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Correlation-Constrained and Sparsity-Controlled
Vector Autoregressive Model for Spatio-Temporal

Wind Power Forecasting
Yongning Zhao, Student Member, IEEE, Lin Ye, Senior Member, IEEE, Pierre Pinson, Senior Member, IEEE,

and Yong Tang, Senior Member, IEEE

Abstract—The ever-increasing number of wind farms has
brought both challenges and opportunities in the development of
wind power forecasting techniques to take advantage of interde-
pendencies between tens or hundreds of spatially distributed wind
farms, e.g., over a region. In this paper, a Sparsity-Controlled
Vector Autoregressive (SC-VAR) model is introduced to obtain
sparse model structures in a spatio-temporal wind power fore-
casting framework by reformulating the original VAR model into
a constrained Mixed Integer Non-Linear Programming (MINLP)
problem. It allows controlling the sparsity of the coefficient
matrices in direct manner. However this original SC-VAR is
difficult to implement due to its complicated constraints and
the lack of guidelines for setting its parameters. To reduce the
complexity of this MINLP and to make it possible to incorporate
prior expert knowledge to benefit model building and forecasting,
the original SC-VAR is modified and a Correlation-Constrained
SC-VAR (CCSC-VAR) is proposed based on spatial correlation
information about wind farms. Our approach is evaluated based
on a case study of very-short-term forecasting for 25 wind farms
in Denmark. Comparison is performed with a set of traditional
local methods and spatio-temporal methods. The results obtained
show the proposed CCSC-VAR has better overall performance
than both the original SC-VAR and other benchmark methods,
taking into account all evaluation indicators, including sparsity-
control ability, sparsity, accuracy and efficiency.

Index Terms—Wind power, power system operations, forecast-
ing, spatial correlation, sparsity.

I. INTRODUCTION

W ITH the rapid development and large-scale integration
of wind power, both stability and reliability of con-

ventional power system operation will be seriously challenged
[1], [2]. Wind power forecasting (WPF) has been playing an
increasingly important role in helping power system operators
and market operators to schedule and trade wind power gener-
ation at various spatial and temporal scales [3], [4]. Extensive
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research work has been conducted over the past few decades to
develop efficient and accurate forecasting techniques. A review
of state-of-the-art WPF methods can be found in, e.g., [5-7].

Most of the existing WPF methods are optimized for every
location individually, using only local on-site information (e.g.
wind power measurements, weather forecasts), while over-
looking existing spatio-temporal interdependence structures in
wind power generation fields [8], [9]. In fact, not only does
wind power generation at each site exhibit auto-correlation, but
power generation at different wind farms also shows spatial
cross-correlation, possibly with a time lag. Therefore, in a re-
gion covering tens or even hundreds of wind farms, there might
be a lot to gain by better understanding dynamic space-time
dependencies among wind farms. Eventually, this may yield
a deeper understanding of wind farm dynamics, improved
accuracy of wind power forecasts, as well as better models
that could be seamlessly used for power system operation and
market participation.

Spatial correlation was initially primarily studied and used
to simulate wind speed and power time-series by first char-
acterizing the dependencies between two sites or among a
group of sites, in both time [10] and frequency domain [11].
The interdependence structure of wind power generation was
also investigated in [8] and [12] in terms of WPF errors. The
underlying correlation patterns were found in spatio-temporal
propagation of forecasting errors, from which probabilistic
WPF can be improved [13], [14].

This new insight has motivated researchers to concentrate on
WPF that takes more account of spatio-temporal correlations.
Different machine learning methods [15-17] were proposed to
improve wind speed and power forecasting, where wind speed
or power at a target site was predicted based on observations at
neighboring sites. Furthermore, regime-switching space-time
methods [18-20], multichannel adaptive filters [21] and graph-
learning methods [22] are also among approaches proposed
for spatio-temporal WPF. In the Global Energy Forecasting
Competition 2014, three teams [23-25] ranked in Top 5 of the
wind track also used off-site information in probabilistic WPF
to improve their forecasting accuracy.

The above spatial methods for WPF generally try to utilize
data from all the available neighboring sites. This could be
applicable when the number of wind farms is small. However,
considering scaling to a large number of wind farms, as is the
case in practice where hundreds or even thousands of wind
farms are installed over a region, such methods appear unde-
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sirable. The excessive use of information from numerous wind
farms may cause over-fitting problems as well as increased
computational burden. Thus, it is necessary to explore low-
dimensional structures to characterize the interactions among
a large number of wind farms [26].

To this end, sparse statistical modeling has attracted much
attention, where sparsity is to be understood as handling large
models, though with a large share of coefficients being zeros.
A sparse model is generally preferable since it can avoid over-
fitting, while its interpretation is simpler and more intuitive
than a dense one [27]. Alternative proposals can be found
for high-dimensional spatio-temporal WPF problems. Among
others, the compressive sensing and structured-sparse recovery
algorithms [26], [28], dictionary learning method [29] and
two-stage sparse vector autoregressive (VAR) model [30] have
achieved results with reasonably sparse structures. However,
these methods can only provide overall and fully data-driven
sparse structures, while forecasters and forecast users may be
interested in controlling sparsity in a finer way, e.g., by using
knowledge on space time wind dynamics and layout of wind
farms as natural constraints on sparsity.

In practice, if a user has prior expert knowledge about the
spatio-temporal relationships between wind farms that can
improve forecasting, then one may want to finely control
sparsity in a model structure based on such expert knowledge.
In addition, there may also be special restrictions on the
forecasting model. For example, it is difficult to use too many
wind farms to forecast the target wind farm for some technical
or financial reason, or historical data from other wind farms is
not applicable for the target wind farm, or wind farms refuse
to share their data due to privacy reasons [31].

Such expert knowledge or special restrictions can involve
different aspects, e.g., the number of correlated wind farms to
explain the target wind farm, the number of past observations
at each correlated wind farms to explain the target wind farm,
as well as the overall sparsity of the coefficients. These aspects
can be used to control the sparse structure of the solution as
needed. It is not easy to achieve these aspects by using existing
sparse modeling techniques, as they are generally black-box
models in terms of sparsity-control. Even though Cavalcante
et al. [32] explored a set of different sparse structures for
VAR models based on the Least Absolute Shrinkage and
Selection Operator (LASSO), this proposal requires setting up
a new, separate model for each specific sparse structure, and
this cannot really meet the requirement to freely control the
sparsity.

In this paper, a sparsity-controlled VAR (SC-VAR) model
[33] is introduced for very-short-term spatio-temporal WPF.
It reformulates the estimation problem for a VAR model as a
constrained mixed integer non-linear programming (MINLP)
problem, which can then be readily solved with a standard
optimization solver. Sparsity can be explicitly and flexibly
controlled by setting various parameters in the constraints.
However the SC-VAR is difficult to implement due to its
complicated constraints and the lack of guidelines for setting
its parameters. To reduce the complexity of MINLP, and to
enable incorporation of prior expert knowledge to benefit the
forecasting, the original SC-VAR is modified and a correlation-

constrained SC-VAR (CCSC-VAR) is proposed based on the
information on spatial correlation between wind farms. The
proposed method is compared with different local and spatio-
temporal methods using data from 25 wind farms in Denmark.

The paper is structured as following. In Section II, the SC-
VAR and CCSC-VAR models for WPF are outlined. Section
III introduces a set of benchmark methods and performance
metrics. In Section IV, a case study of 25 wind farms in
Denmark is carried out to test the proposed methods. Section
V concludes the work and results.

II. THE SPARSITY-CONTROLLED VECTOR
AUTOREGRESSIVE MODELS

A. The VAR Model

A VAR model can capture the dynamic interrelationships
between power generation observed at a number of spatially
distributed wind farms. Suppose yi,t is the power generation at
wind farm i and time t. Power measured at N wind farms can
be integrated into a N -dimensional vector-valued time series
{yt} ∈ RN . To describe yi,t based on past observations, the
VAR process of order p, VAR(p) is expressed as

yi,t =
N∑
j=1

p∑
k=1

αi
jkyj,t−k + εi,t (1)

where N is the dimension of the vector time series, in this
case the number of wind farms that are spatially distributed
in a region, k = 1, 2, . . . , p are time lags, εi,t is zero-mean
Gaussian noise of time series yi,t, and αi

jk is the autoregressive
coefficient that characterizes the contribution of yj,t−k to yi,t.
The modeling of VAR is to find optimal αi

jk that can best
explain yi,t.

The VAR in more compact vector form is written as:

yt =

p∑
k=1

Akyt−k + εt (2)

where Ak = {αi
jk : i, j = 1, 2, . . . , N} ∈ RN×N is the

coefficient matrix for time lag k, and εt ∈ RN is the vector of
zero-mean Gaussian noise with non-singular covariance matrix
for N wind farms at time t.

B. The SC-VAR Model

As it is the most basic multivariate time series model, the
VAR is not expected to produce a sparse coefficient structure
by itself. Although there is literature devoted to overall sparsity
control and different sparse structures for WPF, none of it
allows fine-tuning of different aspects of sparsity. In fact, in
case of possessing specific information about the data used for
VAR modeling or showing special preferences regarding the
sparse structure, one may want to control the sparsity of the
forecasting model as needed. Some typical aspects of sparsity
that can be controlled include:

1) The overall number of non-zero coefficients of VAR
(SA).

2) The number of explanatory wind farms used in VAR to
explain the target wind farm i (Si

F ).
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3) The number of past observations of each explanatory
wind farm used to explain the target wind farm i (Si

P ).
4) The number of nonzero coefficients used to explain the

target wind farm i (Si
N ).

Following [33], by introducing binary variables and adding
constraints on the coefficients of VAR, the original VAR can
be reformulated as a MINLP problem, which is expressed as

min
α,δ,γ

N∑
i=1

T∑
t=p

(
yi,t+1 −

N∑
j=1

p∑
k=1

αi
jkyj,t−k+1

)2

(3a)

subject to δijk ≤ γi
j , ∀k ∈ K, i, j ∈ I (3b)

N∑
j=1

γi
j ≤ Si

F , ∀i ∈ I (3c)

p∑
k=1

γi
jδ

i
jk ≤ Si

P , ∀i, j ∈ I (3d)

N∑
i=1

N∑
j=1

p∑
k=1

δijk ≤ SA (3e)

N∑
j=1

p∑
k=1

δijk ≤ Si
N , ∀i ∈ I (3f)∣∣αi

jk

∣∣ ≥ ηijδ
i
jk, ∀k ∈ K, i, j ∈ I (3g)

αi
jk(1− δijk) = 0, ∀k ∈ K, i, j ∈ I (3h)

δijk, γ
i
j ∈ {0, 1},∀k ∈ K, i, j ∈ I (3i)

where T is the length of time series for model training, K =
{1, 2, . . . , p}, I = {1, 2, . . . , N}, binary control variable δijk
indicates whether the coefficient αi

jk is zero or not, binary
control variable γi

j indicates whether explanatory wind farm
j can be used to explain target wind farm i, and threshold ηij
is the lower bound of |αi

jk|.
This MINLP optimizes the regression coefficients αi

jk and
binary control variables δijk and γi

j by minimizing the sum of
squared errors. The meaning of each constraint of the SC-VAR
is as follows:

1) Constraint (3b) forces the γi
j to take the value 1 when

some δijk takes the value 1, i.e. as long as there exists
non-zero αi

jk for at least one lag k.
2) Constraint (3c) limits the number of explanatory wind

farms used to explain target wind farm i.
3) Constraint (3d) limits the number of past observations of

each explanatory wind farm used to explain target wind
farm i.

4) Constraint (3e) limits the overall number of non-zero
coefficients of VAR.

5) Constraint (3f) limits the number of non-zero coeffi-
cients used to explain target wind farm i.

6) Constraint (3g) confines |αi
jk| to the interval [ηij ,+∞]

and otherwise assigns zero to any coefficient whose
absolute value is less than ηij .

7) Constraints (3h) links the control variable δijk to coeffi-
cient αi

jk so that δijk can determine whether αi
jk is zero

or not.
Although the SC-VAR model allows full control of the

sparsity, it can be very difficult to implement it in practice.

First, the SC-VAR allows sparsity-control but does not indicate
how to control. This requires elaborately setting many param-
eters, including Si

F , Si
N and Si

P for each wind farm i, ηij for
each pair of wind farms and SA. This is impracticable when
dealing with high dimensional WPF, especially if very limited
guidelines are available for setting these parameters. Secondly,
in addition to the regression coefficients, the SC-VAR model
introduces many binary variables that need to be optimized, i.e.
δijk for each pair of wind farms at each lag, and γi

j for each pair
of wind farms, and these are the main causes of computation
burden. Finally, as constraint (3e) controls the overall sparsity,
all of the coefficients in the objective function (3a) have to be
optimized together, which can slow down the computation.
If (3e) is removed from the model, the objective function is
decomposable so that it can be solved by solving separately the
optimization problem for each wind farm i, considering only
the constraints related to wind farm i. However, removing (3e)
will make the SC-VAR lose its global control of sparsity. Even
so, the global sparsity can be appropriately controlled via the
local control of each wind farm’s sparsity using constraints
(3f). Therefore, it is worth removing the constraint (3e) as a
result of balancing between the computation efficiency and the
sparsity-control ability. Also note that, in controlling the total
number of non-zero coefficients of a target wind farm, the
combination of constraints (3c) and (3d) can serve a similar
function to that of the constraint (3f). Thus, based on the
above analysis, the constraints (3d) and (3e) can be removed
while (3c) and (3f) can be retained to control the sparsity in
a computationally efficient way by sacrificing some control
flexibility.

Furthermore, as the constraints (3g) and (3h) are non-linear,
a reformulation is provided in [33] to linearize them by replac-
ing δijk with νi+jk + νi−jk . Then (3g) and (3h) can be linearized
as αi

jk ≥ ηijν
i+
jk − νi−jk M and αi

jk ≤ −ηijν
i−
jk + νi+jk M , where

M is assumed to be a large positive constant number. But
unfortunately many more auxiliary integer variables have to
be introduced, which will further make the SC-VAR compu-
tationally heavier.

C. The CCSC-VAR Model

To address the problems of the SC-VAR, in this section the
CCSC-VAR model is proposed and formulated as:

min
α,δ

N∑
i=1

T∑
t=p

(
yi,t+1 −

N∑
j=1

p∑
k=1

αi
jkyj,t−k+1

)2

(4a)

subject to δijk ≤ λi
j ,∀k ∈ K, i, j ∈ I (4b)

p∑
k=1

δijk ≥ λi
j ,∀i, j ∈ I (4c)

N∑
j=1

p∑
k=1

δijk ≤ Si
N , ∀i ∈ I (4d)∣∣αi

jk

∣∣ ≤ M · δijk, ∀k ∈ K, i, j ∈ I (4e)

δijk, γ
i
j ∈ {0, 1},∀k ∈ K, i, j ∈ I (4f)

where M is any large positive constant number, Λτ =
{λi

j : i, j ∈ I} ∈ RN×N with regard to parameter τ
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Fig. 1. The Pearson correlation coefficients between the wind power time
series of two wind farms at different time lags

is the control matrix derived from cross-correlation matrix
Φ = {ϕi

j : i, j ∈ I} ∈ RN×N of the wind farms. The Φ
can be obtained in different ways, including Pearson corre-
lation, Kendall rank correlation and graphical modeling. It is
found that the results of these correlation analysis approaches
are quite close. However, the computation of Kendall rank
correlation and graphical modeling is very time-consuming,
so the Pearson correlation coefficient is selected in this paper
and computed by

ϕi
j =

∑T
t=1

(
yi,t − ȳi

)(
yj,t − ȳj

)√∑T
t=1

(
yi,t − ȳj

)2√∑T
t=1

(
yj,t − ȳj

)2 (5)

where ȳi and ȳj are the average values of T samples for wind
farm i and j respectively.

Then, the entries of Λτ are obtained by

λi
j =

{
1, ϕi

j ≥ τ

0, ϕi
j < τ

(6)

where τ is a predefined threshold. Like the γi
j in the SC-

VAR, λi
j also indicates whether wind farm j contributes to

wind farm i. However, γi
j is a decision variable that needs to

be optimized while λi
j is an adjustable parameter related to

historical data.
Here only the zero-lag correlation coefficient computed by

using synchronous time series is considered in generating
the control matrix Λτ , because a correlation analysis of the
used data shows that the difference among the correlation
coefficients at different time lags (each lag is 15 minutes)
is not significant in the very-short-term horizons studied in
this paper, as shown by an example in Fig. 1. But for longer
forecasting time horizons, the correlation coefficients at cor-
responding lags are suggested to be considered in generating
the Λτ .

In the CCSC-VAR model, the implications of the constraints
are as follows:

1) Constraint (4b): If λi
j = 0, the coefficients αi

jk between
i and j for all p time lags are zeros.

2) Constraint (4c): If λi
j = 1, there should be at least one

non-zero coefficient αi
jk between wind farm i and j, i.e.,

the αi
jk for at least one lag k should be non-zero.

3) Constraint (4d): It is same as constraint (3f). It is
retained from SC-VAR and used together with Λτ to
control the sparsity.

4) Constraint (4e): The binary control variable δijk is linked
to αi

jk, so that δijk can determine whether αi
jk is zero

or not, i.e.,

∣∣αi
jk

∣∣ ≤ M · δijk ⇔

{
−M ≤ αi

jk ≤ M, δijk = 1

αi
jk = 0, δijk = 0

(7)

Although M is allowed to take any large positive con-
stant number, it is found that in this work the maximal
regression coefficients for all the wind farms are around
1. Therefore, the value of M is set as 2.

There are two parameters governing the sparsity of the
CCSC-VAR, i.e. τ and Si

N . The sparsity of the CCSC-VAR
is directly affected by the sparsity of Λτ , while the sparsity
of Λτ is determined by Φ and τ . So τ can serve a similar
function as Si

F of the SC-VAR in controlling the number of
explanatory wind farms. In addition, the CCSC-VAR with both
Si
N and τ can be more flexible in controlling sparsity than the

CCSC-VAR without Si
N .

Compared with the SC-VAR, the CCSC-VAR has fewer
constraints. Also, the compact CCSC-VAR model has many
fewer parameters that need to be tuned, but meanwhile it still
preserves the ability to control the sparsity. Moreover, when
using the transformation in (7), all constraints of the CCSC-
VAR are linear without resorting to auxiliary variables like
those in the SC-VAR model. Furthermore, as the decision
variables γi

j are replaced by adjustable parameters λi
j , problem

solving will be more efficient due to the substantially reduced
number of decision variables. Therefore, the CCSC-VAR is
much easier to implement than the SC-VAR.

Another significant advantage of the CCSC-VAR over the
SC-VAR is that the CCSC-VAR enables incorporation of
expert knowledge about the spatio-temporal correlations of the
wind farms into the model building. As the Φ is deterministic
and unique for a specific set of N wind farms, controlling
the sparsity of the CCSC-VAR via tuning τ is in fact based
on real data information and thus can reduce the uncertainty
in sparsity control, which makes the model more capable of
characterizing the true relationships between wind farms.

It should be noted that the binary control matrix Λτ used
in this paper is just a concrete example of expert knowledge
which is derived from basic cross-correlation matrix. However,
even such simple expert knowledge can improve the forecast-
ing performance, as will be demonstrated in the case study.
Therefore, it is expected that the forecasting accuracy can be
further improved by using other specifically designed control
matrices. In particular, the control matrix allows element-
wise modification when special restrictions are imposed. For
example, if historical data of a specific wind farm is not
available for some technical reasons or if a wind farm refuses
to share its data for privacy reasons, then the entries of the
control matrix corresponding to this wind farm can be directly
set as zero. However, the special restrictions may contradict
the expert knowledge. This means an unavailable wind farm
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with regard to the special restriction could be the one preferred
by expert knowledge. Therefore, this case should be carefully
considered in practice.

D. The Decomposition of Sparsity-Controlled Models
Since the objective function and each constraint are decom-

posable, the CCSC-VAR can be solved separately for each
wind farm i, which is expressed as

min
α,δ

T∑
t=p

(
yi,t+1 −

N∑
j=1

p∑
k=1

αi
jkyj,t−k+1

)2

(8a)

subject to δijk ≤ λi
j ,∀k ∈ K, j ∈ I (8b)

p∑
k=1

δijk ≥ λi
j , ∀j ∈ I (8c)

N∑
j=1

p∑
k=1

δijk ≤ Si
N (8d)∣∣αi

jk

∣∣ ≤ M · δijk, ∀k ∈ K, j ∈ I (8e)

δijk, γ
i
j ∈ {0, 1}, ∀k ∈ K, j ∈ I (8f)

The SC-VAR model can also be decomposed in a similar
way if the constraint (3e) is removed. By decomposing the
original problem into smaller sub-problems, the dimension
of the optimization is significantly reduced, which is very
beneficial in high-dimensional spatio-temporal WPF.

In this paper, the decomposed sub-problems are solved in
a sequential way on only one computer, i.e. the wind farms
are solved one by one. Computational gain will be more
significant if they are implemented in the framework of parallel
computing or distributed computing, which can concurrently
solve the sub-problems. The decomposition enables the fore-
casting models to be deployed at both wind farm level and
the power system operator level and in both centralized and
distributed ways. For example, if each wind farm is responsible
for solving the forecasting problem for itself, then all the
wind farms can solve their own problems respectively and
simultaneously in a distributed way.

III. BENCHMARK METHODS AND PERFORMANCE
METRICS

Two classes of forecasting methods are implemented to
evaluate the performance of the SC-VAR and the CCSC-
VAR: local methods and spatio-temporal methods. As has
been discussed, a local method employs only local information
to obtain local forecast. Individual local models need to be
built for each wind farm. In contrast, the spatio-temporal
methods provide an integrated or unified form of model for all
wind farms and make use of spatial information to improve
forecasting.

A. Local Forecasting Methods
1) Persistence Method: The persistence method is com-

monly used as the most basic predictor to benchmark other
methods. In this method, the forecast for all times ahead
is treated as the present value. The k-step-ahead persistence
method is

ŷt+k|t = yt (9)

2) Autoregressive (AR) Model: AR is the one-dimensional
version of VAR model by setting N as 1. It models the future
wind power generation using only the local wind power time
series based on the temporal auto-correlation characteristics.

B. Spatio-Temporal Forecasting Methods

1) LASSO-VAR: The LASSO-VAR is a multivariate time
series forecasting model that is widely used to explore sparse
structure and feature selection. The LASSO-VAR in separated
form of an individual wind farm i is expressed by

min
ai

[
T∑

t=p

(
yi,t+1 − a⊤

i Y t

)2
+ µ∥ai∥1

]
(10)

where ai = (Ai
1,A

i
2, . . . ,A

i
p)

⊤ ∈ RNp×1 is coefficients
vector of wind farm i with Ai

k ∈ R1×N being the ith row
of Ak, Y t = (y⊤

t ,y
⊤
t−1, . . . ,y

⊤
t−p+1)

⊤ ∈ RNp×1, ∥ · ∥1 is
the ℓ1-norm of a vector, and µ is a parameter that determines
the balance between the estimation error and the degree of
sparsity of the solution [34].

According to (10), the LASSO-VAR is a black-box model
in terms of sparsity-control. It can only control the overall
sparsity of the VAR of wind farm i by tuning the value of µ.
The greater the µ is, the sparser the coefficients matrix will
be. When µ = 0, the LASSO-VAR will degenerate to standard
VAR. See [32] for details about the LASSO-VAR in WPF.

2) Simplified SC-VAR model: As has been mentioned, the
complete SC-VAR defined by (3a)-(3i) is very difficult to
implement due to its complicated constraints and parameter
settings. So a simplified version of the SC-VAR is used for
comparison in the cased study. In the simplified SC-VAR, the
constraints (3d) and (3e) are removed and all ηij are set as 0.
As the parameter τ of the CCSC-VAR and the parameter Si

F of
the simplified SC-VAR serve similar functions in controlling
the number of wind farms, the CCSC-VAR and the simpli-
fied SC-VAR have similar parameter setting complexity and
sparsity-control ability, which is fair to the model comparison.
In the following sections, unless otherwise specified, the SC-
VAR refers to the simplified SC-VAR.

C. Performance Metrics

For each wind farm i, the accuracy of the forecasting models
are indicated by two metrics following [35]. These are Nor-
malized Root Mean Square Error (NRMSE) and Normalized
Mean Absolute Error (NMAE). The average accuracy of a
forecasting model for the whole set of studied wind farms is
indicated by average NRMSE of all wind farms.

Furthermore, for the LASSO-VAR, SC-VAR and CCSC-
VAR, the model sparsity Θ is additionally defined as the
ratio between the number of zero coefficients and the overall
number of coefficients:

Θ =
Nzero

Np2
(11)

where Nzero is the total number of zero coefficients.
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Fig. 2. The geographical distribution of 25 randomly selected wind farms in
Denmark

IV. APPLICATION AND CASE STUDY

A. Data Preparation

The data used in this paper are wind power time series in
2006 from 25 randomly selected wind farms across Denmark.
The geographical distribution of these wind farms is shown
in Fig. 2. Each time series contains 35 040 consecutive data
points with time resolution of 15 min. The dataset of each wind
farm is divided into three consecutive parts, including 10 000
data points for training, 10 000 data points for validation (pa-
rameter optimization) and the remaining 15 040 data points for
out-of-sample predictive performance testing. Each forecasting
model is firstly trained using the training data with different
parameters. Then the forecasting NRMSE corresponding to
different parameters are obtained using validation data to
select the optimized parameters for each forecasting model.
The performance metrics of the forecasting models with their
optimal parameters are finally compared using testing data.
In the following sections, the NRMSE computed from the
validation data is called validation NRMSE while the NRMSE
and MAE computed from the testing data are called testing
NRMSE and testing MAE. In this work, the forecasting
methods are applied in very-short-term time horizons of up to
6 steps (i.e., 1.5 hours) ahead with each step being 15 minutes.

It is well known that the time series forecasting models
are more capable of Gaussian processes. Thus, all the data
are normalized to the range of [0,1] and then transformed to
Gaussian time series using Logit transformation [36]:

yG = log
(

y

1− y

)
, y ∈ (0, 1) (12)

where y is the original data and yG is the transformed Gaussian
data. As the logit transformation requires that y ∈ (0, 1), the
data smaller than 0.01 are treated as 0.01 and the data greater
than 0.99 are treated as 0.99.
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Fig. 3. The optimal order of AR model for each of the 25 wind farms

After finishing the forecasting, all forecasts are transformed
back to the normalized range of (0,1) using the inverse
transformation

y =
exp(yG)

1 + exp(yG)
(13)

B. The Tools for Solving the Forecasting Models

All the forecasting methods are implemented on a 64-bit
PC with 2.9GHz Intel Dual Core CPU and 4GB RAM.

Except for the SC-VAR and the CCSC-VAR, all other fore-
casting methods are implemented on the platform of Matlab
R2013b (64-bit). The LASSO-VAR is solved by the Matlab
package “Glmnet” using a Coordinate Descent algorithm [37].
Since the VAR is a special case of the LASSO-VAR without
the ℓ1-norm constraint [27], the forecasting of the VAR is
achieved by directly setting the shrinkage parameter µ of the
LASSO-VAR as zero.

The simplified SC-VAR and the CCSC-VAR are solved by
the Gurobi solver with mathematical programming language
AMPL. Other solvers such as CPLEX and other modeling
languages such as Python can also easily deal with these
MINLPs.

C. Parameter Settings

1) The Order p of the Forecasting Models: Partial auto-
correlogram is an effective tool to determine the order of
autoregressive models for time series. The partial autocorrel-
ogram calculated from training data is used for each of the
25 wind farms to determine their optimal orders p, as shown
in Fig. 3. The AR model for each wind farm is trained with
its corresponding optimal order. However, a spatio-temporal
model requires an unified order for all wind farms. It can be
seen from Fig. 3 that the optimal p for most of the wind farms
ranges from 3 to 6. Based on the optimal orders of individual
wind farms, and considering the fairness of comparison, a
moderate p = 4 is configured for all the spatio-temporal
methods, i.e., VAR, LASSO-VAR, SC-VAR and CCSC-VAR.
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Fig. 4. The average validation NRMSE of 1-step-ahead forecasting by
different models with varying training data size

2) The Impact of Training Data Size on Accuracy: The size
of training data is a very important factor, with significant
influence on the accuracy of a forecasting model. The average
1-step-ahead validation NRMSE of different forecasting meth-
ods with different training data sizes is given in Fig. 4. Note
that the parameters used here are not optimal ones. The µ of
the LASSO-VAR is 0.001. The Si

F and Si
N of the SC-VAR

are 15 and 20 respectively. The τ and Si
N of the CCSC-VAR

are 0.75 and 30 respectively.
In Fig. 4, the NRMSE values for all the methods tend to

decrease with training data size. However, after the data size
reaches a specific value (e.g. 5000), the NRMSE decreases
very slowly. The AR model is the most insensitive to the
training data size. Its performance remains almost unchanged
when the data size is greater than 1000. It also has the lowest
NRMSE level among all these methods when the data is
not sufficient, which indicates AR is a simple but powerful
forecasting method. The VAR model is very data hungry,
which is consistent with the conclusion of [30]. It is the worst
one in terms of both forecasting accuracy and convergence rate
with data size. The NRMSE curves of all the sparse models
decrease very quickly to a very low level and then varies
closely and slowly when data is more than 4000. The LASSO-
VAR and the SC-VAR always keep very close and show almost
the same variation tendencies. Among the spatio-temporal
methods, the CCSC-VAR significantly outperforms the others
when the data size is extremely small (smaller than 1000).
This is because the CCSC-VAR that highly dependent on
the spatio-temporal correlation information can be effectively
characterized even by using very small amounts of data,
though sufficient data can be more beneficial. The NRMSE of
these models may continue changing if the data size further
increases, but it is fair to train all these forecasting models
with 10 000 data points according to the above analysis.

3) Parameters Tuning for Spatio-Temporal Forecasting
Model: This section will discuss in detail the parameters of
spatio-temporal forecasting models, including the µ of the
LASSO-VAR, the Si

N for both the SC-VAR and the CCSC-
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Fig. 5. The average validation NRMSE of 1-step-ahead forecasting and model
sparsity with different µ of LASSO-VAR

VAR, the Si
F for the SC-VAR, and the τ for the CCSC-VAR.

Notice that, according to the implications of constraints,
the limit of effective Si

N for the SC-VAR is Si
N ≤ p · Si

F .
The impact of constraint (3f) on the SC-VAR will not change
with Si

N when Si
F is fixed and Si

N is greater than its upper
limit. Similarly, the limit of effective Si

N for the CCSC-VAR
is
∑N

j=1 λ
i
j ≤ Si

N ≤ p ·
∑N

j=1 λ
i
j , and the impact of constraint

(4d) on the CCSC-VAR will not change with Si
N when τ is

fixed and Si
N is greater than its upper limit. On the contrary, if

Si
N is fixed and smaller than its upper limit, then the sparsity

will not change with varying Si
F or τ , but the accuracy of

the SC-VAR or the CCSC-VAR could always change with Si
F

or τ respectively, no matter whether Si
N is beyond its upper

limit or not. In addition, for the CCSC-VAR, the Si
N that is

smaller than its lower limit will make the optimization problem
infeasible due to the contradiction between constraints (4c) and
(4d). The Si

N and Si
F for all wind farms will take the same

values in this paper, though different values can be set for
different wind farms.

The optimal parameters for the LASSO-VAR, SC-VAR
and CCSC-VAR are determined by examining the 1-step-
ahead forecasting results. The optimal parameters in other time
horizons are set as the same as those in the 1-step horizon.

To investigate the impact of µ on the performance of the
LASSO-VAR, the average validation NRMSE of 25 wind
farms for 1-step-ahead forecasting and the model sparsity in
terms of different values of µ are obtained and given in Fig.
5. As expected, the model sparsity increases with µ, whereas
the average NRMSE firstly decreases and then increases with
µ. The average NRMSE reaches its minimum value 3.5249%
at µ = 0.0014, with model sparsity Θ = 0.5428.

The performance of the SC-VAR is affected by two pa-
rameters, i.e., Si

F and Si
N . To investigate the impact of each

parameter on the forecasting performance, one of them has to
be fixed while the other one is varying. Firstly, the Si

F is fixed
at 25 and the average 1-step-ahead validation NRMSE of 25
wind farms and model sparsity with varying values of Si

N are
given in Fig. 6. It can be seen that the model sparsity linearly
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Fig. 6. The average validation NRMSE of 1-step-ahead forecasting and model
sparsity of SC-VAR with varying Si

N and fixed Si
F = 25

decreases with Si
N . The average NRMSE decreases at the

beginning and then starts to slowly increase. Both the sparsity
and NRMSE finally remain unchanged after Si

N reaches 88.
The dramatic decrement at the beginning where 1 ≤ Si

N ≤ 5
is because the wind power generation of a wind farm cannot be
sufficiently explained by very few coefficients. The minimum
NRMSE is achieved at Si

N = 19.
Then the Si

N is fixed as 19 and the average 1-step-ahead
validation NRMSE and model sparsity with varying values
of Si

F are given in Fig. 7. It is found that the sparsity stops
decreasing at Si

F = 5 while the NRMSE stops decreasing and
reaches its minimum value at Si

F = 17. This is because when
Si
F ≥ 5, the fixed Si

N = 19 is always smaller than its upper
limit p ·Si

F , which means the constraint (3c) is inactive while
constraint (3f) always restricts the number of wind farms to
4. Although it restricts the number of selected wind farms,
constraint (3f) doesn’t restrict which wind farms should be
selected, so the selected wind farms may be changed when
Si
F is increasing, which makes the NRMSE change as well.

Based on Fig. 6 and Fig. 7, the optimal parameters of the SC-
VAR are set as Si

F = 17 and Si
N = 19, and the corresponding

minimum average NRMSE and sparsity are 3.5177% and 0.81
respectively.

As with the SC-VAR, the average 1-step-ahead validation
NRMSE and sparsity of the CCSC-VAR with varying Si

N

and fixed τ = 0.75 is shown in Fig. 8. The two curves of
the CCSC-VAR are similar to that of the SC-VAR in Fig. 6,
but it can be seen that the NRMSE curve in Fig. 8 shows
significant volatility. However, this volatility is just within a
very small range of [3.5143%, 3.5163%], which is even below
the minimum NRMSE of the LASSO-VAR and the SC-VAR.
Therefore, the volatility doesn’t affect the parameter selection.
The minimum average NRMSE is achieved at Si

N = 28.
Furthermore, the average 1-step-ahead validation NRMSE

and sparsity of the CCSC-VAR with varying τ and fixed
Si
N = 28 are shown in Fig. 9. The trends of the curves

in Fig. 9 can be explained in a similar way to that in Fig.
7, except that the sparsity of the SC-VAR decreases with
Si
F while the sparsity of the CCSC-VAR increases with τ .
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Fig. 7. The average validation NRMSE of 1-step-ahead forecasting and model
sparsity of SC-VAR with varying Si

F and fixed Si
N = 19
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Fig. 8. The average validation NRMSE of 1-step-ahead forecasting and model
sparsity of CCSC-VAR with varying Si

N and fixed τ = 0.75

According to Fig. 8 and Fig. 9, the optimal parameters of
the CCSC-VAR are set as τ = 0.76 and Si

N = 28, and
the corresponding minimum average NRMSE and sparsity are
3.5139% and 0.7264 respectively.

D. Results and Discussions

1) Average Scores of Forecasting Accuracy: The average
out-of-sample testing NRMSE and testing NMAE of all 25
wind farms for different forecasting models in different time
horizons are presented in Table I. All the models are config-
ured with their optimal parameters determined in Section IV-C.
The sparsity values of spatio-temporal methods are given as
well.

In terms of NRMSE, all the spatio-temporal methods sig-
nificantly outperform the local methods. But there is one
exception, i.e., the AR is slightly better than VAR for 1-step-
ahead forecasting, which reveals that a spatio-temporal model
is not necessarily better than a local model due to the over-
fitting problem. This is also demonstrated by the fact that
all the sparse spatio-temporal methods performs better than
the VAR model in all time horizons. Thus it is necessary to
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TABLE I
THE AVERAGE OUT-OF-SAMPLE TESTING NRMSE AND TESTING NMAE IN DIFFERENT TIME HORIZONS AND THE SPARSITY VALUES OF DIFFERENT

FORECASTING MODELS

Indicator Average NRMSE (%) Average NMAE (%) Θ

Time horizon

Persistence
AR

VAR
LASSO-VAR

SC-VAR
CCSC-VAR

1-step 2-step 3-step 4-step 5-step 6-step

4.5967 6.4880 7.6261 8.5363 9.3276 10.0358
4.5788 6.4371 7.5561 8.4541 9.2333 9.9291
4.5803 6.2176 7.1826 7.9625 8.6553 9.2965
4.4382 6.1056 7.0795 7.8659 8.5683 9.2135
4.4291 6.1102 7.1036 7.9243 8.6443 9.2951
4.4169 6.0842 7.0577 7.8465 8.5633 9.2222

1-step 2-step 3-step 4-step 5-step 6-step

2.7307 3.9314 4.6870 5.3034 5.8380 6.3192
2.8330 4.0214 4.7676 5.3788 5.9103 6.3907
2.8757 3.9423 4.5964 5.1256 5.5969 6.0317
2.7820 3.8676 4.5261 5.0618 5.5387 5.9757
2.7730 3.8679 4.5437 5.1012 5.5889 6.0285
2.7631 3.8471 4.5073 5.0437 5.5286 5.9707

n/a

n/a
n/a
0

0.5428
0.8100
0.7264
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Fig. 9. The average validation NRMSE of 1-step-ahead forecasting and model
sparsity of CCSC-VAR with varying τ and fixed Si

N = 28

seek the sparsity for a high-dimensional spatio-temporal WPF
model. Among the sparse models, the CCSC-VAR performs
best for 1-step-ahead to 5-step-ahead forecasting. However,
the LASSO-VAR is more accurate than the CCSC-VAR in
6-step horizon. This suggests one possibility to improve the
accuracy of the CCSC-VAR in longer-term time horizons is to
consider more time lags (both positive and negative) between
time series for two wind farms when computing the cross-
correlation matrix and control matrix. However, the details
still need to be carefully studied.

Although the SC-VAR is better than the LASSO-VAR in
the 1-step horizon, it is the worst of the sparse models in
the other 5 horizons. This indicates that the SC-VAR allows
controlling the sparsity in detail but can still be defeated by
the black-box controlling of LASSO-VAR. Note that the SC-
VAR used here is simplified version of the original SC-VAR
defined in (3a)-(3i). It is possible to improve the accuracy of
the SC-VAR by using all the constraints and parameters of the
original SC-VAR to tune the sparsity, but this will sacrifice the
implementation efficiency too much.

In terms of NMAE, the CCSC-VAR outperforms all other
models for 2-step-ahead to 6-step-ahead forecasting. Notably,
although the Persistence method is the worst in terms of
NRMSE, it performs best for 1-step-ahead forecasting in terms
of NMAE. The low MAE value is related to the flat parts of
the wind-power curve model where the Persistence is almost

impossible to outperform. In cases with high wind speed, the
wind power profile will be mainly constant and close to the
rated power, in this case Persistence presents an almost perfect
forecast performance (particularly in the 1-step horizon) in
comparison with other models. This is more visible in the
MAE metric since the RMSE penalizes the other situations
more, i.e., the non-linear part of the power curve model. The
Persistence cannot capture any ramp in wind power time series
and this corresponds to the non-linear part of power curve
model. This will cause large errors and contribute significantly
to the RMSE due to the square of the errors.

With regard to the sparsity of sparse models, the SC-VAR
acquires the highest sparsity. The LASSO-VAR has lowest
sparsity, indicating that it needs more non-zero coefficients to
explain the target wind farms. The CCSC-VAR has a moderate
sparsity but has higher accuracy than both the SC-VAR and the
LASSO-VAR. This indicates that the CCSC-VAR can extract
the most useful information from a relatively small number of
explanatory variables. Note that the sparsity of the LASSO-
VAR in only the 1-step horizon is provided in Table I. It is
found that the sparsity of the LASSO-VAR tends to decrease
with the time horizons. Its sparsity in 2-step to 6-step horizons
are 0.4332, 0.4, 0.3668, 0.3384 and 0.3440, respectively.
Unlike the LASSSO-VAR, the fixed parameter settings of the
SC-VAR and the CCSC-VAR in all time horizons leads to
their fixed control matrix and fixed number of explanatory
wind farms. Therefore, the sparsity of the SC-VAR and the
CCSC-VAR will not change with time horizon, which can
partly explain why the CCSC-VAR is worse than the LASSO-
VAR in 6-step horizon, since the decreasing sparsity of the
LASSO-VAR implies that a sparse forecasting model may
need to extract more useful information from more wind farms
for longer time horizons.

To summarize, the CCSC-VAR performs best in terms of
average accuracy among all the forecasting methods in this
paper. This result indicates that introducing the correlation
constraints to control the sparsity can improve the forecasting
by exploiting the most relevant information from real data.

2) Diebold-Mariano Test for Statistical Significance: To
assess the statistical significance of the forecast error improve-
ment in each wind farm, Diebold-Mariano (DM) test [38],
[39] is applied here to compare between the CCSC-VAR and
the LASSO-VAR, which are the two most accurate methods
demonstrated in previous section.

The null hypothesis of DM test is that the two methods have
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TABLE II
THE DM TEST RESULTS IN TERMS OF SQUARED LOSS FUNCTION FOR

COMPARISON BETWEEN CCSC-VAR AND LASSO-VAR

Indicator 1-step 2-step 3-step 4-step 5-step 6-step

NC>L 14 7 9 9 4 2
NC<L 1 3 4 2 3 4
NC=L 10 15 12 14 18 19

TABLE III
THE DM TEST RESULTS IN TERMS OF ABSOLUTE LOSS FUNCTION FOR

COMPARISON BETWEEN CCSC-VAR AND LASSO-VAR

Indicator 1-step 2-step 3-step 4-step 5-step 6-step

NC>L 14 14 10 9 6 5
NC<L 1 1 3 2 3 4
NC=L 10 10 12 14 16 16

the same forecasting accuracy. The significance level used in
this paper is 0.05. Three kinds of DM tests are implemented.
The first one is a two-tailed test and the alternative hypothesis
is that the CCSC-VAR and the LASSO-VAR have different
levels of accuracy. The second one is a one-tailed test and the
alternative hypothesis is that the LASSO-VAR is less accurate
than the CCSC-VAR. The third test is a one-tailed test and
the alternative hypothesis is that the LASSO-VAR is more
accurate than the CCSC-VAR.

These tests are carried out in terms of two different loss
functions, including squared error loss and absolute error
loss. The tests results are summarized using three indicators
and presented in Table II and Table III, where NC>L is the
number of wind farms for which the CCSC-VAR significantly
outperforms the LASSO-VAR, NC<L is the number of wind
farms for which the LASSO-VAR significantly outperforms
the CCSC-VAR, NC=L is the number of wind farms for which
the two methods have almost equivalent forecasting accuracy.

It can be seen that the DM test results are consistent with the
average NRMSE and NMAE in Table I. Although the CCSC-
VAR cannot defeat the LASSO-VAR for every wind farm,
the NC>L is greater than NC<L in 1-step to 5-step horizons
in terms of both squared error loss and absolute error loss,
which is very significant in 1-step to 4-step horizons. Actually,
it is well known that no forecasting approach provides the
best results for all conditions such as different time horizons,
different wind farms, different seasons, etc.

A reason for the CCSC-VAR not being better than the
LASSO-VAR for some wind farms can be related to their
parameter settings. The number of non-zero coefficients for
each wind farm and each sparse forecasting model is shown
in Fig. 10. All the sparse methods are configured with unified
parameters for all wind farms, but the number of non-zero
coefficients of the SC-VAR and the CCSC-VAR may be
suppressed by Si

N , while this is not the case with the LASSO-
VAR. The numbers of non-zero coefficients of the SC-VAR
for all wind farms are limited to Si

N = 19 and the numbers
of non-zero coefficients of the CCSC-VAR for most wind
farms are limited to Si

N = 28. When the numbers of non-
zero coefficients for different wind farms are restricted to one
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Fig. 10. The number of non-zero coefficients for each wind farm and each
sparse forecasting method

unified value, the forecasting accuracy of some wind farms
that need more relaxed Si

N may be limited.
In summary, the CCSC-VAR is the overall best method

when taking into account both the average scores in Table
I and the DM test results.

3) Computational Efficiency Analysis: The computation
time for training each forecasting model is provided in Table
IV. All the spatio-temporal forecasting models are solved
in a decomposed way by optimizing each target wind farm
separately. The LASSO-VAR costs the least time because it is
solved by the very efficient Coordinate Descent algorithm. It
is even much faster than the local AR models. This means the
spatio-temporal methods is not necessarily less efficient than
simple local methods. Notice that the VAR is a special case
of the LASSO-VAR (µ = 0), so they cost the same amount
of computation time. The SC-VAR is most computationally
expensive among these methods. The CCSC-VAR is much
better than the SC-VAR, though it is less competitive in
comparison with LASSO-VAR.

In fact, MINLPs form a particularly broad class of chal-
lenging optimization problems, as they combine the difficulty
of optimizing over integer variables with the complexity of
handling nonlinear functions. The simplified SC-VAR and
CCSC-VAR are standard convex MINLPs [40], since they
will become nonlinear convex programming if the integrality
constraint on integer variables is relaxed. This is also how
the solvers deal with MINLPs. Convex MINLPs can be more
efficiently solved than non-convex ones. In practice, when
working with MINLPs, solvers (e.g. Gurobi) might find the
optimal solution (at least a very good feasible solution) quite
fast but such solvers spend huge amounts of time just trying
to prove the solution is optimal.

Though the simplified SC-VAR is a convex MINLP, its time
consumption is still quite larger than that of other forecasting
models. In practice, when solving the simplified SC-VAR, a
short time limit (30 seconds in this paper) has to be imposed
for each wind farm, as suggested by [33]. Otherwise, the
optimization process for some wind farms may take more
than ten minutes. The solving process will be stopped and
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TABLE IV
THE COMPUTATION TIME TAKEN FOR TRAINING DIFFERENT FORECASTING

MODELS

Methods Total time (s) Average time for one wind farm (s)

AR 8.52 0.34
VAR 2.15 0.086

LASSO-VAR 2.15 0.086
SC-VAR 750 30

CCSC-VAR 10.78 0.43

the optimization results will be returned if the time limit is
exceeded. The time limit is set by taking into account both
the forecasting accuracy and efficiency. As for the CCSC-
VAR model with better convergence property, its computation
is much faster than the simplified SC-VAR. The optimization
for each wind farm can be solved in a very short time and no
time limit is needed, as shown in Table IV. From this point
of view, the CCSC-VAR is also a significant improvement
compared with the SC-VAR.

V. CONCLUSION

This paper deals with the very-short-term WPF that makes
full use of space-time dependencies among spatially distribut-
ed wind farms. The SC-VAR is employed to pursue sparse
structures of forecasting models. Although the SC-VAR allows
full control of sparsity, it is difficult to implement in practice
due to its complicated constraints and the lack of guidelines
for setting its parameters. The proposed CCSC-VAR is more
efficient and accurate because it is more compact and allows
incorporation of prior expert knowledge to benefit the fore-
casting. The proposed method is tested on 25 wind farms
in Denmark and compared with several classic forecasting
methods, including both local methods and spatio-temporal
methods. The CCSC-VAR has best overall performance tak-
ing into account all evaluation indicators, including sparsity-
control ability, sparsity, accuracy and efficiency.

Some further work could be done to improve the CCSC-
VAR. The control matrix derived from the Pearson cross-
correlation matrix is just one specific example to illustrate
the sparsity-control and forecasting ability of the CCSC-VAR.
It is flexible to choose the control matrix. Consequently, the
forecasting accuracy can be improved by using other specif-
ically designed control matrices based on reasonable expert
knowledge. Furthermore, in this paper, all the forecasting
methods are only discussed within the framework of batch
learning mode, while an online adaptive version of the CCSC-
VAR can capture and adapt to the stochastic behavior of wind
by updating itself using the latest and real-time information,
and thus could save computation time and improve forecasting
accuracy. Moreover, in future work the proposed method will
be extended to a larger spatial scale, e.g. hundreds of wind
farms.
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