Uncertainty Analysis for the Parameterization of Glycols

Kruger, Francois

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Uncertainty Analysis for the Parameterization of Glycols

A review of the 4C association scheme for mono-ethylene glycol (MEG)

Francois Kruger

Supervised by: Nicolas von Solms & Georgios Kontogeorgis

Background

• Collaboration between DTU-CERE and Statoil ASA
• Natural gas dehydration: Statol Subsea FactoryTM and Gas-2-PipeTM
• Important Sales Gas specifications:
 - Hydrocarbon dew point: cricondenbar 105-110 bar
 - H2O dew point: 32 ppm
 - Glycol in the gas phase 8 l/Sm3

Results and Discussion

Use of pure component experimental data versus pseudo data

• Accuracy of MEG liquid density prediction sacrificed by incorporating the LLE criterion
• MEG vapour pressure data exhibits significantly higher variance than the DIPPR correlation suggests
• Bootstrapped parameter plots show high degree of correlation when fitting to DIPPR

Uncertainty analysis: new CPA-4C MEG parameters

• Literature parameters do not match well with bootstrapped mean parameter estimator
• Mean of the average absolute error and 95% confidence interval over 1500 optimization runs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Literature</th>
<th>Calculation</th>
<th>1500 Data</th>
<th>Bootstrap Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>51.40</td>
<td>2532</td>
<td>0.6744</td>
<td>2376</td>
<td>14.10</td>
</tr>
<tr>
<td>b0</td>
<td>-0.105</td>
<td>1.96</td>
<td>2.44</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>0.81</td>
<td>3.01</td>
<td>4.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature Review

CPA parameterization of glycols

• CPA9(8) parameter sets9(8) for glycols fitted to pure component DIPPR9(8) correlations, with liquid-liquid equilibria (LLE) selection criterion

Uncertainty analysis utilized in CPA model development

• Bootstrapping recently used10(10) for CPA parameter estimation of CO2
• Effect of using pseudo data was not specifically evaluated

Literature survey: data for systems of interest

• Binary data are relatively scarce in the open literature and often incongruent
• Single ternary data set (methane-water-MEG) available7(7)
• CPA can model both phases (mixture parameters fitted CH3 solubility data only)

Application for Simplified NG Dehydration Systems

Binary systems

• Improved correlation of the MEG entrained into CH4 rich phase
• Prediction is best at both high temperature and high pressure
• Low temperature anomalies may be due to experimental difficulties

Ternary systems

• Prediction for MEG entrainment is much improved
• CH4 solubility in the liquid phase is underpredicted

Conclusions

• Generation of new experimental data for additional model evaluation
• Apply uncertainty analysis to newly proposed association schemes
• Inclusion of tri-ethylene glycol (TEG) data and modelling
• Modelling of natural gas dehydration in Aspen

Future Work

• Collaboration between Statoil and DTU-CERE
• Natural gas dehydration: Statol Subsea FactoryTM and Gas-2-PipeTM
• Important Sales Gas specifications:
 - Hydrocarbon dew point: cricondenbar 105-110 bar
 - H2O dew point: 32 ppm
 - Glycol in the gas phase 8 l/Sm3

Acknowledgement

The authors wish to thank Statoil for their financial support of this research, which is part of the CHIGP (Chemical in Gas Processing) project.