Compressive Online Robust Principal Component Analysis with Multiple Prior Information

Van Luong, Huynh; Deligiannis, Nikos; Seiler, Jürgen; Kaup, André; Forchhammer, Søren

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
1. Motivation

- Applications: Computer vision, web data analysis, anomaly detection, and data visualization, etc.
- Robust Principal Component Analysis (RPCA): Batch-based, decomposes all data samples (matrix M) into low-rank (L) and sparse (S), e.g., all frames in a video, high computational and memory requirements

\[\min_{L, S} \| L \|_*, \lambda \| S \|_1 \text{ subject to } M = L + S \]

Challenges

- Online method processing a sequence of signals per time instance from a small set of measurements: \(y_t = \Phi(x_t + v_t) \)

\[M_t = L_t + S_t \]

- Minimization at time instance \(t \)

\[\min_{L_t, S_t} \| L_t \|_*, \lambda \| S_t \|_1 \text{ subject to } y_t = \Phi(x_t + v_t) \]

where \(\lambda > 0 \) and \(\beta > 0 \) are weightings across the side information signals, and \(\Phi \) is a diagonal matrix with weights for each element in the side information signal \(x_t \), namely, \(\Phi = \text{diag}[w_1, w_2, \ldots, w_n] \)

2. Compressive Online RPCA (CORPCA) With Multiple Prior Information

Problem formulation

- Incorporating multiple prior information: at time instance \(t \) we observe \(y_t = \Phi(x_t + v_t) \) with \(y_t \in \mathbb{R}^n \) given priors \(Z_{t-1} = [z_{t-1,1}, \ldots, z_{t-1,m}] \) and \(B_{t-1} = [b_{t-1,1}, \ldots, b_{t-1,m}] \)

- Solving the \(n - 1 \) minimization problem

\[\min_{x_t, v_t} \| \Phi(x_t + v_t) - y_t \|_2^2 + \lambda \| x_t \|_1 \]

- Solving the \(n - 1 \) minimization problem

\[\min_{x_t, v_t} \| \Phi(x_t + v_t) - y_t \|_2^2 + \lambda \| x_t \|_1 \]

- Minimization at time instance \(t \)

\[\min_{L_t, S_t} \| L_t \|_*, \lambda \| S_t \|_1 \text{ subject to } y_t = \Phi(x_t + v_t) \]

The CORPCA algorithm

- Solving \(n - 1 \) minimization via the soft thresholding operator and the single value thresholding operator, at iteration \(k + 1 \)

\[w_k^{(1)} = \arg \min_{w_t} \| w_t \|_1 \text{ subject to } \| w_t \|_2 \leq 1 \]

\[w_k^{(2)} = \arg \min_{w_t} \| w_t \|_2 \text{ subject to } \| w_t \|_1 \leq 1 \]

where \(f(w_t) = \| w_t \|_1 \text{ subject to } \| w_t \|_2 \leq 1 \)

- Updating weights \(j \) and \(W_j \)

- After solving for time instance \(t \): Prior updates

3. Experimental Results

- Synthetic data

- Generating low-rank components: \(n = 500, d = 100 \) (training), \(n = 100 \) (testing), \(r = 5 \) (rank)

\[L = UV^T, \text{ where } U \in \mathbb{R}^{n \times r} \text{ and } V \in \mathbb{R}^{d \times r} \]

yields \(L = [v_1, \ldots, v_r] \)

- Generating sparse components with \(\| x_0 \|_0 = 0 \)

\[\text{obtaining } S = [x_1, \ldots, x_r] \]

- Testing on \(M = [x_0, x_1, \ldots, x_r, v_0, v_1, \ldots, v_r] \)

- Measuring probabilities of successful decomposition, \(\text{Pr(success)} \), success if \(\| x_0 - x_1 \|_2 \| x_1 \|_2 \leq 10^{-2} \)

- Compressive video foreground-background separation

- Considering two videos, Bootstrap (60x80 pixels) and Curtain (60x80 pixels) having a static and a dynamic background, respectively

- Background-foreground video separation with full access to the video data

- Compressive separating by varying rates on the number of measurements \(m \) over the dimension of the data \(n \)

4. Summary

Solution for an \(n - 1 \) minimization

- Incorporating efficiently multiple prior information

- Updating iteratively weights

The proposed CORPCA algorithm

- Processing a data vector per time instance using compressive measurements

- Solving the \(n - 1 \) minimization and updating priors for the next instance

Evaluation of CORPCA on synthetic data and actual video data

- Outperforming classical compressive sensing (CS) (\(l_1 \) minimization) and CS with single prior information (\(l_1 + l_1 \) minimization)

- The superior performance improvement compared to the existing methods

Fig. 1. Average success probabilities for CORPCA (for \(m \), \(n \), \(d \), ReProCS for \(m \), and GRASTA for \(m \)). The scale \(n \) is proportional to \(\text{Pr(success)} \) from black to white.

Fig. 2. Background and foreground separation for the different separation methods with full data access: ReProCS, GRASTA, and Curse[246].

Fig. 3. Compressive background and foreground separation of CORPCA with different measurement rates \(m/n \).

Fig. 4. Compressive foreground separation of ReProCS with different measurement rates \(m/n \).