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THE CIRCLE EQUATION OVER FINITE FIELDS

ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

Abstract. Interesting patterns in the geometry of a plane algebraic
curve C can be observed when the defining polynomial equation is solved
over the family of finite fields. In this paper, we examine the case of C
the classical unit circle defined by the circle equation x2 + y2 = 1. As a
main result, we establish a concise formula for the number of solutions to
the circle equation over an arbitrary finite field. We also provide criteria
for the existence of diagonal solutions to the circle equation. Finally, we
give a precise description of how the number of solutions to the circle
equation over a prime field grows as a function of the prime.

Subject class: 11G20, 11D45, 11A07, 14G15

Keywords: Diophantine geometry, prime numbers, siamese twin primes

1. Introduction

From ancient time, shapes and numbers have been fundamental objects
for organizing any kind of civilization, and the birth of mathematics is in-
timately related to exploring these objects. In the Greek culture, studies
of shapes and numbers went hand in hand and culminated in work of Dio-
phantus in the third century. Diophantus has lent his name to diophantine

geometry, which is the study of geometrical properties of the set of solutions
to polynomial equations over integers, rational numbers and more general
number fields.

The fundamental work Disquisitiones Aritmeticae published by Gauss in
1801 marked a new era for the theory of numbers; see Kline [4]. Gauss intro-
duced and made systematically use of the notion of congruence of numbers
to solve algebraic equations modulo a prime number, i.e. solving the equa-
tions over a prime field. With the path breaking work of Abel and Galois in
the 1820s on solutions to polynomial equations, permutation groups and fi-
nite fields composed of roots to such equations came into focus. Out of this,
diophantine geometry over finite fields emerged as an important research
area. In the second half of the twentieth century the subject flourished. It
began with the inspired survey paper on the number of solutions of equa-
tions in finite fields published 1949 by André Weil [7], in which the four
famous conjectures, known as the Weil conjectures, were formulated. The
last one of the Weil conjectures was resolved in 1973 by Pierre Deligne [2],
a merit rewarded with the Abel Prize in 2013.

In this paper we address some questions in diophantine geometry over
finite fields which appear not to have been fully explored.

Consider a plane algebraic curve C over the real numbers given as the
solution set to a polynomial equation in two real variables x and y with
integer coefficients.
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2 ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

The questions concern what remains of C, when we solve the equation over
a finite field. Specifically, we study among others the following questions:

• How does the solution set change when the underlying equation is
solved over a finite field?

• How does the number of solutions change with the order of the finite
field?

The questions can be posed for any choice of C. To obtain specific results
we need, however, to make a specific choice. In this paper we shall examine
the case of C being the unit circle defined by the circle equation

x2 + y2 = 1.

The paper opens with a detailed study of the circle equation over the
finite field Fp of prime order p, and more generally over the finite field Fpn

of order pn for any natural number n ∈ N. In the main Theorem 3.1 we
prove that the number of solutions Npn to the circle equation over the finite
field Fpn is given by the formula

Npn = pn − sin
(

pn
π

2

)

.

We are aware that our formula for the number of solutions to the circle
equation over finite fields can be extracted from results in [6] after some
nontrivial work.

Using the formula for the number of solutions to the circle equation over
a finite field Fpn, we next make a study of how the number of solutions
behave as a function of pn. In Theorem 4.2 we settle the question when the
circle equation over any finite field has diagonal solutions, i.e. solutions of
the form (x, y) = (x, x). For the prime fields Fp we obtain in Theorem 4.3
a very precise answer to the question how the number Np of solutions to
the circle equation over Fp grows as a function of p. Certain pairs of twin
primes, which we term siamese twin primes, play a surprising role.

2. Some basic results

Since a finite field of characteristic p has order pn for some n ∈ N, only
finite fields of characteristic 2 can have even order. The following theorem
contains therefore, in particular, the complete answer to the question about
the number of solutions to the circle equation over a finite field of even order.

Theorem 2.1. Over the finite field Fpn corresponding to the prime p and

the integer n ≥ 1, the equation

xp
k

+ yp
k

= 1

has exactly pn solutions of ordered pairs (x, y) of elements x, y ∈ Fpn for

any integer k ≥ 1.

Proof. Let k ≥ 1 be an arbitrary integer. By rewriting the binomial coeffi-
cient

(

pk

r

)

=
pk!

r!(pk − r)!
, 1 ≤ r ≤ pk − 1,
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we get

pk! =

(

pk

r

)

r!(pk − r)! .

Making use of uniqueness of prime factorization, it is easily seen that pk

is a factor in
(

pk

r

)

, and hence that
(

pk

r

)

= 0 in Fpn . By the binomial formula
we get then

(x+ y)p
k

= xp
k

+ yp
k

.

Together with the obvious relation

(xy)p
k

= xp
k

yp
k

,

this proves that the power map xp
k

: Fpn → Fpn defines an isomorphism of
the finite field Fpn onto itself.

From this follows immediately that

(x+ y)p
k

= 1 if and only if x+ y = 1.

Clearly this implies that for every one of the pn elements x ∈ Fpn, there
exists a unique element y ∈ Fpn such that

xp
k

+ yp
k

= (x+ y)p
k

= 1.

This proves that the equation xp
k

+ yp
k

= 1 has exactly pn solutions. �

Remark. There are p2n ordered pairs (x, y) of elements in Fpn and of these
only pn satisfy the equation xp + yp = 1.

The following special case of Theorem 2.1 provides as mentioned the num-
ber of solutions to the circle equation over all finite fields of even order.

Corollary 2.1. Over the finite field F2n corresponding to the prime 2 and

the integer n ≥ 1, the circle equation

x2 + y2 = 1

has exactly 2n solutions of ordered pairs (x, y) of elements x, y ∈ F2n.

Further on the number of solutions to the circle equation over Fp we have
the following result.

Theorem 2.2. Solutions to the circle equation

x2 + y2 = 1

over the finite field Fp for p odd comes in multiples of four.

Proof. For any odd prime p, you always have the four solutions (1, 0), (0, 1),
(p−1, 0) and (0, p−1). Suppose now that (x, y) = (a, b), 1 ≤ a, b ≤ (p−1)/2,
is a solution. Then (a,−b) = (a, p − b), (−a, b) = (p − a, b) and (−a,−b) =
(p− a, p − b) are also solutions. This completes the proof. �

In the table below, we display for each of the primes p = 2, 3, 5, 7, 11, 13,
the set of all ordered pairs (x, y) of elements in the prime field Fp that
constitutes the set of solutions and the number Np of solutions to the circle
equation over Fp.
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Table 1. Solutions for p = 2, 3, 5, 7, 11, 13.

p Solutions to x2 + y2 = 1 Np

2 (0, 1), (1, 0) 2

3 (0, 1), (1, 0), (0, 2), (2, 0) 4

5 (0, 1), (1, 0), (0, 4), (4, 0) 4

7 (0, 1),(0, 6),(1, 0),(2, 2),(2, 5),(5, 2),(5, 5),(6, 0) 8

11
(0, 1), (0, 10), (1, 0),(3, 5), (3, 6), (5, 3),
(5, 8),(6, 3), (6, 8), (8, 5), (8, 6), (10, 0)

12

13
(0, 1), (0, 12), (1, 0), (2, 6), (2, 7), (6, 2),
(6, 11), (7, 2), (7, 11), (11, 6), (11, 7), (12, 0)

12

3. Solutions to the circle equation over a finite field

In this section we extend the result for the prime 2 in Corollary 2.1 to
include also the odd primes. The formula we present in Theorem 3.1 for the
number of solutions to the circle equation over a finite field of odd character-
istic can with some work be deduced from more general results on solutions
to quadratic forms over finite fields developed by Lidl and Niederreiter in
[6]. We offer, however, a self-contained direct proof of the formula.

Theorem 3.1. For any finite field Fpn of characteristic p, the number of

solutions to the circle equation

x2 + y2 = 1

over Fpn is given by the formula

Npn = pn − sin
(

pn
π

2

)

.

Proof. For p = 2 the result follows by Corollary 2.1. Hence it only remains
to consider the case for an odd prime p. For convenience put q = pn.

The multiplicative group F
∗

q is a cyclic group of order q−1, say generated
by the element g ∈ F

∗

q, see [5]. Every element in F
∗

q is then uniquely presented

as a power gk of g, where the exponent k is counted modulo q.
We define the multiplicative homomorphism η : F∗

q → S of F∗

q onto the

multiplicative group S = {−1, 1}, by setting η(c) = (−1)k, for c = gk ∈ F
∗

q.
In the literature η is known as the quadratic character of F∗

q. For conve-
nience we set η(0) = 0.

The squaring homomorphism x2 : F∗

q → F
∗

q maps the element a = gl ∈ F
∗

q

into c = g2l ∈ F
∗

q. From this we conclude that c = gk is a square in F
∗

q if and
only if k is even modulo q, or equivalently, if and only if η(c) = 1. Hence
there are equally many squares and non-squares in F

∗

q. From this follows
immediately that

∑

c∈Fq

η(c) = 0.
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The number of solutions Nq can be decomposed into a sum of products
of the number of solutions Nq(x

2 = c1) and Nq(y
2 = c2) to the equations

x2 = c1 and y2 = c2, for c1, c2 ∈ Fq with c1 + c2 = 1. Precisely

Nq =
∑

c1+c2=1

Nq(x
2 = c1)Nq(y

2 = c2).

Observing that the equation z2 = c over F
∗

q has exactly two solutions if
any, the expression for Nq can be rewritten as follows using the quadratic
character

Nq =
∑

c1+c2=1

[1 + η(c1)] [1 + η(c2)]

=
∑

c1+c2=1

[1 + η(c1) + η(c2) + η(c1)η(c2)]

= q +
∑

c1∈Fq

η(c1) +
∑

c2∈Fq

η(c2) +
∑

c1+c2=1

η(c1c2)

= q +
∑

c∈Fq

η (c(1− c)) .

Now using that η(4) = η(22) = 1 we can further rewrite this as

Nq = q + η(−1)
∑

c∈Fq

η(4c2 − 4c)

= q + η(−1)
∑

c∈Fq

η
(

(2c− 1)2 − 1
)

= q + η(−1)
∑

c∈Fq

(

−1 +
[

1 + η
(

(2c− 1)2 − 1
)])

= q + η(−1)(−q) + η(−1)
∑

c∈Fq

[

1 + η
(

(2c− 1)2 − 1
)]

.

By definition of the quadratic character η, the sum

S =
∑

c∈Fq

[

1 + η
(

(2c − 1)2 − 1
)]

is the number of solutions in Fq to the quadratic equation

(2c − 1)2 − 1 = a2,

which can be rewritten as

(2c− 1 + a)(2c − 1− a) = 1.

To solve this product of two linear equations, observe that the factor

2c− 1 + a = α

can be chosen arbitrarily in F
∗

q. Then necessarily

2c− 1− a = α−1.

By subtraction of equations and division by 2, we get a = 2−1
(

α− α−1
)

.
Inserting this value for a into the expression for α yields

c = 2−1
[

α+ 1− 2−1
(

α− α−1
)]

.
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Since every solution to the quadratic equation in this way turns out to be
uniquely determined by a choice of α ∈ F

∗

q and since the order of F∗

q is q−1,
we conclude that the sum S has the value S = q − 1.

Collecting facts we get

Nq = q + η(−1)(−q) + η(−1)(q − 1) = q − η(−1).

Now it only remains to determine the value of η on −1 ∈ F
∗

q, i.e. to determine
whether −1 is a square, resp. a non-square in F

∗

q.

We can choose a generator g of F∗

q for which g0 = 1, and g0, g1, . . . , gq−2

are all the elements in F
∗

q, when counting exponents for g modulo q − 1.
The odd number q = pn has a unique representation either as q = 4k + 1

or q = 4k + 3, for k a non-negative integer.
Suppose x = gl, 1 ≤ l < (pn − 1)/2, is an element with x2 = g2l = −1.

Then g4l = g2lg2l = (−1)(−1) = 1 = g0. Consequently

4l ≡ 0 (mod q − 1).

Now suppose q = 4k + 1. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k).

We get a solution if k divides l, and hence solutions always exist. We
conclude that −1 is a square in F

∗

q for q = 4k + 1.
Next suppose q = 4k + 3. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k + 2).

A solution exists only if 2k+1 divides 2l. Since the odd number 2k+1 can
never be a proper factor in an even number 2l < 4k + 2, we conclude that
the congruence has no solutions and hence that −1 is a non-square in F

∗

q for
q = 4k + 3.

It follows that −1 is a square in F
∗

q if and only if q ≡ 1 (mod 4), and
hence

η(−1) =

{

1 if q ≡ 1 (mod 4),
−1 if q ≡ 3 (mod 4).

In conclusion we get

Nq = q − sin
(

q
π

2

)

,

for any prime p, integer n ∈ N and q = pn. �

4. Patterns in the number of solutions to the circle equation

Since we now have the precise number of solutions to the circle equation
over Fpn, we can generalize Theorem 2.2 and prove the following.

Theorem 4.1. Let p be an odd prime and n ≥ 1 an arbitrary integer. Then

the number of solutions to the circle equation x2+y2 = 1 over the finite field

Fpn is a multiple of four.

Proof. The number of solutions is given by

Npn = pn − sin
(

pn
π

2

)

.
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Since p is an odd prime, pn ≡ 1 (mod 4) or pn ≡ 3 (mod 4). On the other
hand, clearly

sin
(

pn
π

2

)

=

{

1, pn ≡ 1 (mod 4),
−1, pn ≡ 3 (mod 4).

It follows that

Npn ≡ 0 (mod 4).

�

The following theorem settles in which finite fields the circle equation has
diagonal solutions, i.e. solutions of the form (x, y) = (x, x).

Theorem 4.2. Let p be an odd prime.

(1) For an arbitrary integer n ≥ 1, the circle equation x2 + y2 = 1 has

diagonal solutions over the finite field Fpn if and only if

2(p
n
−1)/2 = 1 in Fpn .

(2) There are diagonal solutions to the circle equation over the prime

field Fp if and only if p ≡ ± 1 (mod 8).
(3) If there are diagonal solutions to the circle equation over a finite field

Fpn, then there are exactly two diagonal solutions.

(4) If there are diagonal solutions to the circle equation over the prime

field Fp, then there are also diagonal solutions to the circle equation

over Fpn for all n ≥ 1.

Proof. Set q = pn.
First suppose that (x, y) = (a, a) is a diagonal solution to the circle equa-

tion over the finite field Fq. Then 2a2 = 1 and hence (a−1)2 = 2, showing
that 2 is a square in Fq. Next suppose that 2 is a square in Fq. Then clearly
2−1 is also a square in Fq. Therefore there exists an element a ∈ Fq such
that a2 = 2−1, or equivalently, a2 + a2 = 1. We conclude that the circle
equation has diagonal solutions in the finite field Fq if and only if 2 is a
square in Fq. Notice further that the equation x2 = 2−1 has exactly two
solutions ± a, if any, proving part (3) in the theorem.

To finish the proof of part (1) in the theorem, it only remains to determine
for which q = pn the number 2 is a square in Fq.

The finite field Fq is uniquely determined up to an isomorphism as the
splitting field for the polynomial f(x) = xq − x in the polynomial ring Fp[x]
over Fp, see [5].

From this description follows easily that 2 is a square in Fq if and only if
the polynomial g(x) = x2 − 2 is a divisor in f(x) = xq − x.

By polynomial division in Fp[x] we get

f(x) = xq − x = h(x)(x2 − 2) + (2(q−1)/2 − 1)x,

where

h(x) = xq−2 + 2xq−4 + 22xq−6 + · · ·+ 2(q−3)/2x.

From the above follows immediately that g(x) is a divisor in f(x) and
hence that 2 is a square in Fq if and only if

2(q−1)/2 = 1 in Fpn .
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For n = 1, i.e. for the prime field Fp, it was known to Gauss (with
complete proof) that 2 is a square in Fp if and only if p ≡ ± 1 (mod 8), see
e.g. Davenport ([1], page 70). This is part (2) of the theorem.

For an arbitrary integer n ≥ 1, the prime field Fp is a subfield of Fq. Since
the squaring map x2 : F∗

q → F
∗

q is a multiplicative homomorphism mapping
F
∗

p into itself, it follows that 2 is a square in Fq if 2 is a square in Fp.
This proves part (4) and hence completes the proof of the theorem. �

Examples. With reference to Table 1, there are no diagonal solutions to
the circle equation over the prime field Fp, for the odd primes p = 3, 5, 11, 13,
whereas the are two diagonal solutions for the prime p = 7.

The finite field F32 can be described as the polynomial ring F3[t] modulo
the irreducible polynomial t2+1. The nine elements in F32 are then uniquely
described by the nine polynomials x = a0 + a1t, for a0, a1 ∈ F3. Simple
calculations show that (x, y) = (t, t) and (x, y) = (2t, 2t) are the two diagonal
solutions to the circle equation over F32 .

For the number of solutions to the circle equation over a prime field Fp

we can do much better. As we shall see, certain pairs of twin primes, which
we term siamese twin primes, turn out to play a special role.

Definition 4.1. A pair of twin primes p and p′ for which p ≡ 3 (mod 4)
and p′ ≡ 1 (mod 4) is called a pair of siamese twin primes.

Our main result on the number of solutions to the circle equation in a
prime field as a function of the prime can then be given the following concise
formulation.

Theorem 4.3. The number of solutions Np to the circle equation

x2 + y2 = 1

over Fp for odd primes, is a strictly increasing function of p in multiples of

four, except in pairs of siamese twin primes p and p′, where the function

stagnates and Np = Np′.

Proof. Let p < p′ be a pair of odd prime numbers. It follows by Theorem
3.1 that Np′ ≥ Np and by Theorem 4.1 that Np′ ≡ Np (mod 4).

Now suppose that Np′ = Np. Then necessarily p and p′ must be a pair of
twin primes.

If p ≡ 1 (mod 4) then p′ ≡ 3 (mod 4) since p′ = p+ 2, and hence

Np′ −Np = p′ − p− sin
(

p′
π

2

)

+ sin
(

p
π

2

)

= 4,

which contradicts our assumption that Np = Np′ .
On the other hand if p ≡ 3 (mod 4) then p′ ≡ 1 (mod 4) and hence

Np′ −Np = p′ − p− sin
(

p′
π

2

)

+ sin
(

p
π

2

)

= 0.

Altogether we conclude that Np′ = Np if and only if p and p′ is a pair of
siamese twin primes. �

It is a famous open question whether there are infinitely many pairs of
twin primes. Promising progress has recently been made, e.g., [8] and [3],
to settle the question in the affirmative.
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If in the end it turns out that there are infinitely many pairs of twin
primes, there may, however, still not be infinitely many pairs of siamese
twin primes.

Based on computer tests, the present authors believe that there exist an
infinite number of pairs of siamese twin primes.

In favour of this conjecture speaks that it is well known, see e.g. [1], that
there are infinitely many prime numbers p and p′ of each of the two types
mentioned in Definition 4.1:

p ≡ 3 (mod 4) and p′ ≡ 1 (mod 4).

The conjecture is also supported by the fact that the largest known1 (at the
time of writing) pair of twin primes

3756801695685 · 2666669 − 1 and 3756801695685 · 2666669 + 1

is also a pair of siamese twin primes, i.e.

N3756801695685·2666669−1 = N3756801695685·2666669+1.

Although it is fairly easy on a modern computer to determine if a given pair
of twin primes is a pair of siamese primes, it is not easy to determine how
many pairs of siamese twins there exist below a given large number, say
below

3756801695685 · 2666669 + 1.

Denote by Sn the number of siamese twin primes below n. Likewise denote
by Tn the number of twin primes below n. Then we conjecture that

lim
n→∞

Tn

Sn
= 2.

The conjecture is supported by computer experiments with primes below
n = 2 · 109, for which number there are 6388041 pairs of twin primes and
3193559 pairs of siamese twin primes below n.
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