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Targeted vaccination, whether to minimize the forward transmission of infec-

tious diseases or their clinical impact, is one of the ‘holy grails’ of modern

infectious disease outbreak response, yet it is difficult to achieve in practice

due to the challenge of identifying optimal targets in real time. If interruption

of disease transmission is the goal, targeting requires knowledge of underlying

person-to-person contact networks. Digital communication networks may

reflect not only virtual but also physical interactions that could result in disease

transmission, but the precise overlap between these cyber and physical

networks has never been empirically explored in real-life settings. Here, we

study the digital communication activity of more than 500 individuals along

with their person-to-person contacts at a 5-min temporal resolution. We then

simulate different disease transmission scenarios on the person-to-person

physical contact network to determine whether cyber communication net-

works can be harnessed to advance the goal of targeted vaccination for a

disease spreading on the network of physical proximity. We show that individ-

uals selected on the basis of their closeness centrality within cyber networks

(what we call ‘cyber-directed vaccination’) can enhance vaccination campaigns

against diseases with short-range (but not full-range) modes of transmission.
1. Introduction
Strategies for countering infectious diseases have been actively developed in recent

years [1], the two most prominent methods being monitoring and vaccination [2–

8]. In the case of monitoring, the goal is to forecast an outbreak by observing only a

small, high-risk subpopulation that is expected to become infected at an early stage

of an outbreak. The goal of vaccination is to reduce the effective size of the suscep-

tible population below a threshold in order achieve ‘herd immunity’ [9]. From a

network perspective, we approach herd immunity by decreasing the number of

links between susceptible individuals in a population, across which the disease

may be transmitted [8]. While full knowledge of the outbreak state (in the case of

monitoring) or full population protection (in the case of vaccination) are preferable,

neither is practically feasible [10,11]. For this reason, targeted strategies that involve

interventions focused on a small, carefully selected subpopulation are of major

interest [7,10,12–17]. It has been shown that densely connected populations,

such as schools [18,19], universities [10] or hospitals [20], play a significant role

in large outbreaks [21], offering numerous paths for diseases to propagate. Such

cohesive communities may also serve as ‘living laboratories’ for studying the struc-

ture of interpersonal networks, making them especially interesting in the

advancement of epidemiological control efforts. For diseases with person-to-

person transmission, direct identification of optimal target groups requires knowl-

edge of the structure of the physical contact network, collection of which is usuallya
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time-consuming and complex task [10,18,22,23], limiting the

feasibility of this approach. Communication networks, such as

online social networks orcall detail records (CDRs) may provide

an accessible proxy of the structure of contacts among individ-

uals, and immunization strategies that take advantage of the

structure of these networks have been suggested [8]. However,

due to the known topological differences between communi-

cation networks and networks of person-to-person proximity

contacts [18,23–25], the role of digital communication networks

in locating epidemiologically relevant target individuals

remains largely unknown [25]. This study addresses this

digital–physical divide: we ask whether it is possible to extract

information solely from individuals’ cyber networks (in this

case, Facebook and phone call networks) in order to alter pat-

terns of disease spread across the corresponding network of

physical interactions between those same individuals.

Our study focuses on a densely connected population of

532 university students whose physical and cyber data make

up the Copenhagen Network (CN) Study, which includes

records of Facebook friendships, Facebook activity/feeds,

CDRs and Bluetooth scans to measure person-to-person

contacts, collected with high temporal resolution over 2 years

(details of the measurement are provided in Material and

methods). By simulating outbreaks of diseases with different

transmission characteristics over the physical component of

this empirical network, we are able to gauge the effectiveness

of mining digital communication network data to guide

targeted outbreak vaccination strategies. We compare our tar-

geted results to both random immunization (RI) (which we

predict would yield poor outcomes) and a theoretically near-

optimal colocation strategy (CS) [5], whereby individuals in

closest actual physical proximity to infected individuals are

somehow identified and targeted for vaccine administration.

We will henceforth refer to CS as optimal, based on previous

results by Smieszek & Salathé [5], indicating that this strategy

displays equivalent performance to that of an optimal target

group found by brute-force optimization. Unfortunately, CS is

logistically infeasible in a realistic setting, since public health

officials do not have access to the type of physical proximity

data collected here. This study therefore explores, for the first

time, whether a group of individuals’ digital records can be

used to robustly approximate characteristics of their physical

proximity networks. In particular, we study whether targeted

interventions based on these digital networks, allow us to

approximate an optimal vaccination strategy, which can only

be derived from the physical proximity network.
2. Material and methods
2.1. Data collection
The CN Study collected physical proximity (by recording

Bluetooth scans), CDRs, Facebook friendship and Facebook feed

data between 2012 and 2014 for 532 students at the Danish Techni-

cal University who volunteered to participate in the study [23].

Data collection was performed using Nexus smartphones with a

pre-installed data collector application, which were handed out

to students, with subsequent data collection on multiple channels:

location, Wi-Fi scans, Facebook feed, CDRs and Bluetooth scans

with a temporal resolution of 5 min. The original study was

based on data from 1000 smartphones, but here we consider data

from the 532 participants with a data quality of at least 60% in

the period of interest (based on availability of proximity data;

see electronic supplementary material, §S1 for details on data
quality). Results reported in this paper correspond to the period

of February 2014, which is located in the beginning of the students’

second semester and is representative of typical contact patterns

(no exams, vacations, etc.). See electronic supplementary material,

§S1 for the details of data collection and data filtering.

2.2. Contact and communication networks
We constructed three networks from the data collected during

the CN Study: physical proximity networks, cellphone calls and

Facebook interactions. Bluetooth scans were used to construct the

temporal proximity networks in two ways: the scan list data pro-

vided all interactions in a full-range (up to 10–15 m) that are the

basis for the simulations on full-range disease spread (we refer to

this network as the full-range proximity network). By restricting con-

tacts to signal strengths of RSSI .275 dBm, the short-range network

(range up to 1 m) was obtained (short-range proximity network)

[26]. The full-range and short-range networks provide rough

approximations for airborne (e.g. measles) and droplet (e.g. influ-

enza) modes of pathogen transmission, respectively [27–29]. It

should be noted that the threshold of 275 dBm is highly conserva-

tive in order to reduce the likelihood of observing false positives,

therefore the typical distance between pairs of individuals in the

short-range network is below 1 m. Each link represents at least one

observation of a contact between two individuals within a 5 min

time bin. In other words, if there is a link in any 5 min bin throughout

the period of interest, we add a 5 min link to the simulation extend-

ing an (possibly shorter) interaction to 5 min. The temporal

resolution of 5 min has been shown to capture the key dynamics

of person-to-person networks [18,30]. We stress that while sensor-

based proximity networks are a highly useful model to assess the

impact of immunizations strategies, they suffer from important

limitations [31–33]; see Discussion for details. Digital communi-

cation networks were constructed separately for CDR and records

of Facebook activity. These networks describe the communication

between the participants via phone calls or interactions on Facebook,

respectively, and were aggregated over the period of interest, result-

ing in undirected static graphs (i.e. not recording who called whom).

Properties of all networks are illustrated in figure 1.

2.3. Epidemiological model
After assessing a variety of network metrics, we chose to use

closeness centrality (i.e. the average distance of a node to all

other nodes following contacts in the network) as the criterion

for targeting vaccination (see Network Measures for definitions

and electronic supplementary material, §S1.3 and §S4.1 for

more details on the various selection methods). As we are inter-

ested in the dynamics of a single unfolding epidemic event, we

focus on epidemics without an endemic state. Index cases are

chosen randomly with uniform distribution over the initially sus-

ceptible population (those not vaccinated). All data are the result

of the statistics calculated over an ensemble of at least 1000 simu-

lations with varying initial conditions, that is, a randomly chosen

index case population. To evaluate the efficacy of vaccination

focusing on specific target groups, we measure the relative out-

break size during susceptible–infectious–recovered (SIR)

epidemics simulated on both the short- and full-range proximity

networks. The relative outbreak size is the number of infected

individuals divided by the size of the initial susceptible popu-

lation, and therefore accounts only for the network effect (see

electronic supplementary material for details). In our model, vac-

cination is assumed to provide full immunity with no side effects

and we study the extent to which vaccination reduces the final

outbreak size. Epidemic parameters were chosen to be consistent

with expected infectious periods (3–4 days) and basic reproduc-

tion numbers (2 , R0 , 3) of real-world infectious diseases such

as influenza [34]. We simulated the dynamics of the short- and

full-range diseases using a classic form of the SIR model with

http://rsif.royalsocietypublishing.org/
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infection probability b, and average infectious period T. This

model is intentionally simplistic, intended to illustrate the

structural effects of vaccination in terms of a full-range versus a

short-range transmission, rather than emulate a specific disease.

The probability of infection per contact event and expected infec-

tious period at each time step are bfull¼ 0.002, Tfull ¼ 3 days and

bshort ¼ 0.01, Tshort ¼ 4 days for the full- and short-range proxi-

mity networks, respectively. The infection probabilities above

correspond to physical rates of infection of bfull
phys ¼ 0.717 day21

and bshort
phys ¼ 0.591 day21, and the basic reproduction numbers of

Rfull
0 ¼ 2.151 and Rshort

0 ¼ 2.364, which is within the range of R0

for influenza [7]. More details on the parameter adjustment, analy-

sis and the behaviour of SIR dynamics on the proximity networks

are presented in electronic supplementary material, §S2.

2.4. Network measures
We use three basic network properties to summarize the struc-

ture of the different networks: the average number of contacts

(average degree), average fraction of connected neighbours (average
clustering coefficient) and the average number of steps between all

pairs of nodes (average path length). Target groups of size n are

obtained from the digital communication networks by ranking

individuals in the aggregated graphs by their closeness centrality,

defined by

C(i)
C ¼

N � 1P
i=j dij

, ð2:1Þ
where N is the number of nodes in the graph and dij denotes the

distance between nodes i and j, i.e. the lowest number of steps to

reach node j from node i. If the graph is not connected, we set

dij ¼ N for nodes that are separated. After ranking individuals

according to CC, we select the ones with the highest centrality

to obtain a group of desired size. In the case of colocation-

based target groups, individuals are ranked based on their

total time spent in the proximity of others, that is

wi ¼
X

j,t

gijt, ð2:2Þ

where gijt ¼ 1 if participants i and j have been in close proximity

at time t, and zero otherwise. Ranking all members by their

weight, we select the ones with the largest value to include in

the target groups, following the strategy of Smieszek & Salathé

[5]. Strategies based on other centrality measures as well as the

details of the selection are discussed in more details in electronic

supplementary material, §S1.3 and §S4.

Vaccination efficiency based on communication network

target groups is compared to immunization strategies based on

RI and a near-optimal CS set of targets. During random selection,

a number of individuals are chosen randomly from the population,

providing a lower bound for intervention performance; conver-

sely, colocation target groups include individuals with the

highest fraction of time spent in proximity of others. Colocation-

based target groups establish an approximate upper bound for

intervention performance [5]. They rely on full knowledge of the

http://rsif.royalsocietypublishing.org/


Table 1. Static properties of the person-to-person and digital
communication networks. Basic network characteristics are reported for the
static aggregated networks: number of diads (E), average degree (kkl),
average clustering (C ) and average path length (‘). For definitions, see
Material and methods.

network E kkl C ‘

full-range

proximity

69 055 259.6 0.644 1.53

short-range

proximity

20 690 77.78 0.356 1.91

Facebook 1 261 4.741 0.150 3.87

call 354 1.331 0.102 7.03
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person-to-person proximity network topology, but are not strictly

optimal, as they do not consider temporal dynamics.
3

3. Results
Basic structural characteristics of the static aggregated networks

are shown in table 1 and figure 1. The figure shows the average of

16 weeks of data, whereas each circular network (figure 1b) cor-

responds to an aggregate of 4 h sampled from the first week.

Statistics (figure 1c– f) are based on four months of data.

While activity in all four networks (full- and short-range proxi-

mity, Facebook and call networks) follows distinct daily

schedules and rhythms, digital channels show strong bursts of

activity outside of work periods: lunch breaks, evenings and

weekends (figure 1a). Individuals that are highly connected

are drawn next to each other in the layout (dense group of

nodes in the plot). Note that some of the links between these

densely connected parts of the population are represented by

all channels, whereas some communication is only present in

the cyber (telephone and online) communication networks.

Both short-and full-range networks of physical proximity fea-

ture more than 10-fold higher edge density compared to these

cyber networks (figure 1b,c, and reflected in the reciprocal

relationship between average degree k and average path length

l of these networks listed in table 1); this means, colloquially,

that the study subjects had more contact via physical interactions

and they spent more time with their friends in real life than they

did electronically. The degree distributions of the person-to-

person networks are consistent with an approximate normal dis-

tribution, whereas those of the communication networks follow

a power-law distribution, supported by both the Akaike

information criterion and Kolmogorov–Smirnov goodness-of-

fit-based model selection (confirming earlier published findings

on proximity networks) [18,23].

The proximity networks contain a large number of links (of

the order of 105–106 across the observation period), revealing a

highly dynamic set of real-world physical contacts, in contrast

with the relatively sparser corresponding cyber networks.

Figure 1d shows how these differences are reflected in the

time respecting network connectivity, that is, when the tem-

porality of the links is taken into consideration. The majority

of nodes in the physical networks can be reached in a relatively

short time—over 40% in a day and over 95% in under a week—

in contrast with the digital networks which require more than a
month to be fully explored, as quantified by an invasion perco-

lation process with transmission probability 1, i.e. a process

that propagates from node to node across every edge of the

network without fail. Curves show the average of 1000 realiz-

ations over random initial conditions. When compared with

the full-range network, the short-range network includes

only the most frequent contacts, as suggested by the slope of

the invasion curve: after a transient delay in the invasion

level (approx. 10 h), a majority of the giant components in

the short-range network can be explored in a shorter time,

meaning that most of the links describe frequent contacts in

that network (black dashed lines are included to highlight

the slopes of the short- and full-range contact networks). The

robustness of the aggregated networks is illustrated by the

change in the size of their giant component (i.e. the largest con-

nected component in a graph) after the removal of a random set

of links, as shown in figure 1e. The giant component is the lar-

gest connected set of nodes in the network. An invasion curve

represents the number of nodes that are infected during an

invasion process, divided by the size of the giant component.

An invasion process is a susceptible–infected model with an

infection rate of 1.

Figure 2a depicts the median infection time restricted to

the target vaccination groups (i.e. individuals selected on

the basis of their closeness centrality within the digital com-

munication networks, hereafter referred to as the ‘cyber-

directed vaccination’ group) compared to randomly selected

(RI) and colocation-based strategy (CS) vaccination groups.

All curves are the median of 10 000 simulations. As a measure

of performance, we use corrected time of infection [5]. The cor-

rected time of infection is defined as ti ¼ ti/pi, where ti is the

average time of infection and pi is the probability of infection

for user i. The correction by the probability of infection

ensures that individuals of high vulnerability (those who

are more exposed to the disease) are weighted higher in the

monitoring scenario where the goal is to detect the outbreak

at the earliest possible time with high probability. On aver-

age, individuals selected based solely on the basis of their

digital records become infected significantly earlier (24%

and 18% earlier than the population average, corresponding

to 3 and 2 days) for both short- and full-range networks,

results that are only 14% and 19% worse on average than

the hypothetically optimal CS, respectively. As shown in

electronic supplementary material, §S3, these hypothetical

gold-standard colocation-based groups also become infected

significantly earlier [5,10]. Also note that—in contrast with

the full-range network—for the short-range interactions, the

corrected time among the cyber-directed target individuals

does not differ significantly from the optimal time.

To assess the efficacy of cyber-directed vaccination, we

measured the relative outbreak size in the presence of the

immunized target group; that is, the total number of infections

(I1) divided by the initial number of susceptible individuals

(S0): irel ¼ I1/S0, excluding the vaccinated subpopulation

from the calculation, and thus measuring only the network

effect. In figure 2b, the median relative outbreak sizes are

plotted against the fraction of the population immunized.

Results are calculated over 1000 simulations with minimum

outbreak sizes of 5% among the initial susceptible population.

The hypothetical optimal colocation vaccination strategy (CS)

reduces outbreak size by more than 80% after the immuniz-

ation of 20% and 30% of the network in short- and full-range

transmission, respectively (relative to the unvaccinated

http://rsif.royalsocietypublishing.org/
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population). Using digital networks to identify targets for the

proposed cyber-directed vaccination strategy, achieving a simi-

lar 80% outbreak size reduction would require vaccinating 32%

and 50% of the network in short- and full-range transmission,
respectively. For diseases spreading via short-range inter-

actions, cyber-based strategies are effective and outperform

RI even for small target groups, approaching the performance

of the CS once more than 20% of the population has been vac-

cinated. If the disease transmission occurs on the full-range

person-to-person network, however, cyber-directed vacci-

nation strategies do not significantly outperform the RI

strategy. This effect is more pronounced in the small target

group size regime (less than 20% of the population).

Figure 2b reveals an inherent difference between the fraction

of immunized individuals needed to reach the same reduction

of outbreak size in the short- and full-range networks, respect-

ively. The effect of vaccination is generally weaker in the highly

connected full-range network. Insets show the mode of the dis-

tributions over all realizations, indicating a clear separation of

the strategies, and a higher efficacy of cyber-directed vacci-

nation in the case of short-range interactions. At low levels of

immunization fv , 0.1 (where fv denotes the vaccinated frac-

tion of the population) (subplots (i) and (iv) in figure 2b), the

effect of vaccination is low, due to the high density of edges

in both person-to-person proximity networks. At high levels

of immunization (figure 2b subplots (iii) and (vi)), with more

than half of the population vaccinated, the digital communi-

cation network target groups contain the majority of socially

active individuals, resulting in the cyber-directed vaccination

strategy approximating the optimal CS also for full-range

transmission. In the intermediate range 0.1 , fv , 0.5 (subplots

(ii) and (v) in figure 2b), cyber-directed vaccination is signifi-

cantly more effective than random vaccination and

approaches the efficiency of the optimal strategy in the case

of short-range transmission. The intuitive reason behind this

difference between the short- and full-range networks is that

the structure of the full-range proximity network is strongly

influenced by many random encounters, not captured by the

corresponding (but presumably intentional) digital networks

(see electronic supplementary material, §S4.1 for an elaborated

analysis of vaccination in the proximity networks). The obser-

vations above are further supported by a Mann–Whitney test

calculated over the distribution of relative outbreak sizes for

different strategies. The tests show a significantly higher simi-

larity between cyber-directed and optimal strategies in the case

of short-range interactions (see electronic supplementary

material for details).

The performance of cyber-directed vaccination is robust

with respect to different centralities used for selection of the

target groups (degree, k-coreness, betweenness) and variation

in how communication channels are constructed (using calls

and text messages). In electronic supplementary material,

§S4.1, we investigate the robustness of the results in detail

with respect to different strategies.

Regardless of the target selection strategy, implementing

targeted vaccination assumes network stability (i.e. that targets

identified before an outbreak takes place remain critical to

disease propagation during the vaccination phase). To analyse

the trade-off between performance of targeted intervention

and the time gap between identification and intervention, we

fixed the period that forms the basis of our target individual

selection (February, index month) and calculated monitoring

and immunization performance for outbreaks in subsequent

months (March, April and May, outbreak months), as shown in

figure 3. We compared the performance of cyber-directed strat-

egies based on the index month to RI and two types of CS:

colocation based on proximity data in the index month and

http://rsif.royalsocietypublishing.org/
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on proximity data in the outbreak month. Cyber-based target

groups show significantly lower infection time relative to

random monitoring in these subsequent months, although

target groups based on the index month do not perform as

well as the optimal groups calculated in the outbreak months

(figure 3a) due to the small changes in the social structure of

the population. Immunizing members of the index month,

target groups outperform random vaccination in all three out-

break months, as seen in figure 3b. We start by estimating CS

target groups based on February data. Now, we consider the

fraction of vaccinated individuals needed to achieve an 80%

decrease in the number of infected, relative to the outbreak

size in the unvaccinated scenarios in subsequent months. We

find that for both March and April, we require 17% immuniz-

ation, versus 56% in May. Analogously, strategies based on

the cyber networks, which use information only from the

index month of February, require immunization levels of 30%,

35% and 56% for March, April and May, respectively, to achieve

the same 80% decrease. The high overlap between the error

bands (lower and upper quartiles) between optimal and

cyber-directed vaccination, indicate the statistical similarity of

the two strategies in March. As the index month’s contact pat-

terns become more and more outdated and less informative

of the actual month of the simulation (April and May), cyber-
directed vaccination curves separate less from the random vac-

cination, underscoring the decreasing predictive power of data

from February.
4. Discussion
If the goal of an optimized targeted vaccination strategy is to

disrupt forward transmission of disease, then immunizing

individuals with the greatest likelihood of infecting the largest

number of their network neighbours is critical. Specifically, a

good candidate for immunization (when focusing on a single

age group) should be highly exposed to the disease and simul-

taneously exhibit high potential to transmit the infection. Using

data from multiple layers of social interactions captured in the

CN Study, we show that the digital communication (cyber) net-

works can be used to predict which individuals are central to

epidemic spread based on close person-to-person proximity,

yielding prime candidates for outbreak-limiting immuniz-

ation. The performance of targeted vaccination based on

cyber network structure, however, is strongly affected by the

nature of pathogen transmission, displaying high efficacy in

the case of short-range transmission, but less utility when an

infection spreads via full-range contacts. Practically, this

http://rsif.royalsocietypublishing.org/
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means that diseases that require very close encounters (similar

to droplet spreading) can be effectively contained by network-

directed targeted vaccination, whereas in the case of full-range

transmissions (closer to airborne diseases), targeting individ-

uals using communication networks will perform more

poorly in containing an outbreak.

This result arises from the inherent structure of short-range

physical contacts: close contacts in the person-to-person

network frequently correspond to social ties and therefore

communication networks contain more relevant information

about the structure of the short-range network. Assuming

that the online/offline behaviour observed in this student

population is representative of the full population, our findings

suggest that, when considering real-world diseases, online

social networks and CDR data can serve as a valuable resource

for epidemic intervention. Regarding one of the most basic

differences between the above transmission types (their

physical range of infection), public health officials trying to

implement innovative immunization strategies may benefit

from cyber network data in the case of droplet diseases, but

not during airborne infections, as we expect real-world air-

borne transmission networks to have even more connections

between socially unconnected individuals than the full-range

network examined here due to the characteristics of airborne

diseases (the ability to suspend in rooms, transmission via

contact with inanimate surfaces, etc.).

The communication and social networks analysed in

this study have varying degrees of resilience in the face of

disruption (a detailed analysis of the network characteris-

tics affecting monitoring and vaccination can be found in

electronic supplementary material, §S3.2 and S4.2). When

removing the fedge fraction of the links randomly from the net-

work, we found that physical proximity networks break down

at a density close to that of the random networks, whereas

digital communications become disconnected when a smaller

fraction of links are removed. These findings are consistent

with previous work: proximity networks are structurally

homogeneous with a well-defined average degree, while com-

munication networks are characterized by heterogeneous

degree distributions [10,12,18,24,35]. Thus it is critical to reiter-

ate that physical proximity networks which approximate the

actual paths supporting the spreading of infectious diseases

and communication networks are fundamentally different

both in a structural and dynamical sense, e.g. how infectious

diseases spread through these networks. Fortunately, it does

not follow that strategies gleaned from examining communi-

cation networks are incapable of informing real-world

practice; on the contrary, we find that control strategies based

on cyber networks are robust with respect to temporal

changes—that is, that target groups can be identified months

before an outbreak and still provide a significant improvement

over interventions based on randomly selected groups, pro-

vided that a disease spreads via short-range transmission

(see electronic supplementary material, §S5 for more detail).
4.1. Limitations
It is important to acknowledge that our model of epidemic

processes on person-to-person proximity networks is a major

simplification of the underlying biological processes, and yet

it serves our aim in this paper. The detailed transmission of

droplet and airborne diseases is not fully captured by recipro-

cal Bluetooth measurements, e.g. transmission of biological
pathogens is not merely characterized by distance but is also

affected by many other environmental characteristics and indi-

vidual behaviour. Droplet transmission requires individuals to

face each other in close proximity [27,36], while airborne patho-

gens can stay suspended in the air or settle on surfaces,

significantly increasing the opportunity for infection [36].

However, these characteristics amplify the differences between

person-to-person networks by effectively removing superflu-

ous links from the short-range network and adding

additional noise to the full-range network. Thus, the efficacy

of using digital communication channels in targeted monitor-

ing and vaccination can be expected to be even higher for a

true droplet network and closer to random for airborne

transmission.

Our study is carried out in a student population. These

individuals may have different contact patterns than the

general population, including older adults or children [18].

In particular, the student population is likely to be the one

for which the communication networks most reflect the

characteristics of real face-to-face networks, potentially in

terms of connected individuals and in terms of time lag

between the digital connection and real face-to-face contacts

[37]. In this sense, we acknowledge that the participants in

the study are not necessarily representative of ‘the public’;

they represent a single specific population, a fact known to

result in an underestimation of epidemic risk [38]. Neverthe-

less, it should be noted that our results rely solely on the

comparisons within this same population, and the structural

differences are restricted to that of connectivity. Although it is

well known that vital dynamics and ageing (that are not

included in our model) have a strong impact on the spread-

ing process [39], in the cohort that forms the basis of the

current study, individuals are members of the same age

class and therefore we can neglect these effects. Finally, Blue-

tooth signals are able to pass through walls, which introduces

non-physical contacts and unrealistic spreading events in the

dataset; however, the fraction of links that can be potentially

associated with these cases is, we believe, negligible.
4.2. Conclusion
In this paper, we have taken a first step towards investigating

how knowledge of the cyber network structure of a popu-

lation (in this case consisting of telecommunication and

social interaction platforms) can be used to identify target

groups for efficient targeted vaccination. Our most notable

finding is that, in our modelling framework, relatively

subtle differences in the structure of disease transmission

mechanisms, formulated here as a dichotomous choice

between droplet-like and airborne routes, may have a pro-

found impact on final epidemic size when using cyber

networks as a basis for targeted vaccination. The corollary

of this is that for diseases with short-range transmission

modes, we find that using cyber-based targeting strategies

can dramatically decrease final outbreak size even when vac-

cine coverage in the targeted population is realistically low

(around 20%). As digital communication data of the types

modelled here may allow for early detection and containment

of infectious outbreaks in densely connected populations (i.e.,

in schools, universities, workplaces and neighbourhoods),

our work also supports increased collaboration between prac-

titioners in public health and operators of social networks

and telecommunication companies.
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5. Smieszek T, Salathé M. 2013 A low-cost method
to asses the epidemilogical importance of
individuals in controlling infecitous disease
outbreaks. BMC Med. 11, 1 – 8. (doi:10.1186/1741-
7015-11-35)

6. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor
AM, Snow RW, Buckee CO. 2012 Quantifying the
impact of human mobility on malaria. Science 338,
267 – 270. (doi:10.1126/science.1223467)

7. Ferguson NM, Cummings DAT, Fraser C, Cajka JC,
Cooley PC, Burke DS. 2006 Strategies for mitigating
an influenza pandemic. Nature 442, 448 – 452.
(doi:10.1038/nature04795)

8. Pastor-Satorras R, Castellano C, Van Mieghem P,
Vespignani A. 2015 Epidemic processes in complex
networks. Rev. Mod. Phys. 87, 925 – 979. (doi:10.
1103/RevModPhys.87.925)

9. Anderson RM, May RM. 1991 Infectious diseases of
humans: dynamics and control. New York, NY:
Oxford University Press.

10. Christakis NA, Fowler JH. 2010 Social network
sensors for early detection of contagious outbreaks.
PLoS ONE 5, e12948. (doi:10.1371/journal.pone.
0012948)

11. Ferguson NM, Keeling MJ, Edmunds WJ, Gani R,
Grenfell BT, Anderson RM, Leach S. 2003 Planning
for smallpox outbreaks. Nature 425, 681 – 685.
(doi:10.1038/nature02007)
12. Starnini M, Machens A, Cattuto C, Barrat A, Pastor-
Satorras R. 2013 Immunization strategies for
epidemic processes in time-varying contact
networks. J. Theor. Biol. 337, 89 – 100. (doi:10.
1016/j.jtbi.2013.07.004)

13. Kumar R et al. 2011 Impact of targeted
interventions on heterosexual transmission of HIV in
India. BMC Public Health 11, 549. (doi:10.1186/
1471-2458-11-549)

14. Tildesley MJ, Savill NJ, Shaw DJ, Deardon R, Brooks
SP, Woolhouse MEJ, Grenfell BT, Keeling MJ. 2006
Optimal reactive vaccination strategies for a foot-
and-mouth outbreak in the UK. Nature 440,
83 – 86. (doi:10.1038/nature04324)

15. Liu Y, Deng Y, Jusup M, Wang Z. 2016 A biologically
inspired immunization strategy for network
epidemiology. J. Theor. Biol. 400, 92 – 102. (doi:10.
1016/j.jtbi.2016.04.018)

16. Shams B, Khansari M. 2015 On the impact of
epidemic severity on network immunization
algorithms. Theor. Popul. Biol. 106, 83 – 93. (doi:10.
1016/j.tpb.2015.10.007)

17. Chen L, Wang D. 2015 An improved acquaintance
immunization strategy for complex network.
J. Theor. Biol. 385, 58 – 65. (doi:10.1016/j.jtbi.2015.
07.037)
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