Low RF-field strength cross polarization combined with photo-induced non-persistent radicals for clinically applicable dDNP

Møllesøe Vinther, Joachim; Capozzi, Andrea; Albannay, Mohammed; Ardenkjær-Larsen, Jan Henrik

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Low RF-field strength cross polarization combined with photo-induced non-persistent radicals for clinically applicable dDNP

Work in progress

Joachim M. Vinther, Andrea Capozzi, Mohammed M. Albannay, Jan Henrik Ardenkjær-Larsen

Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark. GE Healthcare, Brondby, Denmark.

Cross Polarisation for SPINlab-like polarisers using non-persistent radicals is demonstrated. The efficiency of the transfer from protons to carbon is modest at the currently achievable low B fields of 4.5 kHz still yielding 13C polarisation levels up to 15 %. Based on the presented results, we foresee polarisation levels superior to direct 13C DNP in our next generation of double-tuned probes incorporating local tune and match.

Abstract

We demonstrate the possibility of 1H Dynamic Nuclear Polarization followed by cross polarization to carbon (DNP-CP) using a modified low cost benchtop console (Kea2) equipped with an external amplifier (Tomco) and a SPINlab-like dissolution DNP polarizer i.e. using the same fluid path and allowing for hyperpolarization of a full human dose. Cross polarisation (CP) using Laboratory Frame De- and Remagnetisation (LAFDR) was found superior to alternative sequences at the limited B fields employed. Faster build-up rates compared to 13C DNP are demonstrated using TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and DNP-CP 13C polarisations up to 15 % are achieved using non-persistent UV-induced radicals.

Introduction

Dissolution Dynamic Nuclear Polarization (dDNP) is used to enhance the MR signals in imaging by factors of 10,000 2 paving the road for metabolic MR studies. However, the polarisation build-up on 13C typically takes tens of minutes to hours, significantly lowering the versatility and throughput. Recently, studies have shown the possibility of speeding up the process by polarizing 1H, which has a faster build-up. 1H fields and small sample volumes are used, which makes the technique incompatible with clinical dDNP-MRI. Moreover, for clinical use, and in general to eliminate the relaxation effect, the radical essential for DNP needs to be removed during dissolution. Use of pyruvic acid (PA) non-persistent photo-induced radicals for dDNP has been demonstrated to solve this issue3 and recently polarization build-up on protons with 13C(1H)=690 s and 70 % polarization has been presented2.

Results

The efficiency of DNP-CP depends on the build-up rate and final polarisation achieved on protons as well as the transfer efficiency of the CP sequence.

1. For B \leq 5 kHz LAFDR (Fig. B) was found to outperform other CP sequences (data not shown).
2. On the TEMPOL containing sample, DNP-CP using optimised LAFDR outperforms 13C DNP for build-up times < 1 hour, and 20 13C polarisation was achieved in only 20 min (Fig. C).
3. Using 1H-CP using TEMPOL as the substrate for non-persistent radicals gives a too narrow EPR-line for efficient 13C DNP resulting in poor DNP-CP performance (Fig. D).
4. Introduction of hyperfine coupling to the unpaired electron by 13C labelling in position 2 increases the EPR linewidth yielding fast 13C DNP build-up, but a polarisation of only 18 %, and therefore still inefficient DNP-CP (Fig. E).
5. Deuterating the methyl group of PA increases the 1H DNP polarization to 62 % and maintains the efficiency of CP. This yields a final 13C polarisation of 15 % after CP (Fig. F).

Conclusions and Outlook

We have demonstrated DNP-CP on a clinical-compatible SPINlab-like polariser using a low-cost benchtop console equipped with an external amplifier. Moreover, the technique has been combined with non-persistent UV-induced radicals. At the current state, with B\leq 5 kHz, direct 13C DNP still outperforms the DNP-CP. However, the goal is to implement local tuning of the probe to achieve sufficient B fields to increase the transfer efficiency. We expect that sufficiently strong B fields are achievable for this setup to outperform direct 13C DNP both with respect to build-up rates and polarisation levels.

References

Acknowledgements

This project has received funding from Innovation Fund Denmark and from Danish National Research Foundation (DNP-124).