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Abstract 

Energy efficient operations are a key competitive advantage for modern shipping 

companies. During the operation of the vessel, improvements in energy use can be 

achieved by not only by technical upgrades, but also through behavioural changes in 

the way the crew on board is operating the vessels. Identifying the potential of 

behavioural savings can be challenging, due to the inherent difficulty in analysing the 

data and operationalizing energy efficiency within the dynamic operating environment 

of the vessels. This article proposes a supervised learning model for identifying the 

presence of energy efficient operations. Positive and negative patterns of energy 

efficient operations were identified and verified through discussions with senior 

officers and technical superintendents. Based on this data, the high dimensional 

parameter space that describes vessel operations was first reduced by means of 

feature selection algorithms. Afterwards, a model based on Multi- Class Support Vector 

Machines (SVM) was constructed and the efficacy of the approach is shown through 

the application of a test set. The results demonstrate the importance and benefits of 

machine learning algorithms in driving energy efficiency on board, as well as the impact 

of power management on energy costs throughout the life cycle of the ships. 

Keywords: tankers; energy efficiency; machine learning; support vector machines 



1 Introduction 

There are strong economic and environmental incentives in reducing the fuel consumption of the shipping 

industry. The need to curb the increase in the global average temperatures , together with the designation 

of new emission control areas in China underline the importance of energy management on board modern 

vessels. 

Interestingly, within energy management systems, shipping has attracted limited attention. In a recent 

review by Lee & Cheng (2016) the authors argue that although energy management systems have been 

extensively studied for over 40 years, the majority of studies are focused on either buildings or industrial 

and factory energy management systems with no studies on shipping. In the shipping literature a number 

of works have attempted to develop models that simulate the performance of the ship energy systems and 

identify energy consumption patterns. Trodden et al. (2015) propose a data analysis methodology to isolate 

the steady-state free-running condition of a harbour tug. The developed algorithm separates the data-

stream, as output from monitoring devices, into periods associated with steady-state, free-running 

condition, and non-steady-state free-running condition and shows that the tug is being operated in a fuel 

efficient manner, making the most of a retrofitted economy engine speed selector. Cichowitz et al. (2015) 

discuss the use of Dynamic Energy Modelling (DEM) for realistic simulation of ship energy systems. DEM 

captures holistically the transfer, conversion and storage of energy on board a ship as a function of its 

operational profile and over long periods of time or during its commercial life-cycle. Simulation using DES is 

presented for four hypothetical scenarios that illustrate the feasible operational space for the case of a 

container ship. Similar studies can be found on other industrial sectors such as household equipment 

(Murray et al. 2016) and hybrid vehicles (He et al. 2016). 

All studies that were just described acknowledge the growing importance of data and data analysis, and 

their potential in operationalizing performance management across the shipping industry. In a study of the 

digital transformation conducted by the MIT centre for digital business, Westerman et al. (2011) argue that 



performance management is one of the building blocks of the ongoing digital transformation. In the oil and 

gas industry, DNV – GL claim that if the oil and gas industry could analyse and understand all the data it is 

currently producing in a more coordinated manner, operational efficiency could be boosted by as much as 

20%. However the same report warns that the potential of big data is hampered by a lack of resources, lack 

of experience and the increasing volume of data (DNV - GL 2016).  

However, simply measuring fuel consumption is not enough in driving energy efficiency. Trodden et al. 

(2015) argue that while data monitoring devices are relatively inexpensive, the process of analysing data 

can be complex, particularly when a ship's activities are diverse. In their study of the German and Danish 

shipping industry, Poulsen and Johnson (2015) conclude that the lack of information on energy efficiency 

and lack of time to produce and provide reliable energy efficiency information cause energy efficiency gaps.  

Data-related challenges are not confined to shipping. A recent analysis from the McKinsey Global Institute 

argues that even in established organizations where core processes are centred around data analytics, 

management-approval processes have not kept up with the advancements in data analytics (Court 2015). 

However, the shipping industry exhibits certain characteristics that further complicate data analysis. The 

different characteristics of power generation systems and consumers for vessels in operation require 

careful consideration and adjustment of energy consumption profiles to ship-specific characteristics. 

Especially in the tramp shipping market that is driven by the complex balance of supply and demand 

(Stopford 2009), operating profiles can change rapidly. Energy consumption patterns are also influenced by 

safety considerations. For example, specific equipment according to the ship safety plan might be turned 

on when transiting high risk areas (NATO Shipping Centre 2016). But most importantly, as vessels engage in 

a multitude of operational activities, energy consumption patterns need to be associated to those 

particular activities (Trodden et al. 2015). 

Challenges towards data analysis can also stem from the various ship management models that appear in 

the shipping industry. Information and incentives are often fragmented, as fuel consumption is a 



performance measure of the commercial department – reflected in the Time Charter Equivalent (TCE) - and 

often outside of the sphere of influence of the technical department, which is often primarily measured on 

Operational Expenses (OPEX). This paradox is even more prevalent in third party ship management, where 

information regarding fuel saving potential is not readily provided and shared by decision makers at sea 

and ashore (Poulsen & Sornn-Friese 2015). This situation creates data silos in shipping companies and 

invites for one of the key business challenges of the modern age according to Thompson (2012), which is to 

recognize and use the valuable information that is scattered around the organization. 

In light of the above mentioned challenges, we believe that these limitations can be overcome by a 

methodological shift to multivariate machine learning techniques. To the best of our knowledge, machine 

learning techniques have not been applied on power management in shipping – at least not in the open 

literature. However, machine learning has been extensively used for power management in other industrial 

sectors, with particular focus on prediction. In a recent review of forecasting approaches for the building 

sector, Chalal et al. (2016) argue that Support Vector Machines (SVM) and artificial neural networks models 

(ANN) are the most common tools, to develop energy prediction approaches, which in turn support 

physical improvement strategies. Especially SVMs have been used for time series predictions, particularly in 

financial time series and electrical load forecasting (Sapankevych & Sankar 2009). 

Given their wide adoption and alleged benefits, we investigated the efficacy of Support Vector Machines in 

eliciting the correct information from the energy consumption patterns. Based on the results of that 

analysis, we assess the potential savings from behavioural improvements. This article proposes a 

supervised learning model for identifying the presence of energy efficient operations, as a basis for 

developing an energy management methodology. Focus is on the production of electricity on board a group 

of tanker vessels. Production of electricity on board from generator engines comprises between 9 % and 

25% of the total fuel consumption of a tanker vessel (Figure 1). Through ship-specific adjustments, the 

proposed methodology evaluates operational practices between different vessels, thus providing an 



informed picture of the behaviour-driven efficiency on-board. The performance and accuracy of the 

classifier was evaluated by means of 5-fold cross validation. The development and scope of the 

methodology, while novel in the shipping literature, follows extant directions for future research to identify 

actual effects of fuel initiatives (Poulsen & Johnson 2015), measured under comparable conditions 

(Trodden et al. 2015).  

 z 

Figure 1: Tanker fuel consumption distribution per major consumer 

  

2 Description of the proposed methodology 

 

2.1 Energy efficiency 

As discussed in Section 1, electricity production on board is influenced by multiple factors, and therefore 

consumption patterns need to be associated to the operational conditions of the vessel and analysed under 

comparable conditions. When looking at the typical operational profile of a vessel, operations such as 

 



loading of cargo or sailing are characterized by rather steady and predictable consumption patterns. In 

these cases the vessels are mostly idle and several systems such as the engine cooling or lubrication 

systems are either completely turned off or operating at a low capacity.  

The central argument in this analysis is that the existence, frequency and consumption profile of those 

steady-state conditions are central to the assessment of energy efficiency on board. They are characterized 

by an operational environment where energy consumption is predictable, as it is dominated by steady-

state consumption of various major consumers such as major pumps and big blowers. Especially when the 

vessel is idle, the crew on board has the opportunity to turn off - or at least operate at a low capacity- 

several systems such as the engine cooling and lubrication systems. The consumption of major consumers 

can be estimated and aggregated to estimate the expected fuel consumption. The expected fuel 

consumption allows comparison to the actual consumption of a particular vessel, and also across sister 

vessels that share the same design.  

Other operations can be inherently difficult to assess and compare to each other, as they are often 

influenced by multiple factors that can be hard to predict. For example, when examining consumption 

patterns of the cargo systems during discharging, factors such as the cargo discharge rate and the 

backpressure from the storage tanks can vary a lot between terminals and result in large scatter in the 

data. 

Lastly, there are certain patterns of operations that can indicate a lack of energy efficiency. One of those is 

the case where the vessels are standby at port. During standby the vessel is not turning off any equipment 

as it should be in a position to depart imminently. While it can be a request from terminals and port 

authorities to keep the vessel in standby as a safety precaution, when a vessel is systematically on standby 

it can indicate improper Finished-With-Engine (FWE) procedures either due to a lack of energy awareness 

from the crew or because the systems on-board cannot be operated efficiently.  



The goal of the study is to assess the energy consumption patterns for a group of tanker vessels. The 

vessels are operating in the spot market (Stopford 2009), meaning that they trade without fixed schedule. 

The analysis focuses on two operational profiles: the first part focuses on cases when the vessels are at port 

and not sailing, and the second part when the vessel is under sea passage. Through discussions with 

onshore performance managers and marine engineers, six main vessel states were identified, as shown in 

Table 1.  

  



Table 1: Operational profile breakdown and description of the identified operational conditions 

Operational 

profile 

Operating Condition Description 

Port stay 

analysis 

Idle The vessel is at port, and a series of systems can be safely 

turned off, or be operated at low capacity. No significant 

activities take place, meaning that the systems on board are 

operating in a steady state. Such operations can provide a 

basis for comparison using vessel-specific baselines. 

Static operations The vessel is conducting operations while at port that require 

the use of various systems on board. Such operations may 

include for example tank cleanings, cargo heating and 

circulation, drifting, and cargo discharging. They can be seen 

as exceptional cases, where higher consumption is justified, 

and whose frequency and intensity varies depending on the 

trading profile of the vessel. Such operations can be difficult 

to compare even between vessels that share the same design. 

Improper Finished-With-

Engine (FWE) procedures 

Cases where excess equipment is run, that is not justified by 

the trading profile. Such equipment may include unnecessary 

parallel running of generators, sea water and fresh water 

pumps, fire pumps and hydraulic systems. Such operations 

can be justified in extraordinary circumstances, for example in 

the case of very short port stays, High Risk Areas (HRA) and 

drifting. Systematic presence may indicate a lack of shut-down 

procedures. 



Sailing 

analysis 

Steady sea passage The vessel is sailing according instructions. No significant 

short-term operations take place, meaning that the systems 

on board are operating in a steady state and the vessel is 

sailing under stable speed. Such operations can provide a 

basis for comparison using vessel-specific baselines. 

Operations while sailing 

and slow steaming 

The vessel is conducting operations while on sea passage, that 

require the use of various systems on board. Such operations 

may include for example tank cleanings, cargo heating and 

circulation, manoeuvrings in confined waters and deck 

operations. They can be seen as exceptional cases, where 

higher consumption is justified, and whose frequency and 

intensity varies depending on the trading profile of the vessel. 

Such operations can be difficult to compare even between 

vessels that share the same design. 

Excess equipment 

running 

Cases where excess equipment is run, that is not justified by 

the trading profile. Such equipment may include unnecessary 

parallel running of generators, sea water and fresh water 

pumps, fire pumps, air compressors and hydraulic systems. 

Such operations can be justified in extraordinary 

circumstances, for example when transiting High Risk Areas 

(HRA). Systematic presence may indicate a lack of focus on 

energy efficiency on board, or system malfunctioning due to 

sub-par maintenance. 

 



2.2 Data collection 

To carry out this assessment, several data sources were combined. The primary tool for assessing energy 

consumption was noon reports. Noon reports refer to data collected every 24 hours at noon manually by 

the crew, and describe the operation of the ship over the last 24 hours. They are standard practice in many 

shipping companies and remain key tools for data collection (Poulsen & Johnson 2015). An alternative to 

noon reports are auto-logging systems. Auto logging systems rely on onboard sensors to collect data 

without manual intervention. And while such systems are increasingly seen as sources of value (Morlet et 

al. 2016), they suffer from bandwidth limitations as data needs to be transmitted via satellite. Therefore 

noon reports, despite their inherent limitations, are likely to continue as a prime data collection tool in the 

foreseeable future due to practical limitations with current auto logging systems.  

Based on the noon reports, energy consumption data were divided per consumer and covered the auxiliary 

engines used for production of electricity, boilers, main engine, Inert Gas Generator and other minor 

consumers such as Framo pumps and incinerators. Operational data from the noon reports were used to 

assess the operational condition of the vessel. Such data included generator and oil fired boiler running 

hours, vessel’s speed over ground and speed through water, weather conditions and sea water 

temperatures. Afterwards the data sources were consolidated into a single data set. The theoretical 

baselines for electricity consumption on board were determined based on information extracted from the 

vessel’s equipment list, as stated in the newbuilding specifications. The consumption estimates for the 

equipment were validated using actual measurements on board. 

Lastly, empirical data were included as well, and played a major role in the analysis. Positive and negative 

patterns of energy efficient operations were identified for a series of vessels and verified through 

discussions with senior officers and technical superintendents. During those groups selected performance 

patterns were analysed, evaluating them against the commercial schedule of the vessel. This validated data 

set provided the training set for supervised learning, and is discussed in Section 2.3.3. 



 

2.3 Data analysis 

2.3.1 Data preprocessing 

 

With regards to data cleaning, missing values were dealt with by means of listwise deletion. So in cases 

were data was missing, the whole tuple was ignored(Han et al. 2012, p. 82). This was done in order to 

ensure maximum confidence in the data. It should be noted that listwise deletion did not result in massive 

losses of data, as missing values were present in less than 0.5% of the reports. Lastly, since noon reports 

are manually input in the system, boundaries on the minimum and maximum values were set to filter for 

clearly erroneous values. 

2.3.2 Feature selection using Penalized Linear Discriminant Analysis 

 

Feature selection is an important part of model building, and a necessity in many machine learning 

applications(Saeys et al. 2007). Especially in the presence of high dimensional data the inclusion of 

additional features leads to worse rather than better performance (Duda et al. 2001). Use and application 

of feature selection algorithms has multiple benefits, including reduced overfitting, faster and more cost-

effective models and a deeper understanding into the underlying processes that generated the data. 

However, feature selection algorithms in classification problems add an extra layer of complexity, and their 

efficacy is often influenced by intrinsic properties of the data such as multimodality and the degree of 

overlap between classes (Saeys et al. 2007; Duda et al. 2001) 

In this study, Penalized Linear Discriminant Analysis (PLDA) was employed as a screening tool to assess the 

discriminating abilities of each variable (Witten & Tibshirani 2011; Hastie et al. 1995).  In our case, 

boundaries between the operating conditions are likely to be non-linear due to a mix of behavioural and 



technical constraints (see for example Myśków & Borkowski (2015) for the non-linear effect of slow 

steaming on oil fired boiler consumption). And as Linear Discriminant Analysis (LDA) can be too rigid in 

situations where class boundaries in predictor space are complex and non-linear (Hastie et al. 1995), we 

used a modified version of Penalized Linear Discriminant Analysis (PLDA) based on the work by Witten & 

Tibshirani (2011). The desired result is the value of the discriminant vector, which contains the values of the 

eigenvalues of the matrix product of the inverse of the within-group sums-of-squares and cross-product 

matrix and the between-groups sums-of-squares and cross-product matrix. The magnitudes of the 

eigenvalues are indicative of the features’ discriminating abilities, and can be used to calculate the 

percentage of variance explained by that particular variable. 

2.3.3 Classification using Multi Class Support Vector Machines 

 

Support Vector Machines (SVMs) are multivariate artificial learning algorithms. SVMs rely on pre-processing 

the data and a non-linear mapping to separate data from two categories by a hyperplane (Duda et al. 

2001), as shown in Figure 2. They can be used for supervised classification, as they can learn about group 

differences in a training set categorized by a priori knowledge and apply the model to assess new data 

points (Barber 2011). Support vector machines have been successfully used in a wide range of applications, 

including speech and image recognition (Burges 1998), fault detection in HVAC (Yan et al. 2014) , remaining 

useful life prediction (Sikorska et al. 2011), building energy consumption (Dong et al. 2005) and mental 

disease diagnosis (Koutsouleris et al. 2009). 



 

Figure 2: Schematic representation of support vector machine classification. a) A linear classifier cannot separate the two classes 

(illustrated as blue and orange) as the boundary (red dashed line) is non-linear b) A non-linear mapping (φ) maps the 

observations into a higher dimensional space 

In this study we employed multi-class support vector machines used a radial basis functions kernel, which it 

facilitates the adaptive modelling of the interface between the classes and thus significantly improves 

classification performance. Implementation was based on the package “Kernlab“ in R (Karatzoglou et al. 

2016).  

To estimate the generalizability of the classification 5-fold cross-validation was performed (Zhang 1993). In 

5-fold cross-validation the original sample is partitioned into five subsamples of equal size, and one 

subsample is used as a validation set for testing the model, while the other four are used for training the 

model. The process is repeated four times, so that all observations are used for both training and 

validation. The parameters C and gamma were determined through exhaustive grid search by minimizing 

the average validation error for those four runs. A flowchart of the proposed algorithm is shown in Figure 3. 

 



 

Figure 3: Flowchart of proposed algorithm 

 

3 Results 

3.1 Classifier performance 

According to the Penalized Discriminant Analysis the five most important features, as ranked by the 

percentage of variance that each can explain are shown in Table 2. In total, features were selected so that 

at least 95% of the variance is retained in the reduced dataset.  

Based on the results, one can make two interesting observations. First, the fact that generator running 

hours seems to be the most informative feature in both analyses. Furthermore, creating of additional 

features by combining existing features is likely to improve the performance of the algorithm, even in cases 

where features are highly correlated. 

  



Table 2: Five most important features according to Penalized Discriminant Analysis, and their discriminative ability in regards to 

the percentage of variance explained 

Operational profile Feature name Calculation process 

[Measuring units] 

Percentage of variance 

explained by the feature 

Port stay analysis Normalized generator 

running hours 

Total generator 

running hours / Noon 

report duration [%] 

39% 

Normalized generator 

consumption against 

expected consumption 

Fuel consumption per 

24 hours/ Expected 

fuel consumption per 

24 hours [%] 

25% 

Inert Gas Generator & 

Framo Consumption 

Fuel consumption per 

24 hours in tons 

[tons] 

13% 

Normalized Main engine 

consumption 

Fuel consumption per 

24 hours / Fuel 

consumption at 

Maximum Continuous 

Rating per 24 hours 

[%] 

12% 

Oil Fired Boiler 

consumption 

Oil Fired Boiler 

consumption per 24 

hours [tons] 

5% 

Sailing analysis Normalized generator Total generator 41% 



running hours running hours / Noon 

report duration [%] 

Normalized generator 

consumption against 

expected consumption 

Fuel consumption per 

24 hours/ Expected 

fuel consumption per 

24 hours [%] 

16% 

Logged Speed Logged distance / 

Noon report duration 

[knots] 

12% 

Normalized generator 

consumption against 

maximum consumption 

Fuel consumption per 

24 hours / Fuel 

consumption at 

Maximum Continuous 

Rating per 24 

hours[%] 

10% 

Inert Gas Generator & 

Framo Consumption 

Fuel consumption per 

24 hours in tons 

[tons] 

10% 

 

Table 3 shows the classification performance for the multi-class classifier. Precision, recall and the F-score 

was calculated for all operational conditions. The classifier shows high accuracy, supported by high F-score 

values. However, it proves somewhat less effective in identifying improper operating conditions for both 

operational profiles.  

 



Table 3: Classification performance for the two operational profiles 

 Port analysis Sailing analysis 

 Idle Static 

operations 

Improper 

FWE 

procedures 

Steady sea 

passage 

Operations 

while sailing 

and slow 

steaming 

Excess 

equipment 

running 

Precision (%) 98% 99% 100% 98% 81% 100% 

Recall (%) 99% 97% 80% 93% 94% 56% 

F-score 0.99 0.98 0.89 0.96 0.87 0.72 

Average 

accuracy (%) 

98% 94% 

 

3.2 Classification performance for a group of tanker vessels 

 

The external validity of the developed algorithm was examined by classifying the operational patterns of 

five test vessels. The vessels were evaluated for the same two-month period, and the results were manually 

checked and discussed with relevant stakeholders. Table 4 shows the classification results as a percentage 

of the time that vessels spend in each operational condition.  

 

 

 



Table 4: Classification results 

 Port analysis Sailing analysis 

Vessel 

Name 

Number 

of days 

at port 

Idle Static 

operations 

Improper 

FWE 

procedures 

Number 

of days 

sailing 

Steady 

sea 

passage  

Sailing 

operations and 

slow steaming 

Excess 

equipment 

running 

Vessel A 31 59% 41% 0 % 30 61% 39% 0% 

Vessel B 31 44 % 50 % 6 % 30 100% 0% 0% 

Vessel C 31 44 % 55 % 20 % 30 66% 33% 0% 

Vessel D 32 18 % 61 % 21 % 29 71% 15% 15% 

Vessel E 32 8 % 62 % 30 % 29 35% 4% 61% 

 

Figure 4 shows the assessment results, in regards to the generator consumption during sailing and at port. 

Reports are excluded in cases where operations are present (see Table 1 for the argumentation against 

including operations in the evaluation). The analysis highlights the fact that differences in generator 

consumption can be traced down to the way the systems are operated in practice.  



 

Figure 4: Assessment of average generator consumption for the five vessels under study 

The results of the analysis highlighted the significant differences between the five vessels, and triggered a 

deeper investigation for Vessel E into the root causes behind the discrepancies. The investigation revealed 

that the efficiency gap was due to a mix of technical and behavioural causes. Addressing those issues 

resulted in yearly savings of approximately USD 50,000 for the average fuel prices in 2015. 

4 Conclusions 

This article describes a methodology for identifying operational patterns in regards to the power 

management on-board. To the best of our knowledge, this study is the first to evaluate the efficacy of 

machine learning algorithms within energy management in shipping. The proposed methodology is 

conceptually simple, and able to deal with multiple data sources. It employs established tools, and exhibits 

high prediction accuracy and low misclassification rates. At this point, it should be noted that similar results 

could be obtained using other machine learning algorithms such as neural networks or a more structured 
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algorithm like the one described in (Trodden et al. 2015). Nevertheless, the non-linear character of the data 

together with the flexibility of Multi-Class Support Vector Machines supported their choice in the context of 

the study. 

Regarding the managerial implications of the study, the results show that focus on power management on 

board can vary widely among vessels. Most importantly, identifying these differences and alleviating their 

root causes can lead to a sustained reduction in life cycle costs. Future work could focus on applying the 

same methodology on other areas within performance management, including hull and propeller 

performance and steam production on board. Moreover, future work could integrate more measurements 

-including individual equipment running hours- and expand to evaluate data streams from auto logging 

systems 
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