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Abstract

For the existing pitch and torque control of the wind turbine generator system
(WTGS), further development on coordinated control is necessary to improve ef-
fectiveness for practical applications. In this paper, the WTGS is modeled as a
coupling combination of two subsystems: the generator torque control subsystem
and blade pitch control subsystem. Then, the pole positions in each control subsys-
tem are adjusted coordinately to evaluate the controller participation and used as the
objective of optimization. A two-level parameters-controllers coordinated optimiza-
tion scheme is proposed and applied to optimize the controller coordination based on
the Pareto optimization theory. Three solutions are obtained through optimization,
which includes the optimal torque solution, optimal power solution, and satisfactory
solution. Detailed comparisons evaluate the performance of the three selected so-
lutions and provide the optimized controller coordination suggestions according to
different requirements.
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1. Introduction

In recent years, with rapid growth of wind power, modern wind turbines(WTs)
have been developed with larger-scale blades and capacity, which brings more chal-
lenges to the traditional control. The wind turbine generator system(WTGS) works
mainly in two separate regions: maximize wind energy conversion efficiency below
the rated wind speed [1], or maintain the output power at the rated power above the
rated wind speed [2, 3, 4]. There exist corresponding strategies to achieve smooth
transition or stabilized output [5, 6, 7, 8]. Motivated by the development of control
theory, the existing WT control strategies mainly combine the proportional, integral
and derivative(PID) control, linear control or nonlinear control [2, 9, 10, 11, 12].
Most practical WT control still adopts the PID control, especially the PI control.
The related research mainly focuses on proposing advanced PID control strategies
by introducing more related variables, such as [11, 13].

The linear state-space model is usually adopted for WTGS based on the operating-
point linearization. The state-space representation can better represent the relation-
ship between different system states, and the zero-poles can also be easily calculated,
which is essential for the analysis of system response and stability. Moreover, the
zero-poles of the system can be configured by state feedback or output feedback,
and state parameters can also be easily obtained by the state observer. Several
state-space models have been proposed to describe the WTGS from different as-
pects. [14] introduced several WTGS state-space models with different orders and
state variables when the requirements and control objects are different. [15] and
[16] investigated the multi-objective optimal control by applying the pole placement
technique, where [15] tried to place the poles of the WTGS state-space model into
specific LMI regions. Since the WTGS is a nonlinear system, a lot of work has
applied the nonlinear control to the WT control, such as the feedback linearizing
control, back-stepping control and sliding mode control, etc. [10, 17, 18, 19]. For
the nonlinear WTGS model, it is still possible to regulate the dynamic response by
combining the geometric linearization and pole placement techniques [19].

From the optimal control perspective, the model order of the WTGS is closely
related to the control objectives. Several high-order models for accurate represen-
tation of the WTGS were proposed in [6, 7, 8, 20]. Especially, [6] described the
WTGS with a set of differential equations to analyze the model sensitivity related to
the wind speed. For the convenience of practical applications, a three-order WTGS
state-space model is adopted in this paper. The wind turbine control system can be
divided into two parts: the torque & power controller and the blade pitch controller.
Normally, the control strategies combine both controllers to consider the WT as a
multi-input system, and design the controller accordingly when the wind speed is



above the rated speed [14, 16, 17]. The torque & power controller is usually set
to the constant power mode, and the generator power is kept constant so that the
generator torque response is inversely proportional to the generator speed, where
the blade pitch controller is the only actuator used to adjust the wind energy cap-
tured. Some research investigated the control of both generator torque and blade
pitch, usually modeling two controllers in a state-space model and controlling the
system by the regional pole placement method or robust control method [15, 19, 21].
The system diagram of the traditional methods is shown in Figure 1. Such methods
can improve the coordination of multiple controllers and use the generator torque
& power controller to assist the pitch actions. However, the involvement degree of
each controller is hard to control especially in the regional pole placement method.
Therefore, it is necessary to investigate the role of torque & power controller pre-
cisely that coordinately work with the blade pitch controller to improve the control
effectiveness and achieve better responses.

It is worth mentioning that, during the coordination analysis, more than one
variable need to be considered, which leads to a multi-objective optimized problem,
i.€., find the most important variables need to be considered and strike a balance be-
tween different objectives. Several research studied the multi-objective optimization
problems. [22] introduced several multi-objective optimization methods, and [23]
showed a typical application of multi-objective optimization in multi-regional elec-
tricity systems. The general optimization method usually minimizes a cost function,
however, the acquisition of the cost function is subjective. [24, 25] proposed another
method to solve the problem and optimized the weight matrix in model predictive
control: by using the Pareto theory to qualitatively analyze two objectives and obtain
a satisfactory solution by calculating the gradient. However, it is still meaningful
to further analyze the controller coordination for the WTGS by optimizing the pole
position, due to the essential characteristic with the high-order multi-inputs and
multi-objectives.

In this paper, the WTGS is linearized into a three-order linear state-space model
(the detailed linearization process is in the Appendix), in which the torque and
pitch controllers are separated into two subsystems: the generator torque & power
control system and blade pitch control system. Poles of the two subsystems are
precisely placed to control the WT. Simulations were carried out with different poles
position to compare and evaluate the performance. Generator power, generator
torque and blade pitch movement are the objective variables, which need to be
optimized in the controller coordination. Multi-objective optimization strategies
and Pareto efficiency are used to analyze the responses of the controller coordination
and objective variables balanced solution. The system structure diagram is shown



in Figure 2, and the coordinated solution will be evaluated in the time domain,
eigenvalues and frequency domain.

Coordination
Optimization

OutPut
—
Output
—>

Parameters Parameters
FeedBack FeedBack

Figure 1: Classic System Structure Diagram Figure 2: System Structure Diagram Proposed

The rest of the paper is organized as follows: In Section 2, the two-level parameters-
controllers coordinated optimization system is described. In Section 3, the definitions
related to Pareto efficiency are introduced and adopted for the analysis of several
satisfactory solutions. In Section 4, the control effectiveness of different solutions
is evaluated from the aspects of time domain responses, eigenvalues and frequency
domain, respectively. Section 5 gives the poles placement suggestions for different
conditions such that the controllers are coordinated for different control objectives.
Section 6 concludes this paper.

2. Two-Level Parameters-Controllers Coordination

Many parameters of the WTGS can be measured and have an important impact
on the wind turbine characteristic. In this section, the analysis is carried out based
on the pole movement of both subsystems, where three parameters are selected as the
optimization objective and forms a two-level parameters-controllers coordinated op-
timization system, i.e., the parameters coordination optimization for each controller
as the first level, and the controller coordination as the second level.

To evaluate the influence of each subsystem, several simulations are simulated
under turbulent wind with mean speed 15 m/s and turbulence intensity 12. Ten
DOFs (Degree of Freedom) including the tower fore-aft, flexible blade and flexible
drive-train are used in the simulations, which is aimed at good control of the high-
order WT model with the coordinated controllers designed from a third-order model.
A higher-order model is quite difficult to be used in the industrial field, while the
lower-order one is more useful for industrial processes. During simulations, the nat-
ural frequency and damping ratio in both subsystems remain consistent to avoid the
unnecessary interference. In the meantime, the single pole on the right hand side is



placed in an appropriate interval to keep the wind turbine stable and get the cor-
responding response data for the further evaluations. The single pole in the torque
control subsystem changes from -0.5 to -0.05, and the single pole in the pitch control
subsystem changes from -2.05 to -0.9. Since the natural frequency and damping ratio
keep consistent, the second order part in the denominator of the transfer function
will remain unchanged and keep two poles distributed symmetrically without any
movement. All poles movement mentioned in the rest of this paper refers to the
single one on the right hand side in both subsystems, and are called as pitch-pole
and torque-pole for convenience. The poles map is shown in Figure 3.
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Figure 3: Poles Map

The analysis of the pitch control subsystem and torque control subsystem are
carried out based on series of data. During simulations, the operating point is set
as the rated power condition, where the limited power scenario is not considered in
this paper. Four most important parameters are analyzed to evaluate the responses,
which are the generator power output, generator speed, generator torque the blade
pitch movement. In order to evaluate the output stability and fluctuation, all four
parameters are calculated as standard deviation (STD) and analyzed based on the
pole position in both the torque and pitch control subsystems. All values in the curves
are normalized with the corresponding response values obtained by an industrial
baseline controller designed for the specific wind turbine, which is developed by
NREL and provided in FAST [5, 26]. The normalized values are obtained by %,
where the 1g. ¢ are the respective response parameters with the pole-placed state-
feedback controller proposed in this paper, and Y pc are the respective response
parameters with the baseline controller. Obviously, when the ordinate of one point
on the STD curve is less than 1, it implies a more stable output than the baseline
control with the corresponding parameters.



The response data are analyzed based on the pole movement in both the pitch
and torque control subsystems, which are illustrated in Figure 4.
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Figure 4: Pole Movement (Figures on the top-layer are the responses shown with the torque-pole
positions as x-axis, where lines with different colors shows the different responses with different
pitch-pole. Figures on the bottom layer are the responses with the pitch-pole as x-axis)

Obviously, when the pitch-pole is moving away from the imaginary axis, the gen-
erator power, torque and speed STD decrease but the pitch movement STD increases.
Clearly, the blade pitch movement increases with the pitch-pole moving away from
the imaginary axis, which means that the blade pitch action is more sensitive to
the wind turbulence and leads to a more stable output, but the improvement of
the output stability is at the expense of the pitch movement. Responses with the
torque-pole movement are more interesting. With the torque-pole moving away from
the imaginary axis, the blade pitch movement STD and generator speed STD are
decreased gradually, but the generator power and generator torque show very differ-
ent responses. Both generator power and generator torque are becoming stable at
first, their STDs reach the minimum point and then increase rapidly, and the mini-
mum points of the generator power STD and generator torque STD are surprisingly
different. The generator power STD reaches its minimum point at first, and the gen-
erator torque STD keeps decreasing while the generator power STD increases till the
minimum point of generator torque STD. The further movement of the torque-pole
will increase both the generator power and torque STD, in another word, the output
quality is getting worse.



The above analysis shows that, it is difficult to find the optimal poles position
for both the pitch and torque control subsystems. Three most important parameters
need to be balanced in controller coordinated optimizations: the generator power
stability, generator torque stability and blade pitch movement, or in another word:
the energy output quality, blade root loads caused by the blade pith frequent move-
ment, and drive shaft loads caused by the shaft torque fluctuation. In the pitch
control subsystem, a more stable power output will cost more frequent blade pitch
actions, and how to coordinate the generator power and torque is the problem to
be solved in torque control subsystem. Thus, a two-level parameters-controllers co-
ordinated optimization system is proposed to optimize the controller coordination:
The parameter-coordination is the first level for the satisfactory controllers, i.e.,
the generator torque/power coordination in the torque controller, and the genera-
tor power/pitch movement coordination in the pitch controller. After parameter-
coordination optimization, one or several satisfactory controller combinations can
be achieved and form the controller coordination solutions. The system structure is

shown in Figure 5.
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Figure 5: System Tree Structure

3. Coordinated Control Design through Pareto and Pole Placement

In this section, the multi-objective coordinated optimization techniques are ap-
plied on the torque and pitch control subsystems to obtain an optimal or a regional
optimal pitch-pole and torque-pole at 15m/s wind speed operating point.

According to the previous discussion, three main variables are involved during
the pole optimization. For the multi-objective problem, several optimization strate-
gies first form a cost function with weights for different objectives, then solve the
optimization problem with the cost function. [24, 25] introduced an optimization
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strategy based on Pareto efficiency to optimize the two-objective optimization prob-
lem based on the model predictive control. In this paper, the optimization problem
has been divided into two parts and each part deals with two parameters. The fun-
damental concepts of the multi-objective (MO) optimization, definitions of Pareto
optimal solutions and Pareto efficiency are given as follows to solve this optimization
problem. More details can be referred to [22, 24, 27].

Definition 1 (Optimization Problem) Assuming two objective variables marked
as «, # and the decision variable W € W, where WV is the feasible set, find the optimal
solution W, for two objective values aupt, Bopt, in which W € U, o € A, f € B, and
A and B are constraints for each objective variable.

3.1. Pareto Efficiency

In contrast to the single-objective optimization problem, there may exist no global
solution, which is optimal for all contradicting objectives in the multi-objective op-
timization problem:; it is hence desirable to seek a set of good solutions that are not
worse than other solutions. This set of solutions is called the Pareto optimal solu-
tions to the MO problem perspective. These solutions are also termed non-inferior,
admissible, or efficient solutions.

Definition 2 (Pareto Efficiency) Pareto efficiency or Pareto optimally is a state
of allocation of resources, from which it is impossible to reallocate to make any one
individual or preference criterion better off without making at least one individual
or preference criterion worse off.

Definition 3 (Dominance) Given two solutions Wi € ¥ and Wy € ¥ for the
two objective values («, 1) and (az, f2) of the MO problem, respectively, (a1, f1)
is said to dominate (az, f2), if (aq < az) and (51 < Ba).

Definition 4 (Pareto Optimal Solution) A solution W* is the Pareto optimal
solution of the MO problem with the respect to ¥, if there does not exist another
feasible solution W € W such that the objective values (a?, 3°) dominate (a*, *).

Definition 5 (Pareto Improvement) A Pareto improvement is a change to a
different allocation that makes at least one individual or preference criterion better
off without making any other individual or preference criterion worse off, given a
certain initial allocation of goods among a set of individuals. An allocation is defined
as “Pareto efficient” or “Pareto optimal” when no further Pareto improvements can
be made, in which case we are assumed to have reached Pareto optimally.

Definition 6 (Weak Pareto efficiency) A “weak Pareto optimum” (WPQO) is an
allocation, for which there are no possible alternative allocations whose realization
would cause every individual to gain. Thus, an alternative allocation is considered to
be a Pareto improvement if and only if the alternative allocation is strictly preferred



by all individuals. When contrasted with weak Pareto efficiency, a standard Pareto
optimum as described above may be referred to as a “strong Pareto optimum” (SPO).

Definition 7 (Pareto Frontier) Consider a system with function (mapping) f :
R, — R,,, where X is a compact set of feasible decisions in the metric space R,
and Y is the feasible set of criterion vectors in R,,, such that ¥ = {y eR,:y=
flz),z € X } Assume that the preferred directions of criteria values are known.
A point 3" is preferred to (strictly dominates) another point 3 (y" and y' € R, ),
written as ¢ = 3. The Pareto frontier P(Y) is thus written as:

PY)= {y €Y : {y" cY:y =y,y %y}}

The typical example of a pareto frontier is shown as follows.

g
O
O
O O
g(A) > g(B) O O
o O
Paregy
f(A) < (B) i

Figure 6: Pareto Frontier

The boxed points represent feasible choices, and smaller values are preferred to
larger ones. Point C is not on the Pareto frontier because it is dominated by both
point A and point B. Points A and B are not strictly dominated by any other, and
hence do lie on the frontier.

3.2. Analysis of The Satisfactory Torque-pole

Similar to Figure 4, the response data are plotted with the generator torque STD
as x-axis and generator power STD as y-axis, to select an appropriate torque-pole
position that balance the torque and power output, which is shown in Figure 7.



o

@
o

o
[

ES
N
5

Region 3

Torque-pole moves away
Region 2 from the imaginary axis

Generator Power STD
n w

Generator Power STD

o -
[ S I )

q Regio‘n 1

o

oo

. . . . . .
1.5 2 25 3 .2 0.4 0.6 0.8 1 12 1.4 1.6
Generator Torque STD Generator Torque STD

S)

AN
oL / A\
13 i/ \

Figure 7: Torque-Power Coordination Curves (Lines in left figure with different colors stand for the
simulations with different pitch-pole. As the line moves, the torque pole changes gradually)

In the left of Figure 7, it can be found that although the pitch-pole changes the
positions and curve shapes, the trend remains the same, thus the curve at the front
is shown in the right of Figure 7 as an example for convenience.

In the right of Figure 7, the curve can be further divided into three regions.
When the torque-pole moves away from the imaginary axis, the torque-power curve
passes through regions 1, 2, 3 in sequence. Similar situations exist in regions 1 and
3: the generator power STD and generator torque STD keep the same change trend
following the movement of the torque-pole, i.e., both the generator torque STD and
generator power STD decrease with the torque-pole moving away from the imaginary
axis in region 1 and increase in region 3, which makes point A the most dominant one
in region 1 and point B in region 3 correspondingly. In region 2, the generator power
STD increases when the generator torque STD decreases, in other words, the two
parameters cannot be improved simultaneously, and the dominance of one part is at
the expense of another deterioration. Therefore, possible solutions in region 2 are on
the Pareto frontier that cannot guarantee any Pareto improvement. A satisfactory
solution should be obtained through optimization methods on the Pareto frontier.

It is important to note that, a satisfactory solution is different from an optimal
solution, when the different objectives are difficult even impossible to converge to
the same point while the strong Pareto optimal can be obtained. Generally, several
objectives reach a Pareto frontier and every solution on the frontier are optimal
solutions (weak Pareto optimum). However, a high-level optimization objective is
required to analyze the difference between optimal solutions and obtain the only one
that satisfies the high-level optimization objective. The satisfactory solution is a
weak Pareto optimal condition.
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The curve in region 2 is extracted and shown in Figure 8, and the gradient at
each data point in region 2 is calculated. Obviously, the gradient at each point
remains negative, and the gradual decrease of its absolute value shows that the rate
of decrease of the generator power STD is continuously reduced with the increase
of the generator torque STD. Take the generator torque STD as investment and
the reduction of the generator power STD as profit, then the profit will be lower
with the increase of per unit investment. The trend is still the same if swapping the
investment and profit. The tangent point of the curve with a line slope of -1 is shown
in this figure. The slope of the change at the tangent point in generator power STD
and generator torque STD is the same, and region 2 is divided into two parts: Part
a (between the generator power STD minimum point and the tangent point), where
the stability of generator power is more important than the generator torque; and
part 8 (between the tangent point and the generator torque STD minimum point),
where the stability of the generator torque is more important than generator power.
The figure of gradient shows the focus in the two parts. The data point with the star
is the tangent point on the left side figure, the gradient at the tangent point is greater
than one, and the gradient of the previous points is less than one, corresponding to
part £ in the left figure, in which the generator power STD increases faster than the
generator torque STD declines, and part « is the opposite.

The satisfactory torque-pole can be obtained at the 15 m/s wind speed operating
point, and is —0.11 at the tangent point. Since previous analysis only used on a single
curve with a specific pitch-pole for the satisfactory pitch-pole, the same strategy is
used on the other curves with different pitch-pole. The results show that all these
curves have the same tangent point with the torque-pole at —0.11. Thus it can be
concluded: The satisfactory torque-pole at 15 m/s wind speed is —0.11 considering
the balance between generator power and torque with different pitch-poles. Figure
4 shows that both of the generator speed stability and pitch action are improved
when the torque-pole moves from the minimum point of generator power to the one
of generator torque. Further analyse of the controller coordination will discuss this
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problem with more details.

3.8. Analysis of The Satisfactory Pitch-pole

The satisfactory torque-pole has already been obtained. In this subsection, the
satisfactory pitch-pole is discussed to balance the generator power stability /blade
pitch movement in the pitch control subsystem with the satisfactory torque-pole.
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Figure 9: Pitch-Power Coordination Curves and Corresponding Gradients

In Figure 9, take the pitch movement STD as x-axis and generator power STD
as y-axis, the gradient at each point is also calculated and plotted. With the pitch-
pole moving away from the imaginary axis, the gradient curve remains negative, the
pitch movement keeps increasing and the generator power keeps decreasing in the
meantime. Clearly, the gradient curve is in a state of flux, but a minimum point
is very clear and marked with a star, which shows the fastest decline point in the
pitch-power curve. It means that the generator power STD decreases fastest in the
curve when pitch movement grows very little and is chosen as the satisfactory point.
Moreover, the current pitch-pole is the satisfactory solution.

3.4. Optimal Conditions in Torque-Power Coordination

Data in Figure 7 including the Pareto frontier are shown in Figure 10 in the form
of scatter data points.
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Similar to Figure 7, Figure 10 can be also divided in three regions. Clearly,
the minimum point of generator power STD is the optimal power condition, and
the minimum point of generator torque STD is the optimal torque condition. The
intermediate region between two optimal conditions is a typical Pareto Frontier and
two optimal conditions are its initial and terminal points. Coincidentally, all points
on the Pareto Frontier have the same pitch-pole at —2.05.

Note that, the above sections analyze torque-power curves separately and reach
a same satisfactory torque-pole with different pitch-pole, then obtain the satisfac-
tory pitch-pole. Discussions in this subsection are based on all data, which makes
the optimal power and torque conditions as the global optimal solution. Gener-
ally speaking, three pairs of poles are obtained in the previous discussions. Take
the torque-pole as abscissa and the pitch-pole as ordinate, then the optimal power
solution is (—0.08,—2.05), the optimal torque solution is (—0.16,—2.05) and the
satisfactory solution is (—0.1, —1.65).

The solution equivalent to the baseline controller and the satisfactory solution
are marked in Figure 10, through which it can be seen that the satisfactory solution
is slightly off the Pareto frontier of generator power and generator torque (to balance
the output and blade pitch movement). The satisfactory solution is not far from the
optimal power solution, which indicates that the choice of the satisfactory solution
is acceptable in all situations. On the other hand, the solution equivalent to the
baseline controller is far away from the Pareto frontier in both generator torque and
generator power, which explains that the ability of blade pitch angle movement has
not been fully utilized in the baseline controller, and a better control effect can be
achieved by increasing the blade pitch sensitivity. Whether such improvement in
power stability leads to an increase in load, the analysis of blade loads and drive
shaft loads will be given in the next section.
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4. Effectiveness Evaluation

Several solutions have been obtained through the previous analyse. In this sec-
tion, the effectiveness and improvement are evaluated to make sure the selected poles
will give a better response than the conventional baseline control strategy, especially
in load conditions. The responses are analyzed in the time domain, eigenvalues, and
the frequency domain, respectively.

4.1. Time Domain Evaluation

Several parameters are shown in histogram figures, response curves and spider
diagrams as follows to evaluate the performance improvement. The analysis can
be divided into three parts: the basic analysis, drive train loads analysis and blade
loads analysis. Output stability and pitch actions are the main variables in the basic
analysis. Besides, three bending moments on the blade root are analyzed to evaluate
the blade loads, and three thrust forces on the low-speed shaft are used to evaluate
the drive shaft loads. The load parameters and its abbreviations are listed in Table
1. Some other load parameters like the blade edge-wise and flap-wise moments are
adopted in [28, 29], but these parameters are just the mapping of bending moments
under the rotating coordinate system into the non-rotating coordinate system and are
basically the same. The load parameters considered in this paper are all based on the
coordinate system that rotates with the rotor or the drive shaft. Specific definitions
about load parameters and corresponding coordinate systems can be referred to [5].

Table 1: Load Parameters
RootMxc | The blade in-plane moment

RootMyc | The blade out-of-plane moment

RootMzc | The blade pitching moment

LSSFxa | Low-speed shaft thrust force

LSSFya | Rotating low-speed shaft shear force along ya-axis
LSSFza | Rotating low-speed shaft shear force along za-axis

The response curves of four basic parameters are plot in Figure 11. In all the
following response curves, the blue curves represent the baseline controller and the
orange curves represent the satisfactory solution. Since the difference between the
three solutions in the response curves is not clear enough to be distinguished in
one figure, the responses of the optimal power and optimal torque solutions are not
plotted in curves, and will be analyzed in histograms. In the histograms of Figure 12,
the blue column is the corresponding response parameter of the baseline controller,
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and the columns in red, green and purple stand for the satisfactory condition, optimal
power condition and optimal torque condition, respectively. The responses after 100s
are selected as the steady-state response in order to avoid the impact of initial start-
up stage fluctuation on the evaluation. The steady-state responses of four parameters
are calculated into STD to evaluate the output fluctuation and stability, and the
numerical value is standardized based on the responses under the baseline controller.
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Figure 11: Basic Loads Curves (The blue curves shows the wind turbine responses with the baseline
controller, and the orange curves are the responses with the satisfactory solution)
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Figure 12: Basic Loads Histogram
In Figure 11, it is obvious that the satisfactory solution achieves better dynamic
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responses in all four analyzed parameters than the baseline controller, the improve-
ment of the generator speed and generator torque fluctuations are significant. The
blade pitch moves under the satisfactory solution that the turbulence in the wind
speed can be effectively suppressed. The generator power output under the satis-
factory solution is also more stable than the baseline controller. In Figure 12, the
blue column is taller than other three columns, which shows that a better response
can be achieved when poles of the system are placed in either of the three solutions.
Besides, the optimal power solution has the lowest generator power STD and the op-
timal torque solution has the lowest generator torque STD, which is consistent with
our discussions in Figure 4. The generator speed STD of the satisfactory solution is
higher than the other two solutions, but still has a great influence on the baseline
controller. Apart from this, the other three parameters of the satisfactory solution
strikes a good balance between the optimal power and torque conditions.

All three driveshaft load responses are plotted in Figure 13. Although it can
be found that, the drive shaft loads responses of the satisfactory solution has some
improvements than the baseline control loads responses, but the form of responses
curves still cannot show the improvement effectively. Moreover, it is difficult to plot
all four load curves of one load parameter in one figure. The bending moment on
the blade root is positively related to the mechanical stress, and once the mechanical
stress exceeds the fatigue limit of the metal, the blade will be damaged. The greater
the mechanical stress, or more times the mechanical stress exceeds the fatigue limit,
the greater the damage to the blade. The above discussion will be the same on a
negative bending moment, which is also a positive parameter but with an opposite
direction. Thrust force on the drive shaft is the same. Thus, both mean value and
maximum value of the load parameters are calculated for the comparatively overall
analysis of the wind turbine loads. The spider diagram is used to show the load
comparisons of the baseline control with all three solutions and shown in Figure 14.
The specific numerical values of the load parameters are listed in Appendix B.
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Figure 13: Blade Root Loads (The blue curves are the baseline responses and the orange curves
are the satisfactory solution responses)
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Figure 14: Blade Root Loads Spider Plot

From Table B.4 and B.5, it can be found that the “RootMyc” is the most signif-
icant one in three blade root bending moments, which proves that the out-of-plane
bending moment has the most great impact on the blade root. Obviously, the opti-
mal torque solution has the smallest max value while the mean values are very close,
and the conclusion can be given as: the optimal torque solution is also the optimal
blade load solution. In addition, Figures 13 and 14 show that all three solutions
achieve better blade load conditions than the baseline controller in both the mean
value and max value. Therefore, all three selected solutions are acceptable for the
blade load. The response curves and spider diagrams of the drive shaft loads are

shown and analyzed as follows.
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Figure 15: Drive Train Shaft Loads (The blue curves are the baseline responses and the orange
curves are the satisfactory solution responses)
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Figure 16: Drive Train Shaft Loads Spider Plot
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The first thing to notice in Figure 16 is that, the mean value of “LSSFza” is
much bigger in the satisfactory solution than the baseline controller, but it does not
have a impact in such situations that the mean value of “LSSFza” is very small, and
clearly the max value is slightly reduced with the increase in the mean value. On the
other hand, the mean value is very small even the max value is very large, because
such thrust force reciprocates between negative and positive, and a small increase
in the mean value is obvious if calculated in the magnification, which implies that
it is necessary and more meaningful to consider the max value. Numerical results
and spider diagrams show that all solutions have better effects on the drive shaft
thrust force than the baseline controller, but the difference between solutions are not
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remarkable enough to distinguish which is the best. Although one of the thrust force
mean value is increased, the drive shaft loads of three selected solutions still have
small improvements and is acceptable.

In summery, the baseline controller is a simple structured, very effective con-
troller, which can be easily applied in the industrial field, but the above comparisons
and analysis show that there still exists a big gap between the baseline controller
and the weak optimal solutions on the Pareto frontier. The gap can be easily and
effectively reduced by the above optimization strategy based on historical data or
series of simulations. Both output stability and wind turbine load conditions can be
improved significantly through the optimization. Subsequent analysis will compare
the simulation results from other perspectives.

4.2. Eigenvalues Evaluation

Eigenvalue is one of the inherent attributes of the system, which can reflect the
performance of the system and is usually adopted to evaluate the system [6, 7, 8, 20].
The participation of the controller will also change the eigenvalues of the closed-
loop system. Considering both the pitch and generator torque controllers, the wind
turbine generator system can be represented as a two-input system and listed in the
Appendix. Table 2 shows both the real and imaginary parts of the eigenvalues and
the change that happens when different control strategies are adopted.

Table 2: Eigenvalues of the wind turbine system

Systems Real Imag

Origion A1 | -0.157319884 0

Ao | -0.708718718 | £ 13.9472861304907
Satisfactory A1 | -1.382962649 0

23 | -0.708140015 | £ 13.9452367449432
Optimal Power A1 | -1.812921426 0

A3 | -0.708160627 | + 13.9452325601310
Optimal Torque A1 | -1.733014965 0

23 | -0.708113857 | &+ 13.9452364325443

The wind turbine has a real eigenvalue and a pair of complex eigenvalues with
imaginary parts. Once ignoring the effects of zeros, the WTGS can be simplified as
a classic three-order transfer function written as:

W,ZS()
(s + 80) (8% + 2Cwps + w2)

G(s) =
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For the above three-order transfer function, (s + sg) leads to a negative real
eigenvalue, while (s* 4+ 2¢w,s + w?) results in a pair of complex eigenvalues. When
the input u(t) is a unit step response function and 0 < ¢ < 1, output can be
transformed by Laplace transform into:

y(s)=te A 4 b + ¢ 1)
S = — Y
s s+50 s+ (w, — jwn/1—C s+ Cw, + jwa/1—C
wherein

A = o

(82 — 2Cwps + w?2)’

50(2Cwn — s0) — 750(2C%w, — Cso — wy)//1 — 2
2[(2¢%w, — Cso — wn)? + (2Cwy, — 50)2(1 —¢2)]

SO(ZCwn - 50) + j30<2c2wn - CSO - wn)/ V 1 - CQ
2[(2<2wn - CSO - wn)z + (2Cwn - SO>2(1 - CQ)] ‘

Let b = so/(Cwy) , then (1) can be transformed by Inverse Laplace transform as:

B

C

y(t) = 1+ Ape ' 4+ 2ReB - e~ cos(wpty/1 — (2) — 2ImB - e~ sin(w,t\/1 — ¢?),

wherein
1
An = T2 —2)+ 1
bC(b — 2)
heB = —onan—2+1]’
ImB — b([C(b—2) +1]

CobC2(b—2) + 1 /1— 2

From the above expression of the classic third-order transfer function, it can be
found that the single real eigenvalue has the most important impact on the dynamic
response of a third-order system than other eigenvalues. The larger the absolute value
of the single real eigenvalue, the faster the decaying of the corresponding response
components, conversely slower. In Table 2, the second-order part of the wind turbine
model has a small change with different controllers, but the change of the one-order
eigenvalue is significant. Eigenvalues of the optimal power solution and the optimal
torque solution moving away from the imaginary axis will have faster responses. The
optimal power solution has the eigenvalue farthest from the imaginary axis and the
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fastest generator power output response among all the solutions. The eigenvalue of
the satisfactory solution move slightly towards the imaginary axis than both optimal
solutions, which has lost a small portion of power stability to achieve a balanced
condition (between generator power smoothing and generator torque ripple), but its
real eigenvalue is still much further than the original wind turbine, for which a fast
and stable response can be guaranteed. Unfortunately, it is difficult to calculate
the eigenvalues of the wind turbine under the baseline controller, but the results of
the eigenvalue analysis of three proposed solutions are consistent with the previous
analysis.

4.3. Frequency Domain Evaluation

Fast Fourier transformation is adopted to evaluate the response data in the fre-
quency domain. Due to the fact that the three selected solutions have small differ-
ences in the frequency domain, the power spectrum is used to evaluate the difference
between three selected solutions and only the satisfactory solution is chosen to com-
pare with the baseline controller by fast Fourier transformation. The frequency
domain results are shown in Figure 17 and 18.
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Figure 17: Frequency Domain Evaluation Figure 18: Power Spectrum via MUSIC Algo-
rithm

From Figure 17, it can be found that there exist two peaks in the low-frequency
band on the amplitude spectrum of baseline controller, which have been significantly
improved by the satisfactory solution. The differences in other frequency segments
are quite small, which indicates that the satisfactory solution has great ability to
suppress energy fluctuation below 0.2 Hz, i.e., the output power fluctuation at 5-20
seconds scale caused by the wind turbulence can be suppressed effectively. Figure 18
shows that the three selected solutions are very close in the power spectrum. The
satisfactory solution has the best power spectral response in detail, and the optimal
torque has a middle response between other two solutions in the frequency domain.
Although the optimal power solution achieves the best power stability in the time
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domain, but it is still less than the satisfactory solution in the frequency domain.
The difference is not so significant but can still be observed.

5. Coordination Analysis

A satisfactory solution for torque-pole and pitch-pole are obtained and guaran-
tees better responses than the baseline control strategy. Besides, an optimal power
solution and an optimal torque solution are also obtained based on Pareto efficiency.
In this section, controller coordination characteristics are discussed based on the
response characteristics curve and three selected solutions.
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Figure 21: Generator Torque STD Figure 22: Pitch Movement STD

Clearly, the satisfactory solution reaches a good balance between the two optimal
solutions. It should be noticed that the generator speed STD curve has a different
y-axis interval with other figures, the difference between solutions seems great but is
not significant actually. Apart from this, some other solutions might be needed for
different conditions can be summed up from above figures. First, when the generator
power stability is the primary consideration during the controller design, the optimal
power solution is the best solution, and a similar situation happens to the optimal
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torque one when the generator torque stability is first considered. Meanwhile, the
improvement of generator torque stability has a good effect on blade loads, which is
one of the most vulnerable components in wind turbines. The optimal torque solution
is also the optimal blade load solution. Secondly, the optimal power solution at the
expense of the blade pitch frequent actions. In order to decrease the blade pitch
actions, increasing the torque pole or decreasing the pitch-pole are both appropriate.
It should be noticed that the increase of the torque pole will bring the fluctuation
of the generator speed, but the decrease of the pitch-pole can reach relatively less
fluctuations of generator speed. Thus, the change of the pitch-pole could be the
first choice, but the increase of the torque pole is also needed to coordinate with the
pitch-pole of movement. The change of poles positions and corresponding influence
is shown in the figure below.
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Figure 23: Change of Poles Positions and Corresponding Influence

Additionally, the pole tuning strategy can also be concluded from the above dis-
cussions: the pitch-pole can be placed far from the imaginary axis that the system
stability is guaranteed, after this, the tuning on the torque-pole should reach a min-
imum generator power STD. The torque-pole at the current condition is closed to
the one in two optimal solutions, and then continue to adjust the pitch-pole. Repeat
the adjustment several times when two optimal solutions are obtained. As such, the
satisfactory one can be easily obtained to adjust the poles as needed.

Combine all the above discussions, the entire optimization steps can be further
summarized as the procedures as shown in Figure 24.
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6. Conclusion

In this paper, the coordination between the blade pitch controller and generator
torque & power controller of WTGS has been analyzed. A two-level parameters-
controllers coordinated optimization system was formed and adopted to solve the
optimization problem with the concept of Pareto efficiency. The optimal power so-
lution and optimal torque solution were obtained, then the gradient was calculated
to select the satisfactory torque-pole on the Pareto frontier, and the satisfactory
pitch-pole on the pitch-power relations. The selected satisfactory poles form the
satisfactory solution for the WT. Then all three selected typical solutions were com-
pared with the baseline controller, which shows the difference and improvement in
both time domain and frequency domain, and the coordination suggestions have
been given based on the results. Further research could be concentrated on the
controller coordination and optimization based on the linear-quadratic control and
model predictive control.
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Appendix A. WTGS Modelling

Combining the torque control and pitch control, the unified nonlinear compre-
hensive model of WTGS can be formulated as:

4] Wr = 5,%g

. _ i _ % Bls _ Kls

Wy == 7, Tr I Wy + T Wg 7, (5 . (A]_)
N Bls _ Bls ls _ L

Wy Ty “r ~ Tyn2%a T Jing 0 = 3-Tem

From (A.1), the nonlinearity of WTGS concentrates on the rotor torque 7., which
is a nonlinear function of wind speed V', rotor speed w, and pitch angle 3, and can
be linearized around several operating points. Because the wind speed V' can vary
with the operating points of WTGS, it can be defined as the varying parameter r;
to schedule the whole wind power generation process. Consequently, we select the
state variable x = [0, w,,w,|’, and set the control variable u = [T, 8"

For (A.1), define the operating points as &; = [0;, @y, @], Wwhere the parameter
i is corresponding to the current operating point.For the nonlinear term 7, in (A.1),
applying the Taylor expansion on the wind speed V' and omitting the higher order
terms, it can be expressed as:

T,(V,wr, B) = Tr(Vi, @i, @gi) + Dy (i) V + T ()i, + Tp(i)3
with
oT, , oT, , oT,
er (Z> FB(Z) aﬁ ‘/7,7"-]7'1757,

I'v(z) = =
V( ) ov (‘7i7wri75i)’ Ow, (‘72'7@7“1'»52‘)7
Herein, the state variables of WTGS can be represented as,

r=2r+2a,

where Z is the steady-state operating point, Z is the deviation from Z related to the
dynamic process. Obviously, we have the dynamic model for each operating region:

; Gy — i,

by | = | F@OvEOV + Ty, ()@ + Tyl )B) 5“ b+ Ty — 0 | (A2)
X By, ~ Bis  » Kis 1

Wy TyngWr — Jg;zg Wy + 7 LLQ(S - T

Based on the above discussion, by applying the Taylor expansion around the
operating point Z;, and setting & = [0, &, w,|’, and the WTGS output as § = [,
the system (A.1) can be linearized into a linear system with the following form:

i+ Buit Byl
{ X ; + u + Vv V7 (A3)
y=0Cz,
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where

1
0 1 g 0 0
1 _ Kls er(z) _ % Bls » _ F,B(i)
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Bis Bis __ Dis _1 0
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Byy=| 0 [, C=[00 1].
'y ()
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The poles placement method or other control strategies should be applied to
the multiple-input single-output (MISO) model in the system (A.1), but it can be
also split into two single-input single-output (SISO) system for the pitch control
subsystem and torque control subsystem separately when ignoring the effects of wind
turbulence. Take the control variable into two parts, pitch control variable u; = [f]’
and torque control variable wuy = [T.,,]’, the system (A.3) can be divided as:

y=Cz, |
where
0 0
Bu= | 50 [ mu=| 0 |,
Jr 1
0 Uy

The model of the blade pitch controller and generator torque & power controller
is shown below.

Figure A.25: Controller Models
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Appendix B. Tables

Table B.3: Basic Loads - STD

Basic Loads Power Torque Speed Pitch
Baseline 1 1 1 1
Satisfactory 0.51248202 | 0.337796738 | 0.496627859 | 0.823884459

Optimal Power | 0.415591417 | 0.400927649 | 0.404549582 | 0.850725769

Optimal Torque | 0.674863518 | 0.190774019 | 0.389403324 | 0.819020056

Table B.4: Blade Root Loads - Mean Value

Blade-Mean RootMxc RootMyc RootMzc
Baseline 1350.264817 | 6224.87278 | 30.50432075
Satisfactory 1341.538116 | 6055.924381 | 29.71491544

Optimal Power | 1344.837877 | 6054.190179 | 29.68779313
Optimal Torque | 1347.15075 | 6061.061472 | 29.63268369

Table B.5: Blade Root Loads - Max Value

Blade-Max RootMxc RootMyc RootMzc
Baseline 5248.788086 | 10157.74414 | 19.9146328
Satisfactory 5168.694824 | 9434.576172 | 4.125574589

Optimal Power | 5173.102051 | 9388.236328 | 4.675378323
Optimal Torque | 5179.195313 | 9313.331055 | 5.689994335

Table B.6: Drive Shaft Loads - Mean Value

DT-Mean LSSFxa LSSFya LSSFza
Baseline 509.3474252 | 7.444877874 | 3.665385889
Satisfactory 503.7592906 | 5.952962272 | 7.409603249

Optimal Power | 503.7135445 | 7.03244494 | 6.07221951
Optimal Torque | 504.1744214 | 7.143466051 | 5.923596697
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Table B.7: Drive Shaft Loads - Max Value

DT-Max LSSFxa LSSFya LSSFza
Baseline 603.1212769 | 1076.631348 | 1084.646362
Satisfactory 586.0315552 | 1071.898804 | 1080.150635

Optimal Power

590.0865479

1072.210693

1080.612427

Optimal Torque

590.3475952

1072.603271

1080.824951
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