commonly used tech-
nology to produce sequencing data. The target DNA is hereby sheared into
fragments which are then clonally amplified and millions of them sequenced
in parallel, hence the name massive parallel sequencing [31]. A scheme of
the workflow is depicted in Figure 4.1. DNA targets can differ from small
PCR fragments (amplicons) to retro-transcribed ¢cDNA in the case of RNA
sequencing to de novo sequencing of full genomes [31]. In the context of this
thesis I will mostly speak of whole genome sequencing (WGS) which aims
to uncover the full sequence of a target genome. There are three principal
providers of second generation sequencing: Illumina, 454 pyro sequencing and
Ton Torrent, of which Illumina remains the most widely used. Support for 454
sequencing was stopped in 2015 [32]. Each of them outputs a large amount
of short sequenced DNA fragments, called reads, that can later be combined
into longer contiguous fragments known as contigs by a process called de novo
assembly or mapped to a reference genome [33].

The advantages of second generation sequencing are that it is very affordable
and produces a large amount of data. The main drawback is that the read
length is very short, on the order of 35 to 700 base pairs [34]. This is caused
both by limitations in the sequencing technology and by the fact that DNA
has to be fragmented for the amplification step. The re-assembly of reads
into genomes afterwards is a non-trivial problem. Though various assembly
approaches exist, none of them are perfect and it is often not possible to
recover a single, closed genome from the data without performing additional
PCR over the contig edges or mapping the reads to a closed reference genome.

4.2 Third generation sequencing

In recent years, a new generation of sequencing technologies, commonly re-
ferred to as third generation sequencing or single molecule sequencing, has been
developed. The major difference to second generation is that instead of gener-
ating enormous libraries of short fragments of DNA, samples are sequenced as
single molecules without being fragmented. There are two distinct approaches:
Nanopore sequencing, as employed by Oxford Nanopore, and single-molecule
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Figure 4.1. Scheme of the [llumina sequencing workflow. The tar-
get DNA is first sheared into a fragments and ligated with adapters
during a process called library preparation. Afterwards, the DNA
fragments are immobilized on the surface of the flow cell and ampli-
fied. One of the strands is then removed to prepare for sequencing
by synthesis. Specialized nucleotides labeled with fluorescent dye
are added. Upon binding, they release a fluorescence signal corre-
sponding to the base that was just added. Reprinted from [35].
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real-time sequencing (SMRT), offered by PacBio.

By retaining the target DNA in large fragments during sequencing, possibly
encompassing the full genome, the problem of assembly is significantly reduced
[36]. Another aspect is a greater ease in sample preparation compared to sec-
ond generation sequencing, enabling these technologies to be applied outside
of laboratory settings [32]. This is especially true for the Oxford Nanopore.
Until recently, those technologies were however plagued by high error rates of
up to 20% for PacBio [37]. For phages with their very mosaic genomes long
read sequencing would be advantageous if the high error rate can be reduced
or corrected with short reads from second generation sequencing. For now,
this approach remains very expensive.
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5 Genomics

5.1 Genomics Tools

The advance of affordable and fast WGS has enabled the development of many
sequence based analysis methods.

The first step in the analysis of sequencing data is quality control and trimming
of the raw reads. This is necessary because sequencing is not error-free and low
quality reads may negatively affect the analysis by introducing noise. There
are many different trimming tools available. In my work I have used fastQC
[38] for read quality control and PRINSEQ [39] for trimming. Depending on
the desired analysis, read data can then be assembled into contigs. Different
approaches for assembly exist but the most successful assemblers to date are
based on de Bruijn graphs. A de Brujin graph is a graph representation of a
sequence (or several sequences) where each k-mer is a node and each edge is
an overlap between k-mers. A k-mer is a short sequence fragment of length
k. Assembly is then performed by resolving the de Bruijn graph. Examples
for de Bruijn graph assemblers are velvet [40] and SPAdes [41], both of which
have been used in this thesis.

Other than assembling reads one can also map them to a reference genome or
to already assembled contigs. Mapping could in principle be performed with
any alignment algorithm but because of the large number of reads, typically
in the millions or billions, there are specialized tools for this purpose. The
tool used for mapping in this thesis was the Burrows-Wheeler aligner(bwa) [42].

A substantial part of genomics is based on sequence comparison, which can be
done either by alignment or based on matching k-mers. The oldest and most
widely known alignment algorithm is the basic local alignment search tool
(BLAST) [43], which now exists in many variations and has played a pivotal
role in the development of the genomics field. BLAST is most commonly used
for database searches, such as in the ResFinder [44] and VirulenceFinder [45]
tools which employ BLAST to scan a query sequence for known antimicrobial
resistance and virulence genes respectively. Another application of BLAST
is to estimate distance between sequences via the average nucleotide identity
(ANI). ANI is for example be used for species delineation.

Other sequence comparison methods are based on counts of shared k-mers.
Two such tools used in this thesis are KmerFinder [46], an algorithm that com-
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putes sequence similarity in k-mer space, and cd-hit [47], a sequence clustering
algorithm used for homology reduction in datasets.

More specialized tasks often combine sequence similarity search and sequence
features such as GC content, tetranucleotide frequencies, genomic signatures
such as ribosome binding sites, secondary structure elements ect. Examples
used in this thesis are gene calling and functional annotation using prodigal
[ref], GeneMarks$S [48] and RAST [49].

5.2 Metagenomics

Metagenomics is the sequencing and subsequent analysis of mixed DNA sam-
ples, i.e. samples that contain DNA from many different microorganisms
without separating those organisms before. Those samples are usually envi-
ronmental [33].

The shift from single organism genomics to metagenomics is hugely motivated
by the desire to understand the communities in which microorganisms live and
function as opposed to studying them as isolated entities which is not their
natural state [50]. Further, the majority of bacteria are not easily cultivated.
The same applies to phages, who naturally exist in close interaction with their
bacterial hosts as well as with each other via competition as well as exchange
of genetic material during co-infection. As such, the metagenomics approach
is well suited to study phage communities in the natural environments. The
majority of genomics tools described in the section above are also applicable
to metagenomics datasets.
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6 Machine learning

Machine learning can broadly be divided into supervised and unsupervised
learning tasks. In a supervised learning task both input and output are known
and the desired outcome is to find a function that describes their relationship.
In contrast to that, when data without known outcomes is available you have
an unsupervised learning task. The goal is then to infer underlying principles
in the data. In this thesis, only supervised learning was used.

6.1 Generalized linear models

There are many different algorithms that can be used for mapping the input
onto the output, however, in this thesis I will focus on generalized linear
models. The generalized linear model (GLM) concept unifies several often
used statistical models such as linear regression, logistic regression and multi-
nomial regression. In a GLM, model and output are related via a so-called
link function. This link function can be understood as determining the type of
regression [51].

In this thesis, a logistic GLM was used to model the phage susceptibility of
a set of bacterial strains as a function of their present gene families. Logistic
regression is the appropriate model type to use for categorical outcome variables
and the link function to use is then the logit function. Specifically, the model
structure was:

N
Y~ Zwi ~x; with z € {0,1}
i=1
where z; was 1 if the gene family 7 was present and 0 if it was absent, w;
was the weight assigned to gene family ¢ and y was the predicted susceptibility
with 1 being susceptible and 0 being resistant. For details see the publication
included in Chapter 9.

6.2 Model training and performance evaluation

Generally in supervised learning tasks, models are trained on training data and
then evaluated on testing data. During training the goal is to minimize an error
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function between the prediction and the known true result. An often used error
function is the mean square error (MSE):

N
1
MSE = - Z(Oi —t;)?
=1
where N is the number of observations, O; is the ith predicted value and t;
is the ith true outcome.

However, because of noise inherent in real-world data a maximally low training
error does not necessarily correspond to a good model since the model may
then start matching the noise instead of an underlying trend. This phenomenon
is known as overfitting and is particularly a problem when the feature space
is large compared to the number of observations, as typically occurs in high-
dimensional models. Overfitting is problematic because the resulting model
will be a suboptimal description of the underlying process and hence generalize
poorly to the independent evaluation data. Moreover, it will lead to a vast
overestimation of the model’s performance.

The way to accurately measure model performance is to perform training and
testing inside a cross validation (CV) framework [52]. In this framework, the
data is firstly divided into partitions, then all but one of the partitions are
used to train a model and the last one is used to evaluate it. Each division of
partitions into training and test set is called a fold. This process is repeated
until each partition in turn has been the testing set. The point of cross
validation is to test the model’s performance on new, unseen data (i.e. the test
set) and thereby get a better estimate of the model’s ability to generalize. For
this thesis, training and testing of the logistic regression model was performed
inside a five-fold cross validation setup.

Another problem present in this dataset, but also in machine learning in gen-
eral, is data-redundancy. When data points are shared between training and
testing set, the classification problem becomes very easy and the model will
not learn to generalize to new data. In addition to that the model performance
will be overestimated. It is therefore important that data points assigned to
different cross validation partitions should not be similar.

There exist different measures of model performance. For a classification task,
the receiver operating characteristic (ROC) curve is a good choice as is illus-
trates the relationship between sensitivity and specificity. The sensitivity, also
known as true positive rate, is plotted on the y-axis and 1 - specificity, also
known as the false positive rate, is plotted on the x-axis shows. When perform-
ing a classification task, the model output is not a binary but a continuous
variable. This prediction score is then discretized into a class prediction based
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Figure 6.1. Scheme illustrating three different hypothetical ROC
curves. A: Perfect performance. In a model with this AUC, it
would be possible to place the classification threshold so that all
true positives are reported but none of the false positives. B: Re-
alistic performance. A model with this AUC will report more true
positives than false positives. C: Random performance. A model
with this AUC would report true positives and false positives in
equal amounts. Reprinted from [53].

on a classification threshold. Conceptually, a ROC curves displays for every
possible classification threshold the ratio of true positives to false positives. To
quantify the goodness of a ROC curve one calculates the area under the curve
(AUCQC). A perfect performance would yield an AUC of 1, a random performance
an AUC of 0.5. The AUC was used as the measure of performance in the the
third study of this thesis, see Chapter 9. An example of three theoretical ROC
curves and their corresponding AUCs can be seen in Figure 6.1. One can also
calculate separate AUC values for each cross validation fold. If the model is
robust, the performance values should be similar across all folds.

6.3 Ridge regression

The model used in the third publication of this thesis was further fitted via
Ridge regression during training. Ridge regression is a type of parameter reg-
ularization applied during training where the error is penalized with the sum
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of squared coefficient weights, also called the L2 norm [51]. The error function

then becomes:
1N M
E = N'Z(Oi—ti)2+/\'zw12

i=1 =1
where N is the number of observations and M is the number of features.
Further, O; is the ith predicted value, ¢; is the ith true outcome, w; is the
weight of the [th feature and ) is the strength of penalty.

A ridge regression shrinks the weights of features that have a low importance
while maintaining the values of weights that do have general importance [54].
In that way it reduces overfitting. A is typically tuned to achieve an optimal
regularization, as was also done in this thesis. This should be done inside a
nested cross validation as depicted in Figure 6.2.

for fold in outer cross validation
A [ B]cfo k]

for Aj in range of lambdas

|B |C|D |E| pool
predictions
from B, C,
D, E and
calculate
MSE for A,

find Agpt corresponding to minimal MSE

Figure 6.2. Scheme of nested cross validation for finding the
optimal strength of penalty A. Briefly, for each fold in the outer
cross validation and for each A in a range of values, an inner cross
validation is performed. In this way, one optimal A is identified for
each outer cross validation fold.

For each outer cross validation fold, an inner cross validation is performed.
Note that the inner cross validation only has access to the data in the training
set of the corresponding outer cross validation fold. In the inner cross vali-
dation, again all but one partition are combined into the inner training set
and the remaining partition is used for testing. In order to find the optimal
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strength of penalty A, training and testing are performed for a range of A
values for each inner cross validation fold. In this thesis we chose 1e7!° to 1e®.
Afterwards, predictions are pooled across all inner cross validation folds (but
still separated by A values). and one mean square error per A is calculated.
This error can be plotted against A to visualize A’s influence on the model test
performance. An example is shown in Figure 6.3. The optimal lambda for
the current outer cross validation fold is the one that results in the minimum
MSE. This optimal lambda is used to train an additional model using the en-
tire training set of the outer fold and evaluating on the test set of the outer fold.

fold 1
fold 2
fold 3
A fold 4
fold 5

04 05

0.3

mean square error
0.1 02

0.0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

log(lambda)

Figure 6.3. Plots of mean square error versus different strengths
of penalty A. A low penalty values the error is comparatively high
since there is little regularization. With increasing A the error gen-
erally reduces until it reaches a minimum. Afterwards, the error
rises again as strength of penalty becomes too high. It can be
seen that the curves for the five different partitions follow a similar
trend and their minima coincide to a reasonable degree. This in-
dicates the model is robust. Taken from the supplement of paper
"Host-genomic determinants of phage susceptibility in MRSA’, see
Chapter 9.

This process is repeated five times for the five outer cross validation folds. A
robust model should have comparable optimal lambda values.
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6.4 Feature selection

For the dataset used in this thesis the number of features, i.e. gene families,
was much greater than the number of observations, i.e. strains. This makes
it difficult to find the proper weights and also we can assume that not all
features are equally important for the outcome [55]. It is therefore essential to
perform feature selection. Feature selection is a process that seeks to limit a
model’s feature space to only the most important features. This can be done
in several ways. To avoid overfitting it is however vital to perform feature
selection inside the cross validation framework. Otherwise, information from
the test set can influence which features are picked and the test performance
will therefore not be an unbiased estimation of performance anymore. For this
reason, only information from the training set can used to select features.

In this thesis, feature selection was performed by a pre-selection step followed
by a two-step model. During the pre-selection, gene families were filtered based
on their p-values resulting from an association analysis between occurrence of
the gene family and susceptibility outcome. Since this is done inside the outer
cross validation, only data from the respective training set was used in the
respective association analysis. Gene families passing the p-value threshold
were admitted to an initial regression model. This model was then trained
on the same training data used to select the gene families and tested on the
left-out test set. Each gene family was assigned a regression weight w; during
training. After that, we moved on to the next outer CV fold and so on five
times. In this way, five weights were obtained for each gene family. If a gene
family was not picked by pre-selection in one of the folds, its weight in this
fold was 'not applicable’ (NA). Lastly, from this we selected gene families with
regression weights greater than a certain threshold in at least three of the five
partitions, to use as features in a final model.
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7 Sequencing of the INTESTI phage
cocktail

The field of phage therapy in general has gone through a great revival in
Western research during recent years, owed in large parts to the looming
antibiotic resistance crisis. This has understandably created an interest in
the phage cocktails already in use in Russia and Georgia. In both of these
countries phage therapy has a long history going back to the 1920’s/30’s and
especially the Eliava Institute in Georgia has been a major player in piloting
phage research and exporting phages across the Soviet Union [56].

In the following paper, we show what can be done with a metagenomics ap-
proach to characterize an existing phage cocktail. This project started as my
Master’s thesis back in 2014 and then continued on to become the first paper of
my PhD. It began with Karina Sreseli, a Georgian secretary in our department,
who shared the story of how she had been treated with phage cocktail as a
child. At that time my supervisor Mette Larsen was becoming very interested
in phages and it was our luck that Karina still had contacts to Georgia - specif-
ically to the Eliava Institute where phage cocktails have been produced since
the 1930’s. Mette obtained a sample of INTESTI, one of the most famous and
longest used phage cocktails of Eliava, and from there on a long journey started
during which we met many people all the way from Georgia to the Evergreen
State College in Washington, U.S. Some of them become co-authors, others
advised us and it ended in a publication that has generated a fair share of
interest in the field due to the historical significance of INTESTI phage cocktail.
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Abstract: Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the
combat against antibiotic-resistant bacterial infections. However, technology transfer to Western
medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor.
In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute,
Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample,
de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host
strains were infected with the cocktail and the resulting lysates sequenced and compared to the
unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in
the cocktail, among those clusters related to the ICTV genera T4likevirus, Tblikevirus, T7likevirus,
Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences
and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to
have different abundances within the cocktail. The cocktail was found to be composed primarily of
Muyoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable
genes were found.

Keywords: phage therapy; Eliava Intestiphage; whole genome sequence analysis; metagenomics

1. Introduction

Antibiotic resistance in human pathogenic bacteria is a threat to public health that has grown
immensely in the last years. The World Health Organization (WHO) recognized the severity of the
problem in two reports made public in 2012 and 2014, stating that “A post-antibiotic era—in which
common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a
very real possibility for the 21st Century” [1]. It is therefore all the more urgent to secure alternative
treatment strategies. Phage therapy is one of the alternatives to antibiotics that for a long time has
been underexplored in Western medicine. Bacteriophages, viruses of bacteria, have been employed
to combat bacterial infections in certain Eastern European countries since the mid-1920s [2,3]. With
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the number of phages on earth estimated at 10! in total [4], they are the most abundant entity in the
biosphere and, as natural predators of bacteria, they hold largely untapped therapeutic potential [5].

During the Soviet era, antibiotics were not readily available in the USSR, which contributed to
the widespread use of phages for treatment of various sorts of bacterial infections [6]. In particular,
the George Eliava Institute in Tbilisi, Georgia, founded in 1923, has more than 90 years of experience
in employing phages for treatment of bacterial infections in humans, either as single preparations or
in mixtures, i.e., phage cocktails.

Phage therapy is largely regarded as safe and effective in those countries where it is still
practiced [7-10]. This is reinforced by the long-standing tradition of its use. The enormous
body of experience with clinical phage therapy, which has primarily been reported in non-English
languages [11], is now more and more being made available to the scientific community
thanks to the concerted efforts of Elizabeth Kutter, Jan Borysowski, Harald Briissow, Ryszard
Miedzybrodzki, Andrzej Gérski, Beata Weber-Dabrowska, Mzia Kutateladze, Zemphira Alavidze,
Marina Goderdzishvili, Revaz Adamia and others [8,9].

Additionally, a number of more recent trials have been carried out in accordance to the strict
guidelines demanded by legislative bodies and published, notably two T4 oral application safety
trials [12,13], a trial of Pseudomonas aeruginosa phages for treatment of chronic otitis [14], a phase I
trial of phage therapy for venous leg ulcers [15] and a trial of Russian phage cocktail administration
in healthy individuals [16].

Despite the growing body of evidence on the safety and efficacy of phage therapy, the technology
proves hard to transfer despite considerable interest by Western researchers. One of the challenges
is a lack of definition and characterization of the phages used, as the exact composition of phages in
the cocktails produced in Eastern Europe is largely unknown [17]. Advances in metagenomics and
decreasing sequencing costs have made it possible to analyze mixed phage samples without the need
to separate the component phages. This is especially essential when the specific bacterial hostsstrains
are unknown and the phages can thus not be individually propagated for traditional analysis. This
metagenomic approach was first used for marine viral communities in 2002 [18]. One of the latest
milestones in this endeavor consists of a metagenomic study of a Russian phage cocktail as well as a
safety trial, performed by McCallin et al. in 2013 [16].

Here, we present a metagenomic analysis of the longest-used such commercial phage cocktail
in the world, still routinely employed for human therapy in the Republic of Georgia. Intesti
bacteriophage was created at the Pasteur Institute, Paris by Felix d"Herelle [19] as a multi-component
treatment and prophylaxis of intestinal infections. From early on, the preparation is a combination
of phage active against Shigella, Escherichia, Salmonella, Enterococcus, Staphylococcus, Streptococcus and
Pseudomonas. Its advantages lie in its activity against a wide variety of enteric bacteria, allowing it to
be used empirically during the first days of gastrointestinal illness, before the microbiological culture
results are in, along with its frequent ability to help restore balance to the gut microbiome even where
no explicit pathogen has been identified as the cause of the problem.

Intesti bacteriophage was first used clinically in Georgia in 1937 by S. Mikeladze [20].
Already in 1938, M.N. Luria used Intesti-bacteriophage to study 219 patients suffering from either
dysentery (84 children and 27 adults with Shigellashiga (now known as Shigella dysenteriae) or flexneri)
orhemolytic intestinal disease caused by an unidentified bacterium (54 children and 54 adults).Most
had previously been treated unsuccessfully in other ways, but other treatments were stopped
during administration of the phage therapy. Adults were given 10 mL and children 2.5-5 mL
orally with carbonated water once a day, before meals. Improvement was observed in 163 cases
within 1-3 days. The results of this study and a number of others have been summarized in great
detail by Chanishvili [21] in her extensive 2009 literature review of the early practical application of
bacteriophage research, previously largely available only in Georgian.

There is an unknown, quite large total number of phages in the Eliava Intestiphage cocktail,
which has continually been evolved to meet current needs since it was first developed by d’erelle at
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the Pasteur Institute. At least one proprietary mother phage stock has been maintained through
the years for the phages targeting each genus of bacteria, and each of these is grown separately
using a proprietary group of bacterial strains of that genus, which is updated regularly as needed
to be able to better target new problem strains that have arisen. Each component thus produced
for a new commercial batch is tested on each member of a separate continually-updated broad
proprietary group of strains and remade if it does not adequately meet the established high host
range for that genus. New phages are periodically added to improve the needed host range for this
broadly-applicable commercial cocktail, which has been shown to have such high efficacy in a variety
of situations, both as a probiotic and to treat a wide range of gut problems that are often intransigent
to more narrowly targeted phage treatments and/or to antibiotic treatment. This challenges most
current common regulatory practices in countries other than Georgia, where the carefully defined
method of testing and regulation of Intestiphage takes this into consideration, with close cooperation
between the Ministry of Health regulatory body and the production facilities. The procedure
described above for preparing therapeutic bacteriophage is similar to the procedure described in a
chapter on phage production by Felix d"Herelle. The original chapter has been translated into English
by Sarah Kuhl and Hubert Mazure [22].

The Eliava Pyophage cocktail, for purulent infections involving Streptococcus sp., Proteus sp.,
Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, is the one other cocktail that has
evolved in similar fashion over the years. It should be kept in mind that Intestiphage and Pyophage
are generic names; other companies in both Georgia and Russia have been making and marketing
their own versions for the last couple of decades which have been evolved from the same initial
cocktails brought to what is now the Eliava Institute by d’Herelle and are regulated and regularly
upgraded in similar fashion. These other versions can be expected to work better in some specific
situations, worse in others, depending on their precise composition of phages and of the proprietary
hosts that are used in their production and testing. It will be very interesting to also do metagenomic
analyses of those other versions and see how their current composition compares, in reflection of this
evolutionary process.

2. Materials and Methods

2.1. The Intesti Phage Cocktail

Commercial “Intesti bacteriophage”, which is used mainly to treat bacterial infections of the
intestine, urinary tract and oral cavity in humans, was kindly provided by Nikoloz Nikolaishvili,
director of Eliava Bio Preparations LLC at the George Elivia Institute, Tbilisi, Georgia. The current
Eliava Intestibacteriophage contains sterile phage lysates active against Shigella (flexneri, sonnei,
Newcastle), Salmonella (Paratyphi A, Paratyphi B, Typhumurium, Enteritidis, Cholerasuis,
Oranienburg), Escherichia coli, Proteus vulgaris and mirabilis, Stapylococcus aureus, Pseudomonas
aeruginosa and Enterococcus.  Intestibacteriophage is used for treatment and prophylaxis of
the following bacterial intestinal infections caused by the above mentioned microorganisms:
dysentery, salmonellosis, dyspepsia, colitis, enterocolitis, and dysbacteriosis (bacterial overgrowth).
Intestibacteriophage treatment per os (via oral route) is used from the first day of disease and is
continued for 5-6 days. Intestibacteriophage can be used for prophylaxisin situations where there
are large groups of people (for example military or schools), during seasonal peaks in order to reduce
occurrence of intestinal infections. The phage preparation developed for therapeutic and prophylactic
uses by G. Eliava Institute of Bacteriophages, Microbiology and Virology was awarded in 1978 Gold
Medals at the Exhibitions of All-Union National Achievements in Science and Technology.

From the mode of preparation, it follows that the Intesti cocktail is a complex mixture of phages
in different abundances, many of which may be closely related. This poses certain challenges both
in the sequencing and assembly. Furthermore, different batches of the cocktail may not be identical.
Our sample was manufactured in July 2013 and has the batch number M2-501.
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2.2. Host-Amplified Samples

In addition to sequencing the complete cocktail as a metagenome, we also amplified the
component phages on eight different hosts and isolated DNA from the resulting lysates, which are
assumed to be enriched only in the phages capable of infecting the given host. Those samples are
therefore reduced in complexity in comparison to the cocktail. The host strains used are part of an
in-house Danish collection and listed in Table 1 (Results Section). For each host, 5 mL liquid LB were
inoculated with 50 pL from an overnight culture and grown with shaking incubation at 37 °C. After
3 h the day culture was divided into two 2.5 mL samples, of which one was infected with 300 uL
of the cocktail and incubated for another 4 h with shaking. When the infected sample had visibly
cleared compared to the non-infected sample, indicating that host lysis had occurred, the lysate was
filtered through 0.22 um syringe filters and subsequently treated the same as the Intesti whole cocktail
sample (see Sample Preparation). It should be noted that the bacterial host strains used to produce
the cocktail in Georgia are proprietary and thus were not available to us in Denmark.

Table 1. List of the strains used to specifically amplify phages from the Intesti cocktail and the number
of reads obtained in their sequencing. All strains were tested for susceptibility to the cocktail prior
to selection.

Host Bacterial Strain Number of Reads
Escherichia coli ATCC 25922 358,914
Enterococcus faecalis ATCC 29212 134,966
Pseudomonasaeruginosa 0407431-2 184,790
Pseudomonasaeruginosa PAO1_seq 265,772
Proteus vulgaris CCUG 36761 (ATCC 13315) 64,852
Salmonella typhimurium ATCC 14028 133,980
Shigellaflexneri iran_1s 225,664
Shigellasonnei iran_2s 401,722

2.3. Sample Preparation

All phage samples intended for sequencing were treated with 10 uL (20 units) of 2000 units/mL
DNAse (New England BioLabs, Ipswich, MA, USA) per mL of phage lysate and 5 pL of 20mg/mL
RNase (Invitrogen, Carlsbad, CA, USA) per mL of phage lysate to remove possible bacterial DNA
leftovers. Subsequently, the samples were treated with 4uL of 20 mg/mL Proteinase K (Merck
Milipore, Hellerup, Denmark) per mL of phage lysate to open phage capsids, followed by standard
DNA extraction by spin column using the Phage DNA isolation kit by NorgenBiotek (Product #46700,
Thorold, ON, Canada).

2.4. Sequencing and Genome Assembly

For each sample a DNA library was prepared from 10 ng of sample DNA using the Nextera XT
Sequencing kit (Part #15031942, Illumina, San Diego, CA, USA) and sequencing was performed on the
Ilumina MiSeq system (Illumina, San Diego, CA, USA). The platform’s maximum read length was
251 bp corresponding to 251 cycles. The quality of the raw sequencing data was analyzed with the
fastQC tool [23] and it was trimmed extensively using the PRINSEQ [24] tool (trimming parameters
may be found in the Supplementary Table S1). Following quality trimming, the data were assembled
into contigs using the genovo algorithm [25] for the whole cocktail and samples amplified on E. coli,
Enterococcus, P. aeruginosa PAO1_seq, Salmonella, Shigellaflexneri and Shigellasonnei and the velvet [26]
assembler for samples amplified on P. aeruginosa 0407431-2 and Proteus.

2.5. Construction of Phage Clusters

Phage clusters were constructed by grouping contigs by their profiles of BLAST [27] hits to
NCBI'’s non-redundant nucleotide collection (October 2014). Those hit profiles were obtained by

6573



Viruses 2015, 7, 6570-6589

applying a quality cutoff on the query coverage of 20% and on the E-value of 1 x 10710 to the raw
BLAST results. Contigs were sorted by size and the largest was automatically assigned to the first
contig group. Succeeding contigs either joined an existing group or initiated a new one depending
on the distance score (see below) between the current contig’s hit profile and the group’s hit profile.
The process is illustrated in Figure 1. Because of the high complexity of the cocktail, we find it useful
to think of those drafts as representing clusters of related phages and they are henceforth referred to

as clusters.

Step 1: Generation of hit profiles from BLAST results

Raw BLAST resuits Hit profiles

>contig 1 >contig 1 hit profile

0.8 1.5e10 NOOGOCHX
0.65 2.3e-10 ABXX0OUX
01 0.5  BOOGOSK

contiy 2
0m Laeta Koo e —
_—> 0.92 1.2e-12 KIOOOOK
: 055 500 Focooox

scontiyn
0.79 3.2e-10 TOXCOKX
0.15 0.02 GHX000X

>contig n hit profile
0.79 3.2e-10 NCOOKX

Step 2: contig sorting by size and automatic generation of group 1 by assigning the largest contig

Group 1
—
contig 2 hit profile

cantig 3 hit profile

Step 3 to n: Comparison of contig hit profile i to existing groups and assignment

Group 1

e

A/ OR \4
Group 1 Group 1
]

contig 1
contig 2

Group 2

Figure 1. Schematic illustrating the contig grouping process. In a first step, a BLAST search against the
non-redundant nucleotide collection is performed for all contigs. Afterwards, a hit profile is generated
for each contig by applying a cutoff of 20% on the query coverage and 1 x 107'0 on the E-value to
the raw BLAST results. During the second step contigs are sorted by size and the largest contig is
automatically assigned to group 1. The third step consists of comparing the second-largest contig to
all existing groups using the scoring system described in the text and either assigning the contig to
the group with the lowest distance score or opening a new group if the lowest score is greater than
0.9. It is repeated until all contigs have been assigned (though some contigs may be the only member

of their respective group).

The distance score S; between two profiles was defined as the average distance of each hit in
both profiles such that:
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e If the hit is only present in one of the profiles, its distance is 1.0.
e If the hit is present in both profiles, the hit’s distance is the absolute value of the difference
between the query coverage values, as defined below:

n { abs (qMerycoverugehitiinprofilel - q”erycoUeragehitiinprofilek)

=1 1.0;ifnothit; € profile; v nothit; € profiley M

S (profiley, profiley) = .
where 7 is the unique number of hits in profiles / and k.

A contig group’s hit profile is the weighted average of the hit profiles of its member contigs and
it was updated every time a contig joined the group. The query coverage, i.e., to which extent a contig
is covered by that particular hit was thereby used as a scaling property ranging between 0 and 1. The
more of a contig is represented by the hit, the bigger the influence of that hit on the difference score.
This was done to address the modular nature of phage genomes [28].Contigs that had database hits
which were not shared by any other contigs were compared to known phages with regard to length,
coverage of the contig by the reference and percent sequence identity, in order to establish whether
they could be representing full phage genomes. Contig groups smaller than 5 kb in total size were
excluded from further analysis. They represent less than 1% of the assembly size and mostly had hits
to bacterial DNA, though upon further investigation many of those hits turned out to be confirmed
or suspected prophage or mobile element regions.

We further employed BLAST to identify contig groups from different samples that are thought
to originate from the same phage cluster. Contigs from the sample amplified on a Proteus host
were compared to NCBI's non-redundant nucleotide collection (October 2014) and after checking
for sufficiently high depth of coverage those without hits were considered as belonging to novel
Proteus phages.

2.6. Analysis of the Depth of Coverage

The average depth of coverage was calculated for each contig by mapping the reads that were
previously used for assembly back to the contig. Following that, the average depth of coverage for
each cluster was calculated from the depth of coverage of its member contigs. We herein incorporated
contig length as a scaling factor in the calculation and thereby obtained the weighted arithmetic mean
of the cluster’s depth of coverage and weighted standard deviation of the same as defined below.

Depth of coverage of contig i,

NxL
= 2
= @
weighted mean depth of coverage of cluster j
£ Thawn o
i1

and weighted standard deviation of the depth of coverage of cluster j

n - X 1‘77- 2
_ $ D wi % (x x]) )

T =
! PR

as used in this study, where N = number of reads mapped to contig i, L = average read length,
x; = depth of coverage of contig i, weight w; = length of contig i and n = the number of contigs in
cluster ;.

Mapping was performed using the Burrows-Wheeler Alignment tool (BWA) [29]. Prior to
mapping, reads were quality trimmed (specifics may be found in Supplementary Table S1), however,
duplicates were not removed as had been done for the assembly.
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2.7. Gene Prediction and Functional Annotation

Putative genes were predicted in both grouped and un-grouped contigs. Nineteen near
complete draft genomes were submitted to the annotation server RAST [30] for functional annotation.
Additionally, gene calling was performed on all contigs using the GeneMarkS algorithm [31],
followed by a BLAST search against NCBI’s non-redundant protein database to infer annotation from
existing homologs and achieve an overview of the functions present in the phage cocktail. Annotation
was hereby extracted from the top BLAST hit with the additional requirement that the match to
this top hit had an E-value smaller than or equal to 1 x 10710, The results of the two approaches
were then compared. Two genes were considered to be the same if their start and end coordinates
were less than 10% of the gene length apart and in frame of each other; that is, if the difference
between the coordinates for the two genes was a multiple of three. The obtained annotation was
subsequently text-mined for genes considered to be undesirable in phage therapy, such as bacterial
virulence factors and genes related to lysogeny [32], as well as for genes speculated to enhance the
phages’ efficacy. For this part, we chose to focus on methylase genes which have been discussed
as a method to evade restriction by the bacterial host [33]. Furthermore, the complete assembly
was scanned against a database of known genes for acquired antimicrobial resistance by using the
ResFinder tool [34] and against a database of known virulence genes in E. coli, Enterococcus and
Staphylococcusaureus using the VirulenceFinder tool [35]. No gene prediction and annotation was
performed in the host-amplified samples.

2.8. Host Range Estimation

Lastly, in order to verify the cocktail’s capability to cause lysis of the specified pathogens, five to
ten strains were selected for each pathogen and tested for susceptibility towards the phage cocktail
by streaking the bacteria onto an agar plate perpendicular to a streak of phage solution. The selection
was oriented towards maximum diversity, including strains from different geographical origins
and different host reservoirs. For the pathogens only listed at genus level, different species were
tested. The strains and test results can be found in Supplementary Table S2. If lysis occurred in the
intersection zone, the bacterial strain was registered as being susceptible to the cocktail. Ambiguous
results were repeated in triplicate.

3. Results

3.1. Sequencing Statistics

After quality trimming the sequencing of the full Intesti cocktail resulted in 440,392 reads with
an average read length of 174.9 bp. De novo assembly yielded 420 contigs ranging in size from 500 to
134,226 bp and a total assembly size of 2041 kb.

In the host-amplified samples, the sequencing depth varied between the different samples. This
is indicated by the differing number of reads, see Table 1. Some of the reasons for this could be a
variation in the input DNA concentration, as well as amplification bias during library preparation
and during the sequencing process.
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Table 2. Overview of selected characteristics of the phage clusters identified in the Intesti sample. If known, the family, subfamily and genus of the closest database
reference as specified by the ICTV are given. In some cases, the closest reference phage has not been incorporated into the phage taxonomy yet but other references
have. For those, both the closest reference and the closest reference within the taxonomy scheme are given. The genus “rv5-like virus” has been proposed by several
authors [36,37], but is not confirmed in the current (2014) ICTV release. Remark that Bacteriophage G1 is annotated as a Staphylococcus phage.

Cluster ~ Reference  Average Coverage  Average Percent L Phage . size
Phage Cluster  q; einbp  Accession of Phage Cluster Identity Reference Phage Description Line Family Subfamily Genus RatioCluster/Reference
D1 142,025 KC012913.1 99.97 99.80 Staphylococcus phage Team1, Myoviridae 1.01
complete genome
AY954969.1 97.98 99.74 Bacteriophage G1, complete genome * Spounavirinae Twortlikevirus 1.02
D2 76,960 X415536.1 87.89 87.60 Escherichia phage KBNP135, Podoviridae 1.00
complete genome
D3 87,828 KC862301.1 9897 9.16 Pseudomonas phage PAK_P5, Myoviridae 1.00
complete genome
cscherid > 0B_EcoP_PhAPE
D4 69,023 KF562340.1 87.20 94.02 Escherichia phage vB_EcoP_PhAPEC?, Podoviridae 0.96
complete genome
D5 150,530 FR775895.2 9241 98.16 Enterobacteria phage phioz, Muyoviridac 101
complete genome !
D6 81,563 AB609718.1 35.55 77.46 Enterococcus phage phiEF24C-P2, Myoviridae 057
complete genome !
D7 58,193 KJ094032.2 7723 88.35 Enterococcus phage VD13, Siphoviridae - Sapélikevirus 1.06
complete genome
D8 50,277 HMO035024.1 98.16 90.67 Shigella phage SHfl1, complete genome  Siphoviridae - Tunalikevirus 099
D9 39,912 EU734172.1 88.25 93.45 Enterobacteria phage Podoviridae 1.02
EcoDS1, complete genome
D10 145,982 KJ190158.1 93.95 93.00 Escherichia phage vB_EcoM_FFH2, Myoviridae 1.05
complete genome
DQ8I317.1 9372 962 Escherichia coli bacteriophage ros, . wrolike Dirus”™* 106
complete sequence
D11 61,791 1X094499.1 9633 9295 Enterobacteria phage Chi, Siphoviridae 1.04
complete genome
KC139512.1 95.15 93.86 Salmonella phage FSL SP-0, - Chilikevirus 1.04
complete genome
D12 60,451 KJ010489.1 54.57 87.35 Enterococcus phage IME-EFm1, Siphoviridae 142
complete genome
D13 188,630  GUO70616.1 88.67 94.90 Salmonella phage PVP-SE1, Myoviridae “ru5-like virus” * 129

complete genome
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Table 2. Cont.

Cluster ~ Reference  Average Coverage  Average Percent L Phage . Size
Phage Cluster  qi oinbp  Accession of Phage Cluster Identity Reference Phage Description Line Family Subfamily Genus RatioCluster/Reference
D14 133,015 JX128259.1 94.55 96.24 Escherichia phage ECML-134, Myoviridae 0.80
complete genome
DQU04452.1 93.42 96.00 Bacteriophage RB32, complete genome Tevenvirinae Tdlikevirus 0.80
D15 143,967 GQU68526.1 87.06 9127 Enterobacteria phage 285P, Podoviridae 112
complete genome
FJ194439.1 87.13 90.61 Kluyvera phage Kup1, Autographivirinae  T7likevirus 111
complete sequence 8
D16 46,882 KM233151.1 93.68 91.47 Enterobacteria phage EK99P-1, Siphoviridae 1.06
complete genome
X865427.2 91.64 91.03 Enterobacteria phage JL1, Hk578likevirus 1.08
complete genome
D17 41,098 AY370674.1 88.68 94.28 Enterobacteria phage K15, A 093
complete genome
D18 41,016 HE775250.1 94.95 91.57 Salmonella phage vB_SenS-Ent1 Siphoviridae 097
complete genome
JX202565.1 9276 9141 Salmonella phage wksl3, Jerseylikevirus 0.96
complete genome ?
F1 13,855 HG518155.1 99.97 99.02 Pseudomonas phage TL. Podoviridae 0.30
complete genome
AM910650.1 91.92 97.11 Pseudomonas phage LUZ24, - Luz24likevirus 030
complete genome
F2 11,476 EU877232.1 99.94 91.42 Enterobacteria phage WV, Myoviridae - Felixounalikevirus 013
complete sequence
F3 5706 HQ665011.1 83.42 86.09 Escherichia phage bV_EcoS_AKFV33, Siphoviridae 0.05
complete genome
AY543070.1 8209 87.59 Bacteriophage T5, complete genome - Tslikevirus 0.05
F4 2624 EF437941.1 98.59 97.76 Enterobacteria phage Phil, Myoviridac  Tevenvirinae Tdlikevirus 0.02
complete genome
Proteus phage 104,213 - - - - Siphovirida -
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3.2. Recovered Phage Clusters

Within the cocktail, 22 phage clusters were recovered by grouping using BLAST hit profiles (see
Materials and Methods); plus one novel Proteus phage cluster was cluster identified by comparing
contigs without hits between the Intesti sample and the Proteus host-amplified sample. All clusters
are listed in Table 2. They are denoted by a capital D and numbered, except for four smaller clusters
under 30 kb in size, which are regarded as containing fragments of phages and therefore denoted by
capital F instead. The reason those four clusters are thought to be fragments is that they are small
compared the known phages they resemble most, while the other clusters are of similar or greater
size than their BLAST hit. It is acceptable for a cluster to be of greater size since the cluster size is
cumulative of all member contigs and there can be several variant phages. Overall, clusters ranged in
size from 13.4 to 212 kb and were composed of between one and 56 contigs. Seventy contigs, which
together make up 217 kb of sequence or 10.6% of the total assembly size, had no significant hits to
NCBI’s nr nucleotide database. They could therefore not be assigned to a cluster. A list of clusters
recovered in the host-amplified samples may be seen in Supplementary TableS3.

3.2.1. Similarity to Known Phages

The most significant BLAST hits used to form the phage clusters were used to examine which
known phages a cluster seems to be related to. In Table 2 the reference phage with the highest identity
is listed for each cluster, together with the family and, if given, subfamily and genus of that phage
according to the ICTV. In cases where there is no taxonomical data available for the closest match but
for another match, this reference phage is also listed (compare D14, D15, D16, D18, F1 and F3). Based
on the phage family of their closest references, we inferred the potential family association of the
clusters. A BLAST search of the predicted tail fiber, DNA polymerase and capsid genes of the Proteus
phage revealed them to be most similar to those of Siphoviridae. We therefore predict the Proteus phage
cluster to belong to the Siphoviridae and count the reads mapped to it into that family. While larger
than most studied Siphoviridae (which are around 50 kb), the 104 kb Proteus cluster is still smaller than
the genomes of the T5 genus of phages. The depth of coverage is quite even along the two contigs
in this cluster, so it seems unlikely that the length has been artificially increased through collapsing
multiple phages into the cluster.

The clusters could be divided into three groups based on their similarity to their reference
phages: Clusters with several highly similar references (query coverage and percent identity >90%),
cluster with medium similar references (query coverage and percent identity between 90% and 70%)
and clusters that were very distant from all publically available phage sequences. The clusters with
several highly similar references are D1, D3, D8, D10, D11, D14, D16, D18, F1, F2 and F4. Specifically
for D1 and D3, the resemblance to their closest database reference was very pronounced. We therefore
conclude that we have identified phages that appear to be of the same phage species as Staphylococcus
phage Team1 (KC012913.1) and Pseudomonas phage PAK_P5 (KC862301.1), respectively, in the Intesti
phage cocktail. The other eight clusters in these groups can also be viewed as fairly close relatives of
the clusters described by their reference phages. The second group of clusters, with a slightly lower
but still apparent similarity to their references, was D2, D4, D5, D7, D9, D13, D15, D17 and F3. These
clusters contain parts that differed from their references, either because they were acquired from other
phage species or because they are novel. In contrast, the references for the clusters D6 and D12 were
quite distant, as can be seen by the low query coverage. This means that large parts of those two
clusters are novel.

Regarding the inferred taxonomy of the clusters, we were able to assign 13 of the clusters to
a suspected genus. Of those, four were assigned to the Myoviridae genera Twortlikevirus, T4likevirus
(two clusters) and Felixounalikevirus. A further six clusters were assigned to the Siphoviridae genera
Sapé6likevirus, Tunalikevirus, Chilikevirus, Hk578likevirus, Jerseylikevirus and Tblikevirus. Finally, three
clusters were assigned to the Podoviridae genera T7likevirus, Spb6likevirus and Luz24likevirus. Two
more clusters had reference phages that have been proposed for the new Myoviridae genus rv5-like
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virus, however this genus remains unconfirmed in the 2014 ICTV release. Another six clusters have
reference phages, which have not been placed in the official taxonomy yet. Furthermore, the cluster
D6 and the Proteus phage cluster may represent entirely new taxa.

3.2.2. Depth of Coverage in the Intesti Clusters

It was found that the weighted average depth of coverage varied considerably between clusters,
indicating a different abundance of those clusters within the cocktail (compare Figure 2). D6 and D12
as well as the Proteus phage cluster were found to be particularly abundant with an average depth of
coverage greater than 150x. In contrast, the clusters D3, D4, D5, D8, D11, D14, D17 and D18 had a
very low average depth of coverage of 10x or less.

Furthermore, we observed that many clusters exhibited some degree of variation in the depth of
coverage between their member contigs, evident by the weighted standard deviation, which is shown
as error bars in Figure 2. Upon inspection, we found that this was generally caused by a few contigs
with a very different depth from the rest (compare supplementary Figure S1). We reason that those
contigs can be explained by one of the following two scenarios.

300
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Figure 2. Comparison of the weighted mean of the depth of coverage between clusters in the Intesti
sample. The weighted standard deviation is depicted as error bars. Note that cluster D2 is composed
of only one contig and the standard deviation is therefore not applicable. It can be seen that the depth
varies greatly between clusters, reflecting the different abundances of the represented phage types in
the cocktail.

In a sufficiently closely related cluster, most of the common genome will assemble into a few
long contigs with a high depth of coverage. The parts that differ between phages in the cluster,
however, assemble into contigs that have a much lower depth. In that case, the depth of coverage
is proportional to how common the module represented by that contig is within the cluster. Low
coverage contigs may also be variants of the more common sequence contained in the high coverage
contigs. Contrary to that, in a less closely related cluster, the parts of the phage genome that are
shared can assemble into a few chimeric contigs instead of being placed in their respective genomes,
causing those contigs to have excess coverage compared to the rest.

Furthermore, we looked at the abundances of the phage families by summing the reads mapped
to all clusters inferred to be Myoviridae, the same for Podoviridae and Siphoviridae. Reads mapping
to contigs not assigned to a cluster are counted as unknown family. Doing that, we observed 35%
Myoviridae, 15% Podoviridae and 32% Siphoviridae in the reads. On top of that, 18% of the total reads
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are of unknown family. Observe that those fractions refer to reads that are quality trimmed but not
redundancy reduced. When doing the same procedure with redundancy reduced reads, the fractions
change to 41% Myoviridae, 16% Podoviridae, 29% Siphoviridae and 14% unknown family.

3.2.3. Depth of Coverage in the Host-Amplified Samples and Comparison of Phage Clusters
between Samples

After performing contig grouping in the host-amplified samples, we examined each clusters’
highest scoring hits to phage in the non-redundant nucleotide collection and compared to the highest
scoring hits in the Intesti clusters. Based on that, we identified clusters across samples that appeared
to be synonymous. Using the ratio of the depth of coverage in the host amplified sample to the depth
of coverage in the non-amplified Intesti sample, we were able to identify the infecting clusters since
those experienced a great rise in coverage, up to 1000-fold (compare Table 3). All of the samples show
significant amplification in only a few of the clusters. D14 was able to infect E. coli as well as both
Shigella species, which is concurrent with the notion that those two species are closely related [38].
The two Shigella species tested were found to be susceptible to the same two clusters D14 and D15.
Both of those appeared to be relatives of Escherichia or Enterobacteria phages. The Enterococcus and
Salmonella samples shared two infecting clusters, namely D18 and F2. The authors are doubtful of the
truth of this result, as Enterococcus is Gram positive and Salmonella Gram negative. It has therefore
been removed.

Table 3. Depth of coverage ratio of host-amplified samples to the Intesti sample. Combinations with a
ratio greater than 1.0 are indicated by green background coloring. Those are thought to be the infecting
clusters, as they are more abundant in the host-amplified sample than in the original one. In the last
line is shown a phage cluster, which has not even been considered in the initial contig grouping of the
Intesti sample because of its small size of only 1346bp and low depth of coverage of only 2x. It has,
however, been greatly amplified on P. aeruginosa strain PAO1.Results regarding the amplification on
Salmonella were inconclusive and therefore removed (see text).

P. aeruginosa P. aeruginosa Shigella Shigella

Cluster E. coli Enterococcus PAO1 PA0407 Flexneri sonnei Proteus
D1 0.03 0.00 0.00 0.00 0.02 0.00 0.00
D2 0.02 0.00 0.00 0.00 0.02 0.02 0.00
D3 0.30 0.00 0.00 2229 0.10 0.00 0.00
D4 0.09 0.00 0.00 0.00 0.00 0.00 0.00
D5 0.11 0.00 0.00 0.00 0.00 0.00 0.00
D6 0.06 0.00 0.02 0.00 0.01 0.01 0.00
D7 0.05 2.57 0.00 0.00 0.02 0.00 0.00
D8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D9 0.04 0.00 0.00 0.00 0.02 0.00 0.00

D10 0.08 0.00 0.06 0.00 0.02 0.00 0.00
D11 0.13 0.13 0.00 0.00 0.00 0.00 0.00
D12 0.04 0.00 0.01 0.00 0.02 0.00 0.00
D13 0.05 0.05 0.00 0.00 0.04 0.00 0.00
D14 4.74 0.00 0.00 0.00 2.82 2.06 0.00
D15 0.04 0.00 0.00 0.00 4.97 9.84 0.00
D16 0.04 0.00 0.00 0.00 0.02 0.02 0.00
D17 47.17 0.00 0.00 0.00 0.00 0.00 10.01
D18 0.37 - 0.00 0.00 0.00 0.00 0.00
F1 0.00 0.00 147 0.00 0.00 0.00 0.00
F2 0.00 - 0.00 0.00 0.00 0.00 0.00
F3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proteus 0.04 0.00 0.02 0.00 0.00 0.01 0.12
* 0.00 0.00 1044.20 0.00 0.00 0.00 0.00

Note: The cluster marked by an asterisk (*) exists in the Intesti sample but has not been named due to its small
size and low depth (see table header).

BLAST-based comparison of those infecting clusters confirmed that they had a highly similar
sequence content to the clusters in the unamplified Intesti sample. With the exception of two clusters
amplified on P. aeruginosa PAOI, all others clusters were also of similar length when compared
between samples. F1, which is a fragment cluster in the Intesti sample, probably due to low
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abundance of those phages in the cocktail, nearly doubled in size to 22,920 bp on the PAO1 sample.
Despite this, about half of the sequence content of the F1 cluster in the Intesti sample is not represented
in the F1 cluster in the PAO1 sample. This indicates that F1 contains at least two distinct phages,
only one of which was amplified on PAO1, and this amplification enabled us to recover more of the
sequence of that phage. Furthermore, a new cluster of length 45,478 bp appeared in the PAO1 sample.
There is evidence of this cluster in the Intesti sample but was not treated as such due to its very small
size of 2392 bp and low depth of coverage of 1.78x. Those results gave us more confidence that the
clusters defined by us are meaningful within the context of the cocktail.

Certain samples as e.g., the one amplified on E. coli also contained many different clusters in
low abundance. We believe that those phages are un-amplified phages carried over from the cocktail
when the host culture was infected. This is backed up by the fact that those clusters are synonymous
to Intesti clusters with a high depth of coverage and they are predominantly observed on those
host-amplified samples that featured a high read-count. Additionally, we found no indication that
the phage cluster we think to be a cluster of Proteus phages is capable of infecting the Proteus vulgaris
strain we used for amplification.

3.2.4. Gene Prediction and Functional Annotation in the Intesti Clusters

Gene prediction via GeneMark S on all contigs yielded a total of 3013 genes, 2577 of which
were predicted on the contigs that were assigned to a phage cluster and 258 of which were predicted
on unassigned contigs. 2864 genes (95%) had hits to NCBI's non-redundant protein database and
annotation was retrieved from the top hits. It was however found to be of limited usefulness since
it is not standardized or focused on molecular function and often consists of unspecific terms such
as “hypothetical protein” or terms that only carry meaning within the genome they were originally
annotated in like “ORF3245”.

The RAST service, which was only used on the phage clusters, predicted 2408 genes. RAST uses
homology to genes in internal databases to retrieve annotation for the genes it calls. If this fails, the
annotation line “hypothetical protein” is given, though it can also be obtained by homology to a gene
already annotated in that way. A total of 893 genes (37%) carry the “hypothetical protein” annotation.
The overlap between genes predicted by RAST and GeneMarkS was 2230 genes.

Phages with the ability to integrate into the host’s genome are known to often carry genes
that increase their host’s fitness, among those resistance genes and virulence factors. For that
reason, integrase genes are generally regarded as undesirable in a phage therapy context [3]. The
full assembly of the cocktail’s metagenome was scanned against databases of resistance genes and
virulence genes using the ResFinder [34] and VirulenceFinder [35] tools. Neither scan detected
the presence of any known antimicrobial resistance genes or bacterial virulence factors for E. coli,
Enterococcus or Staphylococcus. Text mining the annotation for the terms “resistance” and “virulence”
returned seven genes in the RAST annotation, which are listed in Table 4. All but one of those
genes were also predicted by GeneMarkS, but differently annotated through BLAST. None of these
genes, however, seemed to be related to antibiotic resistance. A literature search determined that the
identified resistance genes were related to antiseptic resistance, which is not regarded as problematic
as antibiotic resistance [39] but also not desirable, especially in relation to the treatment of pathogens.
On the other hand, antiseptics like acridine and acriflavine have been shown to inhibit phage
activity [40,41], so the presence of resistance genes against those agents might be a tradeoff between
achieving the highest possible safety and retaining efficacy of the phage cocktail. Furthermore, one
of the most thoroughly lytic phages T4 can become resistant to inhibition of replication by acridine
and acriflavine [42].The two proteins annotated as “Phage virulence-associated protein” have tail
proteins among their closest BLAST hit, so it can be assumed that the term refers to virulence of the
phage towards its host and not to bacterial virulence factors.
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Table 4. List of genes potentially relevant for efficacy, found by text mining annotation results. The annotation column details whether the gene was found in the
annotation provided by RAST, by BLAST or both. If only one is named the other method either did not predict the gene or annotated it differently. Top BLAST
hit, query coverage as given by BLAST and percent identity as given by BLAST are only filled out if applicable. Most genes which were picked up for their RAST
annotation still have a BLAST hit description line, query coverage and percent identity values because that gene was also called by GeneMarkS. In any case, the
last two columns apply to the BLAST hit, but not necessarily to the hit in the RAST databases. The acridine resistance gene evidenced in D14 was not called by
GeneMarkS. If the gene was picked up for its BLAST annotation column 2 and 5 are identical.

Text Mining Term Description Line gl’:s:;‘r Annotation by Top BLAST Hit Description Line c?::r?;;e P‘; es‘;ff:‘e‘s
L B Phage virulence-associated protein DI RAST ORF002 (Staphylococcus phage G1) 100% 100%
virdlence Phage virulence-associated protein D6 RAST putative adsorption associated tail protein (Enterococcus phage phiEF24C) 100% 95%
Acridine resistance D14 RAST - - -

Acriflavin resistance protein D3 RAST hypothetical protein PAK_P500103 (Pseudomonas phage PAK_P5) 100% 100%

“resistance” Tellurium resistance protein TerD D5 RAST Phi92_gp172 (Enterobacteria phage phi92) 100% 100%
Tellurium resistance protein TerD D5 RAST Phi92_gp173 (Enterobacteria phage phi92) 100% 100%

Tellurite resistance protein D5 RAST Phi92_gp178 (Enterobacteria phage phi92) 100% 100%

DNA methylase D7 RAST/BLAST See “Description line” 100% 99%

DNA N-6-adenine-methyltransferase D8 RAST/BLAST See “Description line” 94% 90%

putative site specific DNA methylase D8 BLAST See “Description line” 100% 99%

DNA methyltransferase D13 RAST/BLAST See “Description line” 100% 99%

putative DNA N-6-adenine D10 RAST/BLAST See “Description line” 100% 99%

methyltransferase

; . Dam methylase D8 BLAST See “Description line” 100% 100%
or “methylase” putative DNA adenine methylase D11 BLAST See “Description line” 100% 100%
) putative DNA methyltransferase unassigned BLAST See “Description line” 100% 100%

DNA adenine methyltransferase D14 BLAST See “Description line” 100% 99%

putative DNA adenine methylase D11 RAST/BLAST See “Description line” 100% 97%

dCMPhydroxymethylase D14 RAST/BLAST See “Description line” 100% 100%

putative adenine methyltransferase D10 RAST/BLAST See “Description line” 100% 98%

DNA-cytosine methyltransferase D5 RAST Phi92_gp043 (Enterobacteria phage phi92) 100% 99%

Adenine-specific methyltransferase D5 RAST Phi92_gp155 (Enterobacteria phage phi92) 100% 99%

“integrase” Phage integrase D2 RAST/BLAST putative integrase (Escherichia phage KBNP1711) 100% 98%
Phage integrase D4 RAST/BLAST integrase (Enterobacter phage IME11) 100% 99%
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In addition to that, both annotation methods found two genes described as integrases in the
clusters D2 and D4. The D2 integrase had a sequencing coverage of 110x, while the D4 integrase had
a sequencing coverage of 11x. Both are congruent with to the coverage of the contigs they are placed
in. Furthermore, both genes showed high similarity to known integrase genes (see Table 4). However,
no statement can be made about the lysogenic or lytic nature of D2 and D4 phages since the integrity
of the lysogeny module was not tested in the lab.

Lastly, 10 genes described as “methyl-transferase” or “methylase” were found in RAST’s
annotation and 13 in the BLAST based annotation. We speculate that those genes may have a positive
influence on efficacy as they can enable the phage to evade restriction-modification based defense
systems as was detailed in a review by Samson et al. [33].

3.2.5. Evaluation of Sequencing Depth of the Cocktail

A rarefaction curve was made by assembling discreet fractions of the quality trimmed reads and
plotting the total assembly size vs. the fraction of reads used. The reasoning behind this was that if
the phage cocktail has been sequenced sufficiently deeply, the assembly size will converge as more
reads will add depth to the existing contigs instead of creating new ones. This behavior was indeed
observed (compare Figure 3). It can be seen that the rarefaction curve is not completely flattened
out, indicating that there may be rare phages not represented in the reads. Still, we reason that while
the sample is not sequenced to its entire diversity we have succeeded in covering the majority of the
phages present. Furthermore, when re-mapping reads to the finished assembly, 425,960 (97%) of the
440,392 reads map properly.
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Figure 3. Rarefaction curve of the Intesti sequencing sample. The curve appears to flatten out as the
percentage of reads used increases, indicating that the total assembly size is converging. This means
that the most common phages are well represented in the sequencing reads. Phages that are in low
abundance may not be adequately covered though.

3.3. Host Range Estimation

In a small scale in vitro experiment we found the host range of the cocktail to be largely consistent
with the specification given by the producer. Five to ten strains were tested for each pathogen listed
on the package. The exact number of strains tested and the fraction of strains found susceptible are
given in Table 5. The streaking tests confirmed that the cocktail was in principle able to cause lysis
of strains of all seven pathogens specified by the producer, albeit with differing specificity for the
different pathogens. The apparent low efficiency in lysis of Staphylococcus is due to the fact that only

6584



Viruses 2015, 7, 6570-6589
five of the ten tested isolates were S. aureus, of which all but one were susceptible. This can be seen in
Supplementary Table S2, which also contains a complete list of the specific strains tested.

Table 5. Fraction of the strains found to be susceptible for each pathogen tested. Observe that this is
only a small-scale experiment. All strains are part of an in-house collection.

Pathogen Susceptible Strains
Salmonella Enterica 10/10
Staphylococcus 5/10
Shigella 5/5
Pseudomonas Aeruginosa 5/7
E. coli 2/6
Proteus 3/5
Enterococcus 2/5

4. Discussion

4.1. Completeness and Accuracy of the Analysis

The rarefaction curve showed that the phages that are numerically in the majority appear to
be represented well in our data. However, there are indications that we have not seen the full
diversity of the batch of Intesti we analyzed. A phage cluster amplified on PAOlwas barely even
present in the sequencing data of the cocktail, confirming that we potentially missed low abundance
phages. It is not clear which impact the abundance of a particular phage or phage cluster has on its
efficacy in the host, since specific amplification upon encountering the host is an important factor in
therapeutic applications.

It is the authors’ understanding that the library preparation we used favors dsDNA and the
vast majority of phages known today are indeed tailed dsDNA phages [4]. Nevertheless, we cannot
exclude the possibility that the cocktail contained ssDNA phages, especially since we introduced
a 5 kb size cutoff for contig groups. It is the authors’ experience, that contig groups smaller than
that may not be true clusters but rather shared modules. At a size smaller than 5 kb it is further
difficult to obtain an unambiguous attribution to a certain phage species or cluster of species due to
the aforementioned shared modules.

Intriguingly, the three clusters that contain the most common phages in the cocktail, namely D6,
D12 and the presumed Proteus phage cluster, are also those we know the least about, as they are
the ones most different from previously studied phages. For the presumed Proteus phage, it is not
even sure whether the two contigs form a single cluster, though each by itself is also very abundant
(compare depth of coverage and its standard deviation for the Proteus phage, Figure 2). We have
predicted the phages to belong to the Siphoviridae based on tail fibers, but it is not known what their
hosts are.

There is a possibility that some of the phage components in the cocktail derive from induction
of prophages in the propagating strains, which may explain the comparatively high prevalence of
Siphoviridae in the Intesti cocktail as well as the presence of lysogeny-related genes. This hypothesis
could not be tested since the propagating strains are proprietary and therefore not available.

4.2. Concerning the Synonymous Clusters and Amplification by Bacterial Hosts

It should be remarked that while the clusters infecting each host could be identified, it is not
possible to say whether or not all phages in a given cluster are causing infection. In the case of cluster
F1, of which only about half were amplified, the distinction was clear.

As was the case in the unamplified cocktail, the depth of coverage varied between contigs
belonging to the same phage cluster in the host-amplified samples. This could signify a bias for
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amplification of only certain parts of the cluster. On the other hand, chimeric vs. non-chimeric contigs
can also cause a variation in depth within a cluster (see Section 3.2.2).

Further, it turned out that the phage cluster we presumed to be Proteus specific, because of its
presence in the Proteus amplified sample and the fact that it did not have any hits to the nr nucleotide
database, did not actually cause infection in the Proteus vulgaris used in this study. It is therefore
unclear what kind of phage those two contigs represent and whether they should be clustered or
separate. The only evidence we have is that both of them have high depth of coverage values, which
are very similar to each other.

4.3. Comparison to Other Phage Cocktail Studies Employing Metagenomics

McCallin et al. published a metagenomic analysis of a Russian phage cocktail intended for
treatment of Escherichia coli/Proteus infections in 2013. Their methodology was somewhat different
and more extensive on the experimental side. Our study had its focus on bioinformatics and
specifically sequence analysis tools. These kinds of analyses are cheap and fast compared to
traditional lab techniques which is why we wished to test their suitability for phage cocktail analysis.
Naturally, they do not replace experimental evidence, however we think that by sequencing first
and employing bioinformatics prior to further lab work, we are able to gain insight and can design
lab experiments more efficiently. This will save time and money, especially as more tools are being
developed and databases grow more extensive.

In concordance with the results of McCallin et al., we also observed a great complexity within
the cocktail we analyzed. McCallin ef al. found primarily Myoviridae (34%) and Podoviridae (24%) in
their cocktail. In comparison to that, the Intesti cocktail is also mainly composed of Myoviridae (35%),
but the second most abundant family was Siphoviridae, which were almost as abundant (32%).The
cocktail analyzed by McCallin et al. is, however, of very different scope, targeting solely E. coli and
Proteus, while the Intesti cocktail we analyzed targets a more broad spectrum of enteric bacteria.

In the Escherichia coli/Proteus targeting cocktail, McCallin et al. identified phages of the
Myoviridae subfamily Tevenvirinae and the genus Felixounalikevirus, plus phages of the proposed genus
of rv5-like virus, as well as the Podoviridae genera T7likevirus, SP6likevirus and N4likevirus. The
Intesti cocktail also contained clusters related to those two Myoviridae genera and subfamily and the
Podoviridae genera T7likevirus and SP6likevirus. The Intesti cocktail appears to have a greater diversity
of component phages compared to the Russian cocktail, which is in accord with its broader spectrum
of application. As the sequencing data produced in the study of McCallin et al. is not publically
available, the authors were unable to directly compare the phage clusters identified in the Intesti
cocktail to the phages identified in the Russian cocktail.

Neither study identified undesirable genes within the cocktail, but this is not a guarantee for
safety since the databases are not exhaustive. The two genes showing homology to integrases warrant
further investigation.

When McCallin et al. classified their redundancy removed reads with MEGAN, they observed
23% of reads without hits. In comparison, 25% of the redundancy reduced reads in our sample
mapped to contigs that could not be assigned, i.e., had no significant BLAST hits. However, McCallin
et al. compared their reads to the non-redundant protein collection and employed blastx, which has
a higher sensitivity. Therefore, the numbers cannot be directly compared between the two studies.
Furthermore, when looking at assembled contigs the total size of the contigs which had no database
hits, including the putative Proteus phage, was only 16% of the total assembly size, though many of
the clusters with known relatives appeared to have novel parts, as evidenced by the fact that their
coverage by their database references is not complete (compare Table 2).

Lastly, the metagenomics approach differed between our study and that of the Russian phage
cocktail in that we focused on assembling first and subsequently characterizing the contigs we had
obtained, while McCallin et al. did more characterization work on the read data and with mapping.
The main reason we chose direct de novo assembly of the full sample is that we were concerned about
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creating an artificial separation of the data by relying on mapping, especially since at least some
phages are known to be modular and to frequently switch modules, as illustrated for Staphylococcus
phages by Deghorain et al. [43]. Essentially, the focus of our study was on discovery.

4.4. Future Perspectives

One of the purposes of this study was to explore which types of sequence-based analysis are
suitable for phage cocktails and whether their results are useful. We hope to ignite discussion on how
the analysis of complex phage products can be done in the future.

5. Conclusions

The aim of this study was to identify and analyze the major components of the Intesti phage
cocktail. Returning to the question posed in the title, we conclude that a great amount of information
can be gained from examining a phage cocktail directly by metagenomic analysis, by relying on
databases and bioinformatics tools, though careful interpretation is crucial and not always straight
forward. Furthermore, we show that the kind of information presented in this article can be
gained without the need to separate and amplify individual phages prior to sequencing, which
may not always be possible especially when propagating strains are unavailable or unknown. As
databases grow more extensive with sequencing projects on the rise and more tools get developed,
we expect that the kind of bioinformatics analysis we employed in this study will grow more powerful
and accurate.
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51 CHAPTER 8. PHAGE COMMUNITIES IN SEWAGE

8 Phage communities in sewage

Another aspect of phage therapy is very relevant yet often taken for granted -
where does one find good candidate phages? Traditionally, therapeutic phage
have often been isolated from human sewage, which has even been described
as the ideal isolation source by Lobocka et al [57].

In this study, we took the chance to examine a set of sewage samples that
was originally collected to track the spread of antimicrobial resistance genes
in different populations around the world. We wanted to use them to look
at phage communities in sewage instead. Luckily, the samples had been se-
quenced quite deeply as metagenomes which encouraged us to try and extract
phage sequences from them. Our findings showed those phages to be both
extremely diverse and contain a large amount of novel sequence, making for
exciting prospects in further studies.

This was also a good chance to test and in the process improve on MetaPhinder,
a tool used to identify phage contigs in metagenomic assemblies. MetaPhinder
was originally developed by Vanessa Jurtz during her Master’s thesis and is
now available in new version with extended output.

This study is still ongoing at the time of writing but I chose to include the
results so far since I believe it is a vital part of my PhD and thematically ties
into the other two papers.
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Abstract:

Sewage, a highly competitive and diverse environment, is the primary isolation source for
therapeutic phages. However, not much is known about sewage phage communities in different
parts of the world. To address this, we have analyzed and compared the phage sequences found in
81 sewage samples from 63 different countries. We also show that MetaPhinder-2.0 is a useful tool
for identifying phage sequences in complex metagenomes and is not limited to finding homologs
of known phages. Nearly all the phage communities contained a plethora of novel phage sequences
independent of their geographic origin, underlining the undiscovered diversity of phages in
sewage environment. However, crAssphage was almost universally present. By combining
BLASTn hits to full contigs and a tBLASTn search against custom databases of conserved structural
phage genes, we were able to assign taxonomic labels on family level to on average 25% of phage
reads. We did not observe a clustering of samples by geographic region when comparing their
genomic distances as measured by Mash. All samples were highly variable from each other.
Further, when investigating the occurrence and coverage of known phages in sewage, we
discovered intriguing patterns that corresponded to distinct phage families.

Keywords: phage metagenomics; phage taxonomy; identification of phage contigs in complex
environmental samples

1. Introduction

A large proportion of phages intended for therapy are isolated from sewage water which
contains many of the major human pathogens and is considered an optimal isolation source [1]. In
2015, Mattila et al published a feasibility study on this topic, finding that isolation of phages from
sewage was successful identifying phages against Pseudomonas aeruginosa, Salmonella, extended
spectrum beta-lactamase Escherichia coli, and Klebsiella pneumoniae. However, it remained
difficult to isolate phages against vancomycin resistant Enterococcus and Acinetobacter baumannii
as well as methicillin resistant Staphylococcus aureus [2].

Sewage is furthermore a highly competitive environment and a source of untapped
biodiversity. For those reasons, there is a great need to learn more about sewage phage communities.
However, due to their enormous sequence diversity and absence of common marker genes, phages
are not readily identified in mixed metagenomic samples. This is especially true in samples that have

Viruses 2016, 8, x; d0i:10.3390/ www.mdpi.com/journal/viruses



47
48
49
50
51
52
53
54
55

56

57

58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76

77

Viruses 2016, 8, x 20f4

not been specifically treated to amplify viral DNA and remove bacterial and eukaryotic DNA. We
here use an updated version of MetaPhinder [3], a tool that identifies phage contigs based on their
cumulative average nucleotide identity (ANI) to a database on known phage genomes.

In this study, we have investigated the phage components of sewage samples from around the
world. We aim to address issues related to how similar samples are to each other, which proportion
of phage contigs we are able to assign taxonomically and to what degree they display similarity to
known phages. We further describe an update to MetaPhinder, a tool to identify phage contigs in
metagenomic assemblies.

2. Materials and Methods

2.1 Sewage samples

The Global Sewage Surveillance Project has the goal to surveil infectious diseases and
antimicrobial resistance in human sewage around the world in order to determine the occurrence
and burden of resistance in defined healthy human populations. To that end, the project
coordinators have invited countries to collect two liters of urban sewage and send them to the
National Food Institute at the Technical University of Denmark (DTU). For more information see
http://www.compare-europe.eu/library/global-sewage-surveillance-project. The project is associated
with COMPARE (http://www.compare-europe.eu/) and funded by the World Health Organization.

In 2016 the Global Sewage Surveillance Project has collected a total of 81 samples of sewage
from 63 different countries. For this study, we received the trimmed reads and full assemblies of
those samples. We then identified and extracted the phage contigs in the assemblies for further
analysis.

2.2 Metadata
The following metadata was available to us:

Sample location (city, county, and GPS coordinates), sample region, sample site and sample
date. We have only made use of the geographic metadata. Figure 1 shows a map of sample locations.
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Figure 1. Sampling locations. For two samples only the country was available (marked with a grey
star). El Paso, Texas was sampled four times (marked with a blue cross). The map was generated
from GPS data using the webtool HamsterMap at http://www.hamstermap.com/custommap.html .

2.3 Reference phage database

We created a database of all available complete phage genomes to use as references. This was
done by querying NCBI nucleotide with the search term ‘(phage [Title]) AND complete genome’ as
well as downloading the entire database of phage genomes available on phantom.org Genomes from
both sources were combined and homology reduced on 100% sequence identity to remove
duplicates. The final database comprised 5477 genomes. All downloads were performed on 06. June
2017.

2.4 Sample preparation

The samples were spun down and DNA was isolated using the DNA isolation QIAamp Fast
DNA Stool protocol. Subsequently, the samples were sent to Oklahoma Medical Research
Foundation for sequencing. Here, DNA was sheared to ~300 bp and the NEXTflex PCR-free
DNA-seq library preparation kit was used for library preparation. The samples were multiplexed
and sequenced on a HiSeq3000 using 2x150 bp paired end sequencing. Several of the samples were
sequenced multiple times.

2.5 Sequencing and assembly

Raw sequencing data was quality trimmed and assembled with SPAdes 3.9.0 [4] using the
-meta flag. For the samples that were re-sequenced several times reads from all sequencing rounds
were used.

2.6 Update to MetaPhinder, identification of phage sequences and phiX removal

An updated version of MetaPhinder [3], from here on referred to as MetaPhinder-2.0, was used
to identify phage contigs within the assemblies. The first version of MetaPhinder was based entirely
on the cumulative average nucleotide identity (ANI) of a query contig to a phage database. ANI is
hereby defined as:

Eﬁl percentID;*al;

0, = &i=1F" 7t 7l
%ANI = T Moy 1)

where percentID; is the percent identity reported by BLASTn [5], al; is the alignment length
and mg,, is the fraction of the query sequence covered by alignment to the reference. N is the
number of hits between query and the sequences in the reference database. The cumulative ANI
considers hits from any phage genome in the database so long as the E-value of the hit is less or
equal to 0.05.
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In the updated version of MetaPhinder, we have removed the fixed classification threshold of
1.7% ANI to the phage database. For the sewage dataset studied here we instead used 10% ANI, see
results section. Further, we included a comparison of the query contig to a database of 5000 complete
bacterial sequences from NCBI's refSeq. Those bacterial sequences were split up into k-mers of
length 16. In order to limit database size, we only retained k-mers with prefix ATG. We then
removed all k-mers that occur in phages from this bacterial database. To run a comparison, query
contigs are also split into k-mers of length 16 and prefixed with ATG. Since phage k-mers have been
removed from the bacterial database, the k-mer query coverage becomes a direct measure of how
much the query contig resembles a bacterium.

The further analyses described below were run only on the contigs classified as phage by
MetaPhinder-2.0. In addition to that, the phage contigs were compared to the sequencing control
phiX174 by BLASTn [5] and contigs with greater than 99% identity were removed from the analysis.

2.7 Fraction of phage DNA

The fraction of phage DNA per sample was calculated by dividing the number of base pairs in
phage contigs by the total number of base pairs in the assembly.

2.8 Abundance estimation

Following assembly and identification of phage contigs, trimmed reads were mapped to the
contigs in order to estimate their abundance. In many of the following analysis, this abundance is
expressed as percentage of phage associated reads mapped to a contig.

2.9 Assigning taxonomic labels to phage contigs

We employed two different strategies to assign taxonomic labels to the phage contigs.

Firstly, contigs inherited labels on species as well as family level from their best hit in the
database of reference phage genomes, if the average nucleotide identity (ANI) of contig to reference
phage was equal to or higher than 80%. Note that this ANI value is only to the top hit phage, not the
cumulative ANI to the full phage database. Some known phages such as crAssphage lack a phage
family classification. In this case, a contig with the best hit to such a phage was assigned the family
label ‘unknown’. This should be distinguished from the label ‘None” which was assigned to contigs
that did not have a reference with ANI >= 80%. With this approach, we identify matches to the full
contig.

Furthermore, labels on family level were predicted based on homology to four gene classes
generally assumed to have a high conservation rate because they are essential for the correct
functioning of the phage particle. These are capsid, baseplate and tail fiber encoding genes, as well
as phage associated DNA polymerase genes. A database was constructed for each of those categories
by firstly querying NCBI protein with the search term ‘capsid AND phage [Title]” and setting the
species filter to ‘Viruses’. The ‘capsid’ was replaced with ‘baseplate’, ‘tail fiber’ and ‘polymerase” for
the three other categories respectively. After that, to limit the computation load, databases were
homology reduced by using cdhit [6] with a threshold of 90% homology on the shorter sequence.
The phage family associated to each known gene was noted. Subsequently, we ran tBLASTn [5] of
the databases against the phage contigs in each sample, retaining hits to known structural or
polymerase genes if the percent positives was 50% or higher and the alignment length covered at
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least 50% of the known gene. ‘Percent positives’ here refers to the percent of positively scoring
amino acids in the alignment, i.e. amino acids that can be substituted for each other according to the
BLOSUM matrix. This measure is more sensitive than ‘percent identical’ in amino acid space.
Following this, a phage family label was assigned to the contig if the family label of each known
gene found in the contig was identical.

Lastly, we compared phage family labels obtained from both approaches and assigned
consensus labels. This was done in the following manner: If only one of the two approaches yielded
a taxonomic label this label was the consensus. If both approaches yielded a label and the labels were
identical this label was the consensus. If both approaches yielded a label but the label differed, the
consensus was set to ‘None’.

2.10 Identification of known phages

We further used the similarity function implemented as part of MetaPhinder (see equation 1) to
compute ANI values of each known phage to each sample. Those values can be understood as a
measure of how much of the known phage’s sequence was covered by the sample’s phage contigs,
as opposed to how much of a contig could be explained by a known phage.

2.11 Genomic distance estimation

Mash [7] was used to calculate pairwise distances between the phage components of the
samples. Mash is based on the MinHash principle which allows the reduction of large sequences to
representative sketches and has been used to compare for instance webpages and images. In Mash,
metagenomes are first reduced to sketches by splitting them into kmers, oligonucleotide stretches of
length k. All kmers are then hashed with a hash function h. A sketch of size s contains the s smallest
hashes returned by h. These genome sketches can then be compared by estimating their Jaccard
index. See Ondov et al for more details.

Since the amount of phage sequence identified in the samples differed considerably, all samples
were randomly down sampled to 1100 kb phage sequence 100 times, and 100 all-against-all Mash
distances were calculated from those subsets. We then used the average of the 100 Mash distances to
obtain one distance for each pair. Average Mash distances within and between regions were further
calculated as group averages with the following formulas.

The average distance within one region is:

) Lo ) ZN': distance(i,}) i<
distance within region = === )
2

where distance(i, j);<; is the distance between samples i and j with index i being less than
index j. This is because the Mash distance is symmetric, meaning that distance(i,j) = distance(j, i).
N is the number of samples within the region. The denominator of the fraction is the number of
combinations.

The average distance between two regions is:

. ) sN sM distance(i,)
distance between regions = T e ©)
NxM

where N is the number of samples in region 1 and M the number of samples in region 2.
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218  3.Results
219

220 3.1 Update of MetaPhinder

221

222 During the process of finding phage contigs in the sewage samples we have updated the
223  MetaPhinder method to MetaPhinder-2.0. This was done because we observed suspiciously high
224 fractions of phage DNA when predicting with the original MetaPhinder. That first version operated
225  with a classification threshold of 1.7% ANI to a phage database. This threshold was found by setting
226  up a classification task where complete phage genomes and random length pieces of them were
227 mixed with negative data consisting of bacterial, fungal, protozoa, non-phage virus and human
228  sequences. For details see the publication by Jurtz et al [3].

229

230 In this updated version, we wanted to insure that the contigs we identify as phage were more
231  similar to phages than to bacteria and therefore included a k-mer based comparison to a bacterial
232 database. All k-mers occurring in the phage database had been removed from the bacterial database
233 to account for integrated prophages.

234

235 In a metagenomics setting, it may not be advantageous to select a hard %ANI classification
236  threshold, especially since the amount of known phage sequences is still very inadequate compared
237  to their immense diversity. Instead, we opted to extend the output of MetaPhinder-2.0 to give the
238  user as much phage-related information about a contig as possible. For this reason we have removed
239  the classification column in MetaPhinder-2.0's output and added the following columns: k-mer
240  query coverage to bacteria, bacterial top hit, phage top hit, %ANI of the phage top hit, genome size
241  of phage top hit, taxonomic lineage of phage top hit, taxID of phage top hit, host of phage top hit.
242 The user is encouraged to review the presented information and decide on a classification fitting to
243 their dataset. For the sewage data we found that requiring at least 10% ANI to the phage database
244 and a higher ANI to phages than query coverage to bacteria gave good classification results

245

246 The web service can be found at https://cge.cbs.dtu.dk/services/MetaPhinder/.

247 3.2 Fraction of phage DNA

248

249 We investigated the fraction of phage DNA present in each sample by dividing the total base
250  pair count of the full assembly by the base pairs assigned to phage contigs. Doing so, we found that
251  the fraction of phage DNA was between 0.83 and 5.33 percent. No influence of the geographic
252 location on the size of the fraction of phage DNA was observed.

253
Sewage Data - amount of phage DNA
i it el
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254
255 Figure 2. Fraction of phage DNA as percent of total assembled base pairs assigned to phage contigs;
256 displayed per sample and sorted by region.

257
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3.3 Genomic distance estimation

Mash [7] has been shown to be an effective tool for quickly estimating the genomic distances
between complex, metagenomic samples based on overlapping kmers. However, a naive application
of Mash directly on the recovered phage contigs proved to be heavily biased by the difference in the
amount of phage DNA recovered from the different samples. We therefore randomly subsampled
each sample to approximately 1100 kb a hundred times, calculated a hundred Mash distances and
computed the average distance between samples from that data.

We observed that the majority of samples were equally distant to each other with Mash
distances between 0.2 and 0.3, as shown in the resulting heatmap in Figure 3. The four samples taken
from El Paso, Texas are encoded as North America 8, 10, 11 and 12. They appear to form a small
cluster. However, their pairwise distance is not lower than that of some other samples from distinct
locations; compare e.g. Africa 6 and Africa 7.

In addition to that, we have calculated average Mash distances within each region and between
regions and observed that there was no substantial difference. This illustrates further that phage
communities in samples from the same geographic region are on average not more similar to each
other than samples from different regions.
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Figure 3. Heatmap of the average Mash distance between all samples. Rows and columns are sorted
by region. There appear to be small clusters of higher similarity but overall all the samples are distant
to each other.

3.4 Assigning taxonomic labels
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284  3.4.1.Full contig hits

285 For taxonomic assignment, we first investigated how well the phage contigs in each sample
286  were covered by alignment to known phages. To do so, we divided the contigs into five groups
287  depending on the ANI to their closest reference. The groups were as follows: 0-20% ANI, 20-40%
288  ANI, 40-60% ANI, 60-80% ANI and 80-100% ANI. We then plotted the distribution of those five
289  groups for each sample, see Figure 4. In order to have a better representation of actual abundances,
290  we used the percentage of phage reads mapped to the contigs instead of the percentage of contigs
291  directly.

292

293 We found that a large proportion (more than 50% in most samples) of the phage sequences
294  found in sewage were very distant to all known phages, with their best reference yielding ANI
295  values between 0 and 20%. The lowest ANI value identified was only 0.38%. Note, that it is possible
296  for a contig to have a very low ANI to its best reference and still pass MetaPhinder-2.0's classification
297  threshold since MetaPhinder-2.0 accumulates hits across the whole phage database.

298

299 We also observed that the proportions between the five groups of contigs did not vary
300  considerably between samples. This means that sewage samples from Europe and North America
301  do not contain an observably higher proportion of known phages than for example African and
302  Asian samples. Notable exceptions to this are the samples Europe 19 and South America 3, in which
303  respectively ~45% and ~30% of reads mapped to contigs with high similarity references. However,
304  upon closer investigation it turned out that both these samples contained a low amount of
305  assembled phage DNA. The phage contigs in Europe 19 amounted to only 137 kb and those in South
306  America 3 to 307 kb sequence.

307
308
Percent phage reads mapped to contigs with AN| to a reference genome
ANl to reference
Moo
z B 20400
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1 o-100%
309 locatien
310 Figure 4. Percent of reads mapped to contigs with 0-20% ANI, 20-40% ANI, 40-60% ANI, 60-80% ANI
311 and 80-100% ANI to their respective best reference phage. The amount of reads with 0-20% ANI
312 varied between 28 and 75% but is generally around 50% or higher.
313 On the other hand, there was a small proportion of reads mapped to contigs that had very high

314 similarity to their references (ANI values between 80-100%). We extracted these reference phages
315  and investigated whether they were shared across several samples or unique to their sample. The
316  results are displayed in Figure 5. It shows that most reference phages covering a contig with 80%
317  ANI or higher only do so in one to five samples. One reference however is found in 73 out of 81
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samples. This was crAssphage. The other phage found to be a good reference in 52 of the samples is
Streptococcus phage phiN]J3.

Occurence of reference phages to contigs with ANI >= 80%

300

- 294

Counts

50
1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of samples a reference phage was found in

Figure 5. Histogram of the 314 references phages found to cover phage contigs with at least 80%
ANL The height of the bars corresponds to how many samples a reference occurred (with the
above-stated ANI threshold). It can be seen that while most references are unique to their sample,
two references are found in respectively 52 and 73 samples. They are Streptococcus phage phiNJ3 (in
52 samples) and crAss phage (in 74 samples).

3.4.2 Phage family labels based on conserved genes and consensus labels

In an effort to obtain taxonomic labels for a larger proportion of contigs, we next compared the
contigs against three databases of conserved structural phage genes as well as one database of
phage-associated polymerase genes. The labels obtained in that way were on family level instead of
species level.

This strategy considerably increased the percentage of contigs with a taxonomic label for most
samples, see green bars in Figure 6. Once again, we depict the percentage of phage reads mapped to
these contigs to better account for abundance. This outcome was expected since the likelihood of
finding a single gene match is intuitively greater than the likelihood of finding a match for a whole
contig.
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percent reads mapped to contigs
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Figure 6. Percent of reads mapped to contigs with a phage family label using two different
approaches as well as a consensus. Red: Taxonomic labels inherited from hits to the full contig,
extracted from MetaPhinder-2.0 results with ANI >=80%. Green: Taxonomic labels via matching to
database of conserved structural genes. Blue: Consensus.

In some samples however, the percent reads with a label actually decreased. This can for
example be observed in sample Asia 6 and Europe 19. The reason for this is contigs mapped to a
phage whose structural genes were at the time of writing not available in genbank and therefore not
part of our database of conserved structural genes. One of these phages that features prominently in
our data is crAssphage. Such contigs can only receive a taxonomic label from their best full contig
hit.

From this result, we decided to make a consensus of both approaches as described in the
Methods part. Doing so further increased the percent of reads for which we could assign a
taxonomic label to the point where we have labels on phage family level for at least 15% of phage
reads in most samples and up to more than 40% in a few samples. This increase is largely due to
complementary results, i.e. contigs that only obtained a label in one of the predictions but not the
other.

3.5 Identification of known phages

In addition to trying to classify the phage contigs, we also sought to find out which of the
known phages are present fully in the samples. For this, we once more used the similarity function
of MetaPhinder-2.0 but swapped query and database. In that way, we calculated ANI values for
each known phage to each sample, thereby describing how well the known phage is covered by the
sample. The result is shown in Figure 7.

This figure consists of a boxplot of the ANI values observed in all 81 samples per known phage.
Only phages that were covered with an ANI of at least 50% in at least one sample are included. We
have also color coded the phage labels on the y-axis by their families: Siphoviridae (red), Myoviridae
(green), Podoviridae (blue) or unknown (grey). It can be seen that there appears to be pattern in the
distribution of ANI values.

At the top of the plot are crAssphage and Bas gut phage, a variation of crAssphage, which were
present in almost every sample with an average ANI of 75%.
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Below, we see a second group of phages that had an ANI between 0 and 10% in the majority of
samples. However there are heavy tails to the right of the distribution, as evidenced by the long
whiskers of the boxplots. Most of the phages in this group were members of the Siphoviridae.

The third group of phages was not present in the majority of samples but create a curious wave
pattern of eight lines at between 3 and 65% ANI. Each of these lines was one sample, which we have
verified by coloring the ANI values belonging to the same sample in the same color (only for phage
group three). The lines are caused by the fact that all of those phages had nearly the same ANI value
to a certain sample. This group was dominated by Myoviridae phages.

Finally, the fourth group of phages was also not present in most samples but if they were, their
ANIs were quite high between 50 and 90%. In this group, members of all three phage families were
found as well as a few phages of unknown family.
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Figure 7. ANI of known phages to sewage samples. Each row corresponds to one known phage and
shows a boxplot of that phage’s ANI values to each sewage sample, i.e. how well this phage is
covered by alignment by the samples’ contigs. It can be seen that two versions of crAssphage are
present in almost every sample with high ANI of at least 60%. Further, there appear to be three
groups of phages that follow similar patterns. Phage labels are colored in accordance to their family:
Myoviridae (green), Siphoviridae (red), Podoviridae (blue) or unknown (grey). Only phages with an
ANI greater than 50% in at least one sample are shown.

4. Discussion

We have analysed the phage sequences found in metagenomics assemblies of 81 samples of
sewage. We found that the phage communities differ considerably between samples and contain
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many sequences that are either novel or distant from those of the phages currently available in
public databases.

This outcome is not unexpected. Metagenomic studies often find large fractions of sequences
that do not map to the current databases, conventionally referred to as ‘biological dark matter” [8].
Those sequences are attributed to uncultured bacteria, archaea and viruses, among them
bacteriophages. This is in line with the finding that 85-99% of bacteria and archaea can currently not
be grown in the lab [9]. Naturally, that means that also their phages cannot be cultivated and will
thus be missing from the databases. Perez-Sepulveda et al for example reported that the majority of
phages in marine environments are part of the sequencing dark matter, i.e. reads that cannot be
mapped to known genomes [10].

We further found the fraction of phage DNA was between 0.83 and 5.33 as measured by the
percent base pairs assigned to phage contigs. This is congruent with findings from Reyes et al who
report that viral DNA makes up 2-5% of the total in most environments [11].

In respect to matching the phage contigs in the sewage sample to known phages, we found that
only a small percentage of contigs map to a reference phage with a high %ANI and that most of
those references are only found in few samples. This again ties in with the notion that the currently
known phage sequences hardly even begin to cover the space of phage sequence diversity.
CrAssphage is the major exception to that. This phage has already been described as highly
abundant in the paper that describes its discovery by Dutilh et al [12]. This notion was further
confirmed by studies on the human gut metagenome/phageome by Yarygin ef al [13] and Manrique
et al [14]. When looking at these results, we further need to consider that some phage contigs were
quite short (<= 10 kb). This makes it statistically more likely to obtain an ANI of 80% or higher from a
hit to only a short region in the reference phage.

Our results on how well known phages are represented in the sewage samples showed a
grouping of phages into four distinct patterns of ANI value distributions. Two of those groups are
each dominated by a single phage family, though we are unsure how to interpret this result.

Group three, dominated by Myoviridae, showed a wave-like pattern of ANI values far out from
the mean of the distribution, which was close to 0. The pattern is probably caused by the phages in
that group being closely related to each other. It is conceivable that the same group of contigs align
equally well to each of those known phages, causing them all to have a very similar ANI value.

Regarding the MetaPhinder update, we decided to remove a hard %ANI threshold, include
more information on the phage top hit and report relatedness to bacteria as well.

We reason that in an actual metagenome, the original %ANI threshold may be too permissive
because of stray hits to genes shared for example between phages and bacteria. The presence of
integrated prophages that are not annotated as such in bacterial genomes makes it quite difficult to
differentiate between a phage contig and a bacterial contig especially with short contigs. We address
this issue by comparing to a bacterial database that had all known phage k-mers removed from it.

Further, while employing two different measures of comparison may seem counterintuitive we
consider our approach to have merit. ANI and k-mer query coverage are not directly comparable,
however both give an indication of genomic relatedness and have different advantages. The original
MetaPhinder paper has shown that for phage classification %ANI is a better measure than k-mer
query coverage. At the same time it is computationally very expensive to calculate %ANI of a contig
to a large bacterial database, also since bacteria genomes are on average 10x times longer than phage
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genomes. Using k-mers furthermore allowed us to efficiently remove phage-like sequences from the
bacterial database without having to cut them out of the bacterial genomes. Since we are not
interested in finding the best bacterial match to a contig but merely in estimating whether the contig
is more similar to bacteria than phage, we argue that our divided approach is applicable and
reasonable.



459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

Viruses 2016, 8, x 150f 4

References

1.

10.

11.

12.

13.

14.

M. Lobocka, M. S. Hejnowicz, U. Gkagata, B. Weber-Dabrowska, G. Wkegrzyn, and M. Dadlez, “The first
step to bacteriophage therapy — how to choose the correct phage,” in Phage Therapy: Current Research and
Applications, J. Borysowski, R. Miedzybrodzki, and A. Gorski, Eds. Norfolk: Caister Academic Press, 2014.
S. Mattila, P. Ruotsalainen, and M. Jalasvuori, “On-demand isolation of bacteriophages against
drug-resistant bacteria for personalized phage therapy,” Front. Microbiol., vol. 6, no. NOV, pp. 1-7, 2015.
V. L Jurtz, J. Villarroel, O. Lund, M. Voldby Larsen, and M. Nielsen, “MetaPhinder - Identifying
bacteriophage sequences in metagenomic data sets,” PLoS Orne, vol. 11, no. 9, pp. 1-14, 2016.

S. Nurk et al., “Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads,” Springer,
Berlin, Heidelberg, 2013, pp. 158-170.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool.,” J.
Mol. Biol., vol. 215, no. 3, pp. 403-10, Oct. 1990.

L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “CD-HIT: Accelerated for clustering the next-generation
sequencing data,” Bioinformatics, vol. 28, no. 23, pp. 3150-3152, Dec. 2012.

B. D. Ondov et al., “Mash: fast genome and metagenome distance estimation using MinHash.,” Genome
Biol., vol. 17, no. 1, p. 132, 2016.

R.J. Robbins, L. Krishtalka, and J. C. Wooley, “Advances in biodiversity: metagenomics and the unveiling
of biological dark matter.,” Stand. Genomic Sci., vol. 11, no. 1, p. 69, 2016.

C. Lok, “Mining the microbial dark matter,” Nature, vol. 522, no. 7556, pp. 270-273, Jun. 2015.

B. Perez Sepulveda, T. Redgwell, B. Rihtman, F. Pitt, D. J. Scanlan, and A. Millard, “Marine phage
genomics: the tip of the iceberg.,” FEMS Microbiol. Lett., vol. 363, no. 15, Aug. 2016.

A. Reyes, N. P. Semenkovich, K. Whiteson, F. Rohwer, and J. I. Gordon, “Going viral: next-generation
sequencing applied to phage populations in the human gut,” Nat. Rev. Microbiol., vol. 10, no. 9, pp. 607-
617, Aug. 2012.

B. E. Dutilh et al., “A highly abundant bacteriophage discovered in the unknown sequences of human
faecal metagenomes,” Nat. Commun., vol. 5, pp. 1-11, Jul. 2014.

K. Yarygin ef al., “Abundance profiling of specific gene groups using precomputed gut metagenomes
yields novel biological hypotheses,” PLoS One, vol. 12, no. 4, p. 0176154, Apr. 2017.

P. Manrique, B. Boldug, S. T. Walk, J. van der Oost, W. M. de Vos, and M. J. Young, “Healthy human gut
phageome,” Proc. Natl. Acad. Sci., vol. 113, no. 37, pp. 10400-10405, Sep. 2016.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).




CHAPTER 9. HOST-GENOMIC DETERMINANTS OF PHAGE
67 SUSCEPTIBILITY IN S. AUREUS

9 Host-genomic determinants of Phage
susceptibility in S. aureus

Staphylococcus aureus, especially the methicillin-resistant strains, is a growing
global health concern and it is not surprising that considerable efforts have
been expended into research around phage therapy prospects for this important
nosocomial pathogen. The project presented here takes a closer look at one
of the principle aspects of phage therapy: What defines whether a given S.
aureus isolate is sensitive to a given phage?

To address this question we primarily needed three things: A set of clinically
relevant S. aureus isolates, a set of therapeutic phages and a mathematical
model of the interaction. Now this is a bioinformatics department, so we have
no lack of models but a distinct lack of biological organisms. It was a good
thing both Henrik Westh from Hvidovre Hospital and Ryszard Miedzybrodzki
from the Hirszfeld Institute were happy to collaborate on this project and so
we were able to set up a wet-lab experiment and produce data fitting to our
research question.

With this targeted approach, we were able to identify 167 gene families in the
accessory genome of S. aureus that influence its susceptibility towards the ther-
apeutic phages used by the Hirszfeld Institute. This work is an important step
in the direction of well-informed therapy with monovalent phage preparations,
especially in a context where DNA sequencing of the causative agent of a severe
infection is set to become increasingly common. Methods such as ours can
aid in suggesting the appropriate phage tailored to the infecting bacterial strain.
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Abstract:

Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillin-resistant
strains, conventional treatment options are limited and expensive, which has fueled a growing
interest in phage therapy approaches recently.

We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different
therapeutic phage preparations and subsequently employ linear regression models to estimate the
influence of individual host gene families on resistance to phages. Specifically, we use a two-step
regression model setup with a preselection step based on gene family enrichment.

We show that our models are robust and capture the data’s underlying signal by comparing their
performance to that of models build on randomized data. In doing so, we have identified 167 gene
families that govern phage resistance in our strain set and performed functional analysis on them.
This revealed genes of possible prophage or mobile genetic element origin, along with genes
involved in restriction-modification and transcription regulators, though the majority were genes
of unknown function.

This study is a step in the direction of understanding the intricate host-phage relationship in this
important pathogen with the outlook to targeted phage therapy applications.

Keywords: phage therapy; bacterial phage resistance; regression modeling; MRSA

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a growing health concern. It is the agent of
many chronic bacterial infections in hospitals as well as in the community. Its resistance to

Antibiotics 2017, 6, x; doi: FOR PEER REVIEW www.mdpi.com/journal/antibiotics



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Antibiotics 2017, 6, x FOR PEER REVIEW 20f18

beta-lactamases severely limits treatment options, drives up the price for therapy, increases
unwanted side effects and leads in many cases to worse clinical outcomes [1]. MRSA has been
classified as a high priority pathogen on the 2017 list of antibiotic-resistant priority pathogens
published by the World Health Organization [2]. Pathogens on this list are considered to pose the
greatest threat to human health and to require urgently discovery and development of new
antibiotics.

Phage therapy has been proposed as a promising substitute for conventional antibiotics or a
co-treatment in the treatment of multi-resistant bacterial pathogens [3]-[7]. Of the S. aureus phage
known to date, most are temperate phages and belong to the Siphoviridae family [8]. Strictly lytic
staphylococcal phages, as are typically required for therapy, are almost exclusively found in the
Podoviridae and Myoviridae families [8].

The Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of
Science in Wroclaw (HI) has been producing staphylococcal phages for therapeutic purposes since
the seventies of the last century [9]. At present its collection consists of nine polyvalent
staphylococcal phages (see: Materials and Methods) [10]. Those phages are used at the Phage
Therapy Unit in Wroctaw under the rules of a therapeutic experiment to conduct treatment of
patients with chronic bacterial infections resistant to antibiotic therapy. The result have been
encouraging as a good response has been observed in one third of patients [6].

However, in order for phage therapy to be efficient, it is necessary to have a good
understanding of the specific interaction between phage and host. There are many strategies by
which bacteria aim to evade predation by phages, which is a significant fitness factor and therefore
under high evolutionary pressure. Some of the common general phage resistance mechanisms
described are: modification of receptor sites to mask them against phage adsorption,
restriction-modification systems, abortive infection systems, and CRISPR, to name a few
[11].Restriction-modification is a two-part system composed of a methylase and a nuclease. The
methylase introduces specific modifications on the organism’s DNA, thereby marking it is as self.
DNA lacking those modifications, i.e. DNA of foreign origin, will be cleaved by the nuclease.
Abortive infection occurs when the host cell recognizes the phage infection before completion of the
phage’s reproductive cycle and initiates cell death, thereby preventing the phage from successfully
creating progeny. CRISPR, an acquired bacterial defense system based on retention and subsequent
recognition of fragments of foreign DNA[11], is not typically found in S. aureus [12].

S. aureus is known to have a rather large accessory genome that can make up as much as 25% of
total genome size [8]. We therefore hypothesize in this study that S. aureus may be carrying accessory
genes that encode various mechanisms that are geared toward phage resistance. Presence of such
mechanisms may hamper the efficacy of phage therapy and it is therefore important to study these
in order to perform optimization of phages used for treatment.

Within the phage therapy community, it is being debated whether targeted single phages or
cocktails composed of many phages with complementary host ranges are preferable for treatment
[13]. Similar to broad-spectrum antibiotics, cocktails can be applied based on the symptoms of the
patients, even though the infecting agent has not been isolated or characterized. On the other hand -
like broad-spectrum antibiotics - this approach is likely to promote the development of resistance
among the bacteria, both the ones causing the disease as well as by-standers. While it is expected that
the use of targeted single phages would lead to far less development of resistance, successful
treatment is dependent on detailed knowledge of the infecting agent coupled with a thorough
understanding of the rules governing the phage-bacteria interaction. With the advent of cheap
high-throughput sequencing methods, it is becoming increasingly common to determine the entire
genome of infecting bacteria.
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In this study, we seek to elucidate the interactions between S. aureus and therapeutic phage
preparations from the HI with a focus on single phages. To that end, we have tested the
susceptibility of a collection of clinical MRSA isolates towards a collection of staphylococcal phage
preparations from HI. Both the bacterial and phage collections we used are of great relevance to the
phage therapy efforts, since the phages are either already in use or under consideration for
experimental therapy in accordance with EU rules concerning compassionate use. Furthermore, the
bacterial isolates were obtained from patients showing complicated nosocomial MRSA infections.
This strain set represents the most prevalent clonal complexes observed in Denmark and may
therefore not be representative of MRSA in different settings.

The genomes of the bacterial strains were determined by whole genome sequencing and
through employing a number of bioinformatics tools and machine-learning methods, we attempted
to shed light on the genes of MRSA that play a role in determining the susceptibility or resistance
towards phages.

2. Results

2.1 General results of the susceptibility testing

A total of 207 MRSA strains were successfully tested for susceptibility to 12 phage preparations.
The ratio of susceptible to resistant strains differed between the preparations. The percentage of
sensitive strains ranged from 19% to 68% as can be seen in Table 1. We did not observe a large
difference in efficacy between single phage preparations and mixtures. However, the efficacies of the
different preparations are not directly comparable, since the titer of the phage preparations was not
known. Instead the data presented in Table 1 may serve as an indication of whether or not there was
sufficient positive and negative data to model the response.

Table 1. Wet lab results of susceptibility testing. All phage preparations were tested at RTD, see
Methods. MS-1, OP_MS-1 and OP_MS-1_TOP are mixtures of P4/6409, A5/80 and 676/Z.

Phage ops .
R Percent sensitive Percent resistant
preparation
1N/80 31.9% 68.1%
676/F 50.7% 49.3%
676/T 68.1% 31.9%
676/Z 40.6% 59.4%
A3/R 18.8% 81.2%
A5/L 47.3% 52.7%
A5/80 55.1% 44.9%
P4/6409 37.7% 62.3%
phi200/6409 44.0% 56.0%
MS-1 33.8% 66.2%
OP_MS-1 38.6% 61.4%
OP_MS-1 TOP 39.6% 60.4%

2.2 Genetic diversity of the strain collection

Genetic distance between the MRSA strains was measured as 1-orthoANI (see Methods), and
the result is depicted in form of a heatmap in Figure 1. This figure reveals a clear clustering of strains
into groups with high identity, which follows the established clonal complexes and sequence types
of S. aureus [14]. Based on this clustering, the strains were split into 5 partitions by visual inspection.
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Partition 1 is substantially larger than the other four. This is due to the fact that the strains
belonging to clonal complexes CC1, CC5, CC8 and CC80 have a high degree of identity to each other,
compare large blue area in the upper left corner. Partitions 2 and 3 are well defined, encompassing
CC22 and CC30 respectively. Partition 4 is made up of CC45 and CC398. CC398 is known for its
prevalence in swine and cattle. Those strains are genetically distant from the rest of the strains
though there is some degree of similarity to CC30. Partition 5 is composed of two clusters of related
strains, as indicated in Figure 1. It contains a number of rarer CCs that also show a comparatively
high distance in terms of orthoANI to the rest of the data set.

partition 1

partition 2

partition 5

partition 3

partition 4

partition 5

Figure 1. All-against-all matrix of the genetic distance between the 207 MRSA strains used for this
study. Distance is calculated as 1 - orthoANI and represented as color, where blue corresponds to
lower and red corresponds to greater distance. The assignment of strains to partitions is marked on
the right margin.

2.3 Identification of gene families

When predicting and clustering genes, we identified a total of 6419 gene families in the MRSA
strain dataset. The distribution of these gene families across the 207 MRSA strains can be seen in
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Figure 2, which shows a histogram of abundances of the gene families. 1777 gene families were
identified in all 207 strains. These are the housekeeping genes. Furthermore, there is a heavy tail of
gene families that were only observed in few strains (left side of the histogram).

Histogram of gene family abundances

1500 2000 2500
| | |

Frequency

1000

r T T T T T T T T T T T T T T T T T T T T T T 1
1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 207

Number of isolates present in

Figure 2. Abundance of gene families in the 207 strains. The peak depicted in the histogram is
slightly higher than the number of housekeeping genes, 1.777, since the bin is wider than 1.

2.4 Model construction and feature selection

To identify gene families and construct a model capable of predicting the susceptibility of a
MRSA strain to a given phage, a feature selection procedure based on enrichment scores and
training of linear regression models was applied. In short, gene families were identified in a two-step
procedure, first through a simple enrichment/association test, and second through a refinement step
based on regression models combined with consistency constraints.

2.4.1 Enrichment/association test

For each cross validation fold, each gene family was assigned a p-value calculated from its
corresponding contingency table estimated once from the original data and once from permuted
data. When plotting the distributions of these p-values, illustrated in Figure 3 for the phage P4/6409,
we can make several observations:
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a) In most phage interactions there is a small tail of gene families with very low p-values, while
the majority of gene families have non-significant p-values.

b) In the permuted data, this tail vanishes as was to be expected. We also observed that the
p-value distributions of phages 1N/80, A3/R and cocktail MS-1 resemble those of the permuted data
much more than those of the real data (see Supplementary Figure S2). This indicates there were not
enough positive examples of lysed strains to produce a signal that is distinguishable from random.

P4_6409 distribution of p-values P4_6409 distribution of p-values after permutation
4 4
3 3
> fold1 > fold1
= fold2 = fold2
2 fold3 e fold3
3 fold4 3 fold4
2 folds 2 folds
1 1
0 0
16-06 1e-04 1602 1e+00 1606 1e-04 1e:02 16+00
p value p value

Figure 3. Stacked histogram of p-value distributions across the five folds for the interaction with
phage P4/6409. The density is shown instead of counts to account for fold 1 having a 100 times less p
values compared to the other folds, since it does not include partition 1 and therefore did not need to
be subsampled. Left: Real data. Right: Permuted data.

Based on these observations, a p-value threshold of 0.01 or lower was implemented to admit
gene families to the second round of feature selection by regression weights (for details see materials
and methods). As seen in Table 2, the number of gene families picked by enrichment varied both by
fold as well as by phage. In preparations 1N/80, A3/R and mix MS-1, the number of gene families
picked was very low. Further, as expected, we find that no or only very few gene families are
selected when analysing the permuted data.

2.4.2 Refinement based on regression models

In the second step of feature selection, we employed linear regression models fitted using Ridge
regression. An internal cross validation was used to identify the optimal parameter for the Ridge
penalty lambda. The optimal lambda penalty value across the different folds in the cross validation
were comparable, indicating that the models are robust, though the size of the feature space varies
(see Supplementary Figure S1).
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196 Due to the 5-fold cross validation setup, each gene family was assigned 5 regression weights,
197  which may be NA (not applicable) if the gene family was not chosen by enrichment for that fold.
198  Weights can be either positive or negative. As we chose to model susceptibility as the positive
199  outcome and resistance as the negative outcome, this means that positive weights point towards
200  increased susceptibility, while negative weights point towards increased resistance.
201 We next required that a gene family should have absolute regression weights greater than 0.01
202  in at least three of the five partitions to have passed a second selection step. The number of gene
203  families selected in this manner is listed per phage on the right side of Table 2. We term this the set of
204  significant gene families for a certain phage. The number of significant gene families in interaction
205  with phages 1N/80, A3/R and mix MS-1 was too small to train a final model. For the remaining
206  phages, the amount of significant gene families varied between the different phages, though the sets
207  were comparable in size with the smallest comprising 13 and the largest 80 gene families, see Table
208 2. In total, there were 167 significant gene families. When performing the same procedure on
209  permuted data, significant gene families could only be identified in four phages and a final model
210 could only be trained for two.
211
212 Table 2. Summary of the modelling results for real and permuted data. The ‘First model’ section
213 reports the results of the first filtering procedure based of association analyses. The ‘Final model’
214 section gives the result of the second filtering procedure based on regression model fitting combined
215 with consistency constraints. The AUC (area under the curve) is used as performance measure of the
216 final model. The number of gene families selected given in the left part of the table is calculated as the
217 average + standard deviation across the five folds. If less than two gene families were selected based
218 on regression weights, a final model could not be trained and the associated AUC is reported as NA
219 (not applicable).
First model Final model
Real data Permuted data Real data Permuted data
Phage No. of gene No. of gene No. of gene families No. of gene families
Preparation | families selected families selected selected on AUC selected on AUC
by enrichment by enrichment regression weights regression weights
1N/80 10+ 16 0 2 NA 0 NA
676/F 222 +144 0 45 0.78 0 NA
676/T 361 +243 12+11 79 0.87 3 0.63
676/Z 112+ 87 11+14 31 0.72 4 0.61
A3/R 13 £26 0 1 NA 0 NA
A5/L 184 + 124 0 37 0.8 0 NA
A5/80 265 + 148 0 80 0.78 0 NA
P4/6409 200 + 137 2+4 61 0.79 0 NA
phi200/ 160 + 138 0 56 0.79 0
NA
6409
MS-1 6+10 0 0 NA 0 NA
OP_MS-1 86+78 0 29 0.65 0 NA
OP_MS-1_T 54 +52 1+1 13 0.67 0
NA
or
220

221
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2.4.3 Final model

Final models were next retrained including only the significant gene families passing both
selection criteria as input features. Plots of the regression weights assigned by those final models
showed the direction of weights to be consistent across folds, i.e. gene families are either found
consistently to have positive or negative weights across most of the 5 partitions. This is depicted for
the example of phage P4/6409 in Figure 4.

1234

0.6
1235

0.4
1245

1345 —

2345 -

Figure 4. Heat map of the regression weights for the final model of phage P4/6409. Columns are gene
families, rows are cross validation folds. The color indicates the value and direction of each weight,
with blue being strongly positive and red being strongly negative. Weights with low values are
white. Results were comparable for other phages with the exception of 1N/80, A3/R and mix MS-1
(see Table 2).

Out of all the 167 gene families, in total 99 increased phage resistance, 63 increased phage
susceptibility and five were ambiguous, meaning that they increased resistance to some phages but
susceptibility to others. This confirms that the vast majority of significant gene families identified
were consistent in their direction of influence.

The definition of phage susceptibility we used in this analysis encompasses only the two
highest lysis levels, namely confluent lysis and semi confluent lysis. We have re-run the modeling
process including also the weakly sensitivity levels and found no difference in the modeling results.
This is probably because intermediate sensitivity was rarely observed in our strain set (see
Supplementary Table 54).

2. 5 Functional annotation of the significant genes

We further sought to characterize the function of the identified significant gene families by
comparing them to the eggNOG database. The distribution of functional annotation terms identified
for the full set of significant genes is shown in Figure 5, and shows that it was possible to identify a
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match in eggNOG for only 60% of gene families. Most genes had either no hit in the eggNOG
database or a hit to a NOG of unknown function.

Case-by-case inspection of the functional annotation terms retrieved from both RAST and
eggNOG for the 167 significant gene families identified 13 gene families that have terms directly
related to phages, while another 18 were related either to other mobile genetic elements such as
genomic islands and transposons or to processes associated to them such as transposase activity.
Four additional gene families appeared to be part of restriction-modification systems and six had
hits to transcriptional regulators.

Out of these groups, only the gene families related to restriction-modification systems were
found to consistently be associated with resistance to phage infection (as measured by the sign of the
weights in the final model described earlier). The others groups encompass both gene families
promoting resistance and families promoting susceptibility, further pointing to the complexity of the
host-phage interaction. The full list of annotation terms for all significant gene families can be found
in the Supplementary Table S2, together with the gene family’s average regression weight across the
five cross validation folds per phage.

gene functions
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Figure 5. Functional annotation categories of the eggNOGs matching to the set of significant genes
across all nine phages.
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To estimate whether this observed distributions of functional categories in the 167 significant
gene families is different from what could be expected by chance, we estimated cumulative density
functions for each eggNOG category from 10.000 random subsamples of 167 gene families drawn
from the total set of 6419. From those, we calculated the likelihoods of observing each category by
chance, and next evaluated if the probability of a given functional category estimated from the 167
significant gene families is enriched or depleted compared to these random likelihood values.

With a threshold of p=0.05, we find that categories ‘No hit” and ‘Replication, recombination and
repair’ are enriched, while ‘Post-translational modification, protein turnover, and chaperones’ and
‘Inorganic ion transport and metabolism’ are depleted, see Supplementary Table S3. Further, it is
conceivable that many gene families influencing the susceptibility are themselves phage-associated,
as is evidenced in the functional annotation terms found for them. As phage genomes typically
suffer from poor annotation [15], it is not surprising to find a high percentage of gene families
without hits to the database and with hits to the ‘unknown function’.

2.6 Overlap of significant gene family sets

We further analyzed the overlap between the significant gene family sets found for each phage
model. Figure 6 shows a histogram of the number of phage models where a given gene family was
identified significant. It clearly presents that very few significant gene families are shared by many
phage models and only one is shared by all nine. The majority of significant gene families have been
observed in interaction with only one or two different phages. This in turn means that each of the
phages we tested has a distinct and specific interaction with our bacterial strain set, since different
genes in the bacterial host dictate whether infection will be successful.

Further, the significant gene families of the three cocktails are not a linear combination of the
sets identified for their component phages though there is a sizeable overlap (data not shown).
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Figure 6. Histogram depicting the number of phage models where a given gene family was
identified significant.

There were four gene families found significant in at least eight phage models. They are listed
in Table 4 along with their direction of influence and the annotation and category of their matching
eggNOG, if any. Out of the four, three increase resistance to phage while one was ambiguous in its
direction of influence. Two gene families had no hit in the eggNOG database and one was
categorized as being of ‘unknown function’. We were therefore unable to deduce a possible function
for them though they appear to be of great importance for phage susceptibility. One, cluster 3112,
appears to be involved in regulation of transcription and signal transduction which may play a role
in host takeover. There were no direct indications for how exactly those gene families effect their
influence biologically but it is evident from the models that they do.

Table 4. Predicted functions of the gene families found significant in interaction with eight or more

phages.

Gene family Times Increases eggnog eggnog
ID observed annotation category

cluster_1791 9 Resistance - No Hit
cluster_389 8 Resistance - Function
unknown

cluster_3112 8 Resistance Transcriptional ~ Transcription
regulator
cluster_3992 8 Ambiguous* - No Hit

*This gene family always confers phage resistance except in one interaction in which it confers susceptibility.

3. Discussion

In this study we sought to model the host-genetic determinants of MRSA phage susceptibility
with a two-step logistic regression model fitted via ridge regression. We succeeded in building
models of acceptable performance for nine of the 12 tested phage preparations with AUCs ranging
from 0.65 to 0.87. By doing so, we identified 167 host gene families that influence S. aureus’
interaction with those nine phages.

Our dataset is with 207 observations rather small for this type of analysis, since there are many
more covariates, i.e. gene families than observations.

We have addressed this by building a two-step model and including a filtering step based on
p-values, thereby greatly reducing the number of covariates going into the analysis. As biological
entities are shaped by evolution, the strains share some degree of relatedness, and the testing results
are not completely independent observations. We have partitioned the data according to phylogeny
in a way that ensures highly similar strains are located to the same partition. Doing that ensures that
the observations we are aiming to predict are more independent from the ones we feed into the
model during training. The partitioning was maintained at all steps, ensuring that data from highly
similar strains was never used to predict the outcome.

Furthermore, there was an uneven partitioning of the data due to a high percentage of strains
from two very related sequence types, which may lead to bias. The challenge of uneven partitions
was addressed by subsampling the oversized partition 1 so we could obtain a realistic distribution of
p-values for the association of all genes to the observed phenotype. Lastly, our set of strains with its
composition of clonal complexes is specific to Denmark [16] . It is not necessarily representative of S.
aureus populations observed in different settings.
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It should further be noted that our approach can only identify gene families that are part of the
accessory genome, since the first selection step is based on differential abundance of those gene
families in susceptible vs resistant strains. Furthermore, this analysis does not consider point
mutations as far wild type and mutant version of a gene are more than 90% identical, since we have
clustered genes into families with that threshold.

Regarding the electronic gene family annotation, we were able to identify four gene families
related to restriction-modification systems, all of which increased the resistance to phage as
expected.

Further, six of the significant gene families were related to transcriptional regulation and a
multitude of gene families appear to be mobile elements of some kind. Those gene families had
varying direction of influence. The findings fit well with the fact that phages try to shut down host
transcription during take over, as well as with the interplay of integrated prophages and external
phages, which can either complement each other or oppose each other. An integrated prophage may
for example protect from further infection via a principle known as superinfection-exclusion [17].

For a large proportion of the significant gene families however, no hit could be found in the
eggNOG database and of those that had a hit, the most common category was ‘Function unknown’.
This may be due to the fact S. aureus has a large accessory genome that is made up mostly of different
types of mobile genetic elements, among them prophages, highly diverse and not well characterized
[8]-

We also found that there is only a minor overlap between the sets of significant gene families
identified for different phages. This means that each phage had a different and specific interaction
with the set of bacterial strains.

Further, we found that more gene families promoted resistance than susceptibility. Among the
four gene families that were found significant in interaction with at least eight different phages,
three promote resistance and one was ambiguous (see Table 4). This overrepresentation of gene
families promoting resistance was expected, since in our set-up resistance to phage can more easily
be explained by a gain of function model, meaning the gaining of a defense mechanism of which
there are plenty found in nature. We were unfortunately unable to identify the nature of the defense
mechanism in most resistance promoting gene families from electronic annotation alone.

Conversely, a gain in susceptibility linked to the presence of a certain gene family is more
difficult to explain. The most ready interpretation is that this gene family somehow improves
conditions for the phage. The observation can also be explained by integrated prophages which may
become activated upon infection or stress caused by the adsorption of an external phage and then
lyse their host after completing the lytic cycle. Since the products of the bacterial lysis by the phages
were not sequenced, we cannot say whether the external, therapeutic phage or an integrated
prophage is the agent of the lysis. Intriguingly, evidence of an interplay between virulence and
phage resistance has also been shown. Laanto et al report that after co-cultivation with lytic phage,
strains of the fish pathogen Flavobacterium columnare that have acquired phage-resistance have also
lost their virulence compared to phage-sensitive paternal strains [18]. Similar observations have
been made for S. aureus by Capparelli et al [19] , who show that phage-resistance is associated with
reduced fitness. Accordingly, genes families found by us to increase phage susceptibility may also
be associated with virulence and competitiveness. This is coherent with the origin of our strain set as
clinical patient isolates.

One of the current debates in phage therapy focuses on the issue of whether broad spectrum
phage cocktails or monovalent phage preparations are preferable [13], [20] . Our approach is a step
in the direction of characterizing the interplay between clinical strains of MRSA and single phage
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preparations so that a well-targeted phage can be utilized for therapy. We have not observed an
advantage of phage cocktails over the monovalent preparations they contain. This may be due to
interference between the component phages as has for example been documented by Delbruck [21]
and Adams [22].

We have shown that while our methodology does not have predictive power, allow for the
association of the observed phenotype with the genetic background, thereby producing
interpretable results that can be used for gene function discovery. This type of analysis, which
combines phenotypic and whole genome sequencing (WGS) data can be used to identify genetic
determinants of observed bacterial phenotypes in other settings as well.

4. Materials and Methods

4.1 Collection of clinical MRSA strains used for susceptibility testing

The collection of 207 MRSA strains tested in this project as well as their whole genome
sequences (WGS) were obtained from the Clinical Microbiology Department of Hvidovre Hospital,
Denmark. The strains originate from patient samples. They were selected to represent a broad
genetic diversity of the more than 5000 WGS MRSA from Hvidovre Hospital.

Although no methicillin-sensitive (MSSA) strains were included in the study, we nonetheless
chose MRSA strains of the spa-types that are common in MSSA infections. We included MRSA
strains positive for PVL and containing mecC. All inclusion criteria are listed in a Supplementary file
and the properties of selected isolates can be found in the Supplementary Table S1.

4.2 Collection of phages used for susceptibility testing

A total of 12 therapeutic staphylococcal phage preparations were used for susceptibility testing.
They contain phages which are part of the proprietary collection of therapeutic phages used by the
phage therapy unit of the Hirszfeld Institute of Immunology and Experimental Therapy of the
Polish Academy of Science in Wroclaw (HI) [23]. Nine of the preparations are monovalent phage
lysates (containing 1N/80, 676/F, 676/T, 676/Z, A3/R, A5/L, A5/80, P4/6409, or phi200/6409 phage).
Crude phage lysates were prepared according to the modified method of Slopek et al. [9] [citation].
Six of those phages (IN/80, 676/Z, A3/R, A5/80, P4/6409, and phi200/6409) were sequenced and
confirmed to be obligatory lytic and belonging to a Twortlikevirus genus of a Spounavirinae subfamily
of Myoviruses [24]. They were provided in routine test dilution (RTD) which is the highest dilution
that still gives confluent lysis on the designated propagating strain of S. aureus [25]. Three others
were equal mixtures of A5/80, P4/6409, and 676/Z phages prepared at the Institute of Biotechnology,
Sera and Vaccines BIOMED S.A. in Cracow, Poland: MS-1 phage cocktail lysate containing each
phage in a titer no less than 5x105 pfu/ml, OP_MS-1_TOP cocktail of purified phages suspended in
phosphate buffered saline containing each phage at no less than 10° pfu/ml [26] [citation], and
OP_MS-1 phage cocktail of the similar characteristics as OP_MS-1_TOP but containing up to 10% of
saccharose as a phage stabilizer.

4.3 Susceptibility testing procedure

Testing for phage susceptibility was performed as described by Slopek et al [27]. In short, 50 ul
of phage preparation was applied onto a fresh bacterial lawn from day culture and the results were
assessed the next day following 6 hours incubation at 37°C.

Results were assessed according to a 7-point scale as described by Slopek et al [27] and then
further discretized into two levels: ‘susceptible” and ‘resistant’. The ‘susceptible’ label was applied to
the two strongest reactions, resulting in confluent or semi confluent lysis. According to standards
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applied at the Bacteriophage Laboratory of the HI, those two levels enable the phage procurement
for therapeutic phage preparation. All other weak reactions as well as a negative reaction and
opaque lysis were regarded as 'resistant’. The full set of 207 strains was challenged with each of the
12 phage preparations. We call the result of susceptibility testing to a preparation the ‘interaction” of
our strain set with said phage.

We also build models using a modified division of the phage reaction including weakly
susceptible levels (>20 independent plaques) in the definition of ‘susceptible’” and only including
strongly resistant results (resulting in the negative reaction, opaque lysis or < 20 plaques) in the
‘resistant’ label. Thereby, we investigated whether the split we imposed on the 7-scale phage typing
results influenced our modeling results.

4.4 Data Partitioning

For the purpose of modelling the phage response from the genomic composition of the bacterial
strains, the 207 MRSA strains were divided into five partitions. This division was based on the
orthogonal average nucleotide identity (orthoANI) as described by Lee et al [28]. OrthoANI is
suitable for creating a distance matrix, because it is a symmetric measure of distance, unlike the
traditional ANI. Calculations were performed on all pairs of strains with the standalone tool OAT by
Lee et al. Distances were subsequently calculated as 1 — orthoANI and a heat map was generated
which can be found in Figure 1.

The resulting heat map showed very clear clusters of closely-related sequences. Partitioning
was therefore done by visual inspection.

The partitions thus obtained were then used in a five-fold cross validation framework, i.e. four
of them were combined into the training set and one was left out for testing. This process is repeated
five times so that each partition is in turn the testing set.

4.5 Identification of gene families

The genetic makeup of the MRSA strains was analyzed by first predicting genes and
performing functional annotation through the RAST service [29]. The predicted genes were then
clustered with cd-hit [30] using a cutoff of 90% on global sequence identity, word size 5 and the -g 1
option to cluster with the best match instead of the first match. This resulted in a total of 6.419 gene
families in the 207 MRSA strains.

Next, the feature space, i.e. the number of gene families included, was reduced by removing
gene families with limited power for distinguishing susceptible from non-susceptible bacterial
strains. This was done by constructing 2x2 contingency tables as shown in Table 3, and from these
tables calculating a p-value to each gene family in each phage interaction using Fischer-Boschloo’s
exact unconditional test. In contrast to the often used Fischer's, exact conditional test,
Fischer-Boschloo’s is an exact unconditional test. In total sum fixed designs, unconditional test are
always preferable to conditional tests for reasons detailed by Lydersen et al [31]. We then imposed a
threshold of 0.01 on the p-value for the gene family to be admitted to the second step of modelling.
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Table 3. Layout of the contingency tables used for analysis. The asterisk denotes the total sum fixed

by design.
Susceptibility
Presence of gene ) .

) susceptible resistant Sum
family
present al b2 at+b
absent c d: ctd

Sum a+c b+d n*

! Number of isolates that are susceptible to the phage currently
looked at and in which the current cluster is present.
2 Number of isolates that are resistant to the phage currently looked
at and in which the current cluster is present.
3 Number of isolates that are susceptible to the phage currently
looked at and in which the current cluster is absent.
4 Number of isolates that are resistant to the phage currently looked
at and in which the current cluster is absent.
Both the row and column margins sum to n.

This first filtering step was performed inside the cross validation framework, so that the
partition being tested was not included in this initial p-value based feature reduction. Due to the fact
that the 2x2 tables were constructed from only the training set, some gene families in a given test set
do not have a p-value associated. This specific situation arises when gene families are only present in
one partition and that partition is left out of the training set. In these cases the gene family was
assigned a p-value of NA (not applicable).

4.6 Bootstrapping

As can be seen in Figure 1, partition 1 is substantially larger than the other four partitions in the
benchmark data, see 3.2 for further details. This potentially imposes a bias when calculating the
association p-values, since these often will be driven solely by the data in partition 1. To amend that,
a bootstrapping resampling procedure was applied to partition 1: When picking gene families based
on a combination of partitions that includes partition 1, instead of including the full partition, a
subsample of 25 strains used and was added to the other three partitions. From that data, we then
created contingency tables and calculated p-values as described above. This procedure was repeated
a 100 times, resulting in 100 p-values per gene family per phage interaction. We then imposed the
condition that a gene family had to pass the p-value threshold of 0.01 in at least 90 of those to be
selected.

4.7 Model construction and feature selection

While a strong p-value obtained, for instance, from a contingency table as described above is an
indication, it is often not a conclusive proof of an actual association existing between the gene and
the observed phenotype. For that, the gene needs to have predictive power towards the phenotype it
is thought to be influencing. Therefore, we chose to model the phage response with a logistic
regression model that was fitted using a Ridge regression.

For each phage interaction, a logistic Ridge regression model was trained on four of the
partitions and tested on the one left out partition using the gene families that has passed the
association-based p-values criteria described above as input, and the binary susceptible/resistant
annotations as target values. This was done five times for the five possible combinations of
partitions. This five-fold cross validation framework allowed us to evaluate the model’s predictive
potential and assess their robustness.
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In this way, five models were constructed each with regression weights associated to each of the
gene families. If a gene family had not been picked for that particular partition, it was assigned a
weight of NA. We hypothesised that gene families with a high weight across many partitions drive
the response to this particular phage. In order to verify this, we next trained and tested a second
five-fold cross validated regression model with only the genes that 1) were significant according to
the Fischer-Boschloo’s test (P < 0.01) and 2) had weights above 0.01 in at least three partitions in the
first regression model.

In order to verify that the set of genes we identified were indeed descriptive of the phage
susceptibility and not an artifact of over-fitting, we repeated the model construction and feature
selection with shuffled target values. That is, we randomly associated susceptibility outcomes and
bacterial genomes, while keeping the ratio between susceptible and resistant as in the original data.
We then re-ran the modelling, and evaluated the predictive performance and the number of
predictive gene-families identified.

4.8 Assignment of EggNOGs

We further compared each gene family to the EggNOG database [32] by using the
eggNog-mapper available on their webpage. EggNOG is a database of non-supervised orthologous
groups (NOG) of proteins, in which each group has only one annotation term compiled from the
integrated and summarized functional annotation of its group members. Each NOG is also part of a
broader functional category. This allows for the quick and efficient assignment of functions for
predicted genes by finding their matching NOG.

After identifying a set of significant gene families (see 2.7), the prevalence of each functional
category in that set was calculated. We also extracted 10.000 random subsamples of the same size
from the full set of genes and used these data to establish an estimated cumulative density function
(eCDF) for the prevalence of each category.

Supplementary Materials: The following are available online at www.mdpi.com/link: Details of inclusion
criteria for MRSA strains. Figure S1: Plot of the cumulative mean square error of the inner cross validation vs
strength of the ridge penalty. Figure S2: P-value distributions of gene enrichment analysis on phage
preparations 1IN_80, A3_R and cocktail MS-1. Table S1: List of MRSA strains included in the test set. Table S2:
List of all significant gene families along with their functional annotation terms. Table S3: Probabilities of
observing a given prevalence per functional category based on the cumulative density function. Table S4:
Detailed phage typing results.
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10 Conclusion and outlook

The vast increase of antimicrobial resistance seen in recent years poses a
serious threat to public health and - if unresolved - may lead to a future where
common bacterial infections will once again be deadly. Phage therapy is one
of the most promising alternatives to antibiotics and accordingly considerable
time and effort have been invested into the field.

The focus of my PhD has been to investigate how genomics and machine
learning techniques can be used to further the understanding of therapeutic
phages and the phage-host interaction. To do so, different aspects of phage
therapy research were explored. It started with the characterization of an
already existing phage cocktail, then moved on to investigate determinants
of phage susceptibility in the host-genome. Lastly, the diversity of phages
present in sewage, the major isolation source of therapeutic phages, was
explored. To maintain the flow of thought, the chronologically last project
(concerning phages in sewage) was presented in this thesis as the second project.

In the first project of this PhD, the long-used and highly clinically relevant
INTESTI phage cocktail has been sequenced and analyzed. We found that
there are at least 23 different phage types in the cocktail, 20 of which showed
considerable similarity to known phages while 3 were largely novel.

One of the main conclusions of this paper was, that the different phage types
were present in vastly different abundances in the cocktail. This could be a
consequence of the way the cocktail is produced. However, since the INTESTI
cocktail has been in use successfully for many years, the uneven composition
may also be a feature. Different phage types exhibit different levels of stability,
efficiency of adsorption and burst size. Some phages may therefore require a
higher multiplicity of infection that others to be effective. This has implications
for companies and research laboratories seeking to produce their own cocktail.
It should be verified whether even or uneven ratios of the component phages
produce the best results.

The study furthermore included an amplification experiment in which in-house
bacterial strains that had proven susceptible to the cocktail were infected
and subsequently their lysates sequenced to discover which phages in the
cocktail had been amplified. It was found that a phage contig which was
barely present in the sequencing data of the full cocktail corresponded to a
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group of contigs with high coverage in the lysate of Pseudomonas Aerugi-
nosa PAO1. This result illustrates the usefulness of a highly diverse cocktail
since even component phages in low abundance can unfold their potential
upon meeting their host. However, in current phage therapy efforts in the
Western world, phage cocktails are typically of low complexity because drug
regulatory authorities require approval for every component phage. To re-
solve this question, there is a need for more studies investigating whether or
not high-complexity phage cocktails are preferable from a clinical point of view.

In the second project, phage communities present in sewage samples were
compared to known phages in databases as well as to each other. It was found
that typically more than 50% of phage contigs in a sample had no close known
relative. This underlines both a great need for more environmental phage
studies as well as the enormous genetic potential still hidden in even mundane
environments like city sewage.

The study also showed that the phage communities of different sewage samples
were quite distinct from each other. This pairwise genomic distance, based on
shared k-mers, was astonishingly constant and did not appear to correlate with
whether or not the samples were from a similar geographic location. At the
same time, the majority of samples contained crAssphage, a highly abundant
phage in human fecal metagenomes [58]. Both of these observations suggest
that there may be principles underlying the phage community in sewage that
are invariant to geographic location.

When looking into how well known phages are represented in the sewage
samples, we furthermore observed intriguing patters in the ANI distributions.
Two of those seemed to correlate with the Siphoviridae and Myoviridae fami-
lies. Though we do not currently understand the meaning of these patterns,
it would be of interest to investigate whether they could be related to some
property of the phage family, such as a preferential mode of mutation, or to
see if they also hold for phage samples from other environments.

Finally, the third project was centered on identifying gene families in the
accessory genome of the pathogen S. aureus that influence its susceptibility
to phages. For this, 207 strains of MRSA were tested for susceptibility to
12 different phage preparations. As a result, 167 such gene families were
found by building nine successful regression models. Among those were genes
related to prophages and mobile elements, restriction-modification systems
and transcriptional regulators. However, most of the identified gene families
were of unknown function. This illustrates another aspect of the phage suscep-
tibility problem: Though S. aureus is an important pathogen, large parts of
its accessory genome remain poorly characterized. To better understand the
phage-host interaction it will be vital to assign functions to a larger part of
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the host genome.

This project further showed that most gene families were only found to influ-
ence susceptibility to some of the nine phage preparations. In other words,
each of the nine phage preparations had a distinct and specific interaction
with the strain set. This result reinforces the notion that there is an array
of different phage defense mechanisms, at least in S. aureus, and not one
way to gain resistance to the majority of phages. A next step in this line
of questioning could be to experimentally verify whether the identified gene
families are actually causal of phage resistance/susceptibility, for example
via knock-out experiments. There may however be significant challenges to
that because it might actually be a combination of gene families that is caus-
ing the phenotype. Therefore, a large number of experiments may be necessary.

Phage susceptibility is also not purely genetically determined. Environmental
factors can have an influence, for example via an up- or down regulation of
receptor expression. Hgyland-Kroghsbo et al describe such a phage defense
mechanism based on quorum sensing in F. coli, where a phage receptor is
down-regulated based on population density [16]. Those effects are not cur-
rently captured in our model, but could be included in future studies.

Understanding the genetic determinants of susceptibility is an important step
forward towards evidence-based selection of the appropriate therapeutic phage
preparation. This ties in with a general movement towards personalization
in medicine. It can furthermore aid in the rational design of phage cocktails
by combining phages for which different sets of resistance-promoting gene
families have been identified. This would indicate that those phages have
different modes of action or at least cannot be evaded with the same strategy.
Using such complementary phages could then delay the development of phage
resistance in the bacterial population.

Looking at the broader picture, the first and third project of this PhD have
dealt with the two principle approaches to phage therapy: Using either stan-
dardized, off-the-shelf cocktails or personalized phage preparations tailored to
the infecting strain. Each of these has merits as well as drawbacks. First-off, a
customized phage preparation is more sure to eliminate specifically the bacte-
rial strain causing the infection and the effect on the commensal microbiome
is minimized. However, this advantage comes with the drawback of needing
to identify the infecting strain prior to treatment. Further, as pointed out
by Pirnay et al in their 2011 commentary, custom-made phage preparations
are not compatible with the current regulatory guidelines as there is not the
time or funding to gain approval for their use through the usual channels, i.e.
clinical trials [9].
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Ready-made cocktails on other hand have been shown by for example the
Eliava Institute to lose efficacy over time and need to be updated by either
adapting the component phages to the current bacterial strains or isolating
new phages [9]. This again creates problems with the current legislation. In
time, guidelines for updating existing cocktails may be set-up, possibly from
a library of approved phages. For now, it is not clear which criteria would
need to be met and which sort of characterization to be provided for a new
phage to be added into an approved product. For more information concerning
this subject see [59] for the publicly available transcripts of the FDA work-
shop on 'Bacteriophage Therapy: Scientific and Regulatory Issues’ in July 2017.

There is no final verdict on this question. However, those two approaches need
not be exclusive of each other. They could also be used in tandem as each
is suited for different purposes. Ready to use cocktails could be applied as a
first line drug and for prophylactic purposes in wound care, as is done in the
Republic of Georgia, where phage preparations are part of the standard medi-
cal care [60]. Custom-made phage preparations could be used for complicated
infections and cases where the standard cocktails have proven ineffective.

In conclusion, after waiting in the wings for many years the time is now right
for phages to takes center stage once more and become an integral part in
combating bacterial infection in Western Medicine. The work presented in this
thesis is a step in the direction of bringing the field of phage research further
towards a future of phage therapy in humans.
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Table A1l. Overview of the trimming parameters and assembler that gave the best result for each phage DNA
sample. Trimming was based on the output of FASTQC

Sample Trimming Assembler
E. coli removed nucleotides from the right (5' end) according to quality score Genovo
(min 20)

removed reads according to the mean quality (min 20)
removed reads shorter than 50 bp

remove reads with streaks of N longer than 10
removed 20 nucleotides on the left (3' end)

removed 10 nucleotides on the right (5' end)

removed duplicate reads

Enterococcus removed nucleotides from the right (5' end) according to quality score Genovo
(min 20)
removed reads according to the mean quality (min 20)
removed reads shorter than 50 bp
remove reads with streaks of N longer than 10
removed 30 nucleotides on the left (3' end)
removed 10 nucleotides on the right (5' end)
removed duplicate reads

P. aeruginosa removed nucleotides from the right (5' end) according to quality score Genovo
PAO1 (min 20)

removed reads according to the mean quality (min 20)

removed reads shorter than 50 bp

remove reads with streaks of N longer than 10

removed 20 nucleotides on the left (3' end)

removed 50 nucleotides on the right (5' end)

removed duplicate reads

P. aeruginosa Untrimmed Velvet

0407431-2

Proteus Untrimmed Velvet

Salmonella removed nucleotides from the right (5' end) according to quality score Genovo
(min 20)

removed reads according to the mean quality (min 20)
removed reads shorter than 36 bp
remove reads with streaks of N longer than 10

Shigella flexneri removed nucleotides from the right (5' end) according to quality score Genovo
(min 20)
removed reads according to the mean quality (min 20)
removed reads shorter than 50 bp
remove reads with streaks of N longer than 10
removed 20 nucleotides on the left (3' end)
removed 10 nucleotides on the right (5' end)
removed duplicate reads

Shigella sonnei removed nucleotides from the right (5' end) according to quality score Genovo
(min 20)
removed reads according to the mean quality (min 20)
removed reads shorter than 50 bp
remove reads with streaks of N longer than 10
removed 20 nucleotides on the left (3' end)
removed 10 nucleotides on the right (5' end)
removed duplicate reads




Table A2. Overview of the bacterial strains used for small scale susceptibility testing. Observe that all Salmonella
are of the species Salmonella enterica subsp. enterica but they are identified as different serovars. Reference strains

are marked with an asterisk. Pathogenic strains are marked with a plus, opportunistic pathogens with a tilde. All

strains are part of an in-house collection.

Genus Species/ Serovar Strain Susceptibility
Salmonella serovar Enteritidis ATCC 13076 *+ Yes
serovar Typhimurium ATCC 14028 *+ Yes
serovar Saint Paul DVL31 * Yes
serovar Newport EQASI1 98-24475-1* Yes
serovar Infantis EQASI1 98-74091-5* Yes
serovar Derby EQAS2 99-65209-5* Yes
serovar Typhimurium DT36* Yes
serovar Enteritidis PT1+ Yes
serovar Heidelberg 75-12893-1* Yes
serovar Dublin 1111H11036 * Yes
Staphylococcus aureus ATCC 29213 * No
aureus ATCC 25923 *+ Yes
epidermidis CCM2354 No
pseudointermedius Bjorn 55-4 No
hyicus NCTC 10350 No
felis Sneleopard Yes
lugdunensis E2-1928945 No
aureus 76670 CC8 related * Yes
aureus Not given* Yes
aureus MSSA A7+ Yes
Shigella flexneri 1s+ Yes
sonnei 2s* Yes
boydii Not given* Yes
flexneri Not given* Yes
Not given HN-Sh, 2006-001, 2007-5-3 * Yes
Pseudomonas aeruginosa DMS 1128 / ATCC9027 *- No
aeruginosa Skejby_2- No
aeruginosa 07 52277-1~ Yes
aeruginosa PAOI seq - Yes
aeruginosa 0173267-5~ Yes
aeruginosa 0407431-2~ Yes
aeruginosa 0107338-1~ Yes
Escherichia coli ATCC 25922 * Yes
coli C 64-12+ No
coli C 60-12+ No
coli C 23-12+ No
coli oedemsyge-45 No



coli BW25I113 Yes

Proteus hauseri DSM 30118/ ATCC 13315 *- Yes
vulgaris DMS 2140/ ATCC 8427 *- No
vulgaris CCUG 36761, ATCC 13315 *- Yes
mirabilis 76499961~ Yes
mirabilis E2 1928244~ No

Enterococcus faecalis 2011-70-7-6 to 2011-70-250-4 - No
faecium 2011-70-7-8 to 2011-70-252-10~ Yes
faecalis 2008-37857~ No
faecalis 12E- No
faecalis ATCC 29212 * Yes

Table A3. Overview of phage clusters identified in the sequencing data of the host-amplified samples. Note that
many clusters are much smaller in size compared to the corresponding clusters in the full cocktail. Those clusters
have likely not been amplified by that particular host. Some clusters however, e.g. EntF2 and Paol_new show a
great increase in size. This can be explained by the fact that those are infecting clusters (compare Table 4 in the
text) which are in higher abundance in the host-amplified samples compared to their original numbers in the

cocktail. Therefore, greater parts of those clusters could be recovered from the amplified samples.

Phage Cluster Corresponding  Size ratio to
Cluster in size cluster in corresponding
sample in bp INTESTI cluster
Amplified on Escherichia coli
Ecol 9,737 D1 0.07
Eco2 3,163 D2 0.04
Eco3 19,979 D3 0.23
Eco4 1,043 D4 0.02
Eco5 7,023 D5 0.05
Ecob 133,873 Dé6 1.64
Eco7 17,744 D7 0.30
Eco9 5,487 D9 0.14
Ecol0 39,747 D10 0.27
Ecoll 4,131 D11 0.07
Ecol2 12,195 D12 0.20
Ecol3 9,105 D13 0.05
Ecol4 185,358 D14 1.39
Ecol5 7,278 D15 0.17
Ecol6 18,144 D16 0.39
Ecol7 78,630 D17 191
Ecol8 8,603 D18 0.21
EcoP 41,317  Proteus phage 0.40
Amplified on Enterococcus faecalis
Ent7 58,552 D7 1.01
Entl1 6,268 D11 0.10
Ent13 5,282 D13 0.03

Ent18 41,874 D18 1.02



EntF2 88,702 F2 7.73

Amplified on Pseudomonas aeruginosa PAO1_seq

Paol_6 9,257 D6 0.11
Paol_10 1,477 D10 0.01
Paol_12 538 D12 0.01
Paol_F1 22,920 F1 1.65
Paol_P 3,075 Proteus phage 0.03

Paol_new 45478 - 19.01
Amplified on Pseudomonas aeruginosa 0407431-2
PA0407_3 87,742 D3 1.00
Amplified on Salmonella typhimurium
Sal3 515 D3 0.01
Sal6 19,359 D6 0.24
Sal7 574 D7 0.01
Sall3 1,047 D13 0.01
Sall4 717 D14 0.01
Sall8 46,366 D18 1.13
SalF2 94,543 F2 8.24
SalP 670 Proteus phage 0.01
Amplified on Shigella flexneri

ShiF11 2,402 D1 0.02

ShiF12 4,799 D2 0.06

ShiF13 1,357 D3 0.02

ShiFl16 21,797 D6 0.27

ShiF17 3,946 D7 0.07

ShiF19 3,362 D9 0.08
ShiF110 1,102 D10 0.01
ShiF112 7,707 D12 0.13
ShiF113 1,784 D13 0.01
ShiF114 177,744 D14 1.34
ShiF115 48,286 D15 1.10
ShiF116 4,765 D16 0.10

Amplified on Shigella sonnei
ShiS2 6,868 D2 0.09
ShiS6 11,588 D6 0.14

ShiS14 173,647 D14 1.31

ShiS15 49,031 D15 1.12

ShiS16 4,075 D16 0.09

ShiSP 5715 Proteus phage 0.05

Amplified on Proteus vulgaris

Protl7 59,325 D17 1.44
ProtP 102,963  Proteus phage 0.99




Figure Al. Examples of two clusters who's depth of coverage had a large standard deviation. The lower the
contig ID the longer the contig.

Top: Depth of coverage of cluster D1. Contig 1 which is the longest, has a much lower depth of coverage than the
short contigs 97 and contig 158. Annotation results showed that many of the genes in contigs 97 and 158 show
homology to genes annotated as 'terminal repeat-encoded protein (Tre)'. Bottom: Depth of coverage of cluster D6.
The two short contigs 249 and 258 have much lower depth than the other contigs in that group. We theorize that
they could represent divergent regions only present in a few of the phages in that cluster.
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The following supplementary files are available:

1) Supplementary Table S1.
Table of samples including metadata and the amount of phage DNA in base pairs and percent of

the full assembly.

Available at:
https://docs.google.com/spreadsheets/d/1c6sliAbWW6UabYiXkH9cR3mv806DctqkKKIXJ YkIpKA/e
dit#gid=0
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The following supplementary files are available:
1) List of inclusion criteria for MRSA strains.

All strains originate from patient samples. Strains were included in the study if they met one or more
of the following criteria:

¢ Having one of the ten most common spa types that occur in Methicillin-sensitive
Staphylococcus aureus infections

e DPositive for PVL

e Positive for mecC

¢ Being of a rare clonal complex

¢ Being of one of the major clonal complexes prevalent in Europe (cc22, cc30, cc45)

e Being of clonal complex 398 which is typically livestock associated

Additionally, strains where the sequencing data was of good quality were preferred over strains with

poor quality sequencing data.

2) Supplementary Table S1.
List of MRSA strains included in the test set and their properties.

Available at:
https://docs.google.com/spreadsheets/d/17ciUDM7rJgmCRjMq-
V_xZ23wcd2HrblF206WbtzMst0/edit#gid=0

3) Supplementary Table S2. List of all significant gene families along with the functional annotation
terms retrieved from comparison to RAST and eggNOG databases.

A dash (') in columns 2-4 indicates that there was no hit found and therefore no annotation term or
category could be retrieved. Any other entry is the retrieved annotation term, even if it reads 'NA'. In
columns 6-19 'NA' means the gene family was not found significant in that phage model.

Available at:
https://docs.google.com/spreadsheets/d/1joM5QoX5FCE3BI5vPiE3ucFwxDcSvRGR8Xu]j82Fn6M/edit#
gid=0

4) Supplementary Table S3. Probabilities of observing a given prevalence per functional category
based on the cumulative density function. In the first column is noted the observed percentage of
genes in a given category, as depicted in Figure 5. The second column shows the probability of



observing this percentage or lower given the estimated CDF. Conversely, the third column shows the
probability of observing an even higher percentage given the eCDF.

Note that although categories 'Chromatin structure and dynamics' and 'Extracellular structures'
appear overrepresented in the significant gene set via the cumulative density function, this is
meaningless since both of categories have been observed zero times in the significant gene set. Those
two categories are overall extremely rare within our strain set which makes the cumulative density
function collapse.

percent 1- A
Letter category observed p(CDF(x)) p(CDF(x) p<0.05 | direction
0 No Hit 40.1% 0.99 0.01 yes enriched
B Chroma;;%;ﬁ;?g;”re and |5 0 0.98 0.02 yes | enriched
c Energy prodU(_:tlon and 0.6% 013 0.87 no
conversion
Cell cycle control, cell
D division, chromosome 1.2% 0.94 0.06 no
partitioning
E Amino acid tra_nsport 1.8% 0.06 0.94 no
and metabolism
Nucleotide transport and 0
F metabolism 0.0% 0.08 0.92 no
G Carbohydrate trz_ansport 1,20 012 0.88 no
and metabolism
H Coenzyme trar]sport and 0.0% 0.06 0.94 no
metabolism
| Lipid transp_ort and 0.0% 012 0.88 no
metabolism
3 Translation, rl_bosoma_l 1.2% 017 0.83 no
structure and biogenesis
K Transcription 3.0% 0.24 0.76 no




Replication,

L S . 11.4% 0.99 0.01 yes enriched
recombination and repair
Cell
M wall/membrane/envelope 5.4% 0.81 0.19 no
biogenesis
N Cell motility 0.0% 0.81 0.19 no

Post-translational
o] modification, protein 0.0% 0.04 0.96 yes depleted
turnover, and chaperones

Inorganic ion transport

0,
and metabolism 0.6% 0.01 0.99 yes | depleted

Secondary metabolites
Q biosynthesis, transport, 0.0% 0.24 0.75 no
and catabolism

S Function unknown 28.7% 0.91 0.09 no
Signal transduction 0
T mechanisms 3.0% 0.92 0.08 no
Intracellular trafficking,
U secretion, and vesicular 0.0% 0.38 0.62 no
transport
V Defense mechanisms 1.8% 0.33 0.67 no
W Extracellular structures 0.0% 0.97 0.03 yes enriched

5) Supplementary Table S4. Detailed phage typing results showing the percentage of resistant, weakly
susceptible and strongly susceptible bacterial strains per phage preparation.

strongly
phage preparation | resistant | weakly susceptable |susceptable




1N/80 45.9 22.2 31.9
676/F 425 6.8 50.7
676/T 30.9 1.0 68.1
676/2 55.6 3.9 40.6
A3/R 77.8 3.4 18.8
A5/L 51.2 1.4 47.3
A5/80 40.1 4.8 55.1
P4/6409 58.9 3.4 37.7
phi200/6409 45.9 10.1 44.0
MS-1 58.9 7.2 33.8
OP_MS-1 54.6 6.8 38.6
OP_MS-1_TOP 50.7 9.7 39.6

6) Supplementary Figure S1.

Cumulative mean square error of the inner cross validation vs strength of ridge penalty per outer fold
for the model of phage phi200/6409. It can be seen that the minimum error coincides at similar lambda
values for the five folds. Other phage models behaved in comparable fashion.
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7) Supplementary Figure S2: P-value distributions of gene enrichment analysis on phage preparations
a) IN_80, b) A3_R and c) cocktail MS-1. It can be seen that there is no tail of low p-values as observed
for the other phages (compare Figure 3) and the distributions resemble more closely that of the
permuted data for the other phages.
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