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ABSTRACT 

Research on the fate and effects of herding agents used to contain and thicken oil slicks for 

in situ burning in Arctic waters continues under the auspices of the International Association of Oil 

and Gas Producers Arctic Oil Spill Response Technology – Joint Industry Program (JIP). In 

2014/2015 laboratory studies were conducted on the fate and effects of herders. The purpose of the 

studies was to improve the knowledge base used to evaluate the environmental risk of using herders 

in connection with in situ burning for oil spill response in Arctic seas. Two herding agents were 

studied (OP 40 and ThickSlick 6535).  

Laboratory-scale herding and burning experiments were carried out for investigating the 

physical fate of the two herders during combustion of Alaska North Slope and Grane crude oils 

(fresh and emulsified). The results showed that after burning, the herder was mainly found on the 

water surface, and only small concentrations of herders were found in the water column (0.2-22.8 

mg/L).  

The inherent properties of herders in relation to toxicity and bioaccumulation on the high 

Arctic copepods (Calanus hyperboreus), as well as the biodegradability of herders were studied 

under arctic conditions. The results indicated that a distinct mortality was seen at the highest test 
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concentrations of the herders. However, the concentration of herders required to produce acute 

toxicity in the laboratory was approximately three orders of magnitude higher than the 

concentrations measured in the water column when herders were used to conduct an in situ burn in 

the laboratory. OP-40 might bio-accumulate whereas TS6535 might not. TS6535 was mostly 

degraded within 7 days, whereas the degradation of OP-40 was insignificant over 28 days.  

Since herders are mainly considered as a surface active chemical compound, the potential 

impacts of herders on Arctic seabird feathers (from legally hunted Thick-Billed Murre and 

Common Eider) were investigated. Different dosages of herders were tested; high dosages that 

might be present just after the application of the herder and low dosages (approximately 

monolayers) likely to occur for a significant time and distance from the operations. Low dosages 

corresponding to approximately monolayers of OP-40 and TS6535 did not cause feathers to sink; 

however they did absorb more water than the controls. The high dosages caused measured damages 

to the feather microstructure. 

Finally, laboratory burning experiments were carried out to determine if there was a 

difference in the composition of smoke plumes from mechanically contained burns versus herded 

oil burns. Herder was not measured in the smoke plumes, and there were no other noticeable 

differences in combustion between the two methods of containment (herder vs. metal ring). 

INTRODUCTION 

This paper gives an overview and summarizes the findings from one part of a research 

program designed to increase the knowledge of herding agents: their fate; their environmental 

effects; and, the windows-of-opportunity to expand the operational utility of in situ burning (ISB) in 

cold open water and loose drift ice conditions. Here we focus on the fate and environmental effects 

research. The results of the windows-of-opportunity are presented in a separate paper in these 
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proceedings (Buist et al. 2017). More details on the complete study results can be found in a 

technical report (Buist et al. in prep.). 

ISB of accidentally spilled oil is a method with great potential, particularly in ice covered 

waters. One of the key parameters to effective ISB is the thickness of the oil slicks: a thick oil slick 

is required for ignition and efficient burning (Buist et al. 2013). Several ways exist to keep the oil 

film at the required thickness for burning, e.g. fire resistant booms and ice floes that cover > 60 % 

of the water surface. In loose drift ice conditions (approximately 10-60 % ice coverage) oil spills 

can rapidly spread to become too thin to ignite, however the ice concentration is too high for fire 

resistant booms to be deployed and operated efficiently. Research over the last 12 years has shown 

that herding agents can contract and thicken oil slicks to allow effective ISB in loose drift ice and 

open water (Buist et al. 2011; SL Ross and DCE 2015). Herders have the ability to spread rapidly 

over a water surface into a monomolecular layer as a result of their high spreading coefficients or 

spreading pressure and the best herding agents have spreading pressures in the mid-40 mN/m range, 

whereas most crude oils have spreading pressures in the 10-20 mN/m range (SL Ross and DCE 

2015). This monomolecular layer of surfactants reduces the surface tension of water from about 70 

mN/m to 20-30 mN/m (SL Ross and DCE 2015). When the herders contract the oil slick edge it 

changes the balance of the interfacial forces acting on the slick edge thereby allowing the interfacial 

tensions to contract the oil (SL Ross and DCE 2015). Only small quantities of herder are needed, 

e.g. 150 µl/m2 of water surface, is the recommended amount to clear thin films of oil from large 

areas of water surface, contracting the oil into thicker slicks (SL Ross and DCE 2015). Recent 

research (in 2013 and 2015) has tested the application of herders from helicopters, thus, herders 

could potentially allow containment and ignition of the oil from air only. 

The two herders included in this project have been placed on the U.S. EPA National 

Contingency Plan (NCP) Product Schedule list and are commercially available and best available 
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based on prior testing. ThickSlick 6535 (TS6535) is a blend of 65 % (by volume) of the surfactant 

sodium monolaurate (Span 20) (the active ingredient), and 35 % 2-ethyl butanol, the solvent. The 

active ingredient of TS6535 is used as a food additive, in household cleaners as well as in 

cosmetics, fine fragrances and other toiletries. Siltech OP-40 (OP-40) is a proprietary 

polydimethylsiloxane copolymer (the surfactant, the active ingredient). Surfactants of the type used 

in OP-40 are used in household and automotive care products as well as in hair conditioners and 

skin care products. Selected properties of the herders used in the experiments are given in Table 1 

Table 1 – Selected herder properties 

TEST TS6535 OP-40 
Flash Point >82°C 82°C 
Pour Point -1.7°C -59°C 
Viscosity  24.7 cSt (mm2/s) 8.27 cSt (mm2/s) 
Specific Gravity at 15°C 0.974 0.988 
Freezes at -24°C -71°C 
Solubility Partial Miscibility Partial Miscibility 

 

Experimental research approach 

The research presented here involved several separate studies: 

• Evaluation of the physical fate of herders during burning, i.e. analysis to determine herder 

concentrations in the water column, on the water surface, and in the oil after herder application 

to test slicks. Laboratory studies conducted at Technical University of Denmark and Danish 

Centre for Environment and Energy, Aarhus University (DCE).  

• Studies on environmental effect of herders including: toxicity and bioaccumulation with Arctic 

copepods; biodegradation in Arctic conditions; and, the impacts on Arctic seabird feathers 

conducted at DCE, and in Greenland.  

• Analysis of the smoke generated during ISB of oil slicks confined with herders at the SL Ross 

laboratory in Canada. 

mailto:Gravity@60
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PHYSICAL FATE OF THE CHEMICAL HERDER DURING BURNING 

The purpose of these experiments was to investigate the physical fate of the herders during 

burning. The experiments were done as a two-step procedure with samples of water and oil 

collected from small-scale laboratory burning experiments (170-250 g oil on 390 L of artificial 32 

‰ saltwater at 2 °C in a 1 m 2 basin) with herders (150 µL), followed by chemical analyses with 

GC-MS to measure the herder content in the samples (for details see Buist et al. in prep.). The 

experiments involved Alaska North Slope (ANS) and Grane crude oils (fresh and 25 % water-in-oil 

emulsion) and the two herders (TS6535 and OP-40). The laboratory set-up and sampling was based 

on the expectation that the herders would quickly form a monolayer on the water surface, but could 

degrade, evaporate, dissolve, disperse, spread or simply remain on the surface with time, see Figure 

1. Further, the burning of the oil slick could also impact the fate of the herder and thereby change its 

normal behaviour. The following samples were analysed: I) surface water before (but after herding) 

and after burning, II) water column samples after burning, III) water column samples from below 

the oil slick after burning and IV) oil samples from the oil slick before (but after herding) and after 

burning. For more details see Buist et al. (in prep.). 

 

Figure 1: Conceptual outline of the potential herder fate processes during/after burning. Stars 
indicate where the samples were taken, both pre and post burning. 
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Results and discussion summary  

Measured concentrations of herder in the water column and on the water surface are shown 

in Figure 2 and Figure 3 respectively.  

Small concentrations of herders were found in the water column samples taken at the end of 

the experiment (< 1 ppb to a maximum of 22.7 pbb). This was the case for both OP-40 as well as 

TS6535. Samples taken directly under the oil slick had overall higher concentrations, particularly 

for OP-40 than samples taken in the water column outside the oil slick. This indicates that during 

burning oil droplets are released to the water causing herder (particular OP-40) entrained or 

dissolved into the oil droplets to partition into the water column. The GC analyses support this as 

traces of oil components were found in the water samples. 

In the post burn samples the concentrations of herders on the surface and in the water 

column below the oil slick were higher for emulsions than for fresh crude oils. An explanation 

could be related to the nature of the herder and the emulsions, as the herder is expected to follow the 

oil/water interface and thus follow the oil/water interface in the emulsions. To burn emulsions, the 

water must be removed by e.g. breaking of the emulsions which could lead to release of herder with 

the water from the emulsions, thus resulting in increased herder concentrations.  

Generally, the surface sample results indicate that after burning the herder was mainly found 

on the water surface. The amount of herder applied in the experiments (150 µl/m2) generates an 

excess of herder on the water surface, seen as small droplets. Thus, the herder was not uniformly 

distributed on the surface in the test tank and this explains the large variations in the concentration 

in the surface water samples. In spite of these variations there was a tendency for the post burn 

water surface samples to have slightly lower concentrations of herder compared to the samples 

taken before burning.  
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Figure 2: Concentrations of herder in water column samples after burning. OP-40 (blue 
bars) and TS6535 (green bars) for 0 and 25 % w/o-emulsions. The numbers 1, 2 or 3 
indicate replicates. The single high values for TS6535 in 25% w/o-emulsions should be 
considered as an outlier, due to potential sampling errors. 
 

 
Figure 3: Concentrations of herders in surface water samples. OP-40 (blue bars) and 
TS6535 (green bars) for 0 and 25 % w/o-emulsions. Note that ANS 0%, TS6535 is much 
higher than illustrated on the graph. 



255           2017 INTERNATIONAL OIL SPILL CONFERENCE 

8 
 

TOXICITY, BIOACCUMULATION AND BIODEGRADABILITY OF HERDERS IN 

ARCTIC CONDITION  

The basic inherent properties of herders in relation to biodegradability, bio-accumulation 

and toxicity in Arctic conditions and with Arctic organisms were investigated in this study. Prior 

to this study, standard U.S. EPA toxicity tests at 24 °C (toxicity and biodegradation) were 

conducted (SL Ross and DCE 2015). However, these tests were not designed to represent the 

Arctic conditions and organisms. The Arctic environment is characterized by low temperatures, 

large seasonal solar radiation variations, a unique animal and plant life adapted to the cold 

climate and to life associated to the sea ice, generally slow biological processes, short food 

chains and a high content of lipids in the organisms. This relative high content of lipids / fats 

serves partly as an energy reserve to withstand long periods without food and partly as insulation 

against the cold environment.  

Toxicity and bioaccumulation of herders in high Arctic copepod (Calanus hyperboreus) 

The purpose of this investigation was to measure the inherent acute toxicity and 

bioaccumulation of the two herders (TS6535 and OP-40) on high Arctic copepods (Calanus 

hyperboreus). This copepod is a key species in the Arctic due to its high abundance and 

important role in the Arctic food web (Hirche & Mumm 1992, Swalethorp et al. 2011), thus it is 

a representative test organism for the Arctic environment.  

Copepods and water were collected in Disko Bay, Arctic Station, Greenland (N69° 

13.386 W53° 25.218) (see Figure 4). Incubation was done in the dark using 1 L bottles at 2 °C. 

Testing was performed on10 adult copepods added to each bottle. The samples (water, copepods) 

were analysed by GC-MS in SIM mode and quantified against external calibration standards. For 

details about the method Buist et al (prep.) should be consulted. 
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Figure 4: Sampling copepods and water from a hole in the sea ice (A) and the copepods (B). 

Results and discussion summary 

The inherent effect of herders on behaviour and mortality on the copepods was observed 

over a period of 25 days and the results are given in Table 2. A distinct mortality was seen at the 

highest test concentrations of the herders and OP-40 appears more toxic than TS6535. The 

concentrations at which effects were observed for Calanus hyperboreus are in the same order of 

magnitude as the values reported earlier for two other organisms (Mysidopsis bahia and Menidia 

beryllina) in standard U.S. EPA toxicity tests at 24 °C (SL Ross and DCE, 2015). These effects 

concentrations are however three orders of magnitude higher than the concentrations that were 

found in the water column under slicks (0.2-22.8 µg/L) presented in Figure 2. Hence, to gain 

knowledge in addition to the basic inherent properties of the herder, about the effect from such 

operational herder concentrations, additional experiments should be conducted. 

Table 2: LC and EC for TS6535 and OP-40 on Calanus hyperboreus after 24 and 48 hours, 
and 25 days (end of the experiment) and based on the nominal concentrations.  
 24h - LC 48h - EC 25d - LC 
TS6535 <600 mg/L <12.5 mg/L <60 mg/L 
OP-40 < 12.5 mg/L <2.4 mg/L <2.4 mg/L 

 

A B 

5 mm 
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Exposure and accumulation of lipophilic substances can be critical especially for high 

Arctic organisms like Calanus hyperboreus with a high fat content and where internal exposure 

may be large in starving periods after exposure. Measured concentrations of herders in test water 

and copepods (body residue), recovery rates (ratio of measured to nominal concentrations) and 

estimated bio-concentrations are shown in Table 3. It should be noted that recovery rates are low, 

in particular for TS6535. The Bio-Concentrations Factors (BCF) estimates indicate that OP-40 

might bio-accumulate and TS6535 might not bio-accumulate in the lipid rich high Arctic 

copepods. The bioaccumulation may potentially lead to delayed effects either on the animal itself 

or its off spring when lipid stores are used, e.g. during starvation or reproduction. 

Table 3: Measured concentrations of herders in water and Calanus hyperboreus, recovery 
rates and estimated bio-concentrations factor (BCF).  

 Day Nominal 
concentration 

(mg/l) 

Measured 
concentration 

in water 
(mg/L) 

Recovery 
rates 
(%) 

Body 
residue 

(mg/kg ww) 

BCF* 
 

OP-40 1 12.5 5.078 40.6 600 48 
OP-40 1 60 45.090 75.2 4444 74 
OP-40 4 0.096 0.012 12.5 n.m.  - 
OP-40 4 0.48 0.114 23.8 n.m.  - 
OP-40 4 2.4 0.422 17.6 n.m.  - 
OP-40 25 0.096 0.024 25.0 1 10 
OP-40 25 0.48 0.129 26.9 2.5 5 
TS6535 1 600 305.017 50.8 1036 2 
TS6535 4 0.096 0.004 4.3 n.m.  - 
TS6535 4 0.48 0.004 0.8 n.m.  - 
TS6535 4 2.4 0.001 0.0 n.m.  - 
TS6535 4 12.5 0.019 0.2 n.m.  - 
TS6535 4 60 3.723 6.2 n.m. 2 
TS6535 25 0.096 0.000 0.0 3.2 34 
TS6535 25 0.48 0.000 0.0 2.4 5 
TS6535 25 2.4 0.000 0.0 3.5 1 
TS6535 25 12.5 0.000 0.0 2.5 0 
TS6535 25 60 0.158 0.3 106 2 

*BCF factor are based on the nominal test concentrations of the herders.  (n.m.: not measured) 

Biodegradation of TS6535 and OP-40 in Arctic surface waters 
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The purpose of these experiments was to study the biodegradation of the two herders in 

high Arctic waters at low temperatures. The water for the biodegradation test was collected at 50 

meters depth from a hole cut in the sea ice (N69° 13.386 W53° 25.218) (see Figure 4) and 

screened through a 100 µm mesh size net. Incubation was done in 1 litre redcap glass bottles at 

2°C in the dark and the biodegradation by the natural bacteria was followed over 28 days. The 

studies followed the OECD 309 guideline (OECD 2004). Studies were performed at low 

concentrations of the herders (20 µg/L and 100 µg/L) to minimize the risk of inhibition of 

bacterial activity by the herders. Biodegradation of the herders was measured by chemical 

analysis of water samples taken day 7, 14, 23 and 28. More details about the methods can be 

found in Buist et al. (in prep). 

Results and discussion summary 

The measured concentrations of TS6535 and OP-40 are shown in Table 4 and Table 5. 

TS6535 could after day 7 only be detected in the “Sterile control” sample where formalin was 

added for elimination of the microbial degradation activity. A very fast biodegradation is most 

likely the explanation. The constant concentration of TS6535 in “Sterile control” indicates that 

the physical / chemical degradation of TS6535 is insignificant. The OP-40 test results indicate 

that the degradation of OP-40 was insignificant. Results from earlier preliminary standard 

biodegradation tests have a similar characterization of the biodegradability of the herders (SL 

Ross and DCE 2015). 

Table 4: Concentration of TS6535 in test bottles at day 7, 14, 23 and 28 (µg/L). 
Test concentration 

- TS6535 
Replicate Day 7 Day 14 Day 23 Day 28 

20 µg/L 1 0.00 0.00 0.00 0.00 
20 µg/L 2 0.00 0.00 0.00 0.00 
20 µg/L 3 0.00 0.00 0.00 0.00 
20 µg/L Mean 0.00 0.00 0.00 0.00 
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100 µg/L 1 0.00 0.01 0.00 0.00 
100 µg/L 2 0.00 0.00 0.00 0.00 
100 µg/L 3 0.00 0.00 0.00 0.00 
100 µg/L Mean 0.00 0.00 0.00 0.00 
Formalin - 100 µg/L 1 24.39 27.54 24.62 15.83 
Formalin - 100 µg/L 2 14.65 27.79 20.54 26.44 
Formalin - 100 µg/L 3 28.13 35.42 22.37 16.82 
Formalin - 100 µg/L Mean 22.39 30.25 22.51 19.69 
 

Table 5: Concentration of OP-40 in test bottles at day 7, 14, 23 and 28 (µg/L). 
Test concentration  
 - OP-40 

Replicate Day 7 Day 14 Day 23 Day 28 

20 µg/L 1 5.89 7.70 6.86 5.90 
20 µg/L 2 8.52 7.90 9.75 4.33 
20 µg/L 3 7.75 7.15 7.91 3.14 
20 µg/L Mean 7.38 7.58 8.18 4.46 
100 µg/L 1 47.49 47.64 49.73 50.98 
100 µg/L 2 56.04 54.89 62.76 59.20 
100 µg/L 3 46.03 50.61 55.12 56.86 
100 µg/L Mean 49.85 51.05 55.87 55.68 
Formalin - 100 µg/L 1 61.38 56.64 66.10 63.93 
Formalin - 100 µg/L 2 65.19 60.83 58.80 63.85 
Formalin - 100 µg/L 3 64.11 60.27 55.26 64.20 
Formalin - 100 µg/L Mean 63.56 59.25 60.05 64.00 
 

IMPACTS OF CHEMICAL HERDERS ON FEATHERS FROM ARCTIC SEA BIRDS  

Since herders are mainly considered as a surface active chemical, potential impact is also 

related to the herder effects on the seabird feathers and potentially fouling by the herder. Most 

pelagic seabirds spend many months at sea and are dependent on their feathers to keep warm 

(avoid hypothermia), to fly and to stay afloat. Hence, the purpose was to investigate the effects 

of herder layers on seawater on Arctic seabird feathers. The laboratory experiments include 

exposure of seabird feathers in different operational sheens of herders followed by measurements 

of the feather microstructure and changes in weight by absorbing water and/or herders. The 

feathers came from the Arctic sea birds, Thick-Billed Murre (Uria lomvia) and Common Eider 

(Somateria mollissima), bought in Nuuk, Greenland from legally hunted seabirds. The herders 
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were applied in the different dosages I) approximate operational dose rate of the herders of 150 

µL/m2 water surface. A surplus of herder remained as thick droplets (typically one or two) on the 

water surface, II) a dose rate of 20 µL/m2 water surface, corresponding to the approximately 

minimum effective herder dosage necessary to contract an oil slick, and III) estimated monolayer 

thickness dose rates of 1 µL/m2 and 3 µL/m2 for OP-40 and TS6535 respectively.  The three 

dosages are representative of different real-world exposure risks. The two higher dosages 

represent those that might occur just immediately after herder application. The herder will 

however, rapidly spread to form a monolayer (the low dosage), likely to occur in open water and 

drift ice and could extent a significant distance from the ISB operation and could persist for a 

significant time. Thus, it is assumed that birds would have to land on water near the ISB 

operations to experience the highest concentrations. A more likely exposure scenario is the 

monolayer dose rates as this dosage could extend a significant distance from ISB operations and 

could persist for a significant time. 

After exposure the feather was photographed four places with a magnification of 1x11.25 

(see Figure 5). The effects on feather microstructure were assessed by measures of weight 

changes and by use of the ‘barbule amalgamation index (AI)’. AI, developed by O’Hara and 

Moradin (2010), to quantify the damage on the feathers as the clumping of the barbules. For 

more details about the experimental methods as well as more results Buist et al (in prep.) should 

be consulted. 



255           2017 INTERNATIONAL OIL SPILL CONFERENCE 

14 
 

 
Figure 5: Bird feather terminology (From Fritt-Rasmussen et al. (2016)). 

Results and discussion summery 

Examples of images are shown in Figure 6:  Thick-Billed Murre exposed to seawater, 

TS6535 and OP-40.  

   
Seawater TS6535 OP-40 
Figure 6: Images of Thick-Billed Murre feathers at 11.25x magnification showing barbs 
(thick) and barbules (thinner lines) after exposure to herders, and controls (seawater). 

 

Monolayer experiments of OP-40 (1 µL/m2) and TS6535 (3 µL/m2) showed that the 

feathers absorbed water but did not sink. This was the same for both bird species. The feathers 

exposed to high concentrations of OP-40 (150 µL/m2 and 20 µL/m2) sank within seconds after 

they came in contact with herder. This was not observed for exposure to TS6535 (both 150 

                         
Common Eider   

Distal barbules 

Proximal barbules 
Barbs 

Hollow shaft, calamus 

Proximal barbules 

Distal barbules with hooklets 

Barbs 
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µL/m2 and 20 µL/m2) but these feathers were slowly (>minutes) saturated with water. The 

loadings of 150 µL/m2 and 20 µL/m2 however, as mentioned, are assumed to be transient in a 

real incident, as the herders are expected to spread out into a monolayer relatively fast, thus 

limits the potential for birds to encounter them.  

Surface tension is the force that resists infiltration of water into the plumage and the 

critical surface tension for feather wetting is estimated to be 38-50 mN/m (Stephenson 1997). 

According to SL Ross and DCE (2015) herders will reduce the surface tension of the 

surrounding water from approximately 70 mN/m to 20-30 mN/m, which is well below the 

critical surface tension for feather wetting given by Stephenson (1997), thus supporting the 

laboratory findings.  

CHEMICAL ANALYSIS OF THE SMOKE GENERATED DURING IN SITU BURNING 

OF OIL SLICKS CONFINED WITH HERDERS  

During ISB operations large plumes of combustion gases and particulate soot emitted to 

the atmosphere could impact the nearby wildlife and personnel. Hence, the smoke plume 

generated during test burns with herders were analysed to determine if the herder or herder 

combustion products are being emitted or whether the herder changes the emissions in some 

way.   

Hence, the goal of these experiments was to determine whether the two herders would 

end up in the smoke generated by burning the herded oil. The smoke plume was sampled and 

analysed to determine if the herder could be detected in the combustion products. The 

experiments involved two fresh crude oils, ANS and Grane, and one quantitatively evaporated 

(ANS). The small burn experiments were conducted in the SL Ross laboratory in Ottawa, ON 

(Figure 7). 
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Figure 7 Herded slick burning under fume hood suspended over wind/wave tank 

For the ISB experiments, metal heat shields were installed along the sides of the tank and 

the metal fume hood was swung over the burn area. The smoke from the burns was removed 

with a 200-m3/min fan, through a 60-cm metal duct that is connected to the fume hood 

suspended approximately 1 m above the water surface. 

Multiple 4 litre air sampling canisters were used to sample smoke plumes.  Sampling was 

initiated approximately 45 seconds after ignition of the oil, while sampling times ranged between 

20 to 30 seconds. The chemical analysis, by GC-FID with cryogenic preconcentration, focused 

on VOCs (Volatile Organic Compounds) and is tailored to identifying multiple compounds that 

are not typically of interest – but have been identified here for completeness. A full description 

of the experimental methods may be found in the project report (Buist et al. in press).  

Results and discussion summary 

A total of eight burn experiments were sampled. Six burn experiments with the two 

herders (OP-40 and TS6535) and two parent oils (ANS and Grane) were performed, along with 

two baseline tests which used a 40-cm diameter floating metal ring to contain the oil during the 

burns. A matrix of the burns can be found in Table 6.  
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Table 6 - Experimental matrix 
Burn Run Herder / Containment Oil Sample 

#0 none None 
#1 TS6535 ANS fresh oil 
#2 OP-40 ANS fresh oil 
#3 OP-40 ANS 2 day weathered 
#4 OP-40 ANS 14 day weathered 
#5 OP-40 GRANE fresh oil 
#6 TS6535 GRANE fresh oil 
#7 mechanical ring GRANE fresh oil 
#8 mechanical ring ANS fresh oil 

 

The results showed that neither of the herders had a negative impact on the primary 

BTEX compounds in the smoke.  In fact, when comparing the mechanical containment results 

with the herded slick results, the BTEX concentrations were generally lower with the herded 

burns. In addition, the herder was not measured in the smoke samples by GC-FID. 

Supplementary testing was performed to provide additional baseline data for the analyses.  

A sample of each of the herders was placed in a Pyrex® container and subjected to flame 

impingement from a propane torch for an initial period of approximately 30 seconds, then air 

sampling was conducted for an additional 20 to 30 seconds while the propane torch continued 

impinging on the liquid. Both herders ignited. The first test was an empty container as a control, 

with TS6535 and OP-40 being used in the next two tests.      

The results of the flame impingement tests show low VOCs.  The first test in this series, 

the control, showed very low concentrations of most compounds with the exception of propane 

(which was the fuel source for the flame). As with the analysis of the oil slick smoke plume, no 

obvious signs of the herders showed up in the chromatograms from samples for the test with 

TS6535 or OP-40. 

CONCLUSIONS 
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Generally, after burning, the herder was mainly found on the water surface, though 

reduced in amount compared to pre-burning. Small concentrations of herders were found in the 

water column samples taken at the end of the experiment. Samples taken directly under the oil 

slick had overall higher concentrations of herders, in particular for OP-40. These concentrations 

are several orders of magnitude lower than the acute toxicity levels determined for the herders. 

A distinct mortality of the copepod Calanus hyperboreus was only seen at the highest test 

concentrations of the herders. OP-40 was more acute toxic than TS6535.  The concentrations at 

which effect are observed for Calanus hyperboreus are in the same order of magnitude as the 

values reported earlier for two other organisms in standard U.S. EPA toxicity tests at 24 °C 

however, are as mentioned several orders of magnitude higher than the concentration levels 

found in the water column measured in laboratory tests. The Bio-Concentrations Factors (BCF) 

estimates indicate that OP-40 might bio-accumulate and TS6535 might not bio-accumulate in the 

high Arctic copepods. TS6535 is most likely degraded within 7 days. Degradation of OP-40 was 

insignificant. The results have a similar characterization of the biodegradability of the herders as 

previously reported.  

The OP-40 monolayer experiments showed that the feathers absorbed water. Feathers 

exposed to high dosages of OP-40 sank immediately after contact with herder. Feathers exposed 

to TS6535 did not sink, but slowly absorbed water. As herders rapidly spread to form a 

monolayer, the monolayer experiments are considered as the most likely exposure scenario. 

The overall conclusion from the testing of the smoke is that the data showed no apparent 

incidences of herder in the smoke plumes.  No other noticeable differences on the impacts of 

combustion were noted between the two methods of containment (herder vs. metal ring). 
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