Pulsed laser deposition (PLD) of the CZTS absorber for thin solar cells with up to 5.2-% efficiency

Cazzaniga, Andrea Carlo; Canulescu, Stela; Ettlinger, Rebecca Bolt; Pryds, Nini; Hansen, Ole; Schou, Jørgen; Crovetto, Andrea; Hansen, Ole; Yan, Chang; Sun, K.

Total number of authors:
11

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
A. Cazzaniga, S. Canulescu, R. B. Ettlinger, N. Pryds, Ole Hansen and J. Schou*
The Technical University of Denmark, DTU Fotonik, Risø Campus, DK-4000 Roskilde, Denmark

A. Crovetto, O. Hansen
The Technical University of Denmark, DTU Nanotech, DK-2800 Kgs. Lyngby, Denmark

N. Pryds
The Technical University of Denmark, DTU Energy, DK-4000 Roskilde, Denmark

C. Yan, K. Sun, X. Hao
School of Photovoltaic and Renewable Energy Engineering, University of New Wales, NSW 2052, Sydney, Australia

Pulsed laser deposition (PLD) of the CZTS absorber for thin solar cells with up to 5.2-% -efficiency

CZTS (Cu_2ZnSnS_4) is a promising material for solar cell absorbers and consists of abundant, environmentally friendly elements with a recently obtained efficiency of 9.4 %.

For films produced with pulsed laser deposition (PLD) from a quarternary sintered, multi-element target, the composition can deviate significantly from that of the target, depending on the laser fluence. By tuning the laser fluence from a 248-nm excimer laser beam on a sintered CZTS target ($2CuS:ZnS:SnS$), the metal ratios in the film can be controlled. Films were deposited in high vacuum on a Mo-coated soda lime glass substrate at room temperature. At low fluence below 1 J/cm² the copper content in the film is low, while at high fluence the films become copper-rich. At a fluence 0.7 J/cm² we have achieved a ratio $Cu/(Sn+Zn) \approx 0.85$ which is in the right regime for a cell.

After sulfurization and the final deposition of the buffer and window layers the best cell with an effective area of 21 mm² and only a 400-nm thick CZTS layer had an efficiency of 5.2 % (and $V_{oc} = 616$ mV, $J_{sc} = 17.6$ mA/cm² and a fill factor of 48 %). This efficiency is the highest one obtained with an absorber layer of CZTS made by PLD until now. Despite the thin absorber, there are no signs that material and junction quality are significantly lower than that of thicker absorbers: grain size, carrier lifetimes, collection efficiency, shunt resistance, and dark saturation current are all similar to (thicker) benchmark CZTS cells.