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Abstract 
 

 

Biocatalysis is the use of enzymes to catalyze chemical reactions. It is an established synthesis 

route in chemical synthesis, alongside conventional chemistry. Biocatalysis is often applied due 

to excellent regio and stereoselectivity, in addition to its environmentally benign properties.  This 

thesis aims at increasing the potential use of industrial biocatalysis, both in terms of broadening 

its current use and expanding it to new applications. This academic study is carried out through 

two case studies. These two case studies were chosen because they represent each end of the 

spectra of biocatalytic applications. The first case study is expanding the use of an established 

biocatalyst. The second case study investigates the potential of a novel biocatalyst. In addition, 

the two case studies have very different implementation challenges, impeding current use. 

Therefore, arguably, the lessons learned from these two case studies justify general conclusions 

for biocatalysis, irrespective of their application. The work in this thesis therefore contributes, 

not only to industrial biocatalysis in these two areas, but also increases the understanding of 

biocatalysis as a whole.  

 The first section investigates the use of ω-transaminases (ω-TAs) in the 

pharmaceutical industry for new applications. ω-TAs are well-established biocatalysts in the 

synthesis of chiral amines. They catalyze an amino transfer reaction between an amino donor 

(donor) and amino acceptor (acceptor), which yields an amine product (product) and a keto co-

product. Chapter F establishes the importance of donor selection.  Firstly, by experimentally 

comparing the equilibrium constant(Keq) of five reactions, where five common amine donors are 

reacted with the same acceptor. The Keq varies greatly between the donors tested, from Keq of I 

for the most favorable reaction to Keq of J x IK-L for the least favorable donor. Furthermore, a 

quantum mechanical method (QMM) is introduced as a tool to predict the thermodynamic yield 

of any acceptor/donor pair. This method successfully predicted the yield of ω-TA reactions.  

Finally, in Chapter J, a methodology for rapid implementation of ω-TA reactions in small singular 
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batches is outlined and demonstrated. This method uses a three-step selection procedure to 

evaluate if a given reaction is suitable for simple scale-up.  The   F criteria evaluated is 

thermodynamics, enzyme activity and product inhibition. Other relevant properties such as 

down-stream processing and enzyme stability were accounted for through implementation of 

specific requirements in terms of biocatalyst loading and maximal reaction time, outlined in the 

method. The thermodynamic criterion is determined by Keq and must be less than K.KQ 

(resolution reactions) or over I (synthetic direction).  The activity criterion requires specific 

activity greater than K.KL g/g/h (g product/g biocatalyst/hour). Finally, the inhibition criterion 

is met if less than LK% activity is lost when L% of the target concentration product was present.  

This methodology is then successfully demonstrated by subjecting two target products I-(J-

bromophenyl)ethylamine and (S)-(+)-F-amino-I-Boc-piperidine to the methodology. One of the 

two products, (S)-(+)-F-amino-I-Boc-piperidine, passes the evaluation and is successfully run at 

QL mL scale with initial acceptor concentrations of up to UL g/L and up to UK% yield.  It can be 

argued that the tools and results presented in this section could enable a more widespread use 

of ω-TAs, especially in applications where fast implementation is paramount, by reducing 

development time.  

 Section II examines the novel use of Carbonic Anhydrase (CA) in carbon capture and 

storage (CCS).  CA is a highly efficient catalyst which hydrates COQ to yield bicarbonate. Current 

CCS methods often use primary amines as capture solvents due to high kinetic rates. A drawback 

of these solvents is that they suffer from high energy requirements during solvent regeneration.  

Therefore, it has been proposed to use different solvents, such as hindered/tertiary amines or 

inorganic salts, which does not carry the same energy penalty in solvent regeneration. However, 

the implementation of these solvents is impeded by slow kinetics. Therefore, the use of CA as a 

kinetic promoter can enable the use of such energy efficient solvents in CCS. A key challenge to 

implementation of CA in CCS is enzyme stability under process relevant conditions, especially 

during extended exposure. Therefore Chapter U, investigates in detail the stability of one CA 

under such conditions. Three parameters, temperature, solvent type and pH is investigated both 

individually and cumulatively. It is concluded that temperature is the dominant factor in enzyme 
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deactivation under the conditions tested here. At UK °C and over, enzyme deactivation occurred 

at a high rate. Furthermore, the CA used here is stable in the pH range of U - II. However, extended 

exposure (ILK days), reveals that a higher pH (pH IK) negatively affects enzyme stability. Finally, 

lower enzyme stability is correlated with a higher solvent pKa. In a capture facility, the highest 

temperatures are experienced desorption column. Therefore, Chapter Z explores one strategy for 

preventing CA’s from entering this area, namely ultrafiltration (UF). The potential impact of UF 

is investigated through a model. Three UF membranes with selectivity ranging from ]K% to 

]].]% and desorber temperatures ranging from ^K °C to >IKK °C is modeled. The results show 

that UF is an efficient strategy to extend enzyme viability with respect to temperature. Higher 

temperatures in the stripper require more selective membranes. Furthermore, it is found that at 

temperatures above IKK °C, where instant deactivation is modeled, even the most selective 

membrane is not selective enough to retain high enzyme activity over time. UF may therefore 

not be a viable option for very high temperatures, or other conditions where instant deactivation 

is observed.  The results in Section II indicate that CA’s are technically feasible in CCS 

applications, with careful process design. However, a detailed economic assessment is needed in 

each case to evaluate if CA is an economically competitive alternative.  

 Although the two case studies here are very different, several underlying criteria are 

valid for both case studies, and arguably, can be extended beyond these case studies. Chapter IK 

summarizes the lessons learned in this thesis, with a special focus on integrated process design. 

It is concluded that enzyme engineering, process engineering, and reaction engineering must be 

carried out simultaneously early in process development for optimal results.  
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Dansk Resumé 
 

 

Biokatalyse er brugen af enzymer til at katalysere kemiske reaktioner. Biokatalyse er en etableret 

metode i kemisk syntese i tillæg til konventionel kemi. Biokatalyse anvendes tit, fordi det har en 

fremragende region og stereoselektivitet, samt miljøvenlige egenskaber. Denne afhandling har 

til formål at øge brugen af industriel biokatalyse, både ved at udvide den nuværende andvendelse 

og ved at udvikle biocatalyse til nye applikationer. Dette gennemføres gennem to casestudier. 

Disse to casestudier er valgt, fordi de repræsenterer hver sin ende af skalaen af biokatalytiske 

applikasjons områder. Det første casestudie udvider brugen af en etableret biokatalysator. Det 

andet casestudie undersøger potentialet ved en ny biokatalysator. Derudover har de to 

casestudier meget forskellige implementeringsudfordringer, som hindrer nuværende brug. 

Derfor kan erfaringerne fra disse også berettige generelle konklusioner for biokatalyse. Denne 

afhandling bidrager derfor ikke kun til øget industriel biokatalyse på disse to kerne-områder, 

men øger også forståelsen af biokatalyse generelt. 

 Det første casestudiet undersøger nye anvendelser af ω-transaminaser (ω-TA'er) i 

medicinalindustrien. ω-TA'er er veletableret biokatalysatorer i syntesen af chirale aminer, der 

katalyserer en aminotransferreaktion mellem en amindonor (donor) og aminaccepter (accepter), 

som giver et aminprodukt (produkt) og et keto-coprodukt. Kapitel F viser vigtigheden af 

donorvalg. Først ved, at eksperimentelt sammenligne ligevægtskonstanten (Keq) ved fem 

reaktioner, hvor fem almindelige donorer reageres med den samme acceptor. Keq varierer meget 

mellem de testede donorer, fra Keq på I til den mest gunstige reaktion på Keq på J x IK-L for den 

mindst gunstige reaktion. Endvidere indføres en kvantemekanisk metode (QMM) som et værktøj 

til at forudsige termodynamikken af ethvert accepter/donorpar. Metoden beregnet med god 

nøjaktighed Keq af et set ω-TA reaktioner. Til sidst vises og demonstreres en metode der 

tilrettelægger hurtig implementering af ω-TA reaktioner i små batcher i kapitel J. Denne metode 

anvender en tre-trins udvælgelsesprocedure for at vurdere, om en given reaktion er egnet til 

simpel opskalering. De F kriterier, der er vurderet, er termodynamik, enzymaktivitet og 
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produktinhibering. Andre relevante egenskaber såsom oprensning og enzymstabilitet blev 

redegjort for gennem implementering af specifikke krav, med hensyn til biokatalysatoraktivitet 

og maksimal reaktionstid i fremgangsmåden. Det termodynamiske kriterium bestemmes af Keq, 

og skal være er under K.KQ (resolveringsreaktioner) eller over I (syntetisk retning). 

Aktivitetskriteriet kræver specifik aktivitet over K.KL g/g/h (g produkt/ g biokatalysator/time). 

Endelig indfries inhiberingskriteriet, hvis aktiviteten er reduceret med mindre end LK%, når L% 

af koncentrationen af produktet var til stede. Denne metode demonstreres derefter ved at bruge 

to produkter I-(J-bromphenyl)ethylamin og (S)-(+)-F-amino-I-Boc-piperidin. En af de to 

produkter, (S)-(+)-F-amino-I-Boc-piperidin, består evaluerings-kriterierne og skaleres så op til QL 

mL med koncentrationer på op til UL g/L og op til UK % omdannelse. De værktøjer og resultater, 

der præsenteres i dette afsnit, kan muliggøre en mere udbredt anvendelse af ω-TA'er, især i 

applikationer, hvor hurtig implementering er afgørende. 

 Afsnit II undersøger den nye anvendelse af enzymet Carbonic Anhydrase (CA) i 

kulstofopsamling og -opbevaring (CCS). CA er en yderst effektiv katalysator, som hydrerer COQ 

til bicarbonat. Nuværende CCS-metoder bruger ofte primære aminer som opløsningsmidler, der 

har høje kinetiske hastigheder. En ulempe ved disse opløsningsmidler er, at de lider af et højt 

energibehov under regenereringen. Det er derfor blevet foreslået, at anvende andre 

opløsningsmidler, som hindrede/tertiære aminer eller uorganiske salte, der ikke har samme 

energibehov ved regenerering. Implementeringen af disse opløsningsmidler begrænses nu af 

langsom kinetik. Derfor kan brug af CA som en kinetisk promoter muliggøre brugen af disse 

energieffektive opløsningsmidler i CCS. En udfordring for brug af CA i CCS, er enzymstabilitet 

under procesrelevante betingelser, især under længere eksponering. Derfor undersøger kapitel U 

i detalje stabiliteten af  CA under disse forhold. Tre parametre, temperatur, 

opløsningsmiddeltype og pH undersøges både individuelt og kumulativt. Det konkluderes, at 

temperatur er den dominerende faktor ved enzymdeaktivering under disse betingelser. Ved UK 

°C og derover var enzymdeaktiveringen høj. Desuden er den CA, der anvendes her, stabil i pH-

området på U-II. Udvidet eksponering (ILK dage) viser imidlertid, at en højere pH (pH IK) 

påvirker enzymstabiliteten negativt. Endelig vises det at der er sammenhæng mellem lavere 
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stabilitet og højere pKa for opløsningsmiddel. I et CCS anlæg er de højeste temperaturer i 

desorptionskolonnen. Kapitel Z udforsker derfor en strategi der forhindrer CA at komme ind i 

dette område, nemlig ultrafiltrering (UF). Effekten af UF undersøges gennem en model. Tre UF 

membraner med selektivitet fra ]K% til ]],]% og desorber temperaturer fra ^K ° C til> IKK ° C er 

modelleret. Resultaterne viser, at UF er en effektiv strategi til at forlænge enzymets levedygtighed 

med hensyn til temperatur. Højere temperaturer kræver mere selektive membraner. Endvidere 

konstateres det, at ved temperaturer over IKK ° C, hvor øjeblikkelig deaktivering er modelleret, 

er selv den mest selektive membran ikke selektiv nok til at opretholde høj enzymaktivitet. UF er 

måske derfor ikke en god løsning for meget høje temperaturer eller andre forhold hvor 

øjeblikkelig deaktivering observeres. Resultaterne i afsnit II viser, at brug af CA er teknisk muligt 

i CCS, med nøjaktigt procesdesign. Der er imidlertid behov for en detaljeret økonomisk 

vurdering, i hvert enkelte tilfælde, for at vurdere, om CA er et økonomisk konkurrencedygtigt 

alternativ. 

 Selvom de to casestudier her er meget forskellige, gælder flere underliggende 

kriterier for begge casestudier, hvilket også kan bruges ud over disse casestudier. Kapitel IK 

opsummerer erfaringerne i denne afhandling med særlig fokus på integreret procesdesign. Det 

konkluderes med at enzymteknik, procesteknologi og reaktionsteknik bør udføres samtidig og 

tidligt i procesudviklingen for at opnå de bedste resultater. 
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GHG Greenhouse Gas 
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Intergovernmental Panel on Climate 
Change  
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K2CO3 Potassium Carbonate 
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KRED Ketoreductase 
LbL Layer by Layer  
MAPA 3-(Methylamino)Propylamine  
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NDA 3,5,7-Nonadiene-2-Amine  
NETL National Energy Technology Laboratory 
PCCC Post-Combustion Carbon Capture  
PEA 1-Phenylethylamine  
PLP Pyridoxal 5’-Phosphate  
PMP Pyridoxamine 5’-Phosphate  
PNP Para-Nitro-Phenyl  
QM Quantum Mechanic 
UF Ultrafiltration 
V0 Reaction Rate 
Vmax Reaction Rate at Saturation 
WGIII Working Group III  
ω-TA ω-Transaminase 
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Nomenclature Description Units 

e.e. Enantiomeric Excess  % 
E0 Enzyme Concentration mM 
K Predicted Yield  % 
Kcat Turnover Number s-1 

Keq Thermodynamic Equilibrium Constant  Dimensionless 
Keq

app Apparent Equilibrium Constant  Dimensionless 
KL Liquid Side Mass Transfer Coefficient constant Dimensionless 
KM Michaelis-Menten Constant  mM 
LCOE Levelised Cost of Energy $ (USD) 
pKa Acid Dissociation Constant Dimensionless 
[S] Substrate Concentration mM 
V0 Reaction Rate mM/s 
Vmax Reaction Rate at Saturation mM/s 
ΔG Gibbs Free Energy J 
ΔH° Heat of Reaction  J 
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Chapter 1:  

Introduction to Thesis 
 

 

 

This chapter presents the thesis as a whole and introduces relevant topics. Several of the topics 

covered in this chapter are reoccurring throughout the thesis, it is therefore important that the 

reader has a basic understanding of these topics.  

 

 Scope of the thesis  
The objective of this thesis is to enable a more widespread use of biocatalysis by bridging the gap 

between academic research with industry. This is done by giving several hands-on tools for easy 

implementation of biocatalysis. This thesis covers biocatalysis in industry through two very 

different case studies, the use of ω-transaminases (ω-TAs) in pharmaceutics, and carbonic 

anhydrase (CA) in carbon capture. These two case studies were chosen because they represent 

each end of the spectra of biocatalytic processes. The hypothesis of this thesis is that investing 

these two diverse case studies does not only add the value of the conclusions drawn from the 

specific studies but furthermore, permits general conclusions about industrial biocatalysis to be 

drawn.   

 Section I, investigates the use of ω-TAs in the pharmaceutical industry. A well-

established biocatalytic route to chiral amines for commercial pharmaceuticals. Here the 

implementation ω-transaminases (ω-TAs) beyond its current use is investigated, particularly at 

small singular batches in early stages of clinical trials, where long development time is limiting 

its implementation.  Facilitating the use of ω-TAs in for such applications is here facilitated by 

developing substrate selection tools (Chapter F) and guidelines for commercial implementation 

of transaminase based reactions (Chapter J). The use of ω-TAs is a high value, small-scale 
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application, where fast implementation and high substrate purity is paramount (Gundersen et 

al., QKIL, QKI^; Meier et al., QKIL).  

 Section II, covers the use of carbonic anhydrase in enzyme enhanced carbon capture 

and storage (EECCS). A novel technology, which is yet to be implemented on a commercial scale. 

EECCS is one possible solution to reducing global greenhouse gas (GHG) emissions. EECCS has 

the potential to enable the use of low energy solvents, and thereby reducing the carbon footprint 

of the process. Here, several challenging aspects of EECCS is evaluated and discussed. Both 

enzyme stability (Chapter U) and process strategies to extend the lifetime of active enzymes 

(Chapter Z) were investigated. Due to the large scale and low economic value of carbon dioxide, 

the cost of enzymes and the process must be very low to justify the use of this technology. This 

requires simple solutions and very stable enzymes under operating conditions. The use of 

carbonic anhydrase in carbon capture is a low value, large-scale application of biocatalysis 

(Gundersen, von Solms and Woodley, QKIJ; Gundersen et al., QKIU).  

 Although these two case studies are different, they share some common underlying 

features. In both case studies, and arguably for industrial biocatalysis in general, it was found 

that integrated process design was paramount for success. It is concluded that enzyme 

engineering, process engineering, and reaction engineering should ideally be carried out 

simultaneously. A summary of common lessons learned from the two case studies is presented 

in Chapter IK.  

  

 Enzymes  
Enzymes are biological catalysts. In Nature, enzymes catalyze a plethora of vital chemical 

reactions. Enzymes are optimized to the delicate environment of a cell. They are highly selective, 

and can often catalyze reactions at very low concentrations. The environment of a cell is 

maintained at a steady temperature and pH. Enzymes are however technically no different than 

any other catalyst. They are agents that speed up the reaction rate of a reaction, without being 

consumed in the process (Berg, Tymoczko and Stryer, QKK^). This is done by stabilizing the 

transition state of the reaction (Golynskiy and Seelig, QKIK). Biocatalysts do not alter the physical 
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properties of a reaction to any great extent, with a few notable exceptions. Biocatalysts do for 

example not alter the thermodynamics of a given reaction or the solubility of most reactants. 

However, proteins can act as surfactants and cause foaming, which is discussed in section II.   

 Biocatalysis is taking enzymes out of their natural environment and applying them 

in a controlled fashion (Bornscheuer et al., QKIQ). In this thesis, biocatalysis is defined in its 

broadest context, where any non-natural applications of enzymes or other biocatalyst are defined 

as biocatalysis. Including, but not limited to, the use of whole cells in brewing, to engineered 

isolated enzymes in pharmaceuticals. Biocatalysis is a well-established method of catalysis in 

many fields, with a few hundred industrial examples (Woodley, QKIF; Salmon and House, QKIL). 

A broad range of available reactions are being used, which is continuously increasing (Clouthier 

and Pelletier, QKIQ; Truppo, QKIU).  The enzyme market is assumed to be around IK% of the 

catalysis market, about F.J Billion USD in QKIQ (Milmo, QKIQ). Biocatalysis is often used due to 

its excellent regio- and stereoselectivity, mild reaction conditions, simpler chemistry or because 

it can by-pass several steps used in conventional chemistry, all of which contributes to the 

economic benefit of using enzymes over other catalysts in the selected processes (Bornscheuer 

et al., QKIQ; Woodley, QKIF; Lima-Ramos, Tufvesson and Woodley, QKIJ; Truppo, QKIU). 

Furthermore, biocatalysis can offer an advantage when conventional chemistry methods causes 

hazardous conditions or safety concerns, and in replacing rare transition metal catalysts (Lima-

Ramos, Tufvesson and Woodley, QKIJ; Woodley, QKIU). Although the pharmaceutical industry is 

dominating the field of biocatalysis, it is also used extensively in other areas as well, such as the 

fine chemical and food industry (Truppo, QKIU) a few selected applications are discussed below.  

 When applying enzymes outside of their natural environment, it should be kept in 

mind, that they are often applied in conditions that are far from their native environment.  

Enzymes used in industrial biocatalysis are subjected to physical conditions that are very 

different from the environment of a cell. Industrial biocatalysts are often exposed to conditions 

such as organic solvents, high substrate and product concentrations, high salt concentrations, 

heterogeneous temperatures and sub-optimal pH conditions (Wohlgemuth, QKIK; Huisman and 

Collier, QKIF; Woodley, QKIF).  
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 Enzymes used in biocatalysis can be applied as isolated enzymes, crude enzyme 

extract or as whole cells. The use of isolated enzymes is now dominating the biocatalysis field, 

especially in the food and pharmaceutical industry, in part due to reproducibility and easier 

implementation (Truppo, QKIU). However, each formulation comes with its advantages and 

disadvantages, which is further discussed in section I.J.Q.Q, below.  

 Industrial application of enzymes are often limited by low enzyme stability under 

process relevant conditions, low catalytic activity for a specific substrate, substrate and/or 

product inhibition at high substrate and/or product concentrations (Golynskiy and Seelig, QKIK; 

Huisman and Collier, QKIF). Furthermore, it is important to consider the economic requirements 

of industrial synthesis.   

 

 Examples of biocatalysis  
1.3.1 Biocatalysis for commodity chemicals  
Although enzymes may at first appear as highly technical, and therefore costly catalysts only 

suitable for specialized applications, this is not always the case (Woodley, Breuer and Mink, 

QKIF). Numerous commodity chemicals are made using enzymes (Sheldon, QKIJ). Although the 

pharmaceutical industry often uses highly specialized and evolved enzymes, another sector of 

the enzyme industry, dominated by proteases and lipases, uses enzymes on a bulk scale. A well-

known household example of biocatalysis is the use of proteases in laundry detergents, which 

along with food applications currently dominates the enzyme market by volume (Milmo, QKIQ). 

The use of industrial lipases was first enabled by stabilization through directed evolution (Estell, 

Graycar and Wells, I]ZL). Other well-known examples of biocatalysis in bulk is the use of glucose 

isomerase to convert glucose to fructose, to enhance flavor (Jensen and Rugh, I]ZU). Finally, 

penicillin-G acylase is used to make semi-synthetic antibiotics (Bruggink, Roos and de Vroom, 

I]]Z). 
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1.3.2 Enzymes in the pharmaceutical industry  
In the pharmaceutical industry, enzymes are often used specifically because of their high regio 

and stereoselectivity, to produce chiral medications. A notable example of this is the synthesis of 

an intermediate of the drug Atorvastatin, with the use of a ketoreductase (KRED) (Ma et al., 

QKIK). Described here is one of several chemo enzymatic routes towards Atorvastatin (Ma et al., 

QKIK; Bornscheuer et al., QKIQ). Atorvastatin is the active ingredient of the drug commercially 

known as Lipitor, a cholesterol-lowering drug, with annual sales of over IK billion USD at its peak 

(Ma et al., QKIK; Bornscheuer et al., QKIQ). The development of this biocatalytic process won the  

Presidential Green Chemistry Challenge Award in QKK^ (Bornscheuer et al., QKIQ). It is a multi-

enzyme process that was marketed as ‘green by design’, it was deemed greener than the synthetic 

routes because it used milder conditions, had fewer by-products and less waste. (Ma et al., QKIK; 

Clouthier and Pelletier, QKIQ). A KRED was used to selectively reduce one of two neighboring 

ketones to a chiral alcohol, to regenerate the NADPH/NADP co-factor a glucose dehydrogenase 

was used, and finally, a halogen dehalogenase was used to substitute a chlorine with cyanide.  

   

 
Figure 1.1: Overview of the Atorvastatin process, adapted from Clouthier and Pelletier, 2012. 

 

Other examples of the use of biocatalysts in the pharmaceutical industry include ω-transaminase 

in the production of Sitagliptin, a diabetic drug (Savile et al., QKIK), covered in detail in Chapter 

Q. The reduction of a ketone to a chiral alcohol with a KRED to synthesize an intermediate of the 

asthma medicine Montelukast (Liang et al., QKIK). Recently FDA approved, Niraparib for treating 

ovarian cancer. The biocatalytic route to Niraparib uses a ω-transaminase to catalyzed the 

racemic resolution of a late stage intermediate of the drug (Chung et al., QKIJ). 
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 Tools in biocatalysis 
To enable the use of enzymes in industry, whether in bulk for low-cost applications such as 

laundry detergents, or for blockbuster drugs as Atorvastatin, it is necessary to optimize the 

enzymes and their use for maximal benefit. This section describes some of the most important 

tools for enabling the widespread use of biocatalysis. This is not an exhaustive list, but contain 

the most important tools and tools that are particularly relevant to this thesis.  

 

1.4.1 Optimizing enzymes 
Any application of enzymes outside of their natural habitat requires enzymes that are both 

capable of catalyzing the reaction of interest and are stable under process relevant conditions. 

Two methods of obtaining such enzymes are outlined here: Enzyme engineering and genome 

mining.  

 
1.4.1.1 Enzyme engineering 
Enzyme engineering can enable a suitable enzyme for a particular process by altering the amino 

acids in the protein of interest (Bornscheuer et al., QKIQ). It has been called the single most 

important enabler of biocatalysis (Truppo, QKIU). Enzyme engineering starts by defining the 

target conditions and optimizing the enzymes towards that target. It enables us to modify the 

enzyme to fit production needs, rather than altering the process to fit the enzyme (Bornscheuer 

et al., QKIQ; Lima-Ramos, Neto and Woodley, QKIJ; Truppo, QKIU). Enzymes are often engineered 

towards increased thermostability, catalytic activity, substrate specificity or stereoselectivity 

(Golynskiy and Seelig, QKIK; Clouthier and Pelletier, QKIQ). Enzyme engineering can take a long 

time, for example, the highlighted example of engineering a transaminase towards the synthesis 

of a Sitagliptin intermediate (see Chapter Q for details) took over a year (Truppo, QKIU). This 

enzyme was engineered by industry leaders in the field (Savile et al., QKIK).  
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Figure 1.2: Integrated enzyme engineering methodology. Adapted from Lalonde,  2016. 

 

Several methods of engineering an enzyme can be used. Directed evolution tries to optimize 

specific traits by using random mutagenesis, where non-specific amino acids are exchanged in a 

protein, using methods such as error-prone pCR and gene shuffling to increase genetic variation 

in the protein (Golynskiy and Seelig, QKIK). This is a simple method of altering an enzyme. 

However, since it’s a non-specific method, it requires very large screening capacity. For example, 

if Q amino acids are to be exchanged anywhere on a QKK amino acid enzyme, there are over U 

million possibilities (Bornscheuer et al., QKIQ). Of which many of the possibilities are either 

unchanged or inactive. If the number of mutations is increased to F amino acids, the possibilities 

are a staggering ] billion options (Bornscheuer et al., QKIQ).  It is therefore clear that either very 

efficient methods for screening or more targeted methods are needed. There are two main 

screening methods used for enzyme engineering, the most efficient is ‘selection’ method which 

has a capacity of IK]-IKIF (Golynskiy and Seelig, QKIK), where an organism’s survival depends on 

the function of the enzyme, this depends on that only the variants that are viable can survive the 

selection. Although this is a very efficient method of screening, it is often not suitable for the 

target product. Therefore, ‘screening’ methods are most often employed, where depending on 
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the type of screening used the capacity can range from a few hundred variants to over I million, 

here each variant is investigated separately for a specific trait(Golynskiy and Seelig, QKIK).  

 Since selection methods are not usually available, a more targeted approach: 

‘rational design’ has been developed. It is a knowledge-based approach, based on a good 

understanding of the enzyme, by a F-dimensional crystal structure and knowledge about the 

substrate binding site and the transition state (Golynskiy and Seelig, QKIK; Bornscheuer et al., 

QKIQ). This technology has been enabled by cheaper sequencing and increased computing power 

(Bornscheuer et al., QKIQ). Selected amino acids may then be targeted and exchanged. For 

example, if Q specific amino acids are targeted, and all possibilities are tested, only JKK variants 

are generated, compared to the U million with random insertion. Clearly, this becomes a less 

daunting task for screening. Furthermore, in silico methods can be used to model the effect of 

the mutations before they are tested. Enzyme engineering has also benefited from streamlined 

methods and automation, which is speeding up the process. However, due to the complexity of 

the task enzyme engineering remains a difficult challenge. Several of the enzymes used this thesis 

was engineered.  

 

1.4.1.2 Genome mining 
Genome mining is a method that can be used to find natural enzymes from a variety of organisms 

that either has a specific activity or that are stable under certain process conditions. Two main 

approaches are used. Firstly, sequencing methods can be used where, large amounts of DNA are 

sequenced, and bioinformatics methods are used to identify functionality. Alternatively, 

functionality screens can be used to find enzymes with a specific activity in a sample space. 

Genome mining is particularly useful when a suitable enzyme for the process conditions needed 

are difficult to obtain. For example, finding a thermostable enzyme with a known function, such 

as carbonic anhydrase in Section II, where either of the two methods above could be used to 

search for thermostable variants in thermophile organisms. Or in certain processes, for example 

in the food industry, where enzyme engineering may be prohibited. Finally, the bioinformatics 

data obtained in genome mining might also be used in enzyme engineering. For example, if a 
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specific amino acid is highly conserved among species in an enzyme, it is likely that that amino 

acid should not be modified. Methods for enzyme mining is rapidly improving, furthermore, 

large-scale sequencing efforts are also enabling a widespread use of bioinformatics to obtain new 

isozymes. In this thesis enzyme mining is particularly relevant in Section II, where Carbonic 

Anhydrases are mined from thermophiles to obtain thermostable enzymes.  

 

1.4.2 Process engineering  
 

This section will include some of the most important tools in process engineering and those most 

relevant to the thesis. This is not an extensive list of all possible process engineering tools. Process 

engineering can help in overcoming limitations, which cannot be solved with enzyme 

engineering, such as thermodynamics. Furthermore, integrated process engineering with 

enzyme engineering can aid in increasing the product concentration, a particularly difficult 

target to reach with biocatalysis (Lima-Ramos, Neto and Woodley, QKIJ; Woodley, QKIU). Several 

other process metrics such as high biocatalyst yield (g product/g catalyst), and high space-time 

yield (g product/L/h), also known as productivity, is also often challenging to obtain with 

biocatalysis. Often these targets can only be reached through good process engineering (Lima-

Ramos, Tufvesson and Woodley, QKIJ).  

	
1.4.2.1 Enzyme Immobilization 
Enzyme immobilization is one of the most important facilitators of biocatalysis after protein 

engineering (Truppo, QKIU). Enzyme immobilization is the attachment of an enzyme onto a 

carrier or surface, in a matrix or self-cross-linked (Sheldon, QKKU). Enzyme immobilization is 

used to separate enzyme from products, to recycle enzymes for cost benefits, increase stability, 

enable the use of organic solvents and to restrict enzymes to certain areas of the process (Tischer 

and Kasche, I]]]; Sheldon, QKKU). A drawback of immobilization is that it increases mass transfer 

resistance, which in turn reduces reaction rates. This phenomenon is most dominant with 

enzymes with high reaction rates and in settings that inhibits diffusion rates, such as enzyme 

immobilization in gel membranes (Tischer and Kasche, I]]]). Furthermore, although enzyme 
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immobilization may reduce operating costs, due to the advantages listed above, enzyme 

immobilization will also increase the direct the cost of the biocatalyst. One study estimated a J 

fold increase in costs, by adding immobilization (Tufvesson et al., QKII). However, this is highly 

dependent on the cost of the enzyme and the type of immobilization. Although enzyme 

immobilization is applied across a broad range of applications, a uniform general method for 

implementation and selection is not yet in place. It is often found that immobilization methods 

with good performance are often too technically specialized and costly to be uniformly applied. 

For example, in this project, the use of magnetic nanoparticles was used as a method of 

immobilization (data not shown). The beads are firstly too costly to be applied on a large scale, 

and furthermore requires a His-tagged protein for binding and is therefore not universally 

applicable. Improvements in immobilization are highly sought after and has been called for by 

industry (Truppo, QKIU). 

 

1.4.2.2 Enzyme formulation  
Enzymes in biocatalysis are generally applied in F main formulations. Whole cells, crude enzyme 

extract, and isolated enzymes.  

 Whole cells are the simplest form of enzyme formulation, it is the least costly and 

most available form. Due to the protective environment of the cell, enzymes are typically more 

stable in this formulation than in other formulations (Lima-Ramos, Neto and Woodley, QKIJ). 

However, due to certain drawbacks, such as mass transfer limitations across cell membranes, the 

use of whole cells are often haunted by low product concentrations, often resulting in 

unfavorable economics. However, a notable exception, by Meadows and colleagues, found that 

whole cells gave comparable yields with a commercial liquid formulation,  in the chiral synthesis 

of (S)-I-(L-fluorpyrimidin-Q-yl)ethylamine, an intermediate of the JAKQ inhibitor AZDIJZK 

(Meadows et al., QKIF). Furthermore, the in carbon capture whole cells are used with algae-based 

capture to produce fuels or fine chemicals (Klinthong et al., QKIL; Seth and Wangikar, QKIL).  

 Crude enzyme extract is simply the cell lysate without further modification. This 

eliminates the cross-membrane barrier, but thereby also removes the protective environment of 
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the cell. Due to the presence of other enzymes in the cell lysate, it could mean that other 

unwanted side-reactions are also catalyzed. Added complexity in purification might be added if 

a pure product, such as a pharmaceutical is needed. Finally, as seen in Section II of this thesis, 

crude enzyme extract might have unwanted physical properties, such as foaming.  

 Finally, isolated enzymes can be used, this is purified, most often recombinant, 

enzymes. Isolated enzymes are advantageous because they are easier to remove and less enzyme 

is used due to their high activity/kg (Bornscheuer et al., QKIQ). The high concentration also allows 

for easier shipment, and as with crude enzyme extract, no diffusion limitations due to cell 

membranes are found (Bornscheuer et al., QKIQ). In pharmaceutical biocatalysis, isolated 

enzymes are dominating. It allows for easier and faster implementation and gives the option of 

using biocatalysis early in the development of a new drug (Truppo, QKIU).  

   

1.4.2.3 In Situ Product removal (ISPR) 
ISPR is a technique where a product or co-product is removed simultaneously as the reaction is 

carried out. This may alleviate product or co-product inhibition of the enzyme and can improve 

the thermodynamics of a reaction. This is particularly important with thermodynamically 

challenged reactions, such as the ω-transaminase reaction discussed in Section I (Tufvesson et 

al., QKIL). ISPR techniques used in biocatalysis can, for example, be product removal of a volatile 

compound (Tufvesson, Bach and Woodley, QKIJ), precipitation driven synthesis (Ulijn et al., 

QKKI; Ulijn and Halling, QKKJ) and two-phase systems (Shin and Kim, I]]U; Meadows et al., 

QKIF). Furthermore, in biocatalytic reactions, a cascade reaction, a reaction carried out by a 

second enzyme, can be used to convert a co-product to another chemical. Thereby relieving 

thermodynamic constraints, in addition to alleviating co-product inhibition (Fesko et al., QKIF; 

Fuchs, Farnberger and Kroutil, QKIL). ISPR techniques need to be adapted to the reaction in 

question. Recently, the use of distillation based ISPR was used to increase yield of the chiral 

product of (S)�Q-Pentanol, albeit with a lipase. This is the first time distillation has been used 

with biocatalysis, it the ISPR toolbox in biocatalysis is still advancing, and more such advances 
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can be expected in the future, alleviating challenges like thermodynamics and inhibition in 

biocatalysis (Kühn, QKIU).   

 
1.4.2.4 Fed-batch  
Fed-batch is a simple technique where one or more substrates are added to the reactor as the 

reaction advances. This technique may aid in keeping the substrate soluble, limit substrate 

inhibition, and reduce substrate degradation in the case of an unstable substrate (Woodley, QKIF, 

QKIU). Due to the lower concentration of substrate in the reactor, fed-batch may negatively 

impact kinetics, however, this is not likely when it is applied to overcome substrate inhibition. 

In this Chapter J, fed-batch was considered a simple method of overcoming substrate inhibition 

for the ω-TA reaction. 

 

 Conclusion  
The availability of new and more stable enzymes is rapidly expanding. It is likely that with the 

expansion of de novo computational design of enzymes, enzymes will be able to catalyze many 

reactions not possible today. With good screening methods and early integration of process 

design, fast implementation of biocatalysis could enable a widespread use.  
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Section I 
 

Chapter 2: Introduction to ω-transaminases 
 

 

 Introduction 
ω-Transaminases (ω-TAs, E.C. Q.^.I.IZ), also known as amino aminotransferases, reversibly 

catalyzes the amination of ketones, by transferring an amino group from an amino donor (donor) 

to an amino acceptor (acceptor).  ω-TAs are in subgroup II, out of J subgroups of transaminases 

(Malik, Park and Shin, QKIQ). ω-TAs have over the last decade gained widespread use both in 

academia and industry, particularly in pharmaceuticals, due to exceptional regio and 

stereoselectivity, where few alternatives are available (Mathew and Yun, QKIQ; Fuchs, Farnberger 

and Kroutil, QKIL; Tufvesson et al., QKIL; Guo and Berglund, QKIU). ω-TAs are particularly useful 

because they have a broad substrate spectra, and can provide a single step amination of ketones, 

keto acids and aldehydes (Kaulmann et al., QKKU; Koszelewski et al., QKIK; Mathew and Yun, 

QKIQ; Paul et al., QKIF).  

 Transaminases were first discovered by Schoenheimer in I]JQ, F years after 

Braunstein in I]F] had confirmed the transfer of an amine moiety between a α-keto acid and an 

amino acid (Mathew and Yun, QKIQ). ω-TAs were off to a slow start and were only industrially 

applied more than LK years later, in the early I]]K’s by Celgene. Industrial use of the enzyme was 

subsequently followed by academic interest (Shin and Kim, I]]U). The early use of ω-TAs was 

mostly focused on kinetic resolution (Malik, Park and Shin, QKIQ).  

 

2.1.1 Reaction mechanism 
ω-TAs are co-factor dependent enzymes, where the co-factor pyridoxal L’-phosphate (PLP), a 

vitamin B^ based co-factor (Guo and Berglund, QKIU), acts as an electron and nitrogen shuttle 

(Kroutil et al., QKIF). Here a brief description of the reaction mechanism follows, more details 



Section I - Chapter 2 
 

16 
 

can be found in several excellent reviews (Seo et al., QKII; Malik, Park and Shin, QKIQ; Mathew 

and Yun, QKIQ; Kroutil et al., QKIF; Fuchs, Farnberger and Kroutil, QKIL).  

 ω-TAs follows a ping-pong bi-bi reaction mechanism (Scheme Q.I), that consists of 

two half-reactions, outlined in Scheme Q.Q. Initially, PLP forms a Schiff base with a covalently 

bound lysine. In the first half reaction, Scheme Q.Q A), oxidative deamination of the amine donor 

is carried out, where the amino group of the donor is transferred to PLP, thereby converting PLP 

to pyridoxamine L’-phosphate (PMP), furthermore a water molecule in the active site is 

incorporated to convert the amino group of the amino donor to a keto group. The ketone co-

product is finally released from the active site. In the second half reaction, the reductive 

amination of the amine acceptor is carried out, Scheme Q.Q B) the amine acceptor reacts with the 

enzyme bound PMP co-factor to convert the keto group into an amine moiety, regenerating the 

PLP co-factor. Finally, the amine product and a water molecule are released and the reaction can 

start anew (Malik, Park and Shin, QKIQ; Fuchs, Farnberger and Kroutil, QKIL). The second half 

reaction, Scheme Q.IB), has been found to be the rate-limiting step (Seo et al., QKII).  

 

 

 
Scheme 2.1 : Cleland diagram of ω-transaminase, ping-pong bi-bi mechanism. 
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Scheme 2.2: ω-transaminase reaction mechanism adapted from (Mathew and Yun, 2012; Fuchs, 
Farnberger and Kroutil, 2015). 

 

Most ω-TAs are S-selective (Koszelewski et al., QKIK), due to the fact that many biomolecules 

including most amino acids are (S)-isomers, save cysteine (Berg, Tymoczko and Stryer, QKK^). 

However, the abundance of (R)-selective ω-TAs are increasing, both by finding more natural (R) 

selective ω-TAs (Koszelewski et al., QKIK; Malik, Park and Shin, QKIQ),  and by generating novel 

(R)-selective ω-TAs by enzyme engineering (Svedendahl et al., QKIK).  

 Stereo and regio-selectivity in ω-TAs are provided from the tertiary structure of the 

enzyme, in addition to some selectivity being offered from the PLP co-factor. The active site of 

the enzyme consists of a small and a large binding pocket, Figure Q.I (Mathew and Yun, QKIQ; 

Fuchs, Farnberger and Kroutil, QKIL). The binding of the substrate in a fixed orientation will 

thereby provide a specific stereoselectivity.  

 

 
Figure 2.1: Binding pocket of a ω-transaminase (Fuchs, Farnberger and Kroutil, 2015). 
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2.1.2 Kinetic resolution vs asymmetric synthesis  
 

2.1.2.1 Kinetic resolution (KR) 
ω-TAs can be applied in two ways to produce chiral amines. Firstly, ω-TAs can be applied in 

kinetic resolution (KR), Figure Q.Q. In KR a racemic mixture of R- and S-amines are combined 

with an amine acceptor, to resolve one chiral product. ω-TAs will then react with one of the 

selected amines, depending on the enzymes’ selective preference. That stereoisomer will then be 

fully converted to the product, and the other isomer is left with IKK% purity. This method has 

several advantages. Firstly, as mentioned above, most ω-TAs are S-selective, KR thereby gives 

access to R-isomers (Koszelewski et al., QKIK). Furthermore, it allows the use of pyruvate as an 

amino acceptor, a natural substrate of ω-TAs, which is an accepted acceptor for many ω-TAs, and 

furthermore has very good thermodynamic properties in the resolution direction, further 

discussed in Chapter F. However, the drawback of KR is that it has a maximum theoretical yield 

of LK%. When the starting material is costly this is particularly problematic. However, the use of 

dynamic kinetic resolution (DKR), overcomes this challenge. In DKR another enzyme, such as 

alanine dehydrogenase, is used to convert the ketone product back to the racemic-amine starting 

material. Thereby increasing the theoretical product yield to IKK% (Höhne and Bornscheuer, 

QKK]; Koszelewski et al., QKIK). However, this adds cost and complexity by adding one or more 

enzymes.  

 

 
Figure 2.2: Kinetic resolution with transaminases  (Koszelewski et al., 2010). 
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2.1.2.2 Asymmetric synthesis (AS) 
A more direct route to chiral amines and the focus of this thesis is asymmetric synthesis (AS). 

Where a donor and acceptor is reacted according to Scheme Q.Q above, to produce a product and 

co-product. This method has a theoretical yield of IKK% and does not require any additional 

enzymes, thereby providing a simpler and less costly method of synthesis than kinetic resolution. 

However, many target products are haunted by poor thermodynamics, thereby producing low 

yield with asymmetric synthesis, further discussed below (Koszelewski et al., QKIK). Furthermore, 

the use of AS requires IKK% stereoselectivity to obtain an enantiomerically pure product, which 

is not a requirement for KR (Koszelewski et al., QKIK).   

 

 Chiral Amines 
Chiral amines are a frequent and important functional group in pharmaceutics, agrochemicals 

and fine chemicals. They are used as starting points for API’s and as resolving agents for obtaining 

carboxylic acids (Höhne and Bornscheuer, QKK]).  They are particularly attractive in 

pharmaceutics because of their high bioactivity (Koszelewski et al., QKIK; Paul et al., QKIF; 

Pressnitz et al., QKIF) The most common non-synthetic route to chiral amines is the resolution 

of racemates, using chiral carboxylic acid salts. The most common synthetic routes use chiral 

auxiliaries or metal complexes with chiral ligands to produce chiral amines (Höhne and 

Bornscheuer, QKK]). Metal complexes often suffer from high cost and unstable pricing (Truppo, 

QKIU). Furthermore, synthetic routes to chiral amines often requires protection of other 

functional groups due to harsh conditions and high temperatures during reaction (Fuchs, 

Farnberger and Kroutil, QKIL) 

 In addition to ω-TAs, several other biocatalytic routes can be used to obtain chiral 

amines illustrated in Figure Q.F. Other notable examples include lipases, amine oxidases, imine 

reductases, amine dehydrogenases, ammonia lyases and pictet-spenglerases (Ghislieri and 

Turner, QKIJ; Kohls, Steffen-Munsberg and Höhne, QKIJ). ω-TAs are currently the only well-

developed enzyme that provides a synthetic path to chiral amines. In addition, ω-TAs has the 
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advantage on not requiring co-factor recycling and a broad substrate spectra compared to 

alternative biocatalysts.  

 

 
Figure 2.3: Biocatalytic paths to chiral amines. 

 

 Pharmaceutics 
Pharmaceutics differs from other uses of biocatalysis due to high product cost, allowing for 

higher cost per kg than any other biocatalytic application. Active pharmaceutical ingredients 

(APIs) are priced in the excess of IKK€/kg, whereas in comparison bulk chemicals are only valued 

to I €/kg (Tufvesson et al., QKII). However, due to the nature of the product, APIs are also subject 

to stringent product requirements, in particular, high chiral purity is required. Furthermore, 

developing a drug is an expensive process, and patents have limited lifetime, it is therefore 

essential that process development is as fast as possible, to not limit a product’s economic lifetime 

(Truppo, QKIU). The pharmaceutical industry is currently under immense pressure, with patents 
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expiring, increased competition, slower innovation and longer implementation (Welch, Hawkins 

and Tom, QKIJ).  

 

2.3.1 Implementation challenges 
Although the use of ω-TAs is a well-established technology for the synthesis of chiral amines. 

Their application is still limited, especially in areas where ample processing time is not available. 

The focus of the next two chapters is on overcoming some of these challenges. A brief overview 

of the most important challenges are outlined below.  

 

2.3.1.1 Thermodynamics 
A major hindrance for the implementation of ω-TAs is unfavorable thermodynamics. Many target 

products such as α-methybenzylamine (MBA), favors substrate formation over product 

formation, with many commonly used donors. To overcome this, process engineering strategies 

outlined in Chapter I, or careful donor selection described in detail in Chapter F, can be 

employed. Alternatively, KR or DKR can be used to overcome unfavorable thermodynamics in 

AS.  

 

2.3.1.2 Inhibition 
Inhibition is a major concern with most biocatalytic reactions. Where the binding of one or more 

substrates and/or products limit the reaction rate. This is particularly challenging in biocatalysis 

because the substrate and product concentration required for an economically viable process are 

often much higher than what enzymes experience in Nature. Therefore, at high substrate and 

product concentrations inhibition can be problematic and hinder process intensification. In ω-

TAs reactions, inhibition is further augmented. The ping-pong bi-bi mechanism (Scheme Q.I), 

requires two independent half-reactions (Scheme Q.Q), inhibition can therefore occur on four 

separate occasions, in addition, the substrate/product may bind to the non-reactive form of the 

enzyme, forming an apoenzyme. Furthermore, the aromatic structure of many 

substrates/products can strongly interact with the active site of the enzyme, thereby increasing 
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inhibition. Inhibition of the amine acceptor and the co-product (both ketones) has been found 

to exhibit strong inhibition (Malik, Park and Shin, QKIQ). 

 

2.3.1.3 Meeting economical process metrics 
Many reported studies do not meet necessary process parameters such as productivity, product 

concentrations (Meadows et al., QKIF). Furthermore, high-cost substrates are often employed, in 

fact, on some occasions the substrates are more costly than the products, making an 

economically viable process impossible (Seo et al., QKII). In order to simplify this, Chapter J  

outlines an easy to follow, step-by-step method with cut-off values for fast implementation of ω-

TA reactions for small singular batches (Gundersen et al., QKI^).  

 

 Notable examples 
A highly publicized commercial example of ω-TA is its use in synthesizing a late stage 

intermediate of Sitagliptin (commercially known as Januvia), an antidiabetic drug (Savile et al., 

QKIK). This example is highlighted both as a great achievement in enzyme engineering and in the 

integration of enzyme engineering and process engineering. Briefly, a native ω-TA was subject to 

II rounds of enzyme engineering, where substrate specificity towards the target acceptor was 

established and increased stability under process relevant conditions was obtained.  The target 

acceptor, a prositagliptin ketone, was accepted after several rounds of enzyme engineering, 

where a smaller substrate was used in the first rounds. Subsequent rounds increased substrate 

concentration from Q to IKK g/L, donor concentration from K.L M to I M, co-solvent (DMSO) 

tolerance from L to LK% and temperature tolerance from QQ °C to JL °C.   The final process 

resulted in a ]Q% reaction yield and over ]].]L% e.e. (Savile et al., QKIK). High donor 

concentration overcomes thermodynamic limitations, and increased temperature stability, 

enabled the use of co-product (acetone) removal, to further alleviate thermodynamic constraints. 

This route provided a more cost-effective and greener alternative to a rhodium-based synthetic 

route (Savile et al., QKIK).  
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 Conclusion  
This chapter has given an introduction to the use of ω-TAs, especially in the synthesis of chiral 

amines for pharmaceutics. From the literature reviewed here, it is clear that ω-TAs are highly 

beneficial biocatalysts, especially for chiral pharmaceutical products. However, the enzyme still 

has the potential for a more widespread use.  To facilitate a broader use of ω-TAs a better 

understanding of process options and donor selection is needed, which is covered in the next two 

chapters of this section.  
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Section I 
 

Chapter 3: Donor selection in ω-transaminase reactions 
 

 
This chapter is based on the two published articles ‘Amine donor and acceptor influence on the 

thermodynamics of ω-transaminase reactions’ and ‘A practical and fast method to predict the 

thermodynamic preference of ω-transaminase-based transformations’. The former article was 

published in the journal Tetrahedron: Asymmetry (QKIL), pages L^U-LUK, by the authors Maria 

Gundersen, Rohana Abu, Martin Schürmann and John Woodley. The latter article was published 

in the journal ChemCatChem (QKIL), pages QL]J-QL]U, by the authors Robert J. Meier, Maria T. 

Gundersen, John M. Woodley and Martin Schürmann. Not all data from the papers are included 

in this chapter and additional manipulation of the data has been carried out. Furthermore, this 

chapter discusses donor selection beyond that found in the two mentioned articles. Copies of the 

full articles and supporting information, as published, can be found in Annex A. 

 Abstract 
ω-transaminases (ω-TAs) is an established route to chiral amines, especially in the 

pharmaceutical industry. Nevertheless, one limitation for successful implementation and scale-

up of the reaction is unfavorable thermodynamics, which can give low yields and challenges in 

downstream processing. The ω-TA reaction requires two substrates, an amine acceptor 

(acceptor) and an amine donor (donor), both of which contribute to the thermodynamic 

equilibrium of the reaction. However, the amine donor does not affect the structure of the chiral 

amine. It is therefore possible to optimize the donor selection to obtain thermodynamically 

feasible reactions. This chapter discusses methods for donor selection to improve 

thermodynamics, both in terms of the two published papers above and with respect to relevant 

current literature. The results presented here showcases donor flexibility and impact of any given 

reaction, and the importance of carefully choosing a suitable donor early in the process 

development of any given synthetic route. 
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 Introduction 
As mentioned in the previous chapter, ω-TAs has over the last decade gained significant interest 

as biocatalysts in the synthesis of enantiopure chiral amines. The popularity of the enzyme stems 

in part from high selectivity and a broad substrate repertoire. The reaction is an aminotransferase 

reaction, where an amine moiety is transferred from an amino donor to an amino acceptor. 

Yielding a carbonyl co-product, and target product, an amine. The target product is a chiral 

amine if the following conditions are met: the two substituents of the amine are not identical, 

and neither of them is hydrogen. ω-TAs can either be applied in the synthetic direction, with 

asymmetric synthesis (AS), the main focus of this thesis, or in kinetic resolution (KR) both 

discussed in detail in the previous chapter (Koszelewski et al., QKIK). This provides a useful way 

to produce chiral amines for pharmaceuticals and fine chemicals, as demonstrated by several 

commercial applications (Savile et al., QKIK; Seo et al., QKII). However, in practice several 

challenges are often encountered during process development such as enzyme inhibition, poor 

substrate binding, and/or unfavorable thermodynamics. To shift the equilibrium towards 

product formation, one has to, in practice, often to add an excess amount of the amino donor 

and/or remove the co-product, discussed in Chapter I and Q. Additionally, low yields can be the 

result of biocatalyst related issues, such as enzyme inhibition or instability of the enzyme. Such 

limitations can be overcome by enzyme modification through protein engineering (Bornscheuer 

et al., QKIQ). However, the thermodynamics of the reaction, often found to be the primary 

limitation, is independent of the enzyme, therefore alternative solutions need to be used 

(Woodley, QKIF). 

	
	

 

 
Scheme 3.1:  Generalized scheme of biocatalytic transamination. If R1 ≠ R2 and R1, R2 ≠ H, the 
product is a chiral amine.  
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Table 3.1: Structure of amines and ketones discussed Chapter 3.  Acetophenone (ACP), MBA: α-
methybenzylamine (MBA), Cyclohexylamine (CHA), isopropylamine (IPA), 1-phenylethylamine 
(PEA), alanine (ALA) 

   
ACP MBA CHA 

 
  

IPA PEA Ala 
 

 Thermodynamic solutions 
One of the main hindrances to implementation of ω-TAs on a commercial scale is unfavorable 

thermodynamics. Here, strategies for overcoming unfavorable thermodynamics is discussed. 

 

3.3.1 Excess amine donor 
A common strategy to overcome thermodynamic constraints is to add an excess amount of the 

amine donor (Paul et al., QKIF). Adding excess donor will increase the concentration of the 

substrates, therefore following Le Chatelier’s principle, this increases the conversion of the 

acceptor. The conversion of the donor will at the same time be lower.  However, there are several 

complications with this solution. Depending on the structure of the donor, this might add 

complexity in product isolation in downstream processing. For example with donor compounds 

such as IPA (Table F.I), an excess donor might not be problematic, since the donor compound 

has drastically different properties to most target compounds, demonstrated by the Sitagliptin 

synthesis (Savile et al., QKIK). However, in other cases, such as the use of MBA (Table F.I), the 

donor compound may be structurally similar to the product, and causing separation to become 

more challenging.  

 Furthermore, adding excess amounts of donor amine can only overcome a 

reasonably small thermodynamic limitation. For a commercial product, the product 

concentration in the final product must be upwards of LK g/L (Tufvesson et al., QKII). It is 
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therefore limited how high the donor concentration can be, in both practical and economic 

terms. Practically, the molecular weight of the donor will determine the maximal concentration 

of the donor in the reaction, a higher molecular weight equals a lower maximal concentration. 

Economically, unless the donor is recycled, the cost of the donor versus the cost of the product 

will determine the maximal donor concentration for viable economics. This is further discussed 

in the next chapter, where the practical implementation of such reactions is discussed. In Chapter 

J, the limitation set is maximum QK-fold donor excess. The increased yield from increasing the 

donor concentration from I:I to I:QK (acceptor:donor), is calculated for L specific examples in 

Table F.F below.  

 

3.3.2 Product/Co-product removal 
Another possible solution is to remove the co-product with ISPR techniques discussed in Chapter 

I. In ω-TA reactions, there are F main methods of co-product removal; physical removal, 

spontaneous chemical reactions and cascade reactions.  

 

3.3.2.1 Physical co-product removal 
Physical co-product removal depends only on the physical properties of the components 

(substrates and products), and the solvent of the reaction. A simple strategy used with a volatile 

co-product, such as IPA, is evaporation (Tufvesson, Bach and Woodley, QKIJ).  For example, it 

has been demonstrated that IPA, in excess, under reduced pressure where the co-product acetone 

is evaporated can result in increased yield (Savile et al., QKIK; Tufvesson, Bach and Woodley, 

QKIJ).  A drawback of this method is that the co-product must be volatile, and higher 

temperatures must be used to facilitate evaporation. Higher temperatures can reduce enzyme 

stability, discussed in detail in Section II. Another strategy that has been employed with ω-TAs 

is the use of an immiscible co-solvent, for product or co-product removal. In a two-phase reactor, 

the reaction is carried out in the water phase, after conversion the product or co-product 

partitions into the immiscible phase, due to a higher solubility in that solvent. It should be noted 

that the substrates may also partition into the immiscible solvent, and thereby lowers the 

thermodynamic advantage from the solvent.  Nonetheless, it was demonstrated that two-phase 
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reactions had higher product yields than the same reaction conditions in a one-phase system 

(Meadows et al., QKIF; Gundersen et al., QKI^). However, it should be noted that co-solvent has 

been shown to impact stereochemistry, and thereby reducing e.e. (Koszelewski et al., QKKZ). 

Finally, precipitation driven synthesis could be an alternative, with the use of the right reaction 

pair and solvents. Precipitation driven synthesis is often carried out as a solid to solid synthesis. 

Where a solid substrate is deposited in a small amount of liquid. It is then important that the 

solubility of the product is lower than the thermodynamic equilibrium (Keq). The product will 

then precipitate out of the reaction before reaching equilibrium, and conversion continues until 

all the starting material is dissolved (Ulijn et al., QKKI). To the best of my knowledge, 

precipitation based synthesis has not to date been carried out with ω-TAs.  

 

3.3.2.2 Spontaneous chemical reaction 
An interesting option in the synthesis of chiral amines is the use of donor molecules which 

undergo a spontaneous chemical reaction after conversion. A spontaneous reaction is a reaction 

that proceeds in a reasonable time frame without the intervention of a catalyst. In the ω-TA 

reaction, the donor molecule will undergo a spontaneous reaction after it is converted into the 

co-product. The reaction should be irreversible, and will thereby drastically shift the equilibrium 

towards the product side, without any further intervention. A notable example is the use of the 

donor F-aminocyclohexa-I,L-dienecarboxylic acid, which undergoes a spontaneous reaction to 

form an aromatic alcohol after the transfer reaction (Wang, Land and Berglund, QKIF). 

Furthermore, O’Reilly has developed several so-called ‘smart-donors’ with spontaneous ring 

formation. The first generation of donor, o-xylylenediamine, suffered from high costs and 

polymerization of the co-products (Green, Turner and O’Reilly, QKIJ). The second generation 

smart donors, use affordable readily available di-amine donors, such as cadaverine and 

putrescine, and gave higher yields than IPA under similar conditions (Gomm et al., QKI^).   

 
3.3.2.3 Cascade reactions 
Finally, enzymatic or chemical cascade reactions may be used to convert the co-product into 

another chemical to shift thermodynamic equilibrium. Numerous examples have been used for 
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this, and several excellent reviews can be found (Simon et al., QKIJ; Abu and Woodley, QKIL; 

Fuchs, Farnberger and Kroutil, QKIL). A frequently converted co-product is pyruvate the co-

product found with the use of the donor Alanine (Ala). Pyruvate is then converted to either a 

corresponding alcohol or back to alanine through another enzyme. Unlike ω-TA, the second 

enzyme used in the cascade reaction may not self-regenerate the co-factor, and a third enzyme 

might be needed to regenerate the co-factor, this adds both cost and complexity to the process 

development. Although, the use of cascade reactions is highly successful under some 

circumstances, in many instances the extended development time and cost is too high to be 

justified, especially in pharmaceutics where rapid development time is paramount (Truppo, 

QKIU).  

 One can also use conventional synthetic chemistry cascades, although this is used 

to a lesser extent. This may in part be due to the similarity of the starting materials and 

product/co-product of the ω-TA reaction, which requires high selectivity. Furthermore, as 

mentioned in previous chapters. ω-TAs are often employed in the synthesis of API intermediates, 

it should therefore be possible to couple the next reaction in the same reactor, and thereby 

convert the product of the ω-TA reaction to the next intermediate. However, this is also rarely 

done in practice, perhaps because of the high product purity required, side reactions which would 

complicate downstream processing, and reaction conditions which are incompatible with the 

enzyme.  

 Although the solutions outlined above may be successful, they are not always 

applicable on large scale, due to increased complexity and costs.  A simpler method is therefore 

proposed, where careful selection of the donor may be employed. 
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Table 3.2: Overview of equil ibrium shift ing methods for ω-TA reactions 

 Cost Development Time Improvement 
obtained Availabil i ty 

Excess amine 
donor 

Depends on cost 
of donor Short Low High 

Physical co-product 
removal Low Short Intermediate Intermediate 

Spontaneous 
chemical reaction 

Depends on cost 
of donor Short High Intermediate 

Cascade reactions High Intermediate High Intermediate 

 

 Experimental determination of Donors.  
Here, the apparent equilibrium constant (Keq

app) was experimentally determined for five donors, 

with the same acceptor: ACP. Thereby, comparing their half-reactions. Experimental procedures 

can be found in Annex A, in the published paper (Gundersen et al.,QKIL). These experiments 

illustrate the effect of commonly used donors on the reaction yield, Table F.F. When comparing 

these results, it must be kept in mind that any structural change to any given molecule occurs on 

both the reactant and product side. For example, in the Tetrahedron article by Gundersen and 

colleagues (QKIL) (full article in Annex A), compare the two half-reactions of two ortho-

substituted MBA derivatives, one with a fluorine and one with an alcohol substituent. It was 

observed that the fluorine substitution had a lower thermodynamic yield.  However, that does 

not indicate that the fluorine donor is more stable than the alcohol donor, it only indicates that 

that the donor/co-product pair of the fluorine-substituted MBA favors reactants more strongly 

than the alcohol-substituted MBA. 

 The results in Table F.F were extended beyond the results in the published paper by 

furthermore calculating thermodynamic yield with I:I and I:QK initial acceptor: donor 

concentration. From these results, two main conclusions can be drawn. Firstly, the donor 

selection has a high impact on yield, the best donor has LK % and ]L % yield, with I:I and I:QK 

initial concentration, respectively. In comparison, the poorest donor only achieves F% yield with 

a QK-fold donor excess. Furthermore, the results in Table F.F illustrate that donor excess may 
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only alleviate thermodynamic constraints when they are in an intermediate range. For example, 

with PEA as a donor, a LK% increase in yield is observed by increasing the donor concentration 

QK-fold. However, Ala under the same conditions only increases yield by Q%. These data indicate 

that careful donor selection is important to successfully implement ω-TA reactions 

commercially.  

	

Table 3.3: Effect of donor selection. Keq
app and thermodynamic yield (%) with 1:1 and 1:20 init ial 

acceptor:donor concentration, with the acceptor ACP  
donor Keq

app 1:1 1:20 
MBA 1 50% 95% 
PEA 0.18 30% 81% 
IPAa  3.3*10-2 15% 54% 
CHA 6.0*10-3 7% 29% 
Alaa 4.0*10-5 1% 3% 

a) (Tufvesson et al., 2012) 

	

 In silico experiments 
The results above demonstrated the impact of a careful selection the amine donor in the ω-TA 

reaction, for optimal thermodynamic conditions. Because the thermodynamic yield of a reaction 

is influenced by the structural and energetic differences between the reactants and the products, 

and the biocatalyst does not affect the thermodynamics, it would be preferential to select the 

ideal reaction pair early in process development. This would enable any process and enzyme 

engineering to be targeted to the optimal reaction pair. However, since in practice determination 

of equilibrium requires a ω-TA with the appropriate selectivity, the donor is often chosen on 

availability and enzyme reactivity.  Therefore, although in principle a plethora of possible 

compounds could be used as a donor, only a few are used, namely MBA, IPA and Ala (Table F.I).  

 With this in mind, it was reasoned that it would be useful to evaluate a wider range 

of donors and in particular establish their effect on the reaction thermodynamic yield. Here, an 

in silico approach is used, that does just that. It predicts the thermodynamic equilibrium of any 

given reaction pair with sufficient accuracy to decide whether a particular substrate combination 

is suitable for subsequent experimentation.  
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 Ab initio calculations are widely used to calculate reaction (free) energies and kinetic 

parameters of chemical reactions (Van Speybroeck, Gani and Meier, QKIK). However, these types 

of calculations have not been applied to any great extent in enzymatic reactions, perhaps due to 

the limited substrate spectra of many enzymes. As mentioned in Chapter I, enzymatic reactions 

are no different than other catalyzed reactions, there is therefore no practical restriction that 

limits the use of such calculations in biocatalysis.  The approach used here is based on ab initio 

calculations of total energies of all the molecules involved. It gave good prediction of the 

equilibria of transaminase reactions. However, it should be noted that the key strength of this 

approach lies in predicting whether or not a reaction is thermodynamically favorable. To 

eliminate those reactions that will not give high conversion in AS or alternatively identify those 

same reactions as good reactions for KR. It should also be noted that although favorable 

thermodynamics is necessary for a high yield, it is not necessarily sufficient. Other factors such 

as enzyme reactivity and/or inhibition may still prevent high yield. However, arguably with early 

implementation of thermodynamically favorable reaction pairs, those challenges may be tackled 

with enzyme engineering, see Chapter I for details.  

 

3.5.1 Computational procedures 
A hybrid density function was used in combination with a basis set in the Spartan IK program 

(Wavefunction Inc, QKIJ), to calculate minimal energies for each molecule. Since the ω-TA 

reaction involves two starting materials and two products, Scheme F.I, the ab initio calculations 

are applied to all four structures (structure optimization or, equivalently, energy minimization). 

The energy difference between the left-hand side and the right-hand side of the reaction, that is, 

the reaction energy (DE), was calculated from these four individual energies. If the energy is 

negative, the reaction is favored in the synthetic direction, if positive the reaction is not favored. 

In addition, in the presented method entropy contribution is neglected the solvent effects, and 

the influence of the dynamic nature of the structures, due to the complexity of calculations if 

such effects were to be accounted for. However, as is often in quantum calculations, if the solvent 

and other experimental conditions (such as temperature and pH) are kept the same in all 
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experiments, a cancellation of the contributions might be expected, which would lead to a simple 

model involving molecular energies alone (Van Speybroeck, Gani and Meier, QKIK). The results 

indicate that this applies to this approach. 

 
Equation 3.1:  The predicted yield (K). R is the gas constant and T is the absolute temperature  
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Equation 3.2:  K expressed in terms of product formation (yield) 
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Equation 3.3: Yield (x) for a 1:1 (acceptor:donor) starting concentration 
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3.5.2 Validation of the method 
The accuracy of the method was evaluated for ω-TA reactions by comparing calculated yield 

values with experimental data, including the reactions in Table F.F and extracted from relevant 

experimental data from scientific literature (Tufvesson et al., QKIQ; Fesko et al., QKIF; Meadows 

et al., QKIF; Gundersen et al., QKIL, QKI^). The yield was calculated by using a I:I ratio of 

donor/acceptor starting material, according to equation F.F above. Calculated and experimentally 

obtained values are compared in Figure F.I, see the Supporting Information in Annex A for raw 

data (Meier et al., QKIL). The data used were carefully selected based on stringent criteria, to 

ensure that the thermodynamic equilibrium was reached. All data chosen for the comparison 

were run at low concentrations, under IKK mM (to limit inhibition effects). The reported values 

were considered to be at equilibrium if either stated by the authors in the respective papers or 

confirmed by calculations before inclusion. These calculations compared ΔG of the reactions to 
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uncover any inconsistencies in the reported values. If for example the same acceptor was reacted 

with two separate donors, the ΔG difference between the two reactions was calculated and 

compared with the expected ΔΔG of the reaction from the results in Table F.Q above. The 

stringent selection procedure was necessary to ensure that the experimental equilibrium was not 

skewed towards the reactants due to inhibition or other experimental challenges.  

 The method predicted with high accuracy (within ≈ L kJ mol-I) low yield reactions. 

Indeed, it can be seen that all experiments with less than QL% yield are predicted to have yield 

below JK%. This highlights the key advantage of the method: to eliminate thermodynamically 

unfavorable reactions. The same trend was observed for very favorable reactions, Figure F.I. 

However, it can be observed that the intermediate reaction pairs suffer from an underestimation 

of yield from the experimental results compared to the modeled results. Many of the reactant 

pairs where the experimental results are underestimated contain a reactant with an aromatic aryl 

group, often ACP or an ACP derivative. Aromatics such ACP has previously been shown to be 

inhibitors of ω-TAs (Shin and Kim, I]]U). However, this trend is not observed for all reactions 

with these structures. It is therefore probable that the error lies with the experimental results 

rather than with the predictive method. Furthermore, the accuracy of the achieved ab initio 

molecular energies such as heat of formation, can under optimal conditions be accurate within J 

kJ/mol (Van Speybroeck, Gani and Meier, QKIK). The reactants used here is of a simple nature, 

accuracy of the energy difference calculated here, for the reaction described in Scheme F.I, is 

expected to be in the order of J kJ/mol. However, it should be noted that the uncertainty of the 

calculated reaction values is greatest in the intermediate yield area, rather than high or low yield. 

This is due to the fact that very high or low yield J kJ/mol difference in ΔG does not have a high 

impact. However, for reactions in the intermediate range (where ΔG is close to K kJ/mol), a J 

kJ/mol difference has a much greater impact. The maximum uncertainty, found at LK% yield, is 

approximately QK%.  
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Figure 3.1: Comparison of predicted and measured yield with a 1:1 donor/acceptor init ial 
concentration. Data were extracted from i) (Gundersen et al., 2015) i i) (Gundersen et al., 2016) 
i i i) (Tufvesson et al., 2012) iv) (Fesko et al., 2013) v) (Meadows et al., 2013). The line represents 
a match between experimental and predicted quantum mechanics (QM) values. The number in 
each point refers to the reaction number, as l isted in the Supporting Information, found in Annex 
A. 
	

3.5.3 Application of method  
As mentioned above, the key feature of the approach lies in eliminating unfavorable reaction 

pairs early in the development. If a broad screen of donors is used, this could further be cross-

checked with availability, safety and economic consideration, early in process development. This 

may be particularly useful here, as all that is required is to calculate the energy for each 

compound once. The predicted yield of the reaction depends on the sum of the four individual 

energies from each compound in the reaction. In this way, a set of donors can be applied to any 

desired acceptor. For example, if a set of LK donor/co-product pairs is already calculated, by just 

calculating the energies of one new acceptor/product pair, this can be matched with the donors 

and LK possibilities with the new acceptor reactant are available.  Which further can be used to 



Section I - Chapter 3 
 

36 
 

eliminate unfavorable reaction pairs. Upon going through these LK energies those reactions that 

are thermodynamically unfavorable can immediately be eliminated and focus subsequent efforts 

on favorable reactions. The average processing time for a new calculation is in the range of a Q-J 

hours depending on the size and complexity of the molecule. 

 To demonstrate the method a small comparison of common and uncommon 

acceptor/donor pairs has been calculated in Table F.J. Where the commonly applied donors Ala, 

IPA and MBA is compared with a new amine donor which, to the best of my knowledge, has not 

previously been used in ω-TA reactions, F,L,U-nonadiene-Q-amine (NDA), Table F.J. The 

calculations indicate that NDA is a more thermodynamically favorable donor than any of the F 

commonly used amine donors in the comparison. From this example, it can be stipulated that 

the method could be very useful as a screening method in an early stage of any ω-TA 

development.  

 

Table 3.4: Predicted (QMM) reaction yield (%) for 16 selected reactions with 1:1 (acceptor:donor) 
init ial concentration 

Donors/acceptors 
    

 
0.1 6.3 4.8 <0.1 

 
4.4 74.1 68.2 0.1 

 
79.5 99.6 99.5 6.5 

 
 

95.9 99.9 99.9 29.2 

	

	

 Conclusion 
This chapter both discusses and demonstrate the importance and effect of the amine donor on 

the thermodynamic equilibrium. Careful donor selection, especially in early development of a 

given process, can determine the overall success of the project. It was demonstrated that with a 
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thermodynamically challenging acceptor such as ACP, the yield with a I:I (acceptor:donor) initial 

concentration can vary from LK% with the donor MBA to under I% with Ala if no additional 

equilibrium shifting techniques are applied. Furthermore, an ab initio QMM method was 

proposed. It successfully demonstrated the ability to predict thermodynamically favorable 

reactions in silico. This is particularly important because ideally the reaction pair should be 

selected early in the process development. Because it would allow for the simultaneous 

development of both substrate specificity and reaction conditions.  

 The result in this chapter gives easy to use tools to select successful reaction pairs in 

the ω-TA reaction, which can be applied early in process development. Arguably, these tools can 

increase the probability of successfully implementing ω-TA reactions and reduce the 

development time. They can therefore increase the overall use of ω-TAs, and biocatalysis, in the 

pharmaceutical industry.  
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Section I 
 

Chapter 4: Fast Implementation of ω�Transaminase 
Reactions 

 

 

This chapter contains the published article ‘A Rapid Selection Procedure for Simple Commercial 

Implementation of ω�Transaminase Reactions‘.  This article was published in the journal 

‘Organic Process Research & Development’ in QKI^, pages ^KQ-^KZ, by the authors Maria T. 

Gundersen, Par Tufvesson, Emma J. Rackham, Richard C. Lloyd, and John M. Woodley. Unlike 

the other paper-based chapters in this thesis, this paper has not been modified beyond formatting 

and is included as published, with the exception of the materials and methods section, which can 

be found in the annex with the full copy of the paper as published.  

 Abstract 
A stepwise selection procedure is presented to quickly evaluate whether a given ω-transaminase 

reaction is suitable for a so-called “simple” scale-up for fast industrial implementation. Here 

“simple” is defined as a system without the need for extensive process development or specialized 

equipment. The procedure may be used when investment in intensive process development 

cannot be justified or when rapid execution is paramount, for applications such as small singular 

batches. The three step evaluation procedure consists of: (I) thermodynamic assessment, (Q) 

biocatalyst activity screening, and (F) determination of product inhibition. The method is 

exemplified with experimental work focused on two products: I-(J-bromophenyl)ethylamine and 

(S)-(+)-F-amino-I-Boc-piperidine, synthesized from their corresponding pro-chiral ketones each 

with two alternative amine donors, propan-Q-amine, and I-phenylethylamine. Each step of the 

method has a threshold value, which must be surpassed to allow “simple” implementation, 

helping select suitable combinations of substrates, enzymes, and donors. One reaction pair, I-

Boc-F-piperidone with propan-Q-amine, met the criteria of the three-step selection procedure 
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and was subsequently run at QL mL scale synthesizing (S)-(+)-F-amino-I-Boc-piperidine at 

concentrations up to UL g/L. However, the highest product yield (UK%) was obtained at a lower 

substrate concentration of LK g/L. 

 Introduction 
Over the past decade, biocatalysis has become an established and useful complement to 

conventional chemical catalysis for the synthesis of fine chemicals. Most often, biocatalytic 

methods have been selected due to exceptional selectivity (regio-and/or enantioselectivity) 

(Pollard and Woodley, QKKU). In fact, the majority of industrially applied biocatalytic reactions 

today yield optically pure chiral products that are used in the fine chemical industry as building 

blocks for agrochemicals and pharmaceuticals (Straathof, Panke and Schmid, QKKQ). In 

particular, biocatalytic transamination chemistry has been identified as one of the key emerging 

areas for the pharmaceutical industry (Pollard and Woodley, QKKU; Clouthier and Pelletier, QKIQ) 

as a means of producing optically pure chiral amines. This paper focuses on the biocatalytic 

synthesis (and resolution) of chiral amines of high optical purity using ω-transaminase (ω-TA) 

(E.C. Q.^.I.IZ), which is a type of amino transferase. ω-TA was chosen as a catalyst for this work 

due to its outstanding stereoselectivity and broad ketone substrate repertoire. Two ω-TA-

catalyzed paths are available toward optically pure chiral amines, using either asymmetric 

synthesis or kinetic resolution. Although the latter is challenged by a maximum LK% yield, 

(Koszelewski, Tauber, et al., QKIK; Tufvesson, Lima-Ramos, Jensen, et al., QKII; Malik, Park and 

Shin, QKIQ) both are considered as potential options for the “simple” scale-up.  

 ω-TA catalyzes an amino transfer reaction, illustrated in Scheme J.I. Briefly, in the 

synthetic direction (Scheme J.IA) the amino donor (an amine), and the amino acceptor (a 

prochiral ketone), here referred to simply as the “donor” and “acceptor”, respectively, react with 

the enzyme in a sequential fashion producing the desired target chiral amine product and a 

coproduct. Detailed descriptions of the sequential ping-pong bi-bi enzymatic reaction 

mechanism can be found elsewhere (Henson and Cleland, I]^J; Steffen-Munsberg et al., QKIF). 

In the resolution reaction (Scheme J.IB) the same reaction takes place, but now the amino donor 



Section I - Chapter 4 
 

42 
 

is added as a racemic mixture. Through reaction therefore, one isomer is left unreacted, which 

becomes the desired optically pure product. 

 

 

Scheme 4.1: Examples of Potential ω-TA Reactions Using (A) a Synthetic Route and (B) a 
Resolution Route.  

 

The amino moiety alone is transferred between the two starting substrates, and therefore in the 

synthetic direction, the molecular structure of the chiral product will be determined by the 

structure of the acceptor molecule. This means that the donor molecule can be freely chosen, 

since it neither affects the target product structure nor the stereoselectivity. In principle 

therefore, a plethora of possible donors could be chosen, although in the scientific and patent 

literature only a handful of amine donors have been reported. The authors have recently 

proposed a novel quantum mechanical method to determine the free energy of compounds and 

hence the thermodynamic feasibility of using novel amino donors for this reaction type, 

irrespective of kinetic considerations (Meier et al., QKIL). This along with a wider implementation 

of this technology in the future is likely to lead to a broader range of different amino donors. 

 Despite the interest in such reactions, they are often demanding to implement on 

an industrial scale due to frequent thermodynamic and kinetic challenges (Tufvesson, Lima-

Ramos, Nordblad, et al., QKII). While many technical solutions are available to overcome these 

challenges, the proposed solutions are frequently complex and often require significant process 

development time. Indeed, for some applications, a fast and simple process development is not 
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only desirable but may be essential for commercial success. In these cases, it will be more 

important to rapidly develop a simple process, than to obtain an economically optimal process. 

Such situations include pharmaceutical synthesis in the early phases of clinical testing and other 

cases such as small singular batches, where investment in extensive process development cannot 

be justified. Using this logic, and from a knowledge of the properties of a given ω-transaminase-

catalyzed reaction and the available enzymes to catalyze the reaction, we reasoned that it should 

be possible to categorize a particular reaction as “complex” (requiring extensive development) or 

“simple” (with easy implementation and scale-up). We therefore suggest that an evaluation 

method allowing the identification and selection of “simple” reactions (and eliminating the 

“complex” ones) would prove a valuable tool for process chemists. 

 The scope of this manuscript is therefore to present a stepwise decision-making 

procedure to quickly identify if a “simple” scale-up is feasible for a given reaction. Hence, 

solutions such as biocatalyst modification by protein engineering (Tufvesson, Lima-Ramos, 

Nordblad, et al., QKII), amino donor recycling (Höhne et al., QKKZ; Höhne and Bornscheuer, 

QKK]), and equilibrium shifting methods (Truppo, Rozzell and Turner, QKIK; Tufvesson, Bach 

and Woodley, QKIJ), have not been considered here. The three-step decision-making procedure 

involves an evaluation of: (I) thermodynamics, (Q) biocatalyst activity, and (F) product inhibition. 

Each step is evaluated against a threshold value, which must be met in order to identify a given 

case as suitable for “simple” implementation. 

 Results 
In order to exemplify the method, experimental data on two chiral target products were 

evaluated, I-(J-bromophenyl)-ethylamine (!) and (S)-(+)-F-amino-I-Boc-piperidine ("). These 

compounds were selected because both products are commercially attractive and additionally 

biocatalytic transaminations to synthesize both ! (Shin and Kim, QKKQ) and " (Höhne et al., 

QKKZ; Höhne, Robins and Bornscheuer, QKKZ) have been reported previously. In these reactions, 

optical purity was necessary and evaluated, but a specific stereoisomer was not required. The 

prochiral ketone substrates, the amino acceptors, J-bromoacetophenone (#) and I-Boc-F-



Section I - Chapter 4 
 

44 
 

piperidone ($), corresponding to the products above, were reacted with two possible donor 

molecules propan-Q-amine (%) and I-phenylethylamine (&) (Table J.I). Both amino donors have 

frequently been used in a wide variety of biocatalytic transamination. Between them, they 

represent different classes of donor. For instance, donor % serves as an inexpensive achiral donor. 

In contrast amino donor & is a more costly chiral compound which has also been reported to be 

inhibitory (Al-Haque et al., QKIQ) with downstream processing complications due to separation 

issues when the product shares structural similarity. However, donor & also offers a significant 

thermodynamic advantage, since the carbonyl coproduct, acetophenone (') formation is highly 

favorable (Table J.I). Academically, a more common amino donor that has often been reported 

is the use of alanine (or pyruvate as a acceptor for the resolution reaction) (Koszelewski, Tauber, 

et al., QKIK; Kroutil et al., QKIF). We have previously shown that the thermodynamics using this 

donor very strongly favors the reverse resolution reaction (Gundersen et al., QKIL), and therefore 

we have not considered this further in this work. 

 
 
Table 4.1: Compounds used in this chapter. 4-bromoacetophenone (1), 1-Boc-3-piperidone (2), 
propan-2-amine (3), 1-phenylethylamine (4), 1-(4-bromophenyl)ethylamine (5), 3-amino-1-Boc-
piperidine (6), acetone (7), acetophenone(8) 

Reactants Acceptor ketones Amino donors 
  

 
 

 
 

 1 
 

2 
 

3 
 

4 
 

Products Target chiral products Co-products 
  

  
 

 

 5 
 

6 
 

7 
 

8 
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4.3.1 Method Development 
In order to enable rapid evaluation, the three selection criteria are each assigned a threshold 

value, which must be met to enable implementation of a simple scale-up. The proposed 

procedure is outlined in Figure J.I. In the figure, full lines indicate that the reaction has met 

(green lines) or failed (red lines) the individual criteria. Likewise, dashed lines indicate an 

alternative strategy by adjusting one of the variable reaction components (the amino donor or 

the biocatalyst). The threshold values for each criterion are also indicated in the legend of Figure 

J.I, the justification for which is given in the following section. 

 

 
Figure 4.1: Decision making procedure for a simple scale-up. Green lines marked with a check 
mark or red l ines marked with an X indicate if a given criterion is met or not met, respectively. 
Dashed lines and boxes indicate options for reassessment if a criterion is not met. Each criteria 
has cut off values for simple implementation. 1. The thermodynamic criteria is meet when Keq is 
less than 0.02 (resolution reactions) or greater than 1 (synthetic direction). 2. The activity criterion 
requires a specific activity greater than 0.05 g/g/h. 3. The inhibit ion criteria is met at less than 
50% activity loss, with 5% of target concentration product present. Possible remediation options, 
if a given criterion for a simple scale-up is not met, can be to consider an alternate amino donor 
or test an alternative biocatalyst (dashed lines). 
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4.3.1.1 Thermodynamic Assessment  
Unfavorable thermodynamics presents one of the main barriers to the implementation of the 

transaminase catalyzed reactions on an industrial scale (Koszelewski, Tauber, et al., QKIK). The 

thermodynamic equilibrium constant (Keq) of the reaction is important since it determines the 

maximum reaction yield for a given concentration of substrates. Thus, we reasoned it is one of 

the most important parameters for determining the optimal process configuration (Tufvesson, 

Lima-Ramos, Jensen, et al., QKII; Tufvesson et al., QKIQ; Tufvesson, Bach and Woodley, QKIJ). For 

this reason, we suggest the first step in the procedure should be to determine if a candidate 

reaction has a suitable thermodynamic equilibrium constant to make a “simple” scale-up feasible. 

In the synthetic mode, thermodynamic feasibility is here defined as a Keq above I.K, since lower 

values of Keq would require a high excess (more than QK-fold) of the amino donor to obtain 

sufficient reaction yields (]L% or higher), for eventual industrial implementation. Use of such an 

excess makes the reaction costly and practically difficult to carry out at high substrate 

concentrations. In a similar way, we reasoned that for reactions with a low Keq, a kinetic 

resolution would be a better choice for the reaction. On the other hand, the resolution reaction 

requires more stringent conversion requirements since the separation of the amine product from 

the unreacted half of the racemic donor starting material is of course quite challenging. Hence 

we have chosen a Keq threshold of K.KQ in the resolution direction, meaning only values lower 

than this are suitable for a simple scale-up. 

 In this work, the concentration-based equilibrium constant was experimentally 

determined using a previously described method (Tufvesson et al., QKIQ). Since the value is 

obtained for comparative purposes, practical (rather than standard) conditions were used, 

meaning it is more accurate to describe the constant as “apparent”, Keq app. In principle to save 

time as an alternative to experimental measurement, in silico methods could be used to estimate 

such values, although the accuracy is perhaps questionable. Here the Keq app for the two chiral 

amine products ! and " were measured experimentally using the two donors % and &, as described 

above. The Keq app for the four reactions (Table J.Q) varied by a factor of IKJ from the most 

challenging pair, # and %, at K.KQL to the most favorable pair, $ and &, which had a Keq app of JLK, 
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in the synthetic direction. Thus, thermodynamics is indeed highly variable between the four 

selected reaction pairs. After applying the threshold criteria one of the two products, !, was 

eliminated from further investigation. This may indicate that highly conjugated aryl compounds 

are not suitable for simple scale up and should be assisted by other process technologies and 

strategies. For example, it has been reported that one of the compounds we have used as a donor 

here &, could also synthesized and successfully scaled in combination with in situ product 

removal, alleviating both the thermodynamic and inhibitory strains (Truppo, Rozzell and Turner, 

QKIK). None of the reaction pairs evaluated here was found suitable for the resolution reaction, 

although alanine, the amine donor often found most suited for resolutions reactions was not 

tested as discussed previously (Gundersen et al., QKIL). 

 

Table 4.2: Experimental Values for Keq
app 

 Donors 
Acceptors 3 4 

1 0.025[a] 0.5 
2 32 450 

[a] Data previously reported in Tufvesson, Bach and Woodley, 2014. 

 

Clearly it is possible to carry forward more than one amine donor to the subsequent evaluation 

steps, although this is not helpful for the procedure, which aims to focus effort on those cases 

with the biggest chance of simple scale-up success. In this case, due to the low cost and high 

water solubility, amine donor % was selected for further evaluation. 

 

4.3.1.2 Biocatalyst Activity Screening  
No matter how favorable the thermodynamics, without sufficient activity the reaction will not be 

completed in a reasonable time, and issues like enzyme inactivation may arise. Hence, the next 

step of the procedure is to find a suitable biocatalyst with sufficient activity. Candidates for 

biocatalyst screening can be obtained from commercial screening kits or in-house enzymes. For 

the “simple” scale-up, strategies such as protein engineering are not considered. Low activity of 

an enzyme preparation will negatively impact downstream processing, by adding extra 

proteinaceous material which impedes product recovery. Therefore, the maximum biocatalyst 
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loading was set to IK% v/v irrespective of the biocatalyst formulation. Additionally, product 

concentration should be in the range of ≥LK g/L (Tufvesson, Lima-Ramos, Jensen, et al., QKII; 

Tufvesson, Lima-Ramos, Nordblad, et al., QKII) to assist downstream product recovery. Finally, 

due to biocatalyst stability concerns, we reasoned it necessary to complete the reaction within 

]^ h. On this basis, we calculated a minimal biocatalyst specific activity (sometimes termed 

“biocatalyst productivity”), as a threshold value for the “simple” of K.KL g/g/h (g product/g 

biocatalyst/hour). 

 For this case study a small screen with four enzymes was conducted, using the 

reactant pair $ and % selected from the previous section. In this screen four selected enzymes 

were tested, two of which were known to be (R)-selective and two (S)-selective. We reasoned that 

for this case study the particular stereoselectivity of the enzyme did not influence the overall 

procedure. Additionally, since this screen was conducted with an achiral amine donor and the 

pro-chiral ketone, the selectivity of the enzyme would not affect the reactivity with these 

substrates. The screen showed a large variation between the least and most reactive candidates 

(Table J.F). Details of the individual enzymes (ATA-JU, TarK, TarI, and Ars-ωTA) are given in the 

experimental section of the paper. TarK was found to give a specific activity of K.KKF g/g/h, 

whereas the best candidate (ATA-JU) gave a QK-fold higher value of K.KLJ g/g/h. ATA-JU was 

therefore carried to the next step. Likewise the enzyme Ars-ωTA had a high specific activity of 

K.KJZ g/g/h, close to the threshold value. 

 

Table 4.3: Specific Activit ies Obtained with Reactant Pair 2  and 3 , with Selected Enzymes 
Enzyme  Selectivity g/g/hr 

Ars-ωTA S 0.048 

Tar0 R 0.003 

Tar1 R 0.012 

ATA 47 S 0.054 
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4.3.1.3 Determination of Product Inhibition 
The final step of the procedure considers product inhibition of the enzyme, which due to the 

requirement for high product concentrations (LK g/L) in industrial processes (Straathof, Panke 

and Schmid, QKKQ), is a frequent hurdle for process intensification of enzyme reactions in 

general, and ω- TAs in particular (Truppo, Rozzell and Turner, QKIK). Hence, we set the threshold 

value here at a LK% reduction in reaction rate in the presence of Q.L g/L product, under the assay 

conditions used here (see Experimental Section). Here only product inhibition is assessed, since 

substrate inhibition can relatively easily be overcome by substrate feeding. 

 In order to experimentally test for product inhibition, the initial reaction rate of 

ATA-JU was measured using IKK mM % and IK mM $, in the presence of various concentrations 

of the product ", up to IK mM. Importantly, the substrate concentrations were chosen to avoid 

limiting the reaction by thermodynamic constraints. Inhibition was observed with IK mM 

product and amounted to a IK% initial rate reduction, compared to initial conversion rates in the 

absence of product. Initial conversion rates were assumed when less than IK% of limiting starting 

material was converted. 

 

4.3.1.4 Discussion 
First, with respect to thermodynamics, the procedure enables the elimination of unfavorable 

cases. Clearly each donor or acceptor molecule has an associated free energy which contributes 

to the net thermodynamics of a given reaction. In this way for instance a comparison of the 

equilibrium constants of two reactions (with different acceptors, but using the same donor) can 

be used to interpret the effect of changing acceptors. In an analogous way, one could determine 

the Keq for a given acceptor with one donor and extrapolate the Keq to other donors with the same 

acceptor, given one knows the difference in ΔG between the reactions, as discussed elsewhere 

(Gundersen et al., QKIL). 

 Second, the biocatalyst activity is assessed, since low activity will have drawbacks in 

the form of low space-time yields and may prevent the reaction from going to completion due to 

enzyme deactivation. One solution would be to apply high biocatalyst concentration, but these 

may negatively impact downstream processing by hindering product recovery. Thus, the 
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threshold for the enzyme is defined as minimum specific activity, which for the “simple scale-up” 

was set at K.KL g/g/h. Biocatalyst recycle was not considered for the simple scale-up. 

 Finally, a determination of product inhibition is carried out. This is a frequent hurdle 

for process intensification of ω-TAs (Truppo, Rozzell and Turner, QKIK), due to the high product 

concentrations (LK g/L) required to simplify the product recovery (Straathof, Panke and Schmid, 

QKKQ). In contrast to the high concentration intensity of commercial processes, enzymes are 

designed to work under physiological (dilute) conditions. This frequently leads to process 

intensification challenges with biocatalytic reactions. For example transaminases display a ping-

pong bi-bi reaction mechanism, with two sequential half reactions (Henson and Cleland, I]^J), 

and this type of reaction mechanism is often plagued by inhibition from competitive dead-end 

complexes of products bound to the apo-enzyme or the incorrect form of the holoenzyme. Hence, 

understanding the inhibition profile of a potential product is vital in evaluating the possibility of 

a simple scale-up. As such, we advocate that, if severe inhibitory effects are observed with low 

product concentrations, it implies a high risk of inhibition under process scale concentrations. 

 The three-step evaluation method has been successfully applied to a case study, and 

one reaction pair with one biocatalyst was deemed suitable for “simple” scale-up. 

 
4.3.2 Intensification and Scale-Up. 
In the previous sections, the selection procedure for a simple scale-up toward the synthesis of " 

identified acceptor $ with donor % (Scheme J.Q) using ATA-JU as suitable. In the event ATA-JU 

was substituted by ArS-ωTA since the difference in activity was negligible and the latter enzyme 

has been reported to have excellent stereoselectivity (Koszelewski, Goritzer, et al., QKIK; Mutti 

and Kroutil, QKIQ). 
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Scheme 4.2: Synthetic Transaminase Reaction Carried Out. Compounds: 1-Boc-3-piperidone(2), 
propan-2-amine(3), (S)-(+)-3-amino-1-Boc-piperidine(6), acetone(7). 

 

4.3.2.1 Reaction Optimization: pH and Donor Loading 
Prior to scale-up, a small optimization study was undertaken to evaluate if reaction rates could 

be enhanced by simple optimization within the biocatalyst stability range. A range of pH and 

donor loadings was explored in an attempt to improve kinetics, with both short (K.L−Q h) and 

long (IZ h) reaction times; the latter time point was chosen to investigate enzyme stability under 

the given conditions. 

 The rate dependency on pH was tested between pH U and ], with JK mM acceptor 

and LKK mM donor (Figure J.Q). Other studies have found up to JK% variation in yield in this 

pH range for similar reactions (Koszelewski et al., QKKZ). Here the fastest reaction rates were 

identified at pH ] for all time points. The greatest difference was found in the IZ h reaction times, 

where average reaction rates are JL% faster at pH ] compared with pH U, indicating that this is 

the best pH, within the pH range tested, with respect to kinetics, and that the enzyme is more 

stable under these conditions. Since the pKa of the amine donor % is IK.^ (Hall, I]LU), meaning a 

higher pH would render a higher fraction of the substrate uncharged and thus reactive, in 

principle operating at a higher pH would therefore be beneficial from the perspective of the 

reaction rate. Nevertheless, in this study we limited the pH range to keep the study simple and 

manageable, consistent with the philosophy of this work, and therefore did not test the reaction 

at higher pH values than ]. 

 

NH2 O
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N
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Figure 4.2: Specific rates measured at four reaction time points at four different reactions, each 
carried out at different pH values (pH 7.0, pH 7.5, pH 8, and pH 9 from left to right at each time 
point, respectively). 
 

Furthermore, the same method was used to determine optimal donor loading. Donor 

concentrations could potentially be limiting, dependent upon KM (Höhne and Bornscheuer, 

QKK]). Clearly an excess concentration of the donor (over acceptor) could be used which might 

also drive the equilibrium (Shin and Kim, I]]U; Koszelewski et al., QKKZ). This was tested 

experimentally but at all concentrations tested, the rate was unaffected by donor concentration 

(Figure J.F), suggesting a KM beneath IKK mM. For subsequent experiments I M % was used. 
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Figure 4.3: Specific rates found at four t ime intervals at four donor concentrations (0.1, 0.5, 1, 
and 2 M from left to right at each time point, respectively) used to investigate the optimal donor 
loading for the reaction 
 

4.3.2.2 Reaction Intensification 
As indicated above a viable scale-up depends on reaction intensification (i.e., the synthesis of 

high product concentrations) (Tufvesson, Lima-Ramos, Nordblad, et al., QKII). This is important 

in the simple scale-up because too low a concentration will add volume to the reaction and thus 

complicate the process. The reaction of $ and % using Ars-ωTA was therefore intensified by 

increasing the substrate concentration up to UL g/L. Three reactions were done in scintillation 

vials at concentrations of QL, LK, and UL g/L. The reactions proceeded smoothly (Figure J.J) at 

both QL g/L and LK g/L but not at UL g/L, the latter most likely due to mass transfer limitations 

from low solubility and decomposition of the starting material in aqueous conditions. The latter 

was further investigated and confirmed (data not shown). To the best of our knowledge no other 

study has investigated the stability of this compound in water, either for biocatalysis (Höhne et 

al., QKKZ) or chemical catalysis. In the QL and LK g/L reactions final conversions of acceptor $ to 

chiral amine target " of UK% were observed. Figure J.L shows that the initial reaction rates are 

similar at all substrate concentrations tested, indicating that the reaction is not kinetically 

controlled (above KM). 
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Figure 4.4: Reaction profi le over 96 h with init ial substrate concentrations of 25, 50, and 75 g/L. 
 

 

 

Figure 4.5: Init ial product formation for the first 12 h of the reaction with init ial substrate 
concentrations of 25, 50, and 75 g/L. 
 

4.3.2.3 Product Identification  
Finally, the reaction was run at QL mL scale for ]^ h to isolate product. At LK g/L substrate 

concentration the final reaction composition was analyzed to contain Z]% " and II% $ (with an 

isolated product yield of around UK%). This composition is in excellent agreement with that 

found in the LK g/L I mL scintillation vial experiment, which gave ]I% target chiral amine " and 

]% ketone %, after ]^ h. 
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 Conclusion 
A simple stepwise procedure has been described, to facilitate the selection of suitable substrate-

donor-enzyme combinations to allow so-called “simple” scale-up. Each step in the procedure has 

a threshold value which must be met to allow simple implementation. We believe that this 

method will prove useful both to select good candidates for this technology and to eliminate 

those that may require further development. A simple case study was used to illustrate the power 

of the procedure, sequentially eliminating unsuitable substrates, donors, and enzymes. Beyond 

this case study, analogous procedures could be used for the evaluation of other “simple” 

biocatalytic processes. 
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Section I 
 

Chapter 5: Conclusion and future work, Section I 
 

 
 

 Conclusion  
Section I, focused on the implementation of ω-TA reactions in new areas, particularly towards 

the pharmaceutical industry. The section had a practical focus, with easy to use tools and 

methods to enable a more widespread use of this reaction, especially towards small-scale singular 

batches.  

 Firstly, in Chapter F the benefits of carefully selecting the amine donor in the 

reaction pair is discussed, to provide the reaction with favorable reaction kinetics. It was shown 

that donor selection with the same acceptor ranged from less than I% to LK%, when the 

acceptor:donor ACP:MBA/Ala, respectfully, was used in a I:I initial concentration (Gundersen et 

al., QKIL). Furthermore, this chapter provided a QMM tool to predict of any given reaction pair 

with ab initio calculations (Meier et al., QKIL). Which enables the possibility of selecting reaction 

pairs early in the development of a new process.  

 Furthermore in Chapter J of this thesis, outlines a selection procedure for fast 

implementation of ω-TA reactions (Gundersen et al., QKI^). The method has a F step easy to use 

protocol, which considers thermodynamics, enzyme activity and inhibition, each step has clear 

cut-off values. Each step must be met in order to ensure easy and fast implementation of the ω-

TA reaction. 

 

• Thermodynamics: Keq is less than K.KQ (resolution reactions) or greater than I (synthetic 

direction). 

• Biocatalyst activity: Specific activity greater than K.KL g/g/h (g product/g 

biocatalyst/hour).  
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• Product inhibition: Less than LK% activity loss, with L% of target concentration product 

present 

 

If the criterion is not met, strategies can be used to overcome the challenge. Criterion I can be 

overcome by changing the donor, alternatively with the tools from Chapter F. Criterion Q and F 

can be overcome by changing the biocatalyst, or by enzyme engineering.  

 This methodology was then successfully demonstrated by subjecting two target 

products I-(J-bromophenyl)ethylamine and (S)-(+)-F-amino-I-Boc-piperidine to the 

methodology. One of the two products, (S)-(+)-F-amino-I-Boc-piperidine, meet the criteria and 

was successfully run at QL mL scale with initial acceptor concentrations of up to UL g/L and up to 

UK% yield.  The tools and methods   in this section could enable a more widespread use of ω-TAs, 

especially in applications where fast implementation is paramount, by reducing development 

time.  

 Although ω-TAs is a well-established biocatalytic route in the pharmaceutical 

industry, an even more widespread use could be possible. In pharmaceuticals, a key aspect is 

early implementation. The results presented in this section allows for simultaneous process and 

enzyme development, allowing for faster development and implementation. In conclusion, the 

tools provided in this section can enable fast implementation of ω-TAs, particularly important in 

pharmaceutical applications. Due to the frequent thermodynamic challenges, the benefits of ω-

TAs are best exploited in the synthesis of chiral molecules. For non-chiral amines, current 

chemical synthesis methods are highly efficient, and at the present time, biocatalytic methods 

do not compete economically.  

 

 Future work 
The results in this section indicate that it is indeed possible to increase the use of biocatalysis in 

the pharmaceutical industry and that increased use could be facilitated by simultaneous process 

and enzyme development. It is therefore suggested that the results in this section could be used 
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as a starting point to further expand the use of biocatalysis as a whole. Specific suggestions are 

listed below.  

 
• Firstly, the QMM method described in Chapter F can be further extended beyond ω-TAs. 

In essence, this method can be used to calculate the thermodynamic favorability of any 

given reaction, independent of the catalyst. In particular, KRED catalyzed reactions could 

be interesting to investigate, as the substrate is similar to that of ω-TA’s. 

 
• Furthermore, it is clear from the work carried out in this section that the use of 

transaminases is at times challenging. As mentioned in Chapter Q, ω-TAs is only one of 

several biocatalytic routes to chiral amines, in addition to conventional chemical methods. 

The use of retrosynthetic methods, such that are used in conventional synthetic 

chemistry, would therefore highly benefit reactions such as ω-TA. To early determine if 

ω-TAs are indeed the best route to a target molecule. Such a method has been outlined by 

Turner and O’Reilly (Turner and O’Reilly, QKIF). The incorporation of a database covering 

available biocatalytic reactions would be an excellent starting point for this.  

 

• Precipitation driven synthesis is an interesting option for driving thermodynamically 

unfavorable reactions. Although this method is not possible for all reactants, it could be 

applicable in certain cases (Ulijn et al., QKKI).    

 

• Finally, it is clear that there is a need for simpler guidelines for implementation of 

biocatalysis. Although the guideline in Chapter J is a good starting point. Similar 

guidelines could be developed for other enzymes and for different applications. Specific 

examples where such guidelines can be useful include:  enzyme immobilization and 

enzymatic oxidation reactions.  
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Section II 
 

Chapter 6:  
Introduction to carbonic anhydrase in carbon capture 

 
 

 Carbonic anhydrase 
 

6.1.1 Introduction 
The enzyme carbonic anhydrase (CA, EC J.Q.I.I) is found in almost all living organisms (Supuran, 

QKI^). CA’s are a superfamily of enzymes that encompasses six highly versatile classes of isozymes 

(Supuran, QKI^). CA reversibly hydrates COQ into bicarbonate (Scheme ^.I). CA has recently 

gained further interest because it can be used as a catalyst in greenhouse gas (GHGs) mitigation 

in carbon capture projects, so-called enzyme enhanced carbon capture and storage (EECCS) 

(Gundersen, von Solms and Woodley, QKIJ; Gundersen et al., QKIU). EECCS is the focus of  Section 

II and will be discussed in detail in the last section of this chapter.  

 

CO2 + H2O ⇋ HCO3
- H+ 

Scheme 6.1: Reaction catalyzed by carbonic anhydrase. 

 

6.1.2 Additional reactions 
In addition to reversibly catalyzing the hydration of carbon dioxide, CA has been found to 

catalyze several other reactions. This is particularly relevant for EECCS because the gas which is 

to be purified may contain a number of contaminants. It is therefore important to know if CA’s, 

and especially the particular CA in use, will react with other components of the flue gas. It is 

unknown if these additional reactions serve a physiological purpose. The reactive metal ion and 

the large active site pocket (discussed below) may invite to unintended side reactions. Due to the 

versatility of CA’s, unlike the carbon dioxide to bicarbonate reaction, which is the defining 
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reaction of this class, it is highly varied which other reactions these enzymes catalyze and to 

which extent. Therefore, one cannot draw conclusions based on the study of one enzyme to the 

whole superfamily of CA’s. They have been found to catalyze reactions with cyanamide, carbonyl 

sulfide, and carbon disulfide among other substrates. Furthermore, CA’s has been found to have 

a broad esterase activity, including carboxylic esters, thioesters, and sulphonic acid esters among 

others (Supuran, QKI^). It should be noted that ester bonds are particularly cleavable and are 

subject to autohydrolysis in water. Finally, CA’s has been found to bind tightly certain metal ions 

and to cyanide, in fact, tighter than COQ (Salmon and House, QKIL). 

 
6.1.3 Applications 
CA is subject to research in several areas. The majority of research on CA’s is in medical research, 

in addition, CA’s are used in climate mitigation and for specialized applications. Although these 

fields use the same enzyme (albeit different isozymes) there is very little interaction between the 

areas. Human CA’s are a major target of investigation, as they have been found to be involved in 

neurological disorders, glaucoma, epilepsy, cancer and obesity, among other diseases (Hassan et 

al., QKIF; Supuran, QKI^). Much of this research is focused towards inhibitors for pharmaceutical 

use. Human CA is also investigated for use in artificial organs, more specifically in artificial lungs 

and blood substitutes (Boone, Habibzadegan et al., QKIF). Furthermore, because CA’s are vital to 

survival and differ greatly between organisms, bacterial and fungal CA’s are a target of antibiotic 

and anti-fungal research.  

 In addition to direct applications for humans or human pathogens, some research 

also focuses on technical applications. These include biosensors and scavengers for trace metals 

like Zn(II) and other Q+ oxidized metals (Boone, Habibzadegan et al., QKIF). Due to the tight 

binding of cyanide, it has also been proposed to use CA as a cyanide scavenger (Salmon and 

House, QKIL). CA’s are also being used to sequester COQ in small enclosed spaces like submarines 

and space crafts (Boone, Habibzadegan et al., QKIF) 

 Since CA’s are well understood and serve as a model enzyme, in particular, the 

enzyme hCAII, it has also been subject to de novo computational engineering.  Heinisch and 

colleagues computationally engineered the scaffold of hCAII with the Rosetta software, where 
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the zinc ion was replaced in the active site with an artificial Iridium organometallic cofactor, 

which catalyzed the asymmetric reduction of a cyclic imine, with ]^% e.e. (Heinisch et al., QKIL).   

 

6.1.4 Historical background  
The enzyme was identified from observations that COQ release from serum occurred faster than 

expected from un-catalyzed mass transfer rates (Meldrum and Roughton, I]FFa, I]FFb). The 

reaction is essential to living organisms as it provides a way of removing carbon dioxide from 

single cells, and in multi-cellular organisms is a mechanism of transporting COQ in and out of the 

organism and between organs. It has been suggested that COQ transport across membranes 

(trans-membrane transport) was the first function of the enzyme and other functions evolved 

later (Henry, I]]^). In particular, the conversion of HCOF
- to COQ is physiologically very 

important, because the un-catalyzed reaction is slow (Hassan et al., QKIF; Russo et al., QKIF). 

Furthermore, bicarbonate is more abundant (and soluble) in cells than dissolved COQ, which 

increases thermodynamic strain (Henry, I]]^; Russo et al., QKIF).  

 

6.1.5 Reaction Mechanism 
CA’s follow Michaelis-Menten reaction kinetics, the reaction rate is described in equation ^.I. 

Where the rate of the reaction (VK) is described by the substrate concentration [S], and the 

maximum rate at full substrate saturation (Vmax) and the Michaelis-Menten constant (KM) which 

is the substrate concentration at ½ of Vmax. (Salmon and House, QKIL). Equation ̂ .I is valid under 

the condition that the enzyme and water are in excess compared to the substrate. In applications 

discussed here it is also useful to consider the reaction rate when enzyme availability is a limiting 

factor, and therefore must be accounted for in the equation. Rates under such conditions follow 

Equation ^.Q. Where EK is the enzyme concentration and Kcat is the turnover number, which is 

the maximum reactions catalyzed per active site in a specified time interval, usually I second.  

 
Equation 6.1:  

 
<= =

<>?@[A]

((B + A )
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Equation 6.2:  

 
<= =

[A]

((B + A )
	×(C?D×E= 

 
 
The most studied CA is the hCAII a human enzyme, which falls into the α-class, described below 

(Boone et al., QKIJ; Salmon and House, QKIL; Supuran, QKI^). Hence, the most detailed reaction 

mechanism is described for this isozyme (Boone, Habibzadegan et al., QKIF; Salmon & House, 

QKIL; Tripp, Smith, & Ferry, QKKI). hCAII follows a two-step ping-pong mechanism, which is 

described in detail in several excellent reviews (Boone, Habibzadegan et al., QKIF; Salmon & 

House, QKIL; Tripp et al., QKKI). A generalized reaction scheme is outlined in Scheme ^.Q, based 

on the reaction mechanism outlined for hCAII, but further generalized to encompass most other 

CA’s. It should be noted that for at least one CA, a different mechanism has been suggested, that 

does not fit the mechanism outlined here (Tripp, Smith and Ferry, QKKI; Supuran, QKI^).  The 

general mechanism is as follows: (#) A hydroxide bound to a metal in the Q+ oxidation state M(II), 

usually this is Zn(II), but Co(II) and Ca(II) has also been reported. ($) M(II) nucleophilically 

attacks COQ (aq). (%) Which forms a metal-bound bicarbonate. (&) Which is further displaced by 

a water molecule, finally a proton is removed from the metal-bound water to regenerate the 

metal-bound hydroxide, and the cycle is started anew. It is found that the last step of regenerating 

the hydroxide by deprotonation is the rate-limiting step (Tripp, Smith and Ferry, QKKI; Salmon 

and House, QKIL). In fact, the CA’s with the highest reaction rates, has a so-called ‘proton shuttle’, 

which consists of a number of coordinated amino acid residues, that efficiently transports the 

proton from the active site out to the bulk phase (Boone, Habibzadegan et al., QKIF; Salmon & 

House, QKIL; Supuran, QKI^). The role of M(II) is to act as a Lewis acid, which lowers the pKa of 

water from IJ to U, rendering the reaction possible under physiological conditions (Tripp, Smith 

and Ferry, QKKI). The presence of the metal ion is therefore necessary for the reaction to take 

place and is therefore the only truly conserved aspect of CA’s.    
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Scheme 6.2: Generalized reaction mechanism of carbonic anhydrase. 

 
6.1.6 Overview of CA classes 
CA is a superfamily of enzymes, with the six classes α-, β-, γ-, δ-, ζ-, and η –class, briefly described 

below. For the focus of this section, it is important to note the diversity between these classes. 

Often when specific aspects of CA’s are studied, whether for medical or EECCS applications, 

general conclusions based either on a detailed study of the hCAII or another CA used in that 

particular study, is often drawn. However, this may not be true for all, or even most, CA’s. The 

diversity within this superfamily is astonishing. The enzyme appears to have convergently 

evolved at least three times (Supuran, QKI^). The γ-class have most likely evolved separately, and 

the F remaining classes δ-, ζ- and η- have evolved from the α- or β-class (Supuran, QKI^). The 

overall superfamily of enzymes shares few sequence and structural similarities beyond the +Q 

oxidized metal ion in the active site, all CA’s are therefore metalloenzymes (Supuran, QKI^). The 

most common metal is Zn(II). Furthermore, the enzyme always has one hydrophilic pocket for 

binding water, and one hydrophobic pocket for binding COQ (Supuran, QKI^). The active site 

pocket is large compared to the substrate, in the CA’s that has been crystallized to date. The size 

of the active site ranges from IJK to QZK Å, whereas COQ is just over I Å long (Supuran, QKI^). 

However, beyond these few common features, the classes vary greatly. In addition to large 



Section II - Chapter 6 
 

68 
 

structural and sequence differences, active CA’s can be found as monomers, dimers, dimers of 

dimers (tetramers) and trimers (Supuran, QKI^).  

 
6.1.6.1 α-class 
Due to its medical relevance, the α-class is the most studied class of CA’s. All human CA’s are in 

this class, in fact, all mammalian CA’s belong to the α-class (Boone et al., QKIJ). This class of CA’s 

span over a broad spectrum of organisms from mammals to protozoa and bacteria. Co(II) can 

substitute Zn(II) for many enzymes in this class, maintaining similar activity (Supuran, QKI^). In 

this class, the metal is coordinated by F histidines and one water molecule. Furthermore, the α-

class predominantly monomeric, but homodimers have also been reported. The fastest CA’s are 

found in this class, due to their efficient way of overcoming the rate-limiting step. They have a 

so-called proton shuttle, where a series of histidine residues, efficiently transport protons out of 

the active site (Salmon and House, QKIL; Supuran, QKI^) 

 
6.1.6.2 β-class 
This class of CA’s is found in a broad specter of organisms, such as plants, bacteria and algae 

(Tripp, Smith and Ferry, QKKI; Supuran, QKI^). The β-class is structurally very different from the 

α-class. CA’s in the β -class are mostly dimers or multiples of dimers in their active form. This 

class is further divided into two distinct subclasses; Type I, which has an open active site and 

Type II which has a closed active site. Type I has the Zn(II) bound with Q cysteines, I histidine 

and water. Type II has a non-canonical active site, where the active site water is replaced by 

aspartate, which to the best of my knowledge is the only CA where this occurs. Furthermore, the 

ε-class, only containing the enzyme CsoSCA, was re-categorized and now falls under the β-class. 

This enzyme was categorized as its own class due to the lack of active site similarities compared 

to other CA’s, however, after eluting the crystal structure, the initial authors discovered that the 

enzyme does indeed belong to the β-class. But not directly under Type I or II, as the active site is 

quite evolved, and it might be serving a different function altogether (Sawaya et al., QKK^).  
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6.1.6.3 γ-class 
The γ-class is found in archaea, cyanobacteria and bacteria. It is noted by the presence of Fe(II), 

not replacing the zinc. As with the α-class Zn(II) is coordinated by F histidines and water. The 

active enzyme is a trimer with F active sites on each interface.  

 
6.1.6.4 δ-class and ζ-class  
Are only found in marine diatoms. In both these classes, Zn(II) can be replaced by Cd(II). The δ-

class is structurally similar to the α -class, and γ-class where the Zn(II) is coordinated by F 

histidines and water. ζ-class is similar to that of the β class, type I, the ζ class is furthermore 

thought to be monomeric. No crystal structure of either of these two classes has been eluted to 

date.  

 

6.1.6.5 η-class  
η-class is a newly discovered, and not yet well-studied class of CA’s. Until now it has only been 

found in protozoa. Although no crystal structure is eluted of this class yet, it has been suggested 

that Zn(II) is coordinated by histidine, glutamine and water (Del Prete et al., QKI^; Supuran, 

QKI^).  
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Figure 6.1: A) α-class, monomer (hCAII, PDB: 1F2W), B) β- class, tetramer (VchCA from V. 
cholera , PDB: 5CKX), C) γ-class upper: homotrimer, lower: monomer (Cam from M. Thermophil ia, 
PDB: 1QRG), D) ζ-class, monomer (R3 domain of T. weissflogii, PDB:U3K8) (Supuran, 2016).  

 
Figure 6.2: Example of the diverse metal ion coordination pattern in CA’s (Supuran, 2016). These 
can be found in the following classes of CA’s: (A) α-, γ - and δ-class, (B) β-class (type I), (C) β-
class (type II), (D) ζ -class (Note: Cd(II) replaces Zn(II)), (E) η-class (Supuran, 2016). 
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 Carbon Capture and Storage 
 

6.2.1 Overview 
It is beyond reasonable doubt that greenhouse gas (GHG) emissions (save those from the natural 

carbon cycle) are an imminent threat to the global climate, and to our future existence on the 

planet (Rockström et al., QKK]). To overcome the increasing impact on the environment, it is 

vital that atmospheric concentrations of carbon dioxide and other GHGs are reduced. According 

to a recent report from the intergovernmental panel on climate change (IPCC), annual COQ 

emissions in QKIK were over JK GT, and if current trends continue annual emissions will be over 

IKK GT by QIKK (IPCC, QKKL).  The same report indicates that a future scenario, without 

implementation of CCS in the near future, is unlikely to succeed in reducing annual COQ 

emissions to a safe level (IPCC, QKKL). It should, however, be noted that CCS is not an ideal long-

term solution. Obtaining energy without the combustion of fossil fuels, with alternatives such as 

wind energy and nuclear fusion, which does not produce vast amounts of COQ in the process, is 

a better long-term option. However, until such technology is ready to meet all energy needs, 

which is FK-LK years away, CCS should serve as an intermediate in managing carbon emissions. 

Without intervention, the annual emissions of COQ are going to continue to drastically increase. 

Furthermore, it should be noted that one of the main issues of CCS and greenhouse gas emission 

reduction, is the aspect of scale (Krebs, QKIQ). By QKLK about ZK GtCOQ is expected to be emitted 

annually, and CCS should be responsible for a significant section of this reduction (QK-JK%)  

(IPCC, QKKL). Currently, the biggest, and only commercial plant captures approximately I MtCOQ 

per year (Idem et al., QKIL). At the end of September QKI^, two other plants were under 

construction and eleven plants were in the planning phase (PCCCS-MIT, QKIL).   

 Furthermore, COQ emissions are not only emitted from the power sector, the emitted 

COQ comes from a multitude of sources; this highlights the next issue of CCS: the distribution of 

sources of released COQ (Krebs, QKIQ). The carbon dioxide information analysis center (CDIAC) 

annually releases the previous year’s carbon budget. Figure ^.F illustrates the historic COQ flux, 

directly adapted from the report, clearly, fossil fuel use and industry is the major positive carbon 
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emitter (Le Quere et al., QKI^). Furthermore, this is divided into the five major categories in 

Figure ^.J, adapted from given report (Le Quere et al., QKI^).  

 
 

 
Figure 6.3: Historic CO2 flux, from the CDIAC report 2016 (Le Quere et al., 2016). 

 
 

 
Figure 6.4: Distribution of the 9.9 Gt CO2 emitted in 2016 adapted from data in Le Quere et al., 
2016. 

 
Finally, it should not be overlooked that COQ is only one, although the major contributor, of 

several contributing GHG’s. Methane gas, for example, is QL times more potent as a GHG than 
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COQ. Thus, global warming is a complex issue where numerous strategies must be employed in 

concert for a sustainable solution.  

 In CCS there are several options for capture, transport and storage. This thesis 

focuses solely on the capture aspect. Furthermore, this chapter is predominantly aimed towards 

the use of CA’s in post-combustion carbon capture (PCCC) to capture COQ from pulverized coal 

(PC) plants. It has been reported that JI% of all COQ emissions in QKI^ came from the coal sector 

(Le Quere et al., QKI^). A majority of the research with EECCS focuses on the PC application. 

Although it is true that this application has by far the biggest potential in terms of volume of COQ 

captured, it is neither the application closest to commercialization for EECCS nor the application 

where the use of CA’s is most beneficial. The two other sources of COQ were EECCS is most 

promising is natural gas and biogas. In fact, it has been reported that the relative efficiency 

penalty of CCS in natural gas, is half that of PC, at only IL% (Haslbeck et al., QKIF). Flue gas from 

PC contains approximately IK-IL% COQ after combustion. The remainder of the gas contains 

mostly inert SOQ, which is removed in a prewash, Nitrogen (NQ) and some minor contaminants. 

Furthermore, the flue-gas from PC plants is often targeted because of distribution. When 

defining a large source of COQ as an outlet of over K.I MtCOQ/year, a majority of the large sources 

are found in the PC sector. PC plants had almost LKKK sources with a total annual outlet of over 

IK,KKK MtCOQ, accounting for over ^K% of the sources and almost ZK% of the COQ released from 

large sources (IPCC, QKKL). Most of CCS has only tax benefits in the form of avoiding carbon 

taxes as an economic incentive, which currently is in the range of LK USD per tonne COQ avoided. 

This is in stark contrast to the cost of API’s covered in the previous section, at IKKK USD per 

kilogram. Furthermore, in select locations, the captured COQ can be used in enhanced oil 

recovery (EOR), which increases oil production and therefore may give a direct economic benefit. 

 However, natural gas and biogas are also good targets for CCS, especially EECCS. 

Flue gas from natural gas and biogas gas contains approximately K-IK% and QL-LK% COQ, 

respectively. The major component of this gas is methane, and the gas is used for combustion, 

either directly as fuel or for electricity production. Where COQ content reduces efficiency. A 

product specification of Q% COQ is often the upper limit of natural gas provided to consumers 
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(Rufford et al., QKIQ). Therefore, the capture of COQ is not only environmentally beneficial but 

also commercially important.  

 Universal targets for post-combustion CCS is often set at ]K% capture of a IL% COQ 

stream. These targets are obtained from the PC power plants, which has about IL% COQ stream 

(IPCC, QKKL).  

  
6.2.2 Reactive absorption 
Reactive absorption is a gas/liquid absorption process. Where a gas containing COQ comes in 

contact with a solvent in an absorption device where the COQ dissolves into the solvent, where it 

further reacts to transform into a new chemical. This solvent is then transported to a desorbing 

device where pure COQ is desorbed/stripped from the solvent. A typical reactive absorption 

capture unit is described in Figure ^.L.  

 

Storage

Flue-gas

N2

Absorber Desorber

 
Figure 6.5: A simplif ied process scheme of reactive absorption. Flue gas (4-50% CO2) and the 
lean solvent (low CO2 concentration, blue  l ine) enters the absorber, where about 90% of the CO2 
is absorbed into the rich solvent (high CO2 concentration, orange  l ine). The remaining of CO2 
escapes with the N2 outlet into the atmosphere. In the desorber, the rich solvent is usually heated 
to 120 °C and the CO2 is stripped from the solvent, regenerating the lean solvent sent back to the 
absorber and a pure CO2 stream which is dried and sent for compression and storage.  
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Because the reaction occurs on the liquid side of the interface of a gas and a liquid, the driving 

force of the physical absorption of COQ from the gas into the solvent is the concentration 

difference between the gas (COQ partial pressure) and the liquid. Because COQ is further catalyzed 

to another product, the reaction rate directly impacts the absorption rate of COQ into the liquid. 

This relationship can be described with the liquid film model (Figure ^.^). Furthermore, physical 

properties of the solvent can affect the flux of COQ into the liquid (Salmon and House, QKIL). 

 In the stripper the COQ is released by changing the driving force, by elevating the 

temperature, decreasing the pressure (partial vacuum) or lowering the pH (Salmon and House, 

QKIL). The rate of desorption depends on the same factors as in absorption. Therefore, a catalyzed 

reaction in the dehydration direction which increases reaction rate will have a positive impact on 

desorption rates.  

 

 
Figure 6.6: Liquid fi lm model (Gladis et al., 2017). 

 
 

Reactive absorption can furthermore be roughly divided into two categories, carbamate forming 

reactions and bicarbonate forming reactions. Solvents such as primary and secondary amines fall 

into the first category. Where a covalent bond is formed between the dissolved carbon dioxide 
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and the solvent. Solvents like inorganic salts, ionic liquids, and tertiary amines fall into the 

second category, where the COQ is hydrated with water in the solvent to form bicarbonate.  

  
6.2.2.1  Carbamate forming solvents 
Primary and secondary amines react readily with dissolved COQ in the solvent to form carbamates 

(Salmon and House, QKIL). Dissolved COQ reacts with two solvent molecules and forms a 

carbamate and a charged amine, Scheme ^.F (MacDowell et al., QKIK; Salmon and House, QKIL). 

This reaction is rapid and exothermic, thus the solvent will heat up as the reaction proceeds. 

Additionally, some of the carbamates are further converted to bicarbonate (MacDowell et al., 

QKIK; Penders-van Elk and Versteeg, QKI^). However, at COQ loading relevant for CCS, the 

carbamate reaction is dominant (Gabrielsen, QKK^). Monoethanolamine (MEA) is often used as 

a base case for COQ scrubbing and will therefore be described in detail here as an example of 

carbamate forming solvents. The main advantage of solvents such as MEA is fast kinetics, which 

in turn allows for a short contact time between the gas and the solvent. Practically, that means 

that the absorption tower in a capture facility can be smaller and/or that the packing can have 

less surface area (Penders-van Elk and Versteeg, QKI^). A disadvantage of these solvents are the 

low capacity, with a maximum of LK% loading (mol COQ/mol solvent), and most importantly is 

the energy requirement in solvent regeneration. Because COQ is covalently bound to the solvent, 

it requires significant amounts of energy in regeneration, to break the covalent bond. The heat 

of reaction (ΔH°) for MEA is ZJ KJ/mol COQ released. Due to the fast reaction rate of this solvent, 

adding enzyme is often not found to further enhance absorption rates. However, it was found 

that MEA with CA had a higher bicarbonate content then uncatalyzed MEA (Salmon and House, 

QKIL). Thus, less energy would be required during desorption, since bicarbonate has a lower heat 

of reaction.  

 

 
Scheme 6.3: Carbamate forming reaction of MEA and CO2. 

2 

2 
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6.2.2.2 Bicarbonate forming solvents 
The second class of solvents used in reactive absorption based CCS is the so-called bicarbonate 

forming solvents. These solvents will not form a covalent bond between the solvent and the 

carbon dioxide, Scheme ^.J. Tertiary amines and inorganic alkaline salts are examples of such 

solvents (Salmon and House, QKIL).  The solvent supports a higher concentration of bicarbonate, 

and thus a higher COQ loading than what otherwise would be possible in water. This reaction has 

potentially a higher loading capacity, as theoretically it is possible to load one mol of COQ per 

mol solvent, double the loading of carbamate forming solvents (MacDowell et al., QKIK).  

 

 

 
Scheme 6.4: Bicarbonate forming reaction of Potassium carbonate, water and CO2. 

 

 

The physical loading of a solvent follows Henry’s law (Equation ^.F), which is based on the 

concentration (molar fraction) of COQ in the liquid compared to the concentration (partial 

pressure) of COQ in the gas phase, divided by Henry's constant (Pierre, QKIQ). The reaction is 

largely pH dependent and will drive towards a pH equilibrium, therefore all bases are potential 

solvents in COQ capture because it makes the reaction COQ to HCOF favorable, which is more 

soluble in water (Pierre, QKIQ). 

 

 

Equation 6.3:  Henry’s law: 

 

0F(.G1(?H)) =
I(.G1 J )

KL
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This reaction is identical to Scheme ^.I above and is ideally suited to the use of CA’s to enhance 

reaction rates. One of the major hindrances with using such solvents is the inherently slow 

reaction kinetics in un-catalyzed solutions. An issue which can be overcome by the use of a 

catalyst such as CA. There are several advantages of these types of solvents, they are often benign 

solvents and have less of an environmental impact and safety issues. Also, perhaps more 

importantly, this type of solvent, because it does not form a covalent bond, generally requires 

less energy for desorption. Therefore, these solvents can often be stripped at lower temperatures 

compared to covalent forming solvents, which can reduce the energy requirement.  

 When comparing solvents, it is important to have the full picture. To illustrate the 

loading capacity in practical terms the loading capacity of F common solvents were calculated in 

terms of wt% and mol%, using the Thomsen UNIQUAC model. The UNIQUAC model is a simple 

thermodynamic model that determines the solute concentration in water, although the model is 

simplified it describes solute concentrations and states with high accuracy (Thomsen, QKKL).  

The calculations were carried out for the following solvents and concentrations:  FK% wt/wt 

MEA, FK% wt/wt N-methyldiethanolamine (MDEA) and IL% wt/wt Potassium carbonate 

(KQCOF). Figure ̂ .U compares the loading capacity in terms of mol/mol loading (Figure ̂ .UA) and 

kg/kg loading (Figure ^.UB). Figure ^.U illustrates that when molecular weight and usual 

concentrations are taken into account (Figure ^.UB), which is practical loading capacity of these 

solvents, the loading capacity greatly differs from the mol/mol loading often used in literature. 

In addition to this the water volume should be considered, and the heat capacity of the solvent, 

as a temperature increase will also require a significant amount of energy for heating the solvent 

and water. The heat of absorption for the F solvents used here are MEA ZJ kJ/mol MDEA is L] 

kJ/mol and KQCOF is QU kJ/mol (Salmon and House, QKIL).  
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     A)                                                                 B)  

 

Figure 6.7: Comparing loading capacities for typical CCS solvents using the Thomsen UNIQUAC 
model (Thomsen, 2005). MEA 30% wt/wt (Blue), MDEA 30% wt/wt (Orange) and K2CO3 15% wt/wt 
(Grey). A) mol CO2/mol solvent is used to compare molar solvent capacity. B) kg CO2/kg solvent, 
is used to compare actual solvent capacity.  

 

 Enzyme Enhanced Carbon Capture and Storage 
 

6.3.1 Introduction 
As mentioned above, carbonic anhydrase is a potential catalyst for CCS. In this section, the 

practical application of CA in CCS will be discussed. It should be noted that CA’s in CCS differs 

from other areas of biocatalysis. It is not an enzyme commonly used in biocatalysis, due to the 

inexpensive product and starting material of the reaction. It is for example not mentioned in key 

review articles in biocatalysis (Bornscheuer et al., QKIQ; Clouthier and Pelletier, QKIQ; Tao and 

Kazlauskas, QKIF). 

 One of the main advantages to CA’s are that they can enable reactive absorption 

technology at lower desorber temperatures (Salmon and House, QKIL). CA’s have much higher 

reaction rates, by several orders of magnitude compared to other catalysts used in CCS, but do 

carry a stability penalty (Savile and Lalonde, QKII). Furthermore, the addition of CA reaches a 

plateau, several studies have shown that adding more than Fg/L enzyme provided little additional 

enhancement in capture rates (Thee et al., QKIL; Qi et al., QKI^). In addition, due to the low cost 
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of the product, the costs of adding additional enzymes must be carefully considered. It should be 

noted that both these studies employed a microbial enzyme provided by the same company; 

Novozymes. Due to the diversity of this superclass of enzymes, outlined above, these results are 

likely not uniform across all CA’s (Salmon and House, QKIL) 

 Furthermore, the addition of an enzyme yields the question if the effect of the 

enzyme is only due to the activity of the enzyme, or if in part the effect comes from changing the 

physical properties of the solvents. This was investigated by testing the physical solubility of NQO 

and liquid side mass transfer coefficient (KL) value with the addition of CA in a Q kmol/kg MDEA. 

The solubility slightly decreased in the unloaded solution, and increasing CA concentration 

decreased the KL. However, when the solution was slightly loaded no effect from CA was found 

(Penders-van Elk et al., QKIQ). Therefore, the addition of an enzyme is not likely to have an effect 

on COQ solubility or KL, during a capture set-up, as the solvent will never be fully unloaded. 

However, proteins can act as emulsifiers, and cause foaming. This physical effect of the enzymes 

can be problematic in a large setup and will have a profound effect on the absorption rates as it 

increases the surface area of the solvent.   

 The cost of various EECCS processes has been evaluated but is not covered in detail 

here as it is case specific. Briefly, several evaluations found EECCS to be economically comparable 

to other reactive absorption CCS options (Reardon et al., QKIJ; Penders-van Elk, Fradette and 

Versteeg, QKIL). It was found that in a catalyzed MDEA process, the cost of the enzyme would 

likely be acceptable (Penders-van Elk, Fradette and Versteeg, QKIL).  

 Furthermore, the use of whole cells is not considered, see Chapter I for a discussion 

of enzyme formulations. However it should be noted that one area of EECCS is using algae to 

capture COQ with the use of sunlight, often to produce fine chemicals or fuel (Klinthong et al., 

QKIL; Seth and Wangikar, QKIL). Although this is a very elegant solution it is not considered in 

detail in this thesis. Primarily, because it is far from implementation and because the method of 

capture is very different from the method used in with free enzymes.  
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6.3.2 Sources of CO2 
As mentioned above, COQ can come from a number of sources. Most of the EECCS research was 

targeted towards CCS from PC, currently, JI% of all released COQ comes from coal sector (Le 

Quere et al., QKI^). The main focus here is towards using CA to capture COQ from PC flue gas 

because that is the main focus of the literature studies cited in this section.  

 However, several other sources are applicable for the use of CA’s. The key aspect of 

any source is the initial COQ concentration and the pressure of the gas, accounting for the COQ 

partial pressure. Furthermore, the impurities of the gas must be evaluated, as some impurities 

may be inhibiting CA activity. Finally, the ease of application and the economic potential must 

be investigated. Furthermore, CA has the advantage of high selectivity towards COQ, which is not 

maximized with CCS (Migliardini et al., QKIJ). Ye and Lu found that the CA in their experiments 

did not react with common CCS contaminants (Ye and Lu, QKIJ).  Primary amines, by 

comparison, are much more reactive, and by far less selective to contaminants. At the moment a 

few applications are standing out, namely natural gas and biogas upgrade (Rufford et al., QKIQ). 

A few specialized applications of EECCS are also considered economically viable. For example, 

the company COQ Solutions has provided COQ for the carbonated soda industry (COQ Solutions 

inc., QKIU). Other applications such as purifying air in small spaces such as spaceships and 

submarines are other examples of such specialized applications (Boone, Habibzadegan et al., 

QKIF). Furthermore, EECCS has been proposed in aluminum production and concrete production 

(Salmon and House, QKIL). 

 

Table 6.1: Typical concentration ranges of CO2 from various sources 
Source of CO2 Typical CO2 concentration (%) 

PC 10-15% 
Natural gas 0-10% 

biogas 25-50% 
 

 

6.3.3 Enzyme stability 
Enzyme stability, particularly at higher temperatures which may be required for solvent 

regeneration, is a hindrance for the longevity of CA in CCS applications (Savile and Lalonde, QKII; 
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Salmon and House, QKIL). Targeted efforts are carried out to obtain thermostable CA’s. 

Researchers are continuously searching for more stable CA’s, especially in thermophile organisms 

(Savile and Lalonde, QKII). Discovering CA’s is a largely unexplored territory with great remaining 

potential (Salmon and House, QKIL). An example of this was the discovery of SSpCA (α-class). It 

was shown to have approximately LK% residual activity after Q hr incubation at IKK °C. However, 

it should be noted that the overall activity of the enzyme was lower than that of hCAII (Di Fiore 

et al., QKIF). One concern with enzymes from thermophiles is that although they are more 

tolerant to higher temperatures, they might not be stable under the high pH’s and solvent 

concentrations encountered in EECCS. Therefore, enzyme engineering might be a better 

approach to obtain enzymes that have all the desired properties needed for EECCS  (Savile and 

Lalonde, QKII). However, lessons learned from studying extreme thermophiles like SSpCA can be 

used to direct enzyme evolution of engineered CA’s. SSpCA for example was found to have a 

compact hydrophilic core, a high amount of ions, hydrogen bonds and charged surface residues. 

Which has been proposed to contribute to the increased enzyme stability (Di Fiore et al., QKIF). 

 Enzyme engineering has also rendered thermostable CA’s. In one example, Alvizo 

and colleagues from the company Codexis successfully engineered a CA to withstand 

temperatures up to IKU °C in J.QM MDEA with pH’s over IK. Stability tests for up to IJ weeks 

were run with the new enzyme. Compared to the wild type the engineered enzyme after ] rounds 

of engineering has obtained a J*IK^ fold stability improvement (Alvizo et al., QKIJ). Other 

engineering efforts include strategies such as targeted insertion of disulfide bonds to increase 

thermal stability. A recent example of this was carried out by Jo and colleagues. Where an 

engineered enzyme with one introduced disulfide bond showed ZU% residual activity at ZK °C 

after FK min incubation. A significant improvement from the wild type, which had only I]% 

residual activity under the same conditions (Jo et al., QKI^) CA stability has been found to be 

more dependent on temperature than other factors like loading and pH (Gundersen, von Solms 

and Woodley, QKIJ; Ye and Lu, QKIJ)  
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6.3.4 Solvents 
CA’s reaction mechanism is water dependent (Scheme ^.I), save one CA isozyme, solvents must 

therefore be water based. However, pure water has a very low COQ loading capacity, so at least 

one other component must be added to the solvent to increase loading capacity. Most often this 

is done by adding inorganic carbonate salts or amines. An ideal solvent used should have the 

following key properties; high absorption rates, high loading capacity, low energy regeneration 

requirement, high selectivity for COQ, high stability, low volatility, low viscosity, low foaming, 

environmentally friendly and inexpensive (Salmon and House, QKIL).  Some of the most 

frequently used solvents are outlined here with the most important results. In general CA’s has 

been found to be surprisingly stable to various solvents tested (Gundersen, von Solms and 

Woodley, QKIJ; Salmon and House, QKIL). In addition at least one CA displays broad pH stability 

(Gundersen, von Solms and Woodley, QKIJ).  

 

6.3.4.1 Bicarbonate:  
Bicarbonate-based solvents are perhaps the most studied solvent in EECCS, and often regarded 

as one of the solvents with the highest potential for use with CA’s. It is favorable because it 

requires low regeneration energy, is less corrosive than amine solvents and the solvent does not 

degrade. Furthermore, it has the advantage that CA has been found to have high stability in 

bicarbonate, with activity remaining after several months (Gundersen, von Solms and Woodley, 

QKIJ; Ye and Lu, QKIJ), of course depending on the CA in question. However, the solvent is 

impeded by slow kinetics, compared to many amines (Hu et al., QKI^, QKIU), therefore the use of 

a kinetic promoter is needed. A number of promoters can be used, from metal ions to amines, 

however, none of them has been commercially applied due to slow rates, high toxicity and other 

drawbacks (Ye and Lu, QKIJ; Zhang and Lu, QKIL). CA’s has higher reaction rates but suffers from 

instability under process relevant conditions (Savile and Lalonde, QKII; Salmon and House, QKIL; 

Hu et al., QKIU). One drawback of this solvent which is rarely mentioned in the literature is the 

low COQ loading capacity of this solvent (Figure ^.U). The solvent has a high molecular weight, 

and due to precipitation, it cannot be used at very high concentration compared to amine 

solvents, it is usually used at QK wt/wt % or less. This means that the loading capacity of 
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COQ/solvent w/w % is relatively low compared to some of the other solvent such as MEA. 

Therefore, if a temperature shift is be used with to regenerate COQ from this solvent, large 

amounts of water must be heated up, which in turn is energetically unfavorable. In the case of 

electrochemical or pH swing to absorb/desorb that challenge is not as relevant. However, the 

capacity per cycle remains low and must be counteracted by a high flow rate. Increasing the cyclic 

capacity of the solvent has a significant positive effect on energy consumption (Qi et al., QKI^).   

 In one study the energy requirement of potassium carbonate systems was calculated 

to be QUF-FQQ kJ/mol COQ, MEA in the same system was calculated to be Q^Q kJ/mol COQ. 

Increasing the reboiler duty lead to a higher overall energy consumption. The reboiler duty was 

increased from K.ZL kW (UL.L °C) to I.I kW (ZK °C) capture efficiency increased from ZJ% to 

Z]%, however, energy requirements were increased from approximately IFKK kJ/mol COQ to I^KK 

kJ/mol COQ. It was also found that the reboiler duty accounted for the majority of the total energy 

consumed (Qi et al., QKI^).  

 Experiments using FK% KQCOF solution and CA investigated enzyme kinetics with 

stopped flow showed that Kcat and KM increased with increased temperature in the range QL to 

LL °C. Furthermore, catalytic efficiency (Kcat/KM) increased with increasing pH in the range from 

pH ^.Z to Z.F. Finally, the results suggested that CA’s are beneficial for desorption if the enzyme 

can tolerate the conditions (Hu et al., QKIU). 

 

6.3.4.2 Other solvents: 
Other than bicarbonate, CA’s are also used with other bicarbonate forming solvents such as 

hindered or tertiary amines, also. Solvents like ammonia, amino acids, amines and carbonate 

salts have all been used with CA. (Salmon and House, QKIL). For amine solvents, it has been found 

that the uncatalyzed rate increases linearly with increasing pKa (Penders-Van Elk, Oversteegen 

and Versteeg, QKI^). On the contrary, it was found, with one CA studied, enzyme stability was 

lower with increasing solvent pKa (Gundersen, von Solms and Woodley, QKIJ). Furthermore, it 

was found that the concentration of the solvent (tested with several amines), in the case of 

bicarbonate forming solvents, did not affect catalyzed absorption rate, which indicates that the 
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amine acts as a base to regenerate the enzyme. The enzymes used here was an engineered hCAII 

(α-class) (Penders-van Elk, Fradette and Versteeg, QKIL).  This is likely true for most CA’s, which 

is rate limited by enzyme regeneration.  

 Haritos et al. studied several solvents with and without enzyme. They used a parr 

reactor with a large headspace, with pressurized COQ, initial pressure at Z bar, and measured 

reaction rates from J bar, the set-up is shown in Figure ^.Z. They found that with all solvents 

tested, save one, CA increased reaction rates significantly (Haritos, Dojchinov and Puxty, QKIQ). 

However, this set-up favors the use of the enzyme, due to high soluble COQ concentrations 

(arising from a high partial pressure), which is beneficial for the enzyme, which generally has 

high KM values, in the range F-UK mM (Salmon and House, QKIL). In an industrial setting with 

atmospheric pressure and IK% COQ stream the COQ concentration in the solvent is significantly 

lower, also noted by the authors (Haritos, Dojchinov and Puxty, QKIQ). Furthermore, the same 

authors carried out another study in the same report, with IF% COQ in a bubble reactor. Here 

reported enhancement factors were lower, ranging from I.K] to I.UL, MEA had the lowest 

enhancement factor. Although the other solvents had higher enhancement factors, their 

catalyzed reaction rates did not compare to MEA rates. However, these experiments had 

problems with foaming, occasionally more when the enzyme was present. It is therefore possible 

that the rate enhancement is in part caused by the increased surface area of the foam (Haritos, 

Dojchinov and Puxty, QKIQ). 
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Figure 6.8: Diagram of a Parr reactor (Haritos, Dojchinov and Puxty, 2012). 

 
6.3.5 Enzyme retention  
Enzyme retention with CA’s in CCS is most often carried out to localize enzymes in a specific 

region of the process (Savile and Lalonde, QKII; Salmon and House, QKIL). Thereby preventing 

enzyme deactivation from high temperatures in other areas. Some of the most commonly used 

enzyme retention techniques are immobilizing enzymes on particles (Dean et al., I]UU; Haritos, 

Dojchinov and Puxty, QKIQ; Penders-van Elk et al., QKIF; Reardon et al., QKIJ; Hooks and Rehm, 

QKIL) or surfaces (Akermin, QKIF; Reardon et al., QKIJ), entrapment in gels (Zhao et al., QKI^) or 

foam (Migliardini et al., QKIJ), on and in membranes (Bao and Trachtenberg, QKK^; Figueroa et 

al., QKKZ; Yong et al., QKIL, QKI^). In addition, the use of ultrafiltration devices has been 

suggested to restrain free enzymes in solution (Gundersen et al., QKIU).  

 

6.3.5.1 Enzymes on particles 
Perhaps the most common enzyme immobilization is carried out by immobilizing enzymes on 

the surface of small particles. Several approaches have been taken on the subject, from simple 

nylon particles to magnetic beads (Lv et al., QKIL). Penders and colleagues suggested that due to 

the shear forces in a conventional reactive absorption column, covalently bound enzymes on 

particles would provide a better long-term result (Penders-van Elk et al., QKIF). Furthermore, it 

has been shown that particle size has a significant impact on the turnover number. In these 
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experiments, a particle size of over QK μM had drastically lower turnover numbers (Penders-van 

Elk et al., QKIF). The results will depend on the kinetic rates of the enzyme in question, here a 

modified hCAII was used. Faster enzyme kinetics increases the effect of the particle size. 

Furthermore, Haritos and colleagues tested J different materials to immobilize bovine CAII, 

Eupergit CQLKL, Sepabeads EC-EP, Sepabeads ECHFA, and Nylon (^, and ^,^). Interestingly, the 

highest loading was found on the Sepabeads EC-EP but the Eupergit CQLKL has the highest 

activity. Testing of enzymes immobilized on the Eupergit CQLKL and comparing to the free 

enzyme at UK °C for IL min, where the free enzyme had no residual activity and the immobilized 

enzyme had LK% remaining activity. pH tolerance of the same beads was also tested by 

incubating the beads in FM dimethylaminoethanolamine (DMAE), at pH IQ.J and QK °C for 

QJhrs. UL% of the activity remained (Haritos, Dojchinov and Puxty, QKIQ).  The company Akermin 

has immobilized CA’s on the surface of floating particles. This biocatalyst immobilization was 

shown to increase kinetic rates compared to coated packing, and modeling showed a reduced 

energy requirement of FK% compared to NETL- case IQ (Akermin, QKIF; Reardon et al., QKIJ).  

 Other notable examples include CA’s covalently bound to magnetic particles, which 

showed some increased stability, but most importantly easier separation (Lv et al., QKIL). CA’s 

entrapped in microcapsules where it was found that internal enzymes were only responsible for 

K.F% of the activity, all most all activity was found to come from the enzymes directly on the 

surface (Dean et al., I]UU). Finally, a polyester forming enzyme was fused with CA. The polyester 

forming enzyme forms beads of IKK-LKK nM and remains bound to the bead in the cell. The cells 

were then disrupted and contained CA’s on surface display. In addition to an interesting way of 

immobilizing the enzymes, the beads showed increased stability (Hooks and Rehm, QKIL)  

 

6.3.5.2 Enzymes on surfaces 
Enzymes immobilized on surfaces by immobilizing enzymes directly on structured packing has 

been investigated both theoretically and experimentally. This set-up has an inherent mass-

transfer limitation, arising from the fact that COQ must not only diffuse into the solvent but 

furthermore, it must diffuse through the entire liquid layer before it reaches the enzyme. As 
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discussed in Chapter I, enzyme immobilization has an inherent mass transfer penalty, the two 

major factors in for the extent of the limitation in a particular system is the KM of the enzymatic 

reaction and the substrate concentration, if the substrate concentration is much higher than the 

KM, mass transfer limitations are minimal (Tischer and Kasche, I]]]). However, in the case of 

EECCS, both of these factors are problematic. COQ does not have a high solubility in water, which 

is furthermore lowered by the low partial pressure of COQ in flue-gas, for example, IK% COQ at 

JK °C, would yield a maximum soluble COQ of approximately Q mM, where the reported range of 

CA’s KM’s are ranging from F-UK mM (Salmon and House, QKIL). Furthermore, enzyme 

immobilization carries a secondary penalty, it will change the microenvironment immediately 

surrounding the carrier, meaning that the product concentration and pH around the enzymes 

will be different than the bulk of the reaction (Tischer and Kasche, I]]]). This is particularly 

important because CA’s can suffer from product inhibition, the extent of product inhibition will 

depend highly on the CA in question (Pierre, QKIQ; Gladis, QKIU). Furthermore, the reaction rate 

is highly pH dependent (Salmon and House, QKIL). Penders and colleagues concluded that for 

solvents with a reasonably fast reaction, the mass transfer rate is too slow for enzymes to have an 

impact on the reaction rate with immobilized enzymes. However, the same authors postulated 

that slower solvents such as carbonate salts with pH’s under IK, could have a small enhancement 

effect from CA (Penders-van Elk et al., QKIF). Indeed, this was shown by Akermin in a 

demonstration project, in a QL feet column with a gas flow of FK NmF/hr and liquid flow of QUL 

LPH. Where CA’s were immobilized on the surface of Sulzer MLKKX structured packing. High 

enzyme retention was demonstrated, after JKK hours over ZK% enzyme was retained. 

Enhancement from the enzyme was ^-fold compared with un-catalyzed KQCOF and ]K% 

captured. This set-up was compared to the MEA case; NETL case IQ. Their case showed decreased 

energy requirements, lower capital costs and lower LCOE (Levelized cost of energy). The largest 

energy saving was in the reduction of energy in the reboiler. ]U °C in reboiler for KQCOF vs ILU °C 

in MEA case. (Akermin, QKIF; Reardon et al., QKIJ). Although Akermin showed good long-term 

stability in their experiments, nonetheless eventually the coating needs to be reloaded. Which 
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will pose a logistic challenge, on a commercial scale (Qi et al., QKI^). In another test Akermin 

showed QZKKhrs of ]K% capture without loss of enzyme performance (Reardon et al., QKIJ).  

6.3.5.3 Membranes 
The use of membranes is a complex and diverse aspect of CCS, with many possible options. Some 

of these options also directly affect the setup of absorption and desorption. An advantage to using 

CA’s in membrane applications is that the enzyme, due to its surfactant properties, increased the 

solubility of some solvents, such as carbonate salts. These solvents otherwise have problems fully 

wetting membrane pores (Zhao et al., QKI^).  One of the major drawbacks of using membranes 

is solvent evaporation, this is especially difficult to overcome when using small wetted pores. One 

solution to this has been to immobilize CA’s in hydrogels, however, the mass transfer limitation 

to such gels was too high to give any added benefit of the enzyme (Zhao et al., QKI^). 

Furthermore, the inherent fouling of some membranes causes a problem with operating 

membranes on scale (Savile and Lalonde, QKII). Finally, there are technical difficulties with 

operating some of the more complex membrane set-ups. In general, a more complex set-up has 

lower operational cost and are more energy efficient, but higher capital costs. Here a brief 

description of some of the key studies carried out with CA’s and membranes are discussed.  

 

 
Figure 6.9: Overview of biocatalytic membrane reactors (Giorno and Drioli, 2000).  
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Figure 6.10: I l lustration of common membranes modules flat-sheet membranes assembled in (a) 
plate and frame, and (b) spiral wound modules; (c) a hollow fibre membrane assembled in a 
tube-and-shell module (Giorno and Drioli, 2000).  

 

6.3.5.4 Ultrafiltration (UF) 
The simplest application of membranes in EECCS is the use of ultrafiltration membranes. Where 

a membrane is used to separate the majority of the enzymes from the rich solvent before the 

solvent is sent to the stripper. This does not impose any modification on the reaction set-up 

outlined in Figure ^.L.  The use of ultrafiltration was theoretically investigated and showed good 

results for significantly extending enzyme viability (Gundersen et al., QKIU). With UF, separation 

of smaller particles requires more work. Therefore, combining this technology with 

immobilization on particles could be energetically beneficial and yield higher enzyme retention 

rates.  The use of UF in EECCS is covered in detail in Chapter Z.  

 
6.3.5.5 Contained liquid membranes 
Contained liquid membranes (CLM), are a gas to gas application. Which is operated in the same 

way as simple selective membranes, shown in Figure ^.II below. Here, absorption and desorption 

are carried out in the same unit. Where COQ selectively dissolves into the liquid in the membrane 

and is desorbed on the other side, producing a IKK% COQ stream. They can be applied as simple 

membranes or as hollow fiber membranes, which increases surface area but adds complexity in 

production. Experimentally, desorption is often done by using a sweep-gas such as argon or 

nitrogen. However, in an industrial setting, it would be done with vacuum. It has the advantage 
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that no heat is applied, which reduces energy use (Figueroa et al., QKKZ). Furthermore, lower 

heat is beneficial for the enzyme stability. However, energy is needed to pressurize the inlet gas 

and to produce vacuum on the outlet side. Solvent loss through evaporation in the pores may 

also pose a problem (Russo et al., QKIF). Furthermore, higher capture ratios require exponentially 

higher requirements. Such technology can be imagined to best applied for applications where 

the COQ concentration on the inlet side is fairly high and was very high capture rates are not 

necessary. Experimentally, this technology has yielded good results on laboratory scale. Bao and 

Trachtenberg showed that CA in bicarbonate had higher rates than both uncatalyzed bicarbonate 

and the secondary amine diethanolamine (DEA) (Bao and Trachtenberg, QKK^).  

 A similar strategy is layer by layer wetted hollow fiber membranes (LbL). Which also 

showed increased capture rates compared to uncatalyzed bicarbonate solutions, with 

approximately a F fold increase in absorption rates (Yong et al., QKI^). Carbozyme has developed 

a hollow fiber membrane system for EECCS, as showed in Figure ^.II.   

 

 
Figure 6.11: Carbozyme CO2 capture with CA and membrane process (Figueroa et al., 2008) 

	
6.3.5.6 Membrane contactors 
Finally, CA’s the use of in membrane contactors has been investigated, however, the research in 

this area is currently still limited (Zhao et al., QKI^). One biomimetic set-up aims at combating 

some of the drawbacks of using membranes and enhancing the advantages of CA’s. A two-layered 

Janus membrane that combines a hydrophilic and a hydrophobic layer. The gas interface has a 
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hydrophobic perfluodecyltrichorosilane layer, which reduces solvent evaporation, and allows for 

easy COQ penetration, Figure ^.IQ. CA is immobilized on the surface of hydrophilic carbon 

nanotubes, located at the solvent interface, thereby reducing mass transfer limitations. 

Furthermore, the enzyme immobilization retains the enzyme in the absorber, while the solvent 

can be regenerated in a desorber. The set-up was shown to have increased absorption properties, 

compared to both the uncatalyzed set-up and compared to free enzymes in solution.  

 

 
Figure 6.12 : CA in membrane contactor: Janus membrane with an hydrophobic/hydrophil ic 
interface (Zhao et al., 2016).  

 

 Conclusion and future outlook 
This chapter has discussed the status quo of EECCS, a rapidly advancing field. The technology 

has high potential due to highly efficient enzymes and the possibility of using energy efficient 

solvents. Enzymes are produced cost efficiently on a large scale for other applications, it is 

therefore likely that CA’s would have competitive pricing if demand increases. However, before 

enzymes are ready to be commercially applied more research is needed, and it is important to 

find solutions that will work well on a large-scale. Furthermore, it could be envisioned that CA’s 

are used for specialized COQ applications, where high-quality COQ can be sold for a higher price, 

for example in the soda industry as mentioned above, or applications such as food or fine 

chemicals. The following chapters will investigate enzyme stability under process relevant 

conditions, and methods to overcome stability challenges in detail. 
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Section II 
 

Chapter 7:  
Enzyme Stability under process relevant conditions 

 

This chapter is an extended version of the published article ‘Enzymatically Assisted COQ Removal 

from Flue-Gas’. It was published in the journal Energy Procedia (QKIJ), pages ^QJ-^FQ, by the 

authors Maria T. Gundersen, Nicolas von Solms and John M. Woodley. Modifications have been 

made to update the information with current knowledge, ease readability and to make the 

publication coherent with the rest of the thesis. A copy of the article as published can be found 

in Annex A. 

 Introduction 
As discussed in detail in Chapter ^, the enzyme carbonic anhydrase (CA) catalyzes COQ fixation 

in Nature, by reversibly hydrating COQ to bicarbonate, Scheme U.I.  

 

CO2 + H2O ⇋ HCO3
- H+  

Scheme 7.1 . Carbonic anhydrase hydrolysis of carbon dioxide. 

 
For viable industrial use of CA in CCS, it is important that the enzyme is both stable and 

kinetically active under operating conditions. Several excellent reviews highlight the advances 

made in this field (Savile and Lalonde, QKII; Salmon and House, QKIL). This chapter takes a 

holistic view of enzyme stability under process relevant conditions. A developmental enzyme 

supplied by Novozymes was applied under process relevant conditions to evaluate enzyme 

stability. Due to the volume of COQ emerging from an average power plant, large capture 

equipment is required, thus any change in the capture set-up, such as changing the solvent or 

column packing will involve large capital and labor costs, and should therefore be avoided for as 

long as possible. Thus, enzymes used in such systems must remain active for extended periods of 

time under operating conditions. In addition, enzymes can only account for a small fraction of 
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the overall cost of the capture process, since the cost of the technology must compete with 

current carbon taxes. The total cost of the process will also encompass solvents, stripping, 

compression and storage costs. To that extent, a supplier which can deliver large quantities of 

enzymes at low costs, found in applications such as detergents and textile industry is needed for 

an economically viable process. It has been suggested that the cost of the enzyme will likely be 

drastically reduced if it were produced in larger quantities, and would therefore not pose an 

economic problem, as long as the enzyme does not need to be replenished too often (Penders-

van Elk, Fradette and Versteeg, QKIL; Salmon and House, QKIL).  

 Experimental 
Here a brief experimental description follows, to ensure that the reader may follow the presented 

results in the next section. Full experimental procedures can be found in the full paper as 

published in Annex A.   

 
7.2.1 Methods 
 
7.2.1.1 Activity assay 
Activity was measured by a modified assay by Chirică and colleagues (Chirică et al., I]]U), Figure 

U.I. Each sample was tested by adding I mL of K.I M Tris-HCl buffer, pH U.^, in a plastic cuvette, 

IK μL sample or control was added, the sample was then left to equilibrate for at least I hour, and 

then IK μL para-nitro-phenyl (PNP) solution (LJ.F mg PNP in F mL acetonitrile) was added. The 

samples were mixed by inverting samples covered with parafilm, twice. Each sample set ran in 

parallel contained two blank samples and three reaction samples. Each duplicate reaction sample 

was run separately, thereby obtaining ^ data points per condition tested per data point.  

Absorption was recorded at FJZ nM for FQK s, and the activity was determined from the slope of 

the absorption between ^K s and FKK s, subtracting the slope of the blank samples. The samples 

containing MEA and MAPA/MDEA had a high background absorption, thus the sample 

preparation was modified: K.KL mL sample or blank was added to K.JL mL K.I M Tris-HCl buffer, 

pH U.^, in centricon vial IK kDa cut off, spun down at IJ,KKK rpm for IK min, K.L mL new buffer 
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was added, this process was repeated F times. K.I mL of this sample was added to K.] mL buffer 

and the procedure was followed as indicated above.  

 
 

 
 

Figure 7.1: Experimental setup for stabil ity tests. CA (2%) exposed to test condition: solvent, 
temperature or pH. Activity was tested with the p-nitrophenyl assay at regular t ime intervals, and 
compared to init ial activity under identical conditions.  

 

 Results and Discussion 
The experiments in this chapter were carried out to evaluate the stability of enzymes under 

EECCS relevant conditions. Enzyme stability was evaluated using the activated ester assay; PNP. 

Which measures ester hydrolysis through a color change. As mentioned in Chapter ^, many but 

not all CA’s has this activity (James et al., QKIJ; Salmon and House, QKIL), although it is not the 

defining activity of the enzyme class (Supuran, QKI^). Furthermore, it should be noted that the 

activity on this substrate may not accurately correspond to COQ hydrolysis rates. Several studies 

have shown that ester hydrolysis rates and COQ hydration rates are not comparable (Bond et al., 

QKKI; Salmon and House, QKIL). Therefore, activity is not reported in units, but rather percent 

activity compared to the initial activity. Furthermore, reaction rates between different samples 

are not compared in this study, with different pHs or different solvents. Thus, here only the 

residual activity of the enzyme, under identical conditions, where background activity is 

thoroughly controlled for, is compared. Therefore, in this particular setting, the PNP assay is 
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deemed valid. However, caution should be offered in the general use of this assay for 

comparatively measuring CA activity.  

 In a post-combustion carbon capture (PCCC) conditions over the course of the 

process will vary with respect to temperature and pH, COQ absorption lowers the pH of the 

solvent, and the solvent is heated in desorption to release COQ, in addition, the solvent can both 

be varied in type and concentration. Therefore, these three variables are first examined 

singularly, and subsequently compared synergistically, where the additive effects of the 

parameters are examined. Figure U.Q shows a typical PCCC set-up where temperature and pH 

gradients over the process are indicated by color.  

 
 

 
Figure 7.2: Schematic example of varying pH and temperatures of the solvent in a post-
combustion solvent-based capture process. 

 
7.3.1 pH stability 
pH stability was evaluated by measuring residual activity after IKK hours of incubation at the 

respective pH at room temperature in the pH range from J to IQ, in increments of I pH unit. Only 

pH values above pH U are used in EECCS applications, since below this pH the hydration rate of 

the reaction is strongly reduced, due to thermodynamic limitations (Russo et al., QKIF). The 

results are shown in Figure U.F. No activity was detected after IKK hours at pH J and moderate 
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activity (JL-UK %) with pH’s L, ^ and IQ. It is therefore unlikely that the enzyme will be stable 

under these conditions over extended periods of time (months). The enzyme was stable in the 

pH range from U to II after IKK hours incubation. Thereby defining the operating space for this 

enzyme, and furthermore, the maximal and minimal loading of any given solvent, as the pH of a 

solvent is defined by the COQ loading. However, this limitation is restricted to the enzyme in 

question. If a process is deemed more efficient at a higher maximum pH, several options are 

possible to overcome this obstacle. Another enzyme with a higher pH tolerance can be chosen, 

or the enzyme can be optimized by enzyme engineering to withstand higher pHs.  

 

Figure 7.3: Residual activity after 100hours of incubation at pH 4 to 12. 
 
 
7.3.2 Temperature stability 
Temperature stability was evaluated in the range of LK-ZK °C, and the enzyme was found to have 

residual activity at all temperatures for up to JZ hours (Table U.I), but the activity was drastically 

reduced at higher temperatures. In addition, some experiments were made to recover activity 

from the high temperature experiments (UK °C and ZK °C) by incubating the samples at lower 

temperatures for some time before measuring the sample again (data not shown). This regained 

up to IK % activity. This is particularly interesting in a cyclical EECCS setup (Figure U.Q) where 

the enzymes are not immobilized, because the enzymes would cycle between high and low 

temperatures, albeit in such a set up the incubation time at both high and lower temperatures 

would be significantly shorter than in these experiments.  After JZ and UQ hours no activity was 
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detected at the temperatures ZK °C and UK °C, respectively. It should be noted that the accuracy 

of the reported values may be questionable as the activity is increasing over time with the LK °C 

sample; this is likely due to the increased internal energy of the enzyme at the higher 

temperature, which in turn results in higher reaction kinetics. This may be an artifact stemming 

from the fact that the activity assay was taken too soon after the enzyme was taken from the 

incubation temperature. Therefore, the residual activity reported here should be evaluated in 

terms of activity/no activity, rather than the reported activity measures. This was corrected in 

later experiments below. Nonetheless, the results give an indication that this enzyme is stable 

under operating conditions under ^K °C. The results correlate well with results found with other 

CA’s, which have been found to be stable at high temperatures (Savile and Lalonde, QKII). For 

example Codexis engineered a thermostable enzyme, which retained JK % activity after JK hours 

incubation at UL °C, comparable to what is found here (Savile and Lalonde, QKII). In addition 

another engineered CA was found to retain up to LJ % residual activity after Q hours incubation 

at ZK °C (Borchert and Saunders, QKIK). Thus, these results are comparable to the former results, 

indicating that the enzyme is stable at temperatures up to ^K °C for extended periods of time, 

although these results demonstrate that if the enzyme is to be exposed to temperatures above UK 

°C, it must be limited to short periods. In practical terms this means that this enzyme is for 

example unlikely to survive a treatment in a reboiler. The results here are again particular to the 

enzyme in question, and a general conclusion for all CA’s cannot be drawn. As mentioned in the 

previous chapter, other more thermostable CA’s has been found, such as the SSpCA, which can 

withstand temperatures of IKK °C (Di Fiore et al., QKIF). However, it can be argued that increasing 

the temperature of the process is counterproductive, as increased temperatures would add an 

energetic penalty to the process. Especially for temperatures over IKK °C, as many of the EECCS 

processes has high water content. However, an enzyme which tolerates higher temperatures is 

likely to be stable for extended periods at a lower temperature. In addition, higher temperature 

stability would prevent deactivation at localized pockets with higher temperatures. For example, 

close to heating coils, and other heat inducing devices.  
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Table 7.1: Residual activity after incubation at temperatures from 50 °C to 80 °C for up to 100 
hours. All results are given in % residual activity 

 Time (hours) 

T (°C) 1.5 25 48 72 100 

50 105 121 132 196 280 

60 84 87 64 66 74 

70 47 41 49 36 0 

80 7 9 2 0 0 

 
 
7.3.3 Long-term solvents stability 
A long-term stability study was carried for ILK days. This is one of the longest stability studies 

carried out. Other notable studies include a ^-month stability study from Ye and Li, also using a 

microbial enzyme provided by Novozymes (Ye and Lu, QKIJ). Industrially the companies 

Akermin and COQ Solutions have both independently run filed tests in pilot plants for over IKK 

days (COQ Solutions inc, QKIU; Akermin, QKIF; Reardon et al., QKIJ). The study here was 

undertaken at two pH values and six different solvents, with I M and F M concentrations, to 

evaluate if the enzyme could be used long-term under operating conditions. The results show 

that the enzyme was highly stable for extended periods of time. The solvents tested were chosen 

as they were previously proven to be useful in COQ capture. Specifically, the primary amine 

solvent monoethanolamine (MEA) as it has been reported as a candidate for industrial 

applications, and is single most commonly used solvent (Wang et al., QKIK), and thus serves as a 

good benchmarking solvent. It has excellent absorption rates, it is however haunted by problems 

such as corrosion, low stability, and high energy needed for desorption. Q-Amino-Q-methyl-I-

propanol (AMP), N-methyldiethanolamine (MDEA) and F-(Methylamino)propylamine 

(MAPA)/MDEA have all shown great promise in COQ absorption, but with slightly lower 

absorption rates, thus they are good candidates for EECCS. Q-Aminoisobutyric acid (AIB) was 

previously shown to have higher desorption rates than MEA at ZK °C, but slower absorption rates 

(Hook, I]]U), thus it serves as a good target for enzyme enhanced technologies, in addition, AIB 

had higher solubility than other comparable amino acids like alanine, therefore a higher 
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concentration can be used, resulting in a higher loading and higher cyclic capacity. The use of 

potassium carbonate (KQCOF) is discussed in detail in the previous Chapter, as it is the most 

commonly used solvent with CA for enzyme enhanced carbon and capture (EECCS). It has the 

advantages of favorable thermodynamics and lowered desorption temperatures, however, a 

drawback with this solvent is low solubility and overall low cyclic capacity. Enzyme stability 

results are shown in Table U.Q. All data points illustrate that activity is lost over time and a higher 

deactivation is found with a higher pH. Finally, the activity was compared after IKK hours and 

ILK days, to evaluate if a short-term study could efficiently reveal which solvents were stable long 

the long term. The results showed poor correlation and it is concluded that within this data set 

a prediction of long-term stability cannot be made from short-term studies. 

 

Table 7.2: Remaining activity after 5 and 150 days 
Solvent 

(concentration) 
pH 

Residual Activity 

5 days (%) 

Residual Activity 

150 days (%) 

MEA (3M) 
8.3 95 ± 0.4 73 ±1 0.8 

10 76 ± 1.8 33 ± 4.8 

AMP (3M) 
9 99 ± 0.3 42 ± 1.6 

10 104 ± 7.7 12 ± 0.6 

MDEA (3M) 
9 92 ± 2.8 62 ± 4.0 

10 91 ± 3.0 54 ± 2.5 

AIB (3M) 
8 106 ± 4.9 91 ± 3.0 

10 95 ± 0.1 35 ± 0.9 

K2CO3 (1M) 
8 116 ± 6.8 83 ± 3.6 

10 85 ± 1.2 29 ± 2.4 

MAPA (1M)/ MDEA (2M) 
8.6 86 ± 10.3 85 ± 0.5 

10 99 ± 4.8 69 ± 4.4 

However, as seen from Figure U.J, a correlation was found between deactivation and solvent pKa 

values. In comparison higher pKa values been found to have a positive effect on solvent kinetics 

(da Silva and Svendsen, QKKU; Penders-Van Elk, Oversteegen and Versteeg, QKI^). This suggests 

that a compromise might need to be made in implementation between enzyme activity and 
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stability. However, in the case of CA, it has been known since the I]FK’s that buffers and solvents 

can have more severe impacts on the catalytic activity of CA (Roughton and Booth, I]FZ), albeit 

of mammalian source. Thus, the actual enhanced activity with the solvents should be investigated 

in detail. Such work has been carried out on several occasions, in particular, Haritos and 

colleagues have investigated enzyme enhanced COQ capture in a pressurized stirred cell reactor, 

where a rate enhancement was found with all eleven solvents tested. However, as discussed in 

the previous Chapter, this set-up was particularly favorable to enzyme enhancement (Haritos, 

Dojchinov and Puxty, QKIQ). Other studies, with an experimental set-up that is closer to that of 

a closer to an absorption column, a wetted wall apparatus, have found conflicting results to these 

studies (Gladis et al., QKIU). It should be noted that higher enzyme stability may be associated 

with lower reaction rates (Kuchner and Arnold, I]]U). 

 

 

 
Figure 7.4: Correlation between pKa and long-term (150 days) stabil ity. Pka values were predicted 
with the software ChemDraw. 

 
 
7.3.4 Additive effects on stability 
Finally, the additive effects of solvent strength and temperature with the solvents NaCl (pH U), 

KQCOF (pH ]), AMP (pH Z) and MDEA (pH Z.L) was investigated for IKKhrs (Table U.F). 

Increasing the concentration from I M to F M lead to a slight decrease in stability. The salts NaCl 

and KQCOF led to an overall a higher enzyme stability than the amines AMP and MDEA, with the 
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exception of KQCOF at QL °C, F, it showed in fact a lower stability than the same concentration at 

LK °C This is likely due to the lower solubility of this solvent at the lower temperature, rather 

than the increased temperature increased enzyme stability. These experiments did not show a 

large impact on stability by increasing the temperature from QL °C to LK °C. However, since both 

of these temperatures are within the stable range of this CA, determined by previous experiments 

in this chapter, it does not exclude an additive effect at higher temperatures.  

 

Table 7.3: Residual activity of CA after 100 hours with varying temperature and solvent 
concentration with the solvents, NaCl, K2CO3, AMP and MDEA 

Solvent 1 M, 25 °C 1 M, 50 °C 3 M, 25 °C 3 M, 50 °C 

NaCl 76% 91% 90% 78% 

K2CO3 125% 100% 63% 80% 

AMP 91% 87% 70% 79% 

MDEA 88% 89% 83% 75% 

 

 Conclusion 
This chapter has evaluated enzyme stability in terms of pH, temperature and solvents, the latter 

at different concentrations and types of solvents, and the effect of these three factors added 

together. The carbonic anhydrase used here showed long-term stability for some, but not all 

process-relevant conditions. The results found in this chapter which has the highest relevance 

for EECCS is the decreased stability at higher temperatures. Which poses a practical challenge 

for the desorption step due to enzyme activation. However, this may be overcome by several 

strategies, such as using thermostable enzymes (Savile and Lalonde, QKII). Localizing enzymes 

in areas of the process with lower temperatures, technologies such as enzyme immobilization or 

ultrafiltration membranes, which has shown great promise to extend enzyme viability for 

intermediate temperatures (discussed in detail in the next Chapter). Furthermore, this study has 

drawn two important conclusions. Firstly, it was found that long term and short-term stability 

studies, did not show a good correlation. Therefore, longer studies are needed to evaluate enzyme 

stability under particular conditions, before choosing and implementing a new process. Finally, 
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it was discovered that enzyme stability is decreased with increasing pKa, the opposite trend that 

is found with un-catalyzed solvent kinetics. These findings are important to evaluate the 

potential of EECCS on an industrial scale. The results in this paper indicate that EECCS is 

possible, but will require careful process and reaction engineering for a viable process.  
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Section II 
 

Chapter 8:  
Ultrafiltration as a means to extend enzyme longevity 

 
 

This chapter is an extended version of the published article ‘Operating considerations of 

ultrafiltration in enzyme enhanced carbon capture’. It was published in the journal Energy 

Procedia (QKIU), pages UFL-UJF, by the authors Maria T. Gundersen, Arne Gladis, Philip Loldrup 

Fosbøl, Nicolas von Solms and John M. Woodley. Modifications have been made to update the 

information with current knowledge, ease readability and to make the publication coherent with 

the rest of the thesis. A copy of the full article as published can be found in Annex A. 

 

 Abstract 
Enzyme enhanced carbon capture and storage (EECCS) has the advantage of using energy 

efficient solvents, and can therefore potentially reduce the carbon footprint of carbon capture 

and storage (CCS). A challenge in the implementation of this technology is the high temperatures 

encountered in the desorber, which deactivate enzymes. One solution to this challenge is the use 

of ultrafiltration to keep the enzymes away from the stripper. In this chapter, a base case of a CCS 

facility is defined and used to model the impact of such membranes for the use in a full-scale CCS 

commercial plant. The base case has an approximate capture capacity of I MTonn COQ/year. The 

timeframe used in this model is one-year continuous operation. This chapter compares soluble 

enzymes dissolved in a liquid solvent with and without the use of ultrafiltration membranes. 

Three membranes with ]K%, ]]% and ]].]% enzyme retention were modeled. Enzyme retention 

is defined as the percentage of enzyme that does not enter the stripper column in each cycle. 

These membranes were then further modeled with five stripper temperatures of ^K °C, UK °C, ZK 

°C, ]K °C and above IKK °C. Enzyme deactivation was extrapolated from data in Chapter U and 

followed a Ist order rate (Gundersen, von Solms and Woodley, QKIJ). Furthermore, deactivation 
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rates increase with increasing temperatures. The key finding from this work is that for all stripper 

temperatures used in this model, deactivation rates were too high for continuous operation over 

I year, maintaining at least LK % residual activity, without adding additional enzyme. Increased 

stripper temperatures increased the membrane retention requirement. To retain over LK% 

activity over a whole year at ^K °C and UK °C stripper temperature required a membrane of ]K% 

or higher enzyme retention, at stripper temperatures of ]K °C a membrane of ]].]% retention 

was required for the same result. Finally, it was investigated if stripper temperatures over IKK °C, 

where instant deactivation was modeled could be used. It was found that with enzyme retention 

of ]].]%, with instant deactivation, after I month LK% of the enzyme was deactivated. Thus, the 

use of membranes in enzyme enhanced CCS, with the enzyme studied here, is restricted to 

temperatures below IKK °C, or if another enzyme is used, temperatures where the enzyme in 

question can withstand without instant deactivation.   

 Introduction 
As discussed in detail in Chapter ^, carbonic anhydrase (CA), is an attractive catalyst in CCS to 

enable the use of energy efficient solvents, by enhancing reaction rates (Savile and Lalonde, QKII). 

A drawback of using enzymes is that they are often not stable under operating conditions 

encountered in a CCS capture facility. This was explored in detail in the previous chapter, by 

investigating the stability of one CA, especially suitable for CCS in terms of pH, temperature and 

solvent type at CCS relevant conditions. The enzyme studied was found to be considerably more 

stable than most enzymes under similar extreme conditions. However, in long-term studies 

carried (months), it was found that the enzyme was particularly sensitive to high temperatures 

(Gundersen, von Solms and Woodley, QKIJ; Ye and Lu, QKIJ). On a commercial scale, it is neither 

practical nor economically viable, to frequently add enzymes to the solvent, to make up for the 

activity loss. Therefore, for commercial implementation, a strategy must be devised to elongate 

enzyme stability. This chapter explores such a strategy, namely ultrafiltration (UF).   

 This chapter explores the feasibility and impact of using UF membranes for 

restricting enzymes from entering the stripper column. Other strategies, such as immobilization 
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on a fixed surface in the absorber would yield similar results in terms of enzyme longevity. 

However, there are several significant drawbacks with immobilization technology. Most 

importantly immobilization on a fixed surface locates enzymes further from the gas-liquid 

interphase, therefore mass transfer resistance is increased, which in turn yields slower absorption 

kinetics (Penders-van Elk et al., QKIF). Furthermore, immobilizing enzymes adds a cost penalty 

to the process. In a general example of enzyme immobilization, calculated that the added cost of 

immobilization would render the cost of the enzyme to be four-fold higher (Tufvesson et al., 

QKII).  Finally, although immobilization will elongate enzyme viability, the enzyme must 

occasionally be exchanged. This poses technical complexity, especially on the large scale seen 

with CCS (Qi et al., QKI^).  

 UF, on the other hand, allows for solubilized enzymes to be dispersed in the solution, 

therefore it does not add additional mass transfer resistance. Furthermore, exchanging the 

enzymes periodically would only require exchanging parts of the solvent. A simpler operation 

than exchanging packing inside a column. UF membranes are already in use in on a large scale 

with applications such as water purification. In such applications, the membranes are often 

applied as several units in series or parallel, to give a high surface area. A model for investigating 

the stability of such enzymes in a theoretical commercial plant with and without UF membranes 

was constructed. Enzyme stability was calculated within the model framework for stripper 

temperatures ranging from ^K °C to over IKK °C.  The membranes are furthermore explored with 

enzyme retention from ]K% up to ]].]%. The results were modeled for I year of continuous 

operation.   

	

 Experimental 
In order to develop a model, a base case was first defined, to serve as a fundament for the 

calculations. The parameters for the base case is defined below in Table Z.I and illustrated in 

Figure Z.I. The parameters were based on publically available data from the Boundary Dam CCS 

facility and were supplemented with information from experts in the field. 
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Figure 8.1: Flowchart of a typical reaction based carbon capture process. The flue gas enters the 
bottom of the absorber, and flows towards the gas outlet, a lean (unloaded) solvent (blue) counter 
currently f lows down the column and reacts with the gas to absorb CO2. The rich (loaded) (red) 
solvents exit the absorber at the base of the column. Where it is passed through a heat exchanger 
before it enters the desorber column. CO2 is stripped from the gas in the desorber by heat or 
vacuum, thereby regenerating a lean solvent. Passing through the heat exchanger before it re-
enters the absorber column.  

 
Table 8.1: Base case data, solvent mass: 2.06 *106 kg, f low rate: 2*106 kg/hr 

 Residence 
time (min) 

Absorber 11.4 
Stripper 5.3 
Hold-up 45.1 
Total 61.8 

 
 
 
8.3.1 Deactivation rates 
Enzyme deactivation rates were extrapolated from data in Chapter U (Gundersen, von Solms and 

Woodley, QKIJ), it follows a first-order reaction rate, according to Equation Z.I: 

  

Equation 8.1: 

*D = 	*F!
"PD 

 

Where At is the activity remaining at a certain time point, Ai is the initial activity (IKK%), k is the 

deactivation rate constant and t is the time at that time point. In addition, a stripping 
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temperature above IKK °C was used in the calculations, where instant enzyme deactivation is 

assumed.  

 

Table 8.2:  Rate constants for temperature dependent enzyme deactivation  
Temperature (°C) 50 60 70 80 90 

Deactivation rate (h-1) 0 0.003 0.0054 0.0536 0.3860 
 
 
8.3.2 Ultrafiltration membranes  
Three UF membranes were used in this study, they had an enzyme retention of ]K%, ]]% and 

]].]%. Furthermore, the membrane flux of water (L/(mQ*h*bar)) was used for evaluating 

membrane size and cost. Data for water permeability for two specific membranes were obtained 

from the commercial membrane producer Alfa Laval, Table Z.F.  

 

Table 8.3: Physical properties of commercial membranes used in this model 

Type Material Selectivity (%) 
Water 
permeabil ity 
(L/(m2*h*bar)) 

Source 

GR80PP Polyethersulphone 90 50 Alfa Laval 
UFX10pHt Polysulphone 99.9 400 Alfa Laval 

 

 

 Results and Discussion 
A model was established to investigate residual enzyme activity, with and without UF 

membranes, under several operating conditions. In its simplest form enzyme enhanced carbon 

capture and storage (EECCS), can be carried out by adding soluble enzyme to a liquid solvent, 

and run the capture facility as before, as described in Figure Z.I. Using soluble enzymes in 

solution gives the least mass transfer resistance, as discussed in the introduction of this chapter, 

and in detail in Chapter ^ (Penders-van Elk et al., QKIF). Finally, it has the lowest capital and 

operational costs since no additional cost for membranes and compression are added. However, 

as discussed in detail in Chapter ^ and U, the enzyme deactivates at a significant rate at higher 

temperatures (Savile and Lalonde, QKII; Gundersen, von Solms and Woodley, QKIJ; Ye and Lu, 

QKIJ; Salmon and House, QKIL). Therefore, the stability of carbonic anhydrase was investigated 
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at different operating temperatures with the base case CCS facility outlined above. Enzyme 

viability was modeled, in terms of residual activity in a continuous operating power plant for one 

year. Here five different stripper temperatures were used, ^K °C, UK °C, ZK °C, ]K °C and above 

IKK °C. In the model, it was assumed that absorption was carried out at low temperature, with 

minimal enzyme deactivation. Therefore, deactivation in the model only occurred in the stripper. 

Reduced deactivation at lower temperatures has previously been reported (Gundersen, von 

Solms and Woodley, QKIJ; Ye and Lu, QKIJ). Figure Z.Q displays residual enzyme activity for the 

duration of one year, from initial activity (IKK%), for free enzymes, under the five stripper 

temperatures used in this model, ^K °C, UK °C, ZK°C, ]K°C and IKK°C. The model shows that 

significant activity loss was found after a few minutes with the highest temperature (IKK °C). 

However, some residual enzyme activity still remains after I year with the two lowest 

temperatures. As can be noted from Figure ^.U in Chapter ^, a lower stripper temperature will 

reduce the cyclic capacity of the solvent. However, this could be overcome by decreased partial 

pressure in the stripper. In this model, a uniform temperature in the stripper unit was assumed. 

It was also tested if a non-uniform temperature model, where IK% of the stripper column was 

modeled to be IK °C higher and IK% to be IK°C lower than the bulk of the solvent, would influence 

the outcome of the model. A slight decrease in stability was observed, but the results follow the 

same general trend as the data in Figure Z.Q (data not shown). 

 
Figure 8.2: Residual enzyme activity after one year with five operating temperatures in the 
stripper: 60 °C (blue), 70 °C (Orange), 80 °C (Grey), 90 °C (Yellow) and over 100 °C (Green). 
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These results indicated that the soluble enzymes modeled here would not be suitable for the type 

of set-up tested here without modification, or frequent enzyme replenishment. Therefore, the 

use of a UF unit was implemented in the model. Where the rich solvent was passed through a UF 

membrane, where the majority enzyme was separated from the bulk of the solvent, and diverted 

directly back to the absorber, thereby circumventing the high temperatures in the stripper, 

Figure Z.F.   

 
 

Lean	solvent	(low	CO2	conc.)

Rich	solvent	(high	CO2	conc.)

Optional	enzyme	recycle

D
A Absorber	column

Desorber	column
DA

 
Figure 8.3:  Process diagram of an ultrafi l tration unit in a CCS facil i ty. The process is similar to 
that which is described above (Figure 8.1). However, the rich solvent wil l be passed through an 
ultrafi l tration device where most of the solvent wil l pass through, and some of the rich solvent wil l 
be diverted back to the lean solvent with the enzymes, not passing through the desorber column.  

 

Here residual activity is calculated for three UF membranes with enzyme retention of ]].]%, 

]]% and ]K% and compared with the same conditions without the use of a UF membrane. The 

rate of enzyme deactivation was calculated using five different stripper temperatures ^K °C, UK 

°C, ZK °C, ]K °C and <IKK °C. The comparison of the models can be found in Figure Z.J: A), B), 

C), D) and E), respectively.  
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Figure 8.4: Effect of enzyme stabil ity, measured by residual activity over time, of ultrafi l tration 
enzyme separation with various stripper temperatures: A) 60 °C, B) 70 °C, C) 80 °C, D) 90 °C, 
E) over °100 C (instant deactivation). Membrane retention for all f igures: Blue : No membrane, 
Orange : 90% retention, Grey : 99% retention and Yellow  99.9% retention.    

 

The efficiency of the membrane has a significant impact on the enzyme viability. The least 

selective membrane with an enzyme retention of ]K%, only has a small impact on enzyme 
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viability for all temperatures above UK °C. For stripping temperatures over UK °C membranes with 

higher selectivity perform significantly better. For example, at stripping temperatures of ZK °C 

less than LK% of the residual activity remains after UK days, whereas the membrane with ]]% 

selectivity leaves ]J% of the enzymes active after a full year of operation.  The most selective 

membrane with ]].]% selectivity, has more than UL% residual activity after I year for 

temperatures up to and including ]K °C. Finally, it was investigated if UF is a viable option with 

temperatures above IKK °C, where instant deactivation was assumed. Without the use of UF 

membranes, all activity is lost within I hour of operation. Although the use of membranes, 

especially the membrane with the highest retention at ]].]% significantly increases the lifespan 

of the enzymes, high activity loss is still observed, due to the high number of cycles. In this model 

I cycle lasts approximately I hour, therefore almost ]KKK cycles are carried out per year, and the 

additive effect of even a small activity loss has a big impact. With instant deactivation at IKK °C, 

after I month less than LK% of the activity remains after I month and after ^ months only I% of 

the initial activity remains. These results highlight both the effect of the membranes and the need 

to adjust the selectivity to the deactivation rate of the enzymes used.  

 

 Discussion 

CA’s are useful catalysts in CCS because they can enhance the absorption rate of COQ into 

kinetically limited solvents, such as tertiary amines and carbonate salts, enabling the uses of such 

low-energy solvents (Penders-van Elk et al., QKIQ; Ye and Lu, QKIJ; Monteiro et al., QKIL; Salmon 

and House, QKIL). However, a drawback of using enzymes as catalysts is limited to thermal 

degradation, which is particularly problematic due to the high temperatures encountered in the 

stripper unit.  Therefore, the use of the use of UF to extend enzyme viability was explored. There 

are two key aspects that set a CCS process apart from other applications where enzymes are 

applied, which should be considered. Firstly, the scale of a CCS facility must be kept in mind. In 

the base case used in this chapter a large amount of solvent is used. Thus, the cost of the enzyme 

may be a significant contribution, especially is enzymes are to be frequently replenished. 

Furthermore, such a large scale poses technical operational difficulties. For example, the absorber 
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column used in this model is based on the absorber column in the boundary dam CCS facility, 

which is over U meters wide and almost LK meters tall, with a volume of over QKKK cubic meters. 

Any modification to a set-up of this scale will be both costly and complex. The solutions 

implemented, should therefore be as simple as possible, rendering the required results.  Secondly, 

as mentioned above, the number of cycles should be kept in mind. This base case has almost 

]KKK cycles per year. In addition to the cumulative effect on deactivation, as mentioned above, 

with such a high amount of cycles, replenishing enzymes on regular frequent intervals would 

significantly dilute the solvent, and would likely over time change the physical properties of the 

solvent, such as the viscosity. Experimentally, it has been observed that the precipitation of 

deactivated enzyme, deposited on heat coils of the reboiler, and thereby significantly reducing 

the effect of the coils (Salmon et al., QKIL). This can be problematic on a large scale. To avoid 

such complications in a commercial scale plant, it here argued that the use UF can be a possible 

solution. Figure Z.F depicts how such a process may be carried out with solubilized enzyme in 

solution with UF. In comparison, this study showed very high deactivation rates without the use 

of UF. Even at the lowest stripper temperature of ^K °C, enzymes must be replenished F times 

annually to retain LK% or more of the initial activity. Deactivation rates, and thereby the need 

for replenishment intensifies significantly when the temperature increases. Increasing the 

temperature by QK °C, increased the need for replenishment to maintain the same activity by QK-

fold. As discussed above this does not only add cost in terms of increased enzyme requirements 

but also, perhaps more importantly on this scale, it also poses a practical problem with solvent 

dilution and precipitation.  

 UF, on the other hand, restricts CA in the cooler area of the process, thereby limiting 

deactivation. The model had F different enzyme retentions of ]K%, ]]% and ]].]%, and five 

stripper temperatures of ^K °C, UK °C, ZK °C, ]K °C and above IKK °C. In this model, the enzymes 

are returned to the absorber with IK% of the rich solvent stream, without any desorption. The 

non-retained enzyme, will pass through the stripper column and deactivate at the same rate as 

the soluble enzyme. Although this set-up has a clear advantage, especially at higher 

temperatures, with increased enzyme viability, it also comes with several drawbacks. Firstly, IK% 
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of the solvent is not regenerated, thus the capacity of each cycle and the overall capacity of the 

facility is reduced by IK%. Furthermore, the kinetic penalty of such a set-up is likely to be higher 

than IK%, since the reaction rates in the absorber decrease with loading. The model indicates 

that a UF membrane with ]K% retention is a viable solution for stripper temperatures up to UK 

°C, for the enzyme tested here. For temperatures between ZK °C and ]K °C, a more selective 

membrane should be used.  Furthermore, it was found that due to the high amount of cycles that 

UF is only a suitable option in EECCS when a deactivation is not instant. In the calculations above 

IKK °C, where instant deactivation was modeled, even the most selective membrane at ]].]% 

selectivity was not suitable for long-term use. In practical terms, this means that primary amines, 

such as monoethanolamine (MEA), frequently used as solvents in CCS, may not be suitable 

solvents with EECCS since the desorption with MEA is operated in the IQK - IJK °C range.  

 It is clear from the results in Figure Z.J, that the use of a membrane with a higher 

enzyme retention has a better performance with respect to retention of enzyme activity. 

However, increased enzyme retention often comes at a cost. The capital costs of such membranes 

are likely to be higher, and it would be expected that they are more difficult to produce and 

maintain at a high level of perfection, since any tear/leak would be detrimental to enzyme activity 

at higher stripping temperatures. In addition, the flux of the membranes should be considered, 

since it will influence the membrane size needed for such a setup. Table Z.J indicates the 

membrane size needed to maintain the target flux of two commercial membranes. Estimated 

membrane size for the two commercial membranes used here is between I,KKK and IK,KKK mQ. 

It should be mentioned, that in general the membrane flux and selectivity is correlated, where a 

higher flux is correlated with a lower selectivity (Mehta and Zydney, QKKL). The inverse trend, 

shown in the two membranes here, arises because the ]].]% selectivity membrane (UFXIKpHT), 

a technical membrane developed especially for enzyme retention in aqueous solutions, in 

collaboration between Alfa Laval and Novozymes.  Large-scale UF membranes are implemented 

in other industries such as the water purification industry. Where numerous membrane units are 

connected in series. As such the membrane sizes estimated here are evaluated to be of a feasible 

size. 
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 Furthermore, the cost of the two membranes was been calculated using an estimated 

cost of commercial membranes of LK$/mQ, which assumes a membrane lifetime of J years (Peters 

et al., QKII). This cost estimate was confirmed by personal communication with Alfa Laval to be 

in the correct range. In addition, for an efficient UF, it is needed to operate with a higher pressure, 

here a pressure of J bar has been used.  In general, the cost of cross-flow UF is dominated by 

membrane replacement and pumping (Rossignol et al., I]]]). However, in the case of CCS, the 

solvent is routinely compressed after exiting the absorber, so the cost will be dominated by capital 

costs, rather than operational costs.  

 

Table 8.4: Required membrane sizes of ultrafi l tration membranes used in this study, operated at 
4 Bar, with a flux of 2.1*106 L/h  

Type Selectivity Water 
permeabil ity 
(L/(m2*h*bar)) 

Membrane 
size (m2) 

Membrane 
cost (USD) 

Source 

GR80PP 90 50 10,600 530,000 Alfa Laval 
UFX10pHt 99.9 400 1,330 66,500 Alfa Laval 

 

 Conclusion 
This chapter evaluates the use of UF to elongate enzyme viability in EECCS. A model using three 

different enzyme retention membranes of ]K%, ]]% and ]].]% enzyme retention was modeled, 

with L stripper temperatures of ^K °C, UK °C, ZK °C, ]K °C and over IKK °C. The target used in 

this chapter was to maintain over LK% activity after I-year operation. UF showed increased 

viability with all temperatures tested here. To meet the set criteria requirements for membrane 

selectivity increased with increasing stripper temperature. At ^K °C and UK °C, the ]K% retention 

membrane was sufficient to meet the target. For temperatures of ZK °C and ]K °C, the enzyme 

retention required increased to ]]% and ]].]%, respectively. For the highest temperature of over 

IKK °C, where instant deactivation was assumed, none of the membranes used in this model were 

sufficient to meet the target. The key conclusion drawn from this study is that UF is a good 

method for extending enzyme viability for intermediate stripper temperatures, but may not be 

suitable at very high stripper temperatures. Thus, the use of enzyme enhanced CCS might be 
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restricted to temperatures below IKK °C, or temperatures the enzyme can withstand for shorter 

time periods if the use of UF units is in use. 
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Section II 
 

Chapter 9:  
Conclusion and future work, Section II 

 

 

 Introduction 
Enzyme enhanced carbon capture (EECCS), is a developing technology. At the present time, no 

commercial EECCS plants are operating, however, the first plant is scheduled to open late QKIZ 

(COQ solutions inc., QKIU). This chapter therefore draws conclusions from previous chapters in 

Section II and looks ahead to the future work still needed in the field.  

 

 Conclusion  
Chapter U and Chapter Z, looked in detail at enzyme stability and ultra-filtration as a means to 

extend enzyme viability. Here the main conclusions from those two chapters are summarized.  

 

9.2.1 Stability  
This research confirms previous reports, that a key issue to implementation of EECCS is enzyme 

stability under process relevant conditions (Savile and Lalonde, QKII; Gundersen, von Solms and 

Woodley, QKIJ; Ye and Lu, QKIJ). 

 

9.2.1.1 pH tolerance 
The pH of the process will change over the course of the process, with higher pH in the lean 

solvent (Figure U.Q). The pKa and the loading/unloading of the solvent will determine the pH 

variation in the solvent. It is therefore important to know the pH stability of the enzyme in 

question when a solvent is chosen, or vice versa to know the solvents expected pH range when 

choosing an enzyme.  Chapter U tested enzymes stability with respect to pH, by exposing it to a 

particular pH for IKKhrs.   
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The results indicated:  

• pH J: No activity remained - This CA does not tolerate this pH 

• pH L, ^ and IQ: ~LK% activity remained - This CA tolerates these pHs at short intervals 

• pH U: II: IKK% activity remained - This CA is tolerant to these pHs 

 

An average CCS process will fluctuate in the pH range of U.L-II, it is therefore assumed that for 

most CCS processes, the enzyme tested here would be suitable in terms of pH. Furthermore, the 

enzyme was tested with U solvents (see ].Q.I.Q below for solvent list), where a high (pH IK) and a 

low (pH Z-]) pH was tested. It was found that for all the solvents tested, a higher pH had a 

negative impact on long-term stability (ILK days).  

 

9.2.1.2 Solvent tolerance 
A plethora of possible solvents can be used in EECCS, the most common solvents are amines and 

inorganic salts. Here CA was tested with U different solvents, of those solvents ^ were tested both 

short-term, IKK hrs and long-term ILK days.  

 

The solvents tested were (see Chapter U or abbreviations for full names), remaining activity after 

ILK days is presented in the brackets after each solvent: 

• Amines:  

o Primary amines: MEA (pH Z.F: UF%, pH IK: FF%) 

o Tertiary or hindered amines AMP (pH]: JQ%, pH IK: IQ%), MDEA (pH ]: ^Q%, pH 

IK: LJ%), MAPA/MDEA (pH Z.^: ZL%, pH IK: ^]%) 

o Amino acids: AIB (pH Z: ]I%, pH IK: FL%) 

• Salts: KQCOF (pH Z: ZF%, pH IK: Q]%), NaCl (not tested for ILK days) 

 

The following trends were observed:  

• Increasing solvent pKas decreased enzyme stability 
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• Changing the pH from Z to IK had the greatest impact on solvents with a lower solubility 

(KQCOF and AIB).  

• The enzyme exhibited the lowest stability in AMP at both the high and low pH tested. 

 

9.2.1.3 Temperature stability 
Finally, thermal stability was tested over IKK hrs, with temperatures ranging from LK °C to ZK ° 

C.  After IKK hrs it was found that all initial activity remained at LK °C, some activity remained at 

^K °C and no activity remained at UK °C and ZK °C. Which showed lower stability than what was 

modeled in Chapter Z, where the enzyme was only exposed to high temperatures for L minutes, 

each time, rather than prolonged exposure over several days. These results are concerning 

because most conventional CCS process operates the stripper at high temperatures, often in the 

range of IQK-IJK °C. These results indicate that the enzyme tested here is not likely to be stable 

in this range. Although a thermostable CA has been engineered to tolerate higher temperatures 

(Alvizo et al., QKIJ), and a thermostable CA has been found in a thermophile (Del Prete et al., 

QKI^), it is deemed unlikely that CA’s will tolerate such high temperatures for extended periods. 

Therefore, the process must either be altered to lower stripper temperatures or restrict the 

enzymes from entering the stripper.   

 
9.2.2 Process solutions in EECCS 
The results above indicate that process strategies must be implemented in order to extend 

enzyme viability in EECCS, especially with respect to temperature. Chapter Z discusses one such 

option, namely ultrafiltration (UF), the results of that chapter is summarized here.  

  

9.2.2.1 Ultrafiltration 
Although one enzyme has been shown to retain some activity at temperatures of IKK°C (Del Prete 

et al., QKI^). A likely scenario for a viable long-term solution in EECCS will likely restrict enzymes 

from entering the stripper. Chapter Z, modeled enzyme viability with L temperatures ^K °C, UK 

°C, ZK °C, ]K °C and above IKK °C, with no membrane and F UF membranes with selectivity of 

]K %, ]]% and ]].]% over one year, the results are summarized in Table ].I.  
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Table 9.1: Remaining activity (%) after 1year exposure to stripper temperatures from 60 °C to 
>100 °C, with UF membranes. 

Temperature 
(°C) 

Membrane selectivity (%) 
0 90 99 99.9 

60 10% 81% 98% 100% 
70 2% 69% 96% 100% 
80 0% 2% 69% 96% 
90 0% 0% 7% 77% 

>100 0% 0% 0% 0% 
 

 

These results indicate that UF can be a powerful process strategy to increase enzyme viability, 

but that the membrane selectivity must be adjusted to the deactivation rates observed. Higher 

deactivation rates require more selective membranes. Furthermore, the results in this model 

indicate that UF is not suitable in situations where instant enzyme deactivation occur.  

 

9.2.3 Conclusion 
The results presented here indicate that EECCS is indeed technically feasible. However, a viable 

process requires careful enzyme selection, and optimized reaction and process engineering. 

Furthermore, it should be noted that several other competing technologies in CCS is also 

available, and a careful economic evaluation should be undertaken to evaluate if EECCS is the 

best option in each case. In conclusion, the results presented in this thesis indicate that EECCS 

is currently a viable solution for specialized applications where an economic benefit beyond that 

of avoiding carbon taxes can be obtained. Examples include the production of COQ for the soda 

industry or natural gas upgrade. It is not deemed a suitable solution for climate mitigation on a 

large scale at the present time.  

 Future work 
A mentioned above, although EECCS is a technically feasible technology, it does not, in my 

opinion, take full advantage of the enzyme. As described in Chapter I of this thesis, enzymes are 

often applied because they are highly selective or have other qualities which cannot easily be 
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obtained by conventional chemical synthesis. In the case of EECCS, some of the advantages of 

the enzyme are not fully exploited.  

 

9.3.1 Reactive at room temperature  
CA’s can catalyze the both the absorption and desorption reaction at a low temperature, unlike 

some of the chemical reactions that are exothermic, which produce heat during absorption and 

needs heat to desorb. The capture solvents consist of UK-ZL% water, heating up the water, 

especially above the boiling point, requires a large amount of energy. Currently, the strategy is to 

increase the heat stability of the enzymes. However, it might, in my opinion, be more appropriate 

to look at methods for operating the process at a lower overall temperature. With some of the 

solvents used in EECCS, it is not strictly necessary to operate at a higher temperature. Other 

methods for desorption could be employed to remove the COQ from the stripper.  

 The reversible conversion between COQ and bicarbonate in cells is one of the main 

methods for retaining pH homeostasis in the human body. It is highly pH dependent and will 

react towards an equilibrium. One could envision that a similar technique could be used in 

EECCS, where the absorber operates at higher pH of Z-IK and the desorber operates at lower pHs 

of J-^. This pH swing could be obtained for example by electrochemical methods, or by addition 

of certain chemicals during some stages of the process. As has been proposed by Hamborg and 

colleagues (Hamborg et al., QKII).  

 Another strategy that takes advantage of the low vapor pressure of the inorganic salt 

based solvents, such as KQCOF, is the use of a compressible sweep gas. Which could be used in 

combination with the pH swing or alone. The suggestion is that a gas that liquefies at a lower 

temperature than COQ can be used to strip COQ out of the solvent. For example, an ether or 

another organic solvent, which has a low boiling post and requires little energy to vaporize. After 

stripping the gas will be cooled to separate out the water, then compressed to liquefy the COQ for 

transport. Here the stripping solvent would liquefy first and could be separated out and reused 

for another cycle. This strategy can replace the use of partial vacuum, which is often used in 

EECCS.  



Section II - Chapter 9 
 

131 
 

 

9.3.2 High reaction speed 
Another important aspect of using enzymes is, of course, their catalytic abilities to enhance 

reaction speed. The enzyme CA is one of the fastest known enzymes, with reaction speeds of up 

to IK^ reactions per second, however in EECCS reaction rates are several orders of magnitude 

lower. It is therefore suggested to use other reactor set-ups or other methods to enhance reaction 

rates, both in absorption and desorption.  

 A common configuration in biotechnology is a bubble column, of the type that is 

used in fermentation. The use of stirring and small bubble sizes would increase surface area and 

decrease mass transfer rates. Testing this type of reactor in EECCS would be worth further 

investigation. However, it should be noted that some of the enzyme formulations used in EECCS 

cause foaming, so foaming must be controlled or the biocatalyst formulation must be altered to 

cause less foaming. 

 Furthermore, the configuration can be optimized to minimize mass transfer 

limitations. One interesting configuration that has been suggested is rotating packed beds. 

Which was recently shown to out-perform column absorption under identical conditions 

(Leimbrink et al., QKIU). 

 Finally, as discussed on several occasions in this section, one reason for the slow 

reaction rate is the discrepancy between low COQ solubility and CA’s KM’s. It is proposed to 

enhance this by increasing the COQ solubility in the solution. Simply by decreasing the 

temperature of the absorber, COQ solubility increases. Further enhancement can be obtained by 

adding a chemical adsorption solvent, like zeolites, commonly used in CCS to capture COQ.  

 
9.3.3 Selectivity 
It should be noted that enzymes are often applied for their excellent selectivity and ability to be 

used in concert. It is therefore a natural line of thought that the COQ captured with enzymes, 

could be further reacted in the same reactor to produce higher value compounds. This has been 

tested on several occasions and is part of carbon capture and utilization (CCU), an area not 

covered here. Although it is possible, it should be considered whether COQ is the best starting 
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material, both energetically and economically. Furthermore, it should be considered the scale of 

operation. The volume of COQ needed for climate mitigation is several orders of magnitude above 

the volume that could be used in CCU. Although CCU might be useful for generating value for 

CCS, it might not be an ideal solution for reducing atmospheric COQ.  

 Finally, a thorough techno-economic assessment of EECCS compared to other 

technologies, and comparing the options within EECCS is needed to drive the field forward. 

 

 Conclusion  
In conclusion, EECCS might be technically feasible when strategies like enzyme engineering and 

ultrafiltration are added. However, the current state of EECCS does not optimize the use of the 

enzymes, but rather add enzymes to an already existing method. Innovation is needed to bring 

this technology to the next level. Although EECCS is technically mature enough for 

implementation, other competing strategies are more developed and are easier to implement. In 

my opinion, EECCS is therefore not currently ready for general use as a CCS technology for 

climate mitigation. However, for specialized applications, such as natural gas upgrade, or 

producing food grade COQ (such as for the beverage industry), EECCS might be a good option 

right now. The key to success for these applications is that CA can provide good selectivity and 

avoid the use of potentially harmful amine solvents. Furthermore, these applications provide an 

economic incentive beyond that of avoiding carbon tax.  
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Chapter 10:  

Lessons learned 
 

 

 Introduction 
With the increasing number of commercial processes (Woodley, Breuer and Mink, QKIF; Salmon 

and House, QKIL), and the use of biocatalysis in non-natural reactions (Siegel et al., QKIK; Coelho 

et al., QKIF), it is clear that the use of biocatalysis will continue to expand. This chapter 

summarizes the common lessons learned from the previous chapters, and offer a tool to evaluate 

the impact of an implementation strategy on common challenges found in biocatalysis.  

 

 Integrated process development 
The results in both sections of this thesis point towards the importance of integrated process 

development early in the implementation of a new biocatalytic process, for a successful outcome. 

Here ^ challenges in biocatalytic applications are outlined, with specific examples from each 

section. Furthermore, J common process strategies to overcome these challenges are outlined. 

Finally, in an easy to follow table the effect on each strategy has on the challenges outlined is 

presented.  

 

10.2.1 Challenging areas of biocatalysis 
In this section, the ^ key challenges in implementation of biocatalysis are briefly summarized, 

this is by no means a complete list, but includes the ^ areas believed to be the most relevant 

hindrances and the most relevant to comparing the J key strategies listed in section IK.Q.Q below.  
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10.2.1.1 Enzyme stability 
Enzyme stability is often a challenge in biocatalysis. Enzymes are taken from their natural 

protective environment inside a cell and applied under very different conditions. ω-TAs, for 

example, are exposed to organic solvents and two-phase reaction conditions which can lower 

enzyme stability. CA’s in CCS are routinely exposed to high temperatures and high solvents 

conditions. In both these cases, enzyme stability is greatly reduced.  

 

10.2.1.2 Thermodynamics 
Thermodynamics is an independent property of the reaction, which is not affected by the 

enzyme. Often unfavorable thermodynamics is unavoidable, due to the nature of the reactants 

and products. However, identifying unfavorable thermodynamics early in development can 

enable strategies to limit the effects of unfavorable thermodynamics.  For a successful reaction 

process, favorable thermodynamics or strategies to overcome unfavorable thermodynamics is 

needed. In the case of ω-TAs, thermodynamics is a frequent hurdle impeding implementation. 

In Section II, the low solubility of COQ in the solvent, which impedes kinetics and mass transfer 

rates, a result of unfavorable thermodynamics. 

 

10.2.1.3 Kinetics  
Although CA’s are some of the fastest enzymes known, with measured reaction rates at IK^ 

reactions per second (Savile and Lalonde, QKII), CA’s applied in CCS are often several orders of 

magnitude slower than that (Salmon and House, QKIL). Furthermore, in the case of ω-TAs 

enzyme inhibition and low reaction rates with un-natural substrates, prevents high yields at high 

substrate concentrations. Kinetic limitations under process relevant conditions limits the 

efficient use of biocatalysis in industrial applications.  

 

10.2.1.4 Development time 
Any new technology must be developed and adjusted to the application. Some development 

times here are deemed to be longer such, as enzyme engineering, which can take a significant 

time as several rounds of optimization is needed to reach the desired target (Savile et al., QKIK; 
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Alvizo et al., QKIJ). Other applications such as reaction engineering are less complex. 

 

10.2.1.5 Capital costs 
Capital costs are the costs of the physical set-up. In this comparison, for simplicity, it is assumed 

that the costs of the facility and external costs are the same for all set-ups, and only the cost of 

the enzyme technology is evaluated.  

 
10.2.1.6 Operational costs 
Operational costs here include the costs of operating the facility and any reoccurring cost. Such 

as the enzyme replacements or additional pumping costs with membranes. As in section F.I.J, 

only the cost of the additional enzyme technology is evaluated, auxiliary costs are assumed to be 

the same for all scenarios.   

 

10.2.2 Biocatalysis implementation strategies 
The implementation strategies discussed in this section is highlighted and discussed in terms of 

the L challenges outlined in the section above.  

 
10.2.2.1 Enzyme engineering 
Enzyme engineering has played an important role in both case studies presented here. The 

engineered enzyme for the manufacture of a Sitagliptin intermediate opened up the possibility 

of using a non-natural substrate yielded an enzyme compatible with optimal process conditions 

(Savile et al., QKIK). Furthermore, in the case of CA, enzyme engineering provided with a 

significant increase in thermal stability (Alvizo et al., QKIJ).   It is clear from these two examples 

that enzyme engineering broadened the potential application of the respective enzymes. 

However, enzyme engineering has two key issues. Firstly it has a long development time, even 

for the most advanced commercial specialists took I year to develop the ω-TA used in Sitagliptin 

manufacture (Truppo, QKIU).  Furthermore, the outcome is uncertain, it is for example not 

possible to predetermine how high temperatures an enzyme will be able to withstand. Especially, 

concerning EECCS applications, where temperatures are much higher than in most other 
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biocatalytic applications. It was therefore evaluated that stability and operating costs are 

moderate, and development time is long for this application.  

 

10.2.2.2 Enzyme Immobilization  
Enzyme immobilization is the attachment of enzymes on surfaces, on small particles or as self-

aggregates, discussed in Chapter I. Immobilization can be beneficial in retaining the enzymes in 

one area of the process to increase stability (Section II), or to ease with enzyme recycle or product 

separation (conventional biocatalysis). However, it carries high mass transfer limitations and can 

impede reaction kinetics. Numerous options are readily available, and the technology is ready for 

implementation. Finally, the use of immobilization drastically increases the capital costs of the 

enzyme. One paper reports J fold increase in enzyme costs from enzyme immobilization 

(Tufvesson et al., QKII), therefore capital cost and complexity of the process are increased. 

 

10.2.2.3 Process engineering 
In this thesis, numerous options for process engineering has been shown, from simple ISPR 

strategies in section I (Savile et al., QKIK; Tufvesson, Bach and Woodley, QKIJ) to complex 

contained liquid membrane systems in Section II (Bao and Trachtenberg, QKK^; Russo et al., 

QKIF). Although it is difficult to draw a general conclusion for all process engineering strategies, 

they are often applied to enhance thermodynamics and kinetics of the reaction. However, they 

often add development time and capital costs.  

 

10.2.2.4 Reaction engineering 
In both the case studies here reaction engineering has been important. In the case of ω-TAs 

several reaction engineering strategies has been possible. Chapter F showed both the importance 

and impact of careful donor selection (Gundersen et al., QKIL; Meier et al., QKIL). Furthermore, 

Chapter J investigated the use of organic solvents to increase yield. In Section II, the solvent used 

in CCS can greatly impact both thermodynamics (loading) and reaction kinetics. Arguably, for 

successful implementation, early and careful reaction engineering is paramount and can alleviate 

both thermodynamic and kinetic constraints, without adding any additional costs. 
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Table 10.1: Evaluation of biocatalytic implementation strategies 

Strategy Stabil ity Thermodynamics Kinetics 
Development 

time 
Capital 

Cost 
Operating 

costs 
Enzyme 

Engineering       
Enzyme 

Immobilization       
Process 

Engineering       
Reaction 

Engineering       
 

 Conclusion 
In conclusion, the results of this thesis indicate that early an integrated enzyme, process and 

reaction engineering is vital to success. Arguably, that this is not only true for the two case studies 

presented here, but to commercial biocatalytic process in general.  
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In recent years biocatalytic transamination using x-transaminase has become established as one of the
most interesting routes to synthesize chiral amines with a high enantiomeric purity, especially in the
pharmaceutical sector where the demand for such compounds is high. Nevertheless, one limitation for
successful implementation and scale-up is that the thermodynamics of such conversions are frequently
found unfavourable. Herein we report experimental measurements of apparent equilibrium constants for
several industrially relevant transamination reactions in a systematic manner to better understand the
effect of amine acceptor and donor choice. For example, we have found that ortho-substitution of ace-
tophenone like molecules, had a significant impact on the thermodynamic equilibrium. Likewise, the
effect of cyclic amine acceptors was evaluated and compared to similar non-cyclic structures. It was
found that an aliphatic six membered ring was favourable and a conjugated bicyclic five membered ring
structure, unfavourable. Finally, we evaluated and compared the use of five different donor molecules,
and calculated their DGapp values. This is particularly important in the further implementation of such
reactions because it may be used to help select suitable donor/acceptor combinations. The results pre-
sented here give guidance, with respect to thermodynamics, in order to further extend the application
of biocatalytic transamination.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biocatalysis, where one or more synthetic chemical reactions
are catalysed by enzymes, has over recent decades proved to be
a particularly powerful complement to conventional approaches
for the synthesis of chiral molecules, as illustrated by numerous
commercial processes.1 In particular the synthetic application of
biocatalysis capitalizes upon the excellent stereo- and regioselec-
tivity and mild reaction conditions of enzymes,2,3 implying a
potentially attractive synthesis of valuable chiral products.

One particularly interesting group of chiral products is optically
active amines, which are amongst the most important groups of
chiral molecules from a commercial perspective, with many inter-
esting pharmaceutical applications.3,4 There are several biocat-
alytic methods to produce optically active amines and one of the
most established methods uses the enzyme x-transaminase (x-
TA) (EC.2.6.1.18).5 The enzyme catalyses the transfer of an amine
group from an amine donor to an amine acceptor, yielding an

optically active amine target product and a non-chiral carbonyl
co-product (see Scheme 1).

Despite its applicability, the utilization of this enzyme is fre-
quently hampered by low reaction yields, often stemming from
the unfavourable thermodynamics of the respective couples of
substrates (amine acceptor and amine donor) and products (target
product and carbonyl co-product). Additionally, low yields can be
the result of biocatalyst related issues, such as enzyme inhibition
or instability of the enzyme. Such limitations can be overcome
by enzyme modification through protein engineering.6 However,
the thermodynamics of the reaction, which are very often found
to be the primary limitation, is independent of the enzyme
used to catalyse the reaction and therefore alternative solutions
need to be sought.7

http://dx.doi.org/10.1016/j.tetasy.2015.04.006
0957-4166/! 2015 Elsevier Ltd. All rights reserved.
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The thermodynamic yield of a reaction is influenced by the
structural and energetic differences between the couples of amine
donor/amine acceptor and the target product/carbonyl co-product,
respectively. Since the structure of the target product is deter-
mined by the structure of the acceptor molecule, chemical flexibil-
ity in the reaction is provided by the choice of amine donor alone.
Although in principle this means that a plethora of possible com-
pounds could be used as the donor, in practice, to date only a
few selected compounds have been used, or even tested, in large
part due to limited availability and poor enzyme specificity. With
this in mind, we reasoned that it would be useful to evaluate a
wider range of donors and in particular establish their effect on
the reaction thermodynamic yield. At the same time it is clear that
the influence of donor selection on the thermodynamic equilib-
rium is dependent upon the given acceptor molecule to be con-
verted. Hence we have also sought to understand the effect of
using different acceptors on the thermodynamics, with a given
donor molecule.

Although it is clear that overcoming thermodynamic constraints
is paramount for the successful implementation of x-transami-
nase-based processes,8,9 remarkably little information about reac-
tion thermodynamics has been reported in the scientific
literature, with a few exceptions.10,11 Herein, we report experimen-
tally determined concentration-based equilibrium constants (Keq

app)
for a variety of x-transaminase catalysed reactions. In each reac-
tion, we have chosen amine acceptor molecules in such a way as
to explore the influence of both substitution and the effect of ring
strain. Likewise various donors have been selected, for transamina-
tion with a given acceptor, to also understand the effect of different
donors on thermodynamic equilibrium. In Table 1 the various
donors and target products of all the reactions used herein are
listed. The corresponding amine acceptors can be derived from
these.

In order to simplify the interpretation of the results throughout,
we have kept either the donor, or the acceptor, molecule fixed and
changed the other reactant. Hence we have compared variable half
reactions. The alteration to a given molecule occurs on both the
reactant and product side. Hence, we are comparing a certain
structural change and the effect that has on both the reactant
and product side. For example, when comparing the reaction of
1b/2b with 1c/2c, substituting the fluorine for an alcohol has an
overall negative effect on the thermodynamic equilibrium of that
of half reaction, but does not indicate that 1b is more stable than
1c in isolation.

2. Results and discussion

2.1. Influence of amine acceptor

In initial experiments we sought to determine the effects of two
types of acceptor modification on the thermodynamic equilibrium.
In the first type we examined the effect of substituted aryl com-
pounds similar to those of acetophenone, by ortho-substitution to
investigate the effect of the substituent group. In the second type,
we explored the effect of ring strain between cyclohexane and
indane, compared to similar compounds in the absence of the ring
or just one ring, respectively.

2.1.1. Substitution in the acceptor molecule
Several acceptors 2a, 2b, 2c (see Table 1) were chosen to test in

x-transaminase catalysed reactions in order to understand the
effects of substitution at the ortho-position of the amine acceptor
on the measured apparent equilibrium constant.

The reaction equilibrium at completion was measured using
both 1a and 1e, as the amine donor, and variously substituted ace-
tophenone molecules as the acceptor.

We found the Keq
app of 2a with 1a and 1e to be 1 and 0.006. In

comparison the ortho-substituted compounds 2b and 2c gave
Keq

app of 2b: 1.8 and 0.1 and 2c: 0.3 and 0.01 with the same donors
1a and 1e, respectively. The results indicate that fluorine substitu-
tion gives a higher apparent equilibrium constant than hydroxyl
substitution in the ortho-position, and therefore is more favourable
for product formation. We postulate there is a higher fraction of
one of the stable un-reactive tautomers of the molecule, resulting
in a lower conversion. Previous work supports that a significant
fraction of such tautomers may exist in solution.5

Talwar et al.12 have used a cyclometallated iridium catalyst to
carry out the transfer reaction reporting 14 reactions with substi-
tuted acetophenones, where all of the substituted reactants have
either the same or higher isolated yields than acetophenone itself.
No strong electron donating substituents were used. Likewise, Paul
et al.13 report similar trends. Finally Tufvesson et al. have shown
that substitution may significantly impact thermodynamics of ace-
tophenone-like compounds.14 These published studies are qualita-
tive, support the results presented here.

2.1.2. Ring strain in the amine acceptor
A further aspect of interest in the acceptor molecules is the

effect of ring strain. Here the effect on the thermodynamic equilib-
rium might in some cases be easier to predict, since there is an
observed difference in the bond angles of the ketone of the amine
acceptor and the amine in the amine donor; approximately 120" to
109", respectively. In order to test this, we measured the apparent
equilibrium constant using 2d and 2f where we predict conversion
to 1d to be favourable and 1f to be unfavourable in comparison to
the respective non-cyclic structure, 2e, and monocyclic structure,
2a. In all cases, 1a was used as the amino donor.

In the reaction between 2d/1d, compared to 1e/2e, the ring has
a positive effect on the measured apparent equilibrium constant:
in this case the ring of the target product is less strained. We sug-
gest that this is caused by the formation of the cyclohexane with
six sp3 carbons, the most stable saturated hydrocarbon conforma-
tion, compared to the starting material with five sp3 carbons and
one sp2 carbon.

Likewise, 2f can be compared with 2a, with an additional five-
membered ring. Since the angle strain of the sp2 is stipulated to
be more favourable than the sp3 carbon of the product, this would
result in increased strain. However the amino donor in the reaction
pair 2f/1f would be less flexible and therefore more susceptible to
steric hindrance. We therefore considered that these two acceptors

Table 1
Structures of amine donors

NH2

R

*
NH2

NH2

NH2

*

NH2

*

O

NH2

OH*

1a-c 1d 1e

1f 1g 1h

(1a) R = H, (1b) o-F, (1c) o-OH, (1d) cyclohexylamine, (1e) iso-
propylamine, (1f) aminoindane, (1g) 3-amino-1-phenylbutane,
(1h) alanine. The corresponding amine acceptors are named
with the designation 2 followed by the same letter.

568 M. T. Gundersen et al. / Tetrahedron: Asymmetry 26 (2015) 567–570



would give similar apparent equilibrium values. Interestingly, the
results (Table 2) indicate that 2f gives an apparent equilibrium
constant of merely one hundredth of the value for 2a. These results
are also partially supported by the low observed conversion yields
in another study by Fesko et al.15

2.2. Influence of amine donor

Finally, we have compared the data from the experiments here
with some other data previously published to investigate the effect
of donor choice. As mentioned, the x-transaminase reaction is
used to produce a chiral amine, thus the structure of the amino
acceptor is determined solely by the structure of the desired prod-
uct. However, the amine donor may be freely selected and this will
clearly influence the apparent thermodynamic constant. Here we
have compared the measured apparent equilibrium constant of
five different donors (using acetophenone as the acceptor mole-
cule). Using these values, the DGapp of each reaction couple was
calculated. This is particularly interesting, because by comparing
the half reaction between each of these donor choices, it is possible
to use DGapp to estimate the impact of changing the donor in any
given reaction, where the DGapp or Keq

app is known for either one
of the donors listed in the table. The results are presented in
Table 3.

Out of the five compounds selected for testing, we found that
the Keq

app of the selected reaction varies by five orders of magnitude
from the most beneficial donor, 1a to the worst case alanine 1h.
Another reaction with alanine using 2f as the acceptor likewise
gave a very poor equilibrium constant of <10!4. These data clearly
indicate the strong influence of donor selection. Interestingly, two
of the donors are achiral 2d and 2e, offering an advantage econom-
ically (higher concentrations and less expensive starting material)
by avoiding an enantiomerically pure starting material.

3. Conclusion

The data reported here show interesting patterns for selection
of the amine acceptor and donor couples. The data presented in
Table 3 are potentially the basis for at least initial calculations of
reaction feasibility. Nevertheless the effects of substitution and
ring strain on the acceptor molecules reported here are not sup-
ported by all published data. For example, for ring strain, the oppo-
site trend was found by Talwar et al.12 This indicates not only the
difficulty of making effective measurements but also the need to
report a wider dataset.

The use of data such as those measured in the experiments
reported here are to enable an estimate of process feasibility, and
to establish if supplementary methods are required to achieve suffi-
ciently high reaction yields. For example, an excess of the amine
donor can be used (provided it is not inhibitory to the enzyme or dif-
ficult to separate downstream). Other possibilities include in situ
product removal or in situ co-product removal. Nevertheless, all
such schemes have operational limitations. For example, using an
in situ co-product removal approach to reach high reaction yields
by ‘pulling’ reactions towards the target product through removal
of the carbonyl co-product, by evaporation under reduced pressure2

or extraction into a second, organic solvent phase,9 is limited to
those cases in which the carbonyl co-product is significantly more
volatile or hydrophobic, respectively, than the amine acceptor.
Indeed, high selectivity in in situ product removal or in situ co-pro-
duct removal approaches is a prerequisite for effectively shifting
equilibrium. For this reason, careful choice of the amine donor and
acceptor pair, considering not just kinetics, but also thermodynam-
ics are important for further applications of the x-transaminase
reaction.

4. Experimental

4.1. Materials

All chemicals were of reagent grade or higher and purchased
from a chemical vendor and used without further alteration.
Enzymes ATA-42/ATA-81, were provided from c-LEcta GmbH
(Leipzig, Germany), ATA-42 was used for reactions 4 and 8 all other
reactions were carried out with ATA-81.

4.2. Reactions

All reactions were carried out in duplicate with a minimum of 3
different donor/acceptor concentrations between 2 mM and
10 mM, thus a minimum of 6 reactions for each reaction. All were
carried out at a 0.4 mL scale in 1.5 mL Eppendorf tube with: 1 mg/
mL lyophilized x-transaminase, 1 mM pyridoxal-50-phosphate, 2
to 10 mM substrate, 5% (v/v) DMSO in 0.1 M Tris–HCl buffer, pH
7. Equilibrium was reached by 48 h incubation in a thermoshaker
(HCL, Bovenden, Germany) at 30 "C with constant agitation
(400 rpm). Each reaction was carried out in duplicate, with dupli-
cate blank samples where enzyme activity was quenched by
NaOH before substrate addition, see analytical analysis below.

4.3. Analytical

After 48 h, the reaction was quenched by adding the aqueous
NaOH (5 M, 100 lL). 0.02 mL eternal standard solution (150 mM
4-bromo-acetophenone in DMSO) was added. An extraction was
carried out with 400 lL ethyl acetate. After separation the sample
was dried in magnesium sulfate. Furthermore 0.15 mL of the ethyl
acetate was transferred to a GC vial and derivatized by the addition
of 15 lL triethylamine and 10 lL acetic anhydride. Conversion was
measured by Gas chromatography on a Clarus 500 (Perkin–Elmer)
with a 25 m * 0.25 mm CP-Chirasil-Dex CB column (Agilent J&W
GC scientific). 2 lL sample was injected, with a thermal gradient
from 120 to 200 "C for 13 min, 1.4 mL/min He was used as a carrier
gas. FID detection was carried out at 250 "C.

4.4. Experimental set up for reactions: 1f/2f and 1 h/2 h

4.4.1. Materials
All chemicals were of reagent grade or higher and purchased

from a chemical vendor and used without alteration. The x-

Table 2
Effect on ring strain, using five- and six- membered rings, all using
1a as the donor

Acceptor Keq
app

2d 213
2e11 30
2f 0.01
2a 1

Table 3
Keq

app and DGapp for the acceptor 2a coupled to the donors; 1a, 1d, 1e, 1f, 1g or 1h

Donor Keq
app DGapp (kJ/mol)

1a 1 0
1d 6.0 * 10!3 13
1e11 3.3 * 10!2 8.6
1g 0.18 4.3
1h11 4.0 * 10!5 26
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transaminases from Vibrio fluvialis and Aspergillus terreus as
described and produced by Meadows et al.16 and Fesko et al.17

were used as cell-free Escherichia coli extracts.

4.4.2. Reactions
All reactions were carried out on a 5.0 mL scale in 10 mL screw-

capped glass vials containing 5 mM of the respective acceptor sub-
strate and amine donor in 50 mM potassium phosphate buffer pH
7.5 containing 0.1 mM pyridoxal-50-phosphate. As biocatalyst
1.25 mL cell-free extract containing the respective transaminase
was added resulting in final total protein concentrations of approx-
imately 10 mg/mL. The reactions were incubated on an IKA KS130
basic shaker at 28 "C with constant agitation (480 rpm). The reac-
tions were followed in time until the equilibrium was reached by
taking 250 lL samples, diluting and stopping by addition into
750 lL of a 1:1 mixture of acetonitrile and 0.5% (v/v) formic acid.

4.4.3. Analytical
All samples were analysed by HPLC on a Hypersil BDS C18 col-

umn (250 " 4.0 mm, I.D. 5 lm) and eluted with a gradient of
Eluent A (0.1% formic acid in water) and Eluent B (0.1% formic acid
in acetonitrile) from 97.5% A/2.5% B to 30% A/70% B in 10 min with
a flow of 1.0 mL/min at 40 "C and an injection volume of 5 lL.
Substrates and products were detected by UV at 256 nm and
210 nm and quantified based external standards of the respective
substrate and product compounds.
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A Practical and Fast Method To Predict the
Thermodynamic Preference of w-Transaminase-Based
Transformations
Robert J. Meier,*[a] Maria T. Gundersen,[b] John M. Woodley,[b] and Martin Sch¸rmann[a]

A simple, easy-to-use, and fast approach method is proposed
and validated that can predict whether a transaminase reaction
is thermodynamically unfavourable. This allowed us to de-
select, in the present case, at least 50% of the reactions be-
cause they were thermodynamically unfavourable as confirmed
by experiment. Once a larger data base is established, in silico
screening of several new reactions (new target molecules) can
easily be performed each day.

w-Transaminases (EC 2.6.1.18) have over the last decade
gained significant interest as biocatalysts to produce enantio-
pure chiral amines owing to their high selectivity and broad
substrate repertoire. If a prochiral amino acceptor undergoes
an aminotransferase reaction with an amino donor, the reac-
tion then yields an amine product and a keto co-product. w-
Transaminases can either be applied in the synthetic direction,
the main focus of this communication, or in kinetic resolu-
tion.[1] This provides a useful way to produce chiral amines for
pharmaceuticals or fine chemicals, as demonstrated by several
commercial applications.[2, 3] However, in practice several chal-
lenges are often encountered during process development
such as enzyme inhibition, poor substrate binding, and/or un-
favorable thermodynamics. To shift the equilibrium towards
product formation, one has to, in practice, often add an excess
amount of the amino donor and/or remove the co-product.

A common solution is to add an excess amount of the
amine donor;[4] however, the isolation of an amine product
from a reaction mixture still containing a large excess amount
of a chemically very similar amino donor represents a major
downstream processing challenge. Another possible solution is
to remove the co-product, either physically or chemically. A
simple strategy used if the co-product is volatile is to evapo-
rate it,[5] which thus physically removes it from the reaction.
Using isopropylamine as the amino donor in an excess amount
under reduced pressure, for instance, usually results in high
conversions towards the target product,[3, 5] but it can also lead

to the formation of a Schiff base of the amino donor with the
acceptor ketone and low atom efficiency on the amino donor
side or the requirement of large amino donor recycling
streams. Chemical strategies such as enzymatic cascades[6] and
the use of amine donors, which produce a co-product that un-
dergoes a spontaneous reaction,[7, 8] both efficiently convert the
co-product into another compound. The successfully applied
strategy to remove pyruvic acid as a co-product originating
from the amino-donor alanine (using enzymatic cascades by
employing lactate dehydrogenase coupled to glucose dehy-
drogenase) generally works well[6] but comes with the disad-
vantage of having to produce or purchase at least three en-
zymes instead of only one transaminase.

Whereas such protocols may be successful, they are not
always applicable on large scale and they always incur addi-
tional time in process development and additional costs for
the process itself. An alternative strategy could be the judi-
cious selection of the amino donor. Whereas the ketone sub-
strate is fixed to yield a particular product, as the correspond-
ing desired amine is given as the product, the amino donor
can be chosen freely. Consequently, the optimal scenario is to
identify an amino donor that gives a high equilibrium value
(towards the products). The opposite strategy is also valid, al-
though not as desirable, by using an amino donor that gives
a low equilibrium value (towards the substrates) such that a ki-
netic resolution can be effectively employed.[9] Of course the
multitude of amines available gives a plethora of possible reac-
tions. Therefore, to truly find the optimal reaction one must
perform numerous time- and cost-intensive experiments. Thus,
it would be preferential to have an in silico approach to pre-
dict the thermodynamic equilibrium with sufficient accuracy to
decide whether a particular substrate combination is suitable
for subsequent experimentation. In this way, the method pro-
posed herein identifies reactions by using amino donors to
give either high or low equilibrium values for potential use in
synthetic or resolution reactions, respectively. Intermediate
equilibrium values are eliminated. The rationale is therefore to
use such an in silico method to focus subsequent experiments,
for which more accurate thermodynamic and kinetic data will
be obtained to assist in the process design. Evidently, a favor-
able thermodynamic equilibrium does not imply that the
enzyme will be kinetically active towards the substrate. Steric
hindrance in the active site of the enzyme can prevent produc-
tive substrate binding and can also prevent a thermodynamic
equilibrium from actually being reached. Therefore, further ex-
periments are required to determine both enzyme kinetics and
inhibition for every transaminase/substrate couple.
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As the first stage in this procedure, in this paper, we present
a simple and straightforward method to predict the thermody-
namic equilibria for transaminase reactions. Ab initio calcula-
tions are widely used to calculate reaction (free) energies and
kinetic parameters of chemical reactions, but for enzymatic re-
actions this is less well developed. Our approach is based on
ab initio calculations of total energies of the molecules in-
volved. It allows a good prediction of the equilibria of trans-
aminase reactions. However, it should be noted that the key
strength of this approach lies with predicting whether or not
a reaction is thermodynamically favorable: hence, predicting
which combinations of acceptor and donor are thermodynami-
cally favorable. In this way, the approach can be used to elimi-
nate those reactions that will not give high conversion or alter-
natively identify those same reactions as good reactions for ki-
netic resolution. Furthermore, it must be considered that
whereas favorable thermodynamics are necessary for an effec-
tive reaction, they are not necessarily sufficient. Other factors
such as enzyme reactivity or inhibition may still prevent high
conversion from being reached. Thus, the proposed modeling
approach allows the elimination of thermodynamically highly
unfavorable reactions so that subsequent focus can be placed
on those for which the chances of success are highest. Further-
more, in practice often only a few amino donors are applied,
namely, 1-phenylethylamine (often referred to as a-methylben-
zylamine), isopropylamine, and alanine, and given that trans-
formations involving one of these are not always successful, it
would be highly interesting whilst developing process routes
to have a method that can effectively and efficiently look for
alternative donors that do allow for high conversion.

Computational procedures

The B3LYP hybrid density functional was used in combination
with a 6-311 + (d,p) basis set while using the Spartan10 pro-
gram.[10] With the transaminase transformation involving the
reaction between a ketone and an amine leading to another
ketone and another amine (Scheme 1), the ab initio calcula-
tions are applied to all four structures (structure optimization
or, equivalently, energy minimization). The energy difference
between the left-hand side and the right-hand side of the re-
action, that is, the reaction energy (DE), is straightforwardly
calculated from these four individual energies. If the energy is
negative, the reaction is favored in the synthetic direction, if
positive the reaction is not favored. This is a simplification, as
experimentally the equilibrium concentration can be converted
into a Gibbs free-energy (DG) value. In addition, in the present-
ed method we neglected the entropy contribution, solvent ef-
fects, and the influence of the dynamic nature of the struc-
tures. However, as is often in quantum calculations, if the sol-
vent and other experimental conditions (such as temperature

and pH) are kept the same in all experiments, a cancelation of
the contributions might be expected, which would lead to
a simple model involving molecular energies alone. The results
indicate that this applies in the current work.

The predicted conversion (K) was calculated by applying the
known expression [Eq. (1)]:

exp

✓
ˇDG

RT

◆
à K à âAäâBäâCäâDä Ö1Ü

for the reaction A + B!C + D, in which R is the gas constant
and T is the absolute temperature. Assuming we start with
equal amounts of A and B, we can rephrase this as [Eq. (2)]:

exp

✓
ˇDG

RT

◆
à K à x2

Ö1ˇxÜ2 Ö2Ü

This can be solved with the solution conversion [Eq. (3)]:
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1ˇ exp ˇ DG
RT

⇣ ⌘h i ⇥ 100% Ö3Ü

Validation of the method

The potential of ab initio calculations was evaluated for trans-
aminase reactions by comparing simulated values with experi-
mental data from the relevant scientific literature.[11–14] The re-
action yield was estimated by using a 1:1 ratio of donor/ac-
ceptor starting material. Calculated and experimentally ob-
tained values were compared, as shown in Figure 1 (see the
Supporting Information for the raw data). The data chosen for
the comparison were all run at low concentrations (under
100 mm), and the reported values were considered to be at
equilibrium, either stated by the authors or confirmed by nu-
merical comparisons, for which briefly DG of the reactions
were compared to uncover any inconsistencies in the reported
values.

The method predicts with high accuracy (within
⇡5 kJ molˇ1) low conversion yield reactions. Indeed, it can be
seen that experiments with less than 25 % conversion yield are
predicted to have conversions below 40 %. This highlights the
key aim of this method, that is, to eliminate thermodynamically
unfavorable reactions. The same trend is observed for very fa-
vorable reactions. It is interesting to note that many of the re-
actions that lie far from the line have a compound containing
an aryl group, either acetophenone, a well-known inhibitor for
this enzyme,[9] or a similar structure. However, this trend is not
observed for all reactions with these structures. It is, therefore,
probable that the error lies with the experimental results
rather than with the predictive method.

It is difficult, actually not realistic, to achieve ab initio molec-
ular energies, for example, heats of formation, that are accu-
rate within 4 kJ molˇ1.[16] Given that we look here at simple
transformations for which a ketone on the one molecule is ex-
changed for an amine on another molecule, one may expect

Scheme 1. General reaction scheme of w-transaminases. If R1à6 R2 and
R1,R2à6 H, the product is a chiral amine.
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that the accuracy of such an energy difference, namely, the re-
action energy for the reaction displayed in Scheme 1, is also of
the order of 4 kJ molˇ1. The impact of the accuracy
on the conversion is highly dependent on the abso-
lute value of the conversion indicated by the ellip-
soid in Figure 1. This is understandable, as a very sig-
nificant energy difference will, despite an error of
4 kJ molˇ1, still remain large and conversion will
remain close to 0 or close to 100 %, respectively. For
intermediate cases, for example, conversion of ap-
proximately 50 %, the effect of 4 kJ molˇ1 is roughly
20 % in conversion. This is confirmed by comparison
with the experimental data, save the data discussed
above.

Application of method

As mentioned above, the key feature of the approach
we propose is to predict whether a particular reac-
tion is thermodynamically unfavorable and, subse-
quently, to remove that reaction from the options.
This can be further extended into screening a large set of
donors for any given reaction. This may be particularly valua-
ble, as all that is required is to calculate the energy for each
compound once. The DE of the reaction consists of the sum of
the four individual energies from each compound in the reac-
tion. In this way, a set of donors can be applied to any desired
acceptor. For example, if we already have a set of 50 pairs cal-
culated, by just calculating the energies of one new amine–
ketone pair we immediately have the reaction energies of this
pair with 50 other pairs. Upon going through these 50 ener-
gies we can immediately eliminate those reactions that are
thermodynamically unfavorable and focus on those that have
a potential high conversion. Consequently, we can, in a practi-

cal case, run 4–8 new pairs overnight on a standard contempo-
rary laptop with 4 processors, and the next day we have 200–
400 new predicted conversion results.

In another practical example, we illustrate this on a small
scale. Most experimental work is very much dominated by the
use of relatively few amino donors, although the enzyme has
a relatively broad substrate specificity.[17] The donors alanine
(ALA), isopropylamine (IPA), and 1-phenylethylamine (PEA)
dominate the field. For example, PEA is one of the most gener-
ally accepted amino donors by w-transaminases; it is generally
thermodynamically favorable but is haunted by substrate and
product inhibition, which hampers scale up to high substrate
and product concentrations, as indicated above. In addition,
the substrate is chiral and thus either must be used as an opti-
cally pure compound or only half of the substrate can be used.
ALA, on the other hand, is easily obtained in an optically pure
form but inherently suffers from poor thermodynamics. From
this, we may see that using other donors can be favorable
under many settings. Therefore, by using our approach to find
other, thermodynamically favored amino donors would be
highly beneficial. Table 1 illustrates a hypothetical case study.
Four acceptors are evaluated with four suggested donors. As
an example, we show that two of these donors are not good
choices for the four ketones shown in the upper row of the
table, whereas PEA is effective in two out of the four cases.

The fourth donor, however, is predicted to give high yield for
three out of the four ketones. From this we can easily elimi-
nate reactions that will give a low conversion, and we can also
evaluate for which acceptor molecules a simple and economic
donor such as IPA may be sufficient. Likewise, we can find for
which acceptors a high reaction yield is difficult to obtain. In
such cases, we could either expand the donor selection or
select the reaction with the lowest yield and run the reaction
as a racemic resolution.

We proposed and validated, by application to 30 experimen-
tally known cases, a simple, easy-to-use, and fast approach to
predict whether a transaminase reaction is thermodynamically
unfavorable. This allowed us to deselect, in the present case,

Table 1. Predicted (quantum mechanics) conversion values from a 1:1 acceptor/donor
reaction.

Donors/acceptors

0.11 6.29 4.79 0.002

4.36 74.10 68.20 0.08

79.52 99.59 99.46 6.49

95.85 99.93 99.91 29.22

Figure 1. Comparison of predicted and measured conversions with a 1:1
donor/acceptor reaction. Data were extracted from i) Gundersen et al. ,[13] ii)
Gundersen et al. ,[11] iii) Tufvesson et al. ,[12] iv) Fesko et al. ,[14] and v) Meadows
et al.[15] The line represents a match between experimental and predicted
quantum mechanics (QM) values. The ellipsoid area gives an indication of
the error in the predicted conversion, assuming an error of 4 kJ molˇ1 in the
quantum-calculated reaction energy. The number in each point refers to the
reaction number, as listed in the Supporting Information.
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at least 50 % of the reactions because they turned out to be
thermodynamically unfavorable, as confirmed by experiment.
We showed that once a larger data base is established, one
can easily perform in silico screening of a dozen new reactions
(new target molecule) each day and directly assess which com-
binations with one of all the previously calculated amines
would be a suitable donor molecule for that new reaction.

Keywords: ab initio calculations · amines · biocatalysis ·
molecular modeling · transaminases
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 1 D1 A1 69.8 56.9 Gundersen[13] 

2 D2 A1 14.7 24.9 Gundersen[13] 
3 D1 A2 26.9 61.0 Gundersen[13] 
4 D1 A3 23.2 34.2 Gundersen[13] 
5 D2 A3 2.2 9.9 Gundersen[13] 

6 D3 A5 0.0 1.0 Gundersen[13] 
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9 D6 A7 20.5 29.8 Gundersen[13] 

10 D1 A8 36.0 41.4 Gundersen[11] 
11 D1 A9 99.4 95.5 Gundersen[11] 

12 D5 A9 62.8 85.0 Gundersen[11] 
13 D5 A8 0.7 13.7 Tufvesson[5] 
14 D1 A10 100.0 99.4 Tufvesson[12] 
15 D1 A11 98.8 84.6 Tufvesson[12] 
16 D6 A10 99.9 97.6 Tufvesson[12] 
17 D6 A11 95.6 53.7 Tufvesson[12] 

18 D6 A6 77.5 83.8 Tufvesson[12] 
19 D6 A12 98.4 98.9 Tufvesson[12] 
20 D3 A13 7.7 7 Meadows[15] 
21 D7 A13 94.9 95 Meadows[15] 
22 D1 A13 99.7 100 Meadows[15] 
23 D5 A14 93.1 34.5 Fesko[14] 

24 D1 A14 99.9 70.5 Fesko[14] 
25 D5 A15 9.3 29.2 Fesko[14] 
26 D1 A15 89.7 61.7 Fesko[14] 
27 D5 A16 7.2 21.0 Fesko[14] 
28 D1 A16 86.9 42.1 Fesko[14] 
29 D5 A17 19.4 35.2 Fesko[14] 

30 D1 A17 95.3 46.6 Fesko[14] 
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A Rapid Selection Procedure for Simple Commercial Implementation
of ω‑Transaminase Reactions
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ABSTRACT: A stepwise selection procedure is presented to quickly evaluate whether a given ω-transaminase reaction is
suitable for a so-called “simple” scale-up for fast industrial implementation. Here “simple” is defined as a system without the need
for extensive process development or specialized equipment. The procedure may be used when investment in intensive process
development cannot be justified or when rapid execution is paramount, for applications such as small singular batches. The three-
step evaluation procedure consists of: (1) thermodynamic assessment, (2) biocatalyst activity screening, and (3) determination of
product inhibition. The method is exemplified with experimental work focused on two products: 1-(4-bromophenyl)ethylamine
and (S)-(+)-3-amino-1-Boc-piperidine, synthesized from their corresponding pro-chiral ketones each with two alternative amine
donors, propan-2-amine, and 1-phenylethylamine. Each step of the method has a threshold value, which must be surpassed to
allow “simple” implementation, helping select suitable combinations of substrates, enzymes, and donors. One reaction pair, 1-
Boc-3-piperidone with propan-2-amine, met the criteria of the three-step selection procedure and was subsequently run at 25 mL
scale synthesizing (S)-(+)-3-amino-1-Boc-piperidine at concentrations up to 75 g/L. However, the highest product yield (70%)
was obtained at a lower substrate concentration of 50 g/L.

1. INTRODUCTION

Over the past decade, biocatalysis has become an established
and useful complement to conventional chemical catalysis for
the synthesis of fine chemicals. Most often, biocatalytic
methods have been selected due to exceptional selectivity
(regio- and/or enantioselectivity).1 In fact, the majority of
industrially applied biocatalytic reactions today yield optically
pure chiral products that are used in the fine chemical industry
as building blocks for agrochemicals and pharmaceuticals.2 In
particular, biocatalytic transamination chemistry has been
identified as one of the key emerging areas for the
pharmaceutical industry1,3 as a means of producing optically
pure chiral amines. This paper focuses on the biocatalytic
synthesis (and resolution) of chiral amines of high optical
purity using ω-transaminase (ω-TA) (E.C. 2.6.1.18), which is a
type of amino transferase. ω-TA was chosen as a catalyst for
this work due to its outstanding stereoselectivity and broad
ketone substrate repertoire. Two ω-TA-catalyzed paths are
available toward optically pure chiral amines, using either
asymmetric synthesis or kinetic resolution. Although the latter
is challenged by a maximum 50% yield,4−6 both are considered
as potential options for the “simple” scale-up.
ω-TA catalyzes an amino transfer reaction, illustrated in

Scheme 1. Briefly, in the synthetic direction (Scheme 1A) the
amino donor (an amine), and the amino acceptor (a prochiral
ketone), here referred to simply as the “donor” and “acceptor”,
respectively, react with the enzyme in a sequential fashion
producing the desired target chiral amine product and a
coproduct. Detailed descriptions of the sequential ping-pong bi-
bi enzymatic reaction mechanism can be found elsewhere.7,8 In
the resolution reaction (Scheme 1B) the same reaction takes
place, but now the amino donor is added as a racemic mixture.

Through reaction therefore, one isomer is left unreacted, which
becomes the desired optically pure product.
The amino moiety alone is transferred between the two

starting substrates, and therefore in the synthetic direction, the
molecular structure of the chiral product will be determined by
the structure of the acceptor molecule. This means that the
donor molecule can be freely chosen, since it neither affects the
target product structure nor the stereoselectivity. In principle
therefore, a plethora of possible donors could be chosen,
although in the scientific and patent literature only a handful of
amine donors have been reported. The authors have recently
proposed a novel quantum mechanical method to determine
the free energy of compounds and hence the thermodynamic
feasibility of using novel amino donors for this reaction type,
irrespective of kinetic considerations.9 This along with a wider
implementation of this technology in the future is likely to lead
to a broader range of different amino donors.
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Scheme 1. Examples of Potential ω-TA Reactions Using (A)
a Synthetic Route and (B) a Resolution Route
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Despite the interest in such reactions, they are often
demanding to implement on an industrial scale due to frequent
thermodynamic and kinetic challenges.10 While many technical
solutions are available to overcome these challenges, the
proposed solutions are frequently complex and often require
significant process development time. Indeed, for some
applications, a fast and simple process development is not
only desirable but may be essential for commercial success. In
these cases, it will be more important to rapidly develop a
simple process, than to obtain an economically optimal process.
Such situations include pharmaceutical synthesis in the early
phases of clinical testing and other cases such as small singular
batches, where investment in extensive process development
cannot be justified. Using this logic, and from a knowledge of
the properties of a given ω-transaminase-catalyzed reaction and
the available enzymes to catalyze the reaction, we reasoned that
it should be possible to categorize a particular reaction as
“complex” (requiring extensive development) or “simple” (with
easy implementation and scale-up). We therefore suggest that
an evaluation method allowing the identification and selection
of “simple” reactions (and eliminating the “complex” ones)
would prove a valuable tool for process chemists.
The scope of this manuscript is therefore to present a

stepwise decision-making procedure to quickly identify if a
“simple” scale-up is feasible for a given reaction. Hence,
solutions such as biocatalyst modification by protein engineer-
ing,10 amino donor recycling,11,12 and equilibrium shifting
methods13,14 have not been considered here. The three-step
decision-making procedure involves an evaluation of: (1)
thermodynamics, (2) biocatalyst activity, and (3) product
inhibition. Each step is evaluated against a threshold value,
which must be met in order to identify a given case as suitable
for “simple” implementation.

2. RESULTS
In order to exemplify the method, experimental data on two
chiral target products were evaluated, 1-(4-bromophenyl)-
ethylamine (5) and (S)-(+)-3-amino-1-Boc-piperidine (6).
These compounds were selected because both products are
commercially attractive and additionally biocatalytic trans-
aminations to synthesize both 515 and 611,16 have been
reported previously. In these reactions optical purity was
necessary and evaluated, but a specific stereoisomer was not
required. The prochiral ketone substrates, the amino acceptors,
4-bromoacetophenone (1) and 1-Boc-3-piperidone (2), corre-
sponding to the products above, were reacted with two possible
donor molecules propan-2-amine (3) and 1-phenylethylamine
(4) (Table 1). Both amino donors have frequently been used in
a wide variety of biocatalytic transamination. Between them,
they represent different classes of donor. For instance, donor 3
serves as an inexpensive achiral donor. In contrast amino donor
4 is a more costly chiral compound which has also been
reported to be inhibitory17 with downstream processing
complications due to separation issues when the product
shares structural similarity. However, donor 4 also offers a
significant thermodynamic advantage, since the carbonyl
coproduct, acetophenone (8) formation is highly favorable
(Table 1). Academically, a more common amino donor that has
often been reported is the use of alanine (or pyruvate for the
resolution reaction).4,18 We have previously shown that the
thermodynamics using this donor very strongly favors the
reverse resolution reaction,19 and therefore we have not
considered this further in this work.

2.1. Method Development. In order to enable rapid
evaluation, the three selection criteria are each assigned a
threshold value, which must be met to enable implementation
of a simple scale-up. The proposed procedure is outlined in
Figure 1. In the figure, full lines indicate that the reaction has
met (green lines) or failed (red lines) the individual criteria.
Likewise, dashed lines indicate an alternative strategy by

Table 1. Compounds Used in This Studya

aAcceptor ketones: 4-bromoacetophenone (1), 1-Boc-3-piperidone (2); amino donors: propan-2-amine (3), 1-phenylethylamine (chiral) (4); target
chiral amine products: 1-(4-bromophenyl)ethylamine (chiral) (5), 3-amino-1-boc-piperidine (chiral) (6); coproducts: acetone (7) and
acetophenone (8).
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adjusting one of the variable reaction components (the amino
donor or the biocatalyst). The threshold values for each
criterion are also indicated in the legend of Figure 1, the
justification for which is given in the following section.
2.1.1. Thermodynamic Assessment. Unfavorable thermody-

namics presents one of the main barriers to the implementation
of the transaminase−catalyzed reactions on an industrial scale.4

The thermodynamic equilibrium constant (Keq) of the reaction
is important since it determines the maximum reaction yield for
a given concentration of substrates. Thus, we reasoned it is one
of the most important parameters for determining the optimal
process configuration.6,13,20 For this reason, we suggest the first
step in the procedure should be to determine if a candidate
reaction has a suitable thermodynamic equilibrium constant to
make a “simple” scale-up feasible.
In the synthetic mode, thermodynamic feasibility is here

defined as a Keq above 1.0, since lower values of Keq would
require a high excess (more than 20-fold) of the amino donor
to obtain sufficient reaction yields (95% or higher), for eventual
industrial implementation. Use of such an excess makes the
reaction costly and practically difficult to carry out at high
substrate concentrations. In a similar way, we reasoned that for
reactions with a low Keq, a kinetic resolution would be a better
choice for the reaction. On the other hand, the resolution
reaction requires more stringent conversion requirements since
the separation of the amine product from the unreacted half of
the racemic donor starting material is of course quite
challenging. Hence we have chosen a Keq threshold of 0.02 in
the resolution direction, meaning only values lower than this
are suitable for a simple scale-up.
In this work, the concentration-based equilibrium constant

was experimentally determined using a previously described
method.20 Since the value is obtained for comparative purposes,
practical (rather than standard) conditions were used, meaning

it is more accurate to describe the constant as “apparent”,
Keq

app. In principle to save time as an alternative to
experimental measurement, in silico methods could be used
to estimate such values, although the accuracy is perhaps
questionable. Here the Keq

app for the two chiral amine products
5 and 6 were measured experimentally using the two donors 3
and 4, as described above. The Keq

app for the four reactions
(Table 2) varied by a factor of 104 from the most challenging

pair, 1 and 3, at 0.025 to the most favorable pair, 2 and 4, which
had a Keq

app of 450, in the synthetic direction. Thus,
thermodynamics is indeed highly variable between the four
selected reaction pairs. After applying the threshold criteria one
of the two products, 5, was eliminated from further
investigation. This may indicate that highly conjugated aryl
compounds are not suitable for simple scale up and should be
assisted by other process technologies and strategies. For
example, it has been reported that one of the compounds we
have used as a donor here 4, could also synthesized and
successfully scaled in combination with in situ product removal,
alleviating both the thermodynamic and inhibitory strains.14

None of the reaction pairs evaluated here was found suitable for
the resolution reaction, although alanine, the amine donor
often found most suited for resolutions reactions was not tested
as discussed previously.19

Clearly it is possible to carry forward more than one amine
donor to the subsequent evaluation steps, although this is not
helpful for the procedure, which aims to focus effort on those
cases with the biggest chance of simple scale-up success. In this
case, due to the low cost and high water solubility, amine donor
3 was selected for further evaluation.

2.1.2. Biocatalyst Activity Screening. No matter how
favorable the thermodynamics, without sufficient activity the
reaction will not be completed in a reasonable time, and issues
like enzyme inactivation may arise. Hence, the next step of the
procedure is to find a suitable biocatalyst with sufficient activity.
Candidates for biocatalyst screening can be obtained from
commercial screening kits or in-house enzymes. For the
“simple” scale-up, strategies such as protein engineering are
not considered. Low activity of an enzyme preparation will
negatively impact downstream processing, by adding extra
proteinaceous material which impedes product recovery.
Therefore, the maximum biocatalyst loading was set to 10%
v/v irrespective of the biocatalyst formulation. Additionally,
product concentration should be in the range of ≥50 g/L6,10 to
assist downstream product recovery. Finally, due to biocatalyst
stability concerns, we reasoned it necessary to complete the
reaction within 96 h. On this basis, we calculated a minimal
biocatalyst specific activity (sometimes termed “biocatalyst
productivity”), as a threshold value for the “simple” of 0.05 g/
g/h (g product/g biocatalyst/hour).
For this case study a small screen with four enzymes was

conducted, using the reactant pair 2 and 3 selected from the
previous section. In this screen four selected enzymes were
tested, two of which were known to be (R)-selective and two

Figure 1. Decision making procedure for a simple scale-up. Green
lines marked with a check mark or red lines marked with an X indicate
if a given criterion is met or not met, respectively. Dashed lines and
boxes indicate options for reassessment if a criterion is not met. Each
criteria has cut off values for simple implementation. 1. The
thermodynamic criteria is meet when Keq is less than 0.02 (resolution
reactions) or greater than 1 (synthetic direction). 2. The activity
criterion requires a specific activity greater than 0.05 g/g/h. 3. The
inhibition criteria is met at less than 50% activity loss, with 5% of
target concentration product present. Possible remediation options, if
a given criterion for a simple scale-up is not met, can be to consider an
alternate amino donor or test an alternative biocatalyst (dashed lines).

Table 2. Experimental Values for Keq
ap

donors

acceptors 3 4

1 0.025a 0.5
2 32 450

aData previously reported in ref 13.
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(S)-selective. We reasoned that for this case study the particular
stereoselectivity of the enzyme did not influence the overall
procedure. Additionally, since this screen was conducted with
an achiral amine donor and the pro-chiral ketone, the selectivity
of the enzyme would not affect the reactivity with these
substrates. The screen showed a large variation between the
least and most reactive candidates (Table 3). Details of the

individual enzymes (ATA-47, Tar0, Tar1, and Ars-ωTA) are
given in the experimental section of the paper. Tar0 was found
to give a specific activity of 0.003 g/g/h, whereas the best
candidate (ATA-47) gave a 20-fold higher value of 0.054 g/g/h.
ATA-47 was therefore carried to the next step. Likewise the
enzyme Ars-ωTA had a high specific activity of 0.048 g/g/h,
close to the threshold value.
2.1.3. Determination of Product Inhibition. The final step

of the procedure considers product inhibition of the enzyme,
which due to the requirement for high product concentrations
(50 g/L) in industrial processes,2 is a frequent hurdle for
process intensification of enzyme reactions in general, and ω-
TAs in particular.14 Hence, we set the threshold value here at a
50% reduction in reaction rate in the presence of 2.5 g/L
product, under the assay conditions used here (see
Experimental Section). Here only product inhibition is
assessed, since substrate inhibition can relatively easily be
overcome by substrate feeding.
In order to experimentally test for product inhibition, the

initial reaction rate of ATA-47 was measured using 100 mM 3
and 10 mM 2, in the presence of various concentrations of the
product 6, up to 10 mM. Importantly, the substrate
concentrations were chosen to avoid limiting the reaction by
thermodynamic constraints. Inhibition was observed with 10
mM product and amounted to a 10% initial rate reduction,
compared to initial conversion rates in the absence of product.
Initial conversion rates were assumed when less than 10% of
limiting starting material was converted.
2.1.4. Discussion. First, with respect to thermodynamics, the

procedure enables the elimination of unfavorable cases. Clearly
each donor or acceptor molecule has an associated free energy
which contributes to the net thermodynamics of a given
reaction. In this way for instance a comparison of the
equilibrium constants of two reactions (with different accept-
ors, but using the same donor) can be used to interpret the
effect of changing acceptors. In an analogous way, one could
determine the Keq for a given acceptor with one donor and
extrapolate the Keq to other donors with the same acceptor,
given one knows the difference in ΔG between the reactions, as
discussed elsewhere.19

Second, the biocatalyst activity is assessed, since low activity
will have drawbacks in the form of low space-time yields and
may prevent the reaction from going to completion due to
enzyme deactivation. One solution would be to apply high
biocatalyst concentration, but these may negatively impact
downstream processing by hindering product recovery. Thus,

the threshold for the enzyme is defined as minimum specific
activity, which for the “simple scale-up” was set at 0.05 g/g/h.
Biocatalyst recycle was not considered for the simple scale-up.
Finally a determination of product inhibition is carried out.

This is a frequent hurdle for process intensification of ω-TA’s,14

due to the high product concentrations (50 g/L) required to
simplify the product recovery.2 In contrast to the high
concentration intensity of commercial processes, enzymes are
designed to work under physiological (dilute) conditions. This
frequently leads to process intensification challenges with
biocatalytic reactions. For example transaminases display a
ping-pong bi-bi reaction mechanism, with two sequential half
reactions,8 and this type of reaction mechanism is often plagued
by inhibition from competitive dead-end complexes of products
bound to the apo-enzyme or the incorrect form of the holo-
enzyme. Hence, understanding the inhibition profile of a
potential product is vital in evaluating the possibility of a simple
scale-up. As such, we advocate that, if severe inhibitory effects
are observed with low product concentrations, it implies a high
risk of inhibition under process scale concentrations.
The three-step evaluation method has been successfully

applied to a case study, and one reaction pair with one
biocatalyst was deemed suitable for “simple” scale-up.

2.2. Intensification and Scale-Up. In the previous
sections, the selection procedure for a simple scale-up toward
the synthesis of 6 identified acceptor 2 with donor 3 (Scheme
2) using ATA-47 as suitable. In the event ATA-47 was

substituted by ArS-ωTA since the difference in activity was
negligable and the latter enzyme has been reported to have
excellent stereoselectivity.21,22

2.2.1. Reaction Optimization: pH and Donor Loading.
Prior to scale-up, a small optimization study was undertaken to
evaluate if reaction rates could be enhanced by simple
optimization within the biocatalyst stability range. A range of
pH and donor loadings was explored in an attempt to improve
kinetics, with both short (0.5−2 h) and long (18 h) reaction
times; the latter time point was chosen to investigate enzyme
stability under the given conditions.
The rate dependency on pH was tested between pH 7 and 9,

with 40 mM acceptor and 500 mM donor (Figure 2). Other
studies have found up to 40% variation in yield in this pH range
for similar reactions.23 Here the fastest reaction rates were
identified at pH 9 for all time points. The greatest difference
was found in the 18 h reaction times, where average reaction
rates are 45% faster at pH 9 compared with pH 7, indicating
that this is the best pH, within the pH range tested, with respect
to kinetics, and that the enzyme is more stable under these
conditions. Since the pKa of the amine donor 3 is 10.6,24

meaning a higher pH would render a higher fraction of the
substrate uncharged and thus reactive, in principle operating at
a higher pH would therefore be beneficial from the perspective

Table 3. Specific Activities Obtained with Reactant Pair 2
and 3, with Selected Enzymes

enzyme selectivity specific activity (g/g/h)

Ars-ωTA S 0.048
Tar0 R 0.003
Tar1 R 0.012
ATA 47 S 0.054

Scheme 2. Synthetic Transaminase Reaction Carried Outa

aCompounds: 1-Boc-3-piperidone (2), propan-2-amine (3), (S)-
(+)-3-amino-1-Boc-piperidine (S)-(+)-6), acetone (7).
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of the reaction rate. Nevertheless, in this study we limited the
pH range to keep the study simple and manageable, consistent
with the philosophy of this work, and therefore did not test the
reaction at higher pH values than 9.
Furthermore, the same method was used to determine

optimal donor loading. Donor concentrations could potentially
be limiting, dependent upon KM

12. Clearly an excess
concentration of the donor (over acceptor) could be used
which might also drive the equilibrium.23,25 This was tested
experimentally but at all concentrations tested, the rate was
unaffected by donor concentration (Figure 3), suggesting a KM
beneath 100 mM. For subsequent experiments 1 M 3 was used.

2.2.2. Reaction Intensification. As indicated above a viable
scale-up depends on reaction intensification (i.e., the synthesis
of high product concentrations).10 This is important in the
simple scale-up because too low a concentration will add
volume to the reaction and thus complicate the process. The
reaction of 2 and 3 using Ars-ωTA was therefore intensified by
increasing the substrate concentration up to 75 g/L. Three
reactions were done in scintillation vials at concentrations of
25, 50, and 75 g/L. The reactions proceeded smoothly (Figure
4) at both 25 g/L and 50 g/L but not at 75 g/L, the latter most
likely due to mass transfer limitations from low solubility and
decomposition of the starting material in aqueous conditions.
The latter was further investigated and confirmed (data not
shown). To the best of our knowledge no other study has

investigated the stability of this compound in water, either for
biocatalysis11 or chemical catalysis. In the 25 and 50 g/L
reactions final conversions of acceptor 2 to chiral amine target 6
of 70% were observed. Figure 5 shows that the initial reaction
rates are similar at all substrate concentrations tested, indicating
that the reaction is not kinetically controlled (above KM).

2.2.3. Product Identification. Finally, the reaction was run at
25 mL scale for 96 h to isolate product. At 50 g/L substrate
concentration the final reaction composition was analyzed to
contain 89% 6 and 11% 2 (with an isolated product yield of
around 70%). This composition is in excellent agreement with
that found in the 50 g/L 1 mL scintillation vial experiment,
which gave 91% target chiral amine 6 and 9% ketone 3, after 96
h.

3. CONCLUSION
A simple stepwise procedure has been described, to facilitate
the selection of suitable substrate-donor-enzyme combinations
to allow so-called “simple” scale-up. Each step in the procedure
has a threshold value which must be met to allow simple
implementation. We believe that this method will prove useful
both to select good candidates for this technology and to
eliminate those that may require further development. A simple
case study was used to illustrate the power of the procedure,
sequentially eliminating unsuitable substrates, donors, and
enzymes. Beyond this case study, we furthermore suggest that
analogous procedures could be used for the evaluation of other
“simple” biocatalytic processes.

Figure 2. Specific rates measured at four reaction time points at four
different reactions, each carried out at different pH values (pH 7.0, pH
7.5, pH 8, and pH 9 from left to right at each time point, respectively).

Figure 3. Specific rates found at four time intervals at four donor
concentrations (0.1, 0.5, 1, and 2 M from left to right at each time
point, respectively) used to investigate the optimal donor loading for
the reaction.

Figure 4. Reaction profile over 96 h with initial substrate
concentrations of 25, 50, and 75 g/L.

Figure 5. Initial product formation for the first 12 h of the reaction
with initial substrate concentrations of 25, 50, and 75 g/L.
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4. EXPERIMENTAL SECTION
4.1. Materials. Three plasmids encoding the enzymes, Tar0,

Tar1, and Ars-ωTA, were kindly provided by Professor NJ
Turner (University of Manchester, Manchester, UK). Tar0
encoded the ω-transaminase from Arthrobacter sp. KNK168
(Sequence 2 from US 7169592) inserted between the Nde I
and Xho I (with C-terminal His tag) site of pET21a (Accession
number ABN35871). Tar1 encoded ω-transaminase from
Arthrobacter sp. KNK168 (Sequence 110 from US 8293507,
Tar1) inserted between the Nde 1 and Xho 1 (with N-terminal
His tag) site of the pET16b (Accession number AFX11601).
Ars-ωTA encoded mutated ω-transaminase from Arthrobacter
citreus (Sequence 16 from US 7172885,) inserted between the
Nde 1 and Xho 1 (with C-terminal His tag) sites of the pET21a
(Accession number ABN37907). The commercial enzyme
ATA-47 (30902-2; activity 0.41 U/mg; batch LH1-01-02) was
purchased from c-LEcta GmbH (Leipzig, Germany).
Deionized water (18 Ω) was used for all experiments. All

chemicals where purchased from chemical vendors at reagent
grade or higher and used without modification. GC and NMR
solvents were of analytical grade, and products used for the
enzyme expression were of biological grade.
4.2. Methods. 4.2.1. Enzyme Expression. Section 2.2.1.

The plasmid that encodes Ars-ωTA with its C-terminal hexa-
histidine tag, was transformed into E. coli BL21 (DE3)
(Novagen from Merck KGaA, Darmstadt, Germany), using
standard procedures,26 and maintained with 100 μg/mL
ampicillin. Briefly, Ars-ωTA was expressed in autoinducing
medium as follows: a 1% glycerol stock inoculum was used to
inoculate 400 mL of ZYP-5052 medium.27 The culture was
incubated at 37 °C, shaking at 250 rpm for 24 h, in a Sartorius
Stedim CERTOMAT BS-1. The culture was centrifuged at
8000 rpm (Beckman Coulter Avanti J-26S XP centrifuge, JLA
8.1 rotor) at 4 °C for 30 min, the supernatant were decanted
and the cell pellet stored at −20 °C. The average yield was 9 g
pellet mass per liter of culture.
Sections 2.1.2, 2.2.2, and 2.2.3. A sample of 1 mL of E. coli

BL21 (DE3) expressing Ars-ωTA enzyme was inoculated in 50
mL vegetable peptone broth with 20 g/L glucose and 15 μg/
mL kanamycin and cultivated for 6−7 h at 37 °C, 250 rpm in a
rotary shaker incubator. This preculture was used to seed two 1
L fermentation vessels. Both fermenters were run with the same
fermentation procedure, which consisted of culturing the cells
in a sugar free semidefined base medium, controlled at pH 7.2,
30 °C, 20% dissolved oxygen, and feeding at a predefined linear
rate with base medium containing 400 g/L glucose from the
point of inoculation. The culture was induced when 100 OD600
was reached by the addition of 0.5 mM IPTG final
concentration and reduction in culture temperature to 25 °C.
Following 24 h elapsed fermentation time the feed rate was
reduced to a predefined constant rate until cell harvest at 41 h.
The final cell population reached 212 and 192 OD600, 80 and
81 g/L dry cell weight, respectively. A portion of 1 L of
fermentation broth from each reactor was harvested by
centrifugation at 6000 g for 35 min; the supernatant was
discarded, and the pellet was frozen at −80 °C.
Enzyme Purification. E. coli cells (25 g) expressing Ars-

ωTA were added to 250 mL 0.1 M phosphate buffer (pH 7)
and sonication at 2 °C. The lysate was concentrated by
ammonium sulfate to 50−60% ammonium sulfate fraction. The
precipitate was resuspended in 25 mL 0.1 M phosphate buffer
with 30 mM imidazole, and purified using a His-Trap (Ni-

NTA), Ars-ωTA was eluted with 500 mM imidazole. The
purified enzyme solution was exchanged into phosphate buffer
(0.1 M, pH 7) using an Amicon Ultra 15 Centrifugal filter (10
k) unit and SDS-PAGE analysis performed to confirm that the
Ars-ωTA had been purified (>85%) and concentrated (35 mg/
mL).

4.2.2. Reaction Conditions. Sections 2.1.1 and 2.1.3. Each
reaction, performed in duplicate, contained: 1 g L−1 ATA-47, 2
mM PLP, 5% DMSO, 0.1 M tris-HCl buffer pH 7.5, and up to
10 mM pro-chiral ketone acceptor 2 or 1.5 mM pro-chiral
ketone acceptor 1 together with 10 mM amino donor 4 or 100
mM 3, and was run for up to 48 h in 4 mL reaction vessels, at
30 °C in a thermos-shaker. Keq values were determined by
measuring conversion at varying concentrations of substrates
and products according to a previously described protocol.20

Inhibition studies were made by measuring initial rates (less
than 10% of the limiting substrate consumed), in the presence
of increasing product.

Section 2.2.1. All samples were carried out in 0.5 mL
reactions in a 96 well plate format. Short reactions of 30 min, 1
h, and 2 h were run with 20 g/L lyophilized cells of Ars-ωTA;
the 18 h reactions were run with 2 g/L lyophilized cells. All
reactions were run with 10 g/L acceptor 2 in 0.1 M Tris-HCl
buffer. The pH optimum was tested at pH’s 7, 7.5, 8, and 9,
with 0.5 M donor 3. Donor optimization was tested with
concentrations of donor 3 of 0.1, 0.5, 1, and 2 M, carried out at
pH 7.5. All experiments were carried out in triplicate.

Section 2.2.2. Reactions were done at 1 mL scale in a 96 well
plate, with 11 identical reactions per substrate concentration.
The reaction contained 0.1 M Tris-HCl buffer pH 9.0 with 0.4
g/L purified Ars-ωTA, 0.5 M donor 3, 0.1 g/L PLP, 5−10%
DMSO, and 25, 50, or 75 g/L pro-chiral acceptor 2. The
reaction was agitated 250 rpm at 25 °C. Samples were taken at
regular time points throughout the experiment.

Section 2.2.3. Reactions were performed at 25 mL scale in
an Easymax vessel, which was stirred at 400 rpm, maintained at
25 °C, with substrate concentrations of 25 and 50 g/L.
Otherwise the composition in the reactor was identical to that
described in section 2.2.2.

Section: 2.1.2. Experiments were carried out by resuspend-
ing 500 mg wet cells in 4.75 mL of 500 mM 3 hydrochloride,
50 mM potassium phosphate buffer pH 7.0, and shaking in an
orbital shaker at 250 rpm, maintained at 30 °C, for 30 min. 0.25
mL of a 200 g/L solution of pro-chiral ketone acceptor 2 in
DMSO was added and the reaction returned to the shaker for
18 h. Reactions were analyzed by GC. The activity for ATA-47
was extrapolated from rates measured in the experiments
carried out as described in sections 2.1.1 and 2.1.3.

4.2.3. Product Isolation. Section 2.2.3. The pH of the
reaction was adjusted to 13 with 5 M NaOH and extracted with
MTBE (3 × 20 mL). The combined organic extracts were
filtered through Celite to remove emulsion and dried (MgSO4),
filtered, and concentrated in vacuo. Being volatile, the excess
amine donor 3 was removed with the organic solvents during
concentration.

4.2.4. Work up of Samples for Analysis. Sections 2.1.1 and
2.1.3. The analytical samples were prepared as follows; 0.1 mL
of sample was added to 0.4 mL of 1 M NaOH with 10 mM
dibenzyl ether as external standard. The compounds were
extracted with 0.3 mL of MTBE, and the organic layer was
dried with anhydrous MgSO4, which was removed by
centrifugation.
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Section 2.2.1. The sample was mixed for indicated time at
700 rpm, 30 °C. Samples were sacrificed by addition of 0.5 mL
MeCN and spun down. 0.2 mL of the supernatant was
transferred to a new plate with 0.8 mL of MeCN and MgSO4.
Finally 0.5 mL was transferred to an analysis plate and
derivatized with 15 μL of Et3N and 10 μL of Ac2O, preceding
analysis.
Sections 2.1.2 and 2.2.2. A 1 mL reaction was mixed

thoroughly with 9.0 mL MeCN containing 4.5 mg/mL dibenzyl
ether. 1.0 mL of this mixture was put in a GC vial and
derivatized with 30 μL of Et3N/20 μL of Ac2O prior to GC
analysis (Chiraldex Dex-CB column 25 m × 0.25 mm × 0.25
μm, oven temp 170 °C for 15 min, Carrier He @ 20 psi,
injector/detector 200 °C). Quenched 50 g/L and 75 g/L
reactions were further diluted 1:1 with MeCN prior to
derivatization and analysis.
Section 2.2.3. 100 μL of the reaction was removed and

diluted with MeCN (900 μL). This mixture was derivatized
with 30 μL of Et3N/20 μL of Ac2O and analyzed by GC.
4.2.5. Analytical. Sections 2.1.1 and 2.1.3. All analytical

work was carried out with gas chromatography, with a
PerkinElmer (Santa Clara, CA, USA) Clarus 500 apparatus,
with PerkinElmer Elite-5 column. 1 μL was injected with a 30:1
split ratio and ran with a constant flow rate of 1.6 mL min−1

helium with a temperature gradient from at 120 to 230 °C.
Sections 2.1.2, 2.2.1, 2.2.2, and 2.2.3. Chiraldex Dex-CB

column 25 m × 0.25 mm × 0.25 μm, oven temp. 170 °C for 15
min, carrier He @ 20 psi, injector/detector 200 °C.
4.3. 1H NMR of Isolated Product. N-Boc-3-amino-

piperidine 1H NMR (400 MHz, CD3OD) 3.96 (1H, m), 3.82
(1H, m), 2.78 (1H, br), 2.67 (1H, m), 2.60 (1H, br s), 1.91
(1H, m), 1.67 (1H, m), 1.44 (9H, s), 1.40 (1H, m), 1.26 (1H,
m).
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Abstract 

The enzyme carbonic anhydrase is an enzyme known to enhance CO2 absorption rates. However, for economic viability in 
enzyme based absorption technology long term stability under process relevant conditions is needed. Thus, here enzyme stability 
for extended times are investigated with respect to pH, temperature and solvent. Temperatures and pH stability were tested for up 
to 100 hours incubation and the enzyme was temperature stable up to 60 °C and in the pH range from 7 to 11, with some residual 
activity between pH 5 and 12. Furthermore, enzyme stability was tested for 7 different capture solvents for 150 days, at 1 M or 3 
M solvent concentrations, 40 °C and pH between 8-9 and 10. Residual activity was found with all samples ranging from 12 to 91 
% of the initial activity. This study show that this enzyme can indeed be used for extended periods in process relevant conditions, 
and thus shows promise for industrial implementation as a catalyst in carbon capture. 
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1. Introduction 

The enzyme carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes CO2 fixation in nature, by hydrating CO2 to 
bicarbonate (Figure 1). The reaction is catalyzed by a divalent zinc ion in the active site of the enzyme. CA is one of 
the fastest enzymatic reactions known, with reaction rates up to 106 s-1[1]. The enzyme originates from a number of 
different sources and it has developed several times through convergent evolution. In fact five different enzyme 
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classes which display little resemblance to each other, save the dependence on the zinc ion, are currently known[1]. 
Early research on the enzyme was focused on mammalian sources of the enzyme [2,3]. However, for industrial 
applications, such as carbon capture, today much focus has shifted towards microbial sources especially enzymes 
from thermophiles which often yield higher stability[1].  

 

Figure 1. Carbonic anhydrase hydrolysis of carbon dioxide 

To enable industrial implementation of CA in PCCC, it is vital that the enzyme is both stable and kinetically active 
under operating conditions. A recent review of thermostable enzymes[1] highlights the advances made in this field. 
However, in this study we take a holistic view of the process where a developmental enzyme supplied by 
Novozymes, is evaluated both in terms of temperature, pH and solvent loading stability for extended periods of time. 
All these factors will have a cumulative impact on enzyme deactivation during an actual process, making it 
important to understand the combined effects. It is important to note that the formulation of the enzyme may vary, to 
be used either as free enzymes, immobilized enzymes or particles, which all add benefits and drawbacks, not 
discussed here. Nonetheless, it is clear that the volume of CO2 from an average power plant demands large capture 
equipment, thus any change in the capture set up, such as changing the solvent or enzyme packing will involve large 
capital and labor costs, and should therefore be avoided for as long as possible. Thus the enzymes used in such 
systems must be stable for long periods of time under operating conditions. In addition enzymes can only account 
for a small fraction of the overall cost of the capture process, since the cost of the technology must compete with 
current carbon taxes. The total cost of the process will also encompass solvents, stripping, compression and storage 
costs. To that extent a supplier which can deliver large quantities of enzymes at low costs, like we find in 
applications such as detergents and textile industry is needed for an economically viable process.  

 
Nomenclature 

AIB 2-Aminoisobutyric acid 
AMP 2-Amino-2-methyl-1-propanol 
CA Carbonic anhydrase (Enzyme) 
MAPA 3-(Methylamino)propylamine 
MDEA N-Methyldiethanolamine 
MEA Monoethanolamine 
PCCC post-combustion carbon capture 
PNP 4-nitrophenyl acetate 

 
 

2. Experimental 

2.1. Materials 

A developmental carbonic anhydrase of microbial origin was supplied by Novozymes A/S, Denmark in the form of 
a cell-free brown liquid. All other materials used were of reagent quality and purchased from chemical vendors.  
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2.2. Methods 

2.2.1. Sample preparation  
 
pH samples was prepared with a 0.2 M boric acid, 0.05 M citric acid and 0.1 M tertiary sodium phosphate 

complex buffer[4] suitable for the entire range of pH’s tested.  
 
Temperature tests were conducted with 0.1 M Tris-HCl buffer, pH 7.6, a Good buffer, which has a small pH 

change with temperature change.  
 
Solvent solution was prepared by adding 1 M or 3 M in MilliQ water, and the pH adjusted by bubbling in CO2 gas 

or by 6 M HCl solution.  
 
Three separate vials of 3 mL solution were prepared for each sample described above, 2 % enzyme solution was 

added to two of the vials and the third was kept as a blank. The samples were then incubated as descried in the 
results section in a thermoshaker, at 450 rpm.   

 
2.2.2 Activity assay 

 
Activity was measured by a modified assay by Chirică and colleagues[5], Figure 2. Each sample was tested by 

adding 0.1 M Tris-HCl buffer, pH 7.6, in a plastic cuvette, 10 μL sample or blank was added, the sample was then 
left to equilibrate for at least 1 hour, and then 10 μL para-nitro-phenyl (PNP) solution (54.3 mg PNP in 3 mL 
acetonitrile) was added. The samples were mixed by inverting samples covered with parafilm twice. Each sample set 
ran in parallel contained two blank samples and three reaction samples. Absorption was recorded at 348 nM for 320 
s, and the activity was determined from the slope of the absorption between 60 s and 300 s, subtracting the slope of 
the blank samples. The samples containing MEA and MAPA/MDEA had a high background absorption, thus the 
sample preparation was modified: 0.05 mL sample or blank was added to 0.45 mL 0.1 M Tris-HCl buffer, pH 7.6, in 
centricon vial 10 kDa cut off, spun down at 14,000 rpm for 10 min, 0.5 mL new buffer was added, the process was 
repeated 3 times. 0.1 mL of this sample was added to 0.9 mL buffer and the procedure was followed as indicated 
above.  

 
Figure 2. Experimental set up. 2 % CA solution in 3 mL test condition. 10 μL sample transferred to a 1 mM p-nitrophenyl (PNP) solution, color 
change (348 nm) detected over 5 min.  All activities are % residual activity compared to initial activity under identical conditions 
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3. Results and Discussion 

The study here evaluates the applicability of enzymes in PCCC. Enzyme stability was evaluated using an activated 
ester assay; PNP. Which measures the hydrolysis on the ester; this induces a color change. It should however be 
noted that the activity on this substrate may not accurately correspond to CO2 hydrolysis rates.  For this reason we 
do not report the activity values nor do we compare reaction rates between different samples in this study, with 
different pH’s or solvents. Thus, here only the residual activity of the enzyme, under identical conditions, where 
background activity is thoroughly controlled for, is measured. In a PCCC application the conditions over the course 
of the process will vary with respect to temperature and pH (the pH drops as CO2 is absorped in the solvent), in 
addition the solvent can both be varied in type and concentration. We therefore examine these three variables 
singularly and finally we compare the additive effects of the parameters, illustrated in Figure 3.    

 

 
Figure 3. Example of varying pH and temperatures of the solvent in a typical post combustion solvent based capture process. 

 
3.1 pH stability 
 

pH stability was evaluated by measuring residual activity after 100 hours incubation at the respective pH at room 
temperature in the pH range from 4 to 12, with increments of 1 pH unit. Where only the pH values above pH 7 are 
initially interesting for PCCC applications, since below this pH the hydration rate of the reaction is strongly 
reduced[6]. Results are shown in Figure 4. No activity was detected after 100 hours at pH 4 and moderate activity 
(45-70 %) with pH’s 5, 6 and 12. The enzyme proved stable in the pH range from 7 to 11 after 100 hours incubation. 
This defines the operating space for enzymes, and furthermore the maximal and minimal loading of any given 
solvent. Dependent on the solvent chosen this will also determine the maximum and minimum CO2 loading used, 
since the pH of the solvent will depend on the loading.   
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Figure 4. Residual activity after 100hours of incubation at pH 4 to 12 

 
3.2 Temperature stability 

Temperature stability was evaluated in a range from 50-80 °C, and the enzyme was found to have residual 
activity for at temperatures for up to 48 hours (Table 1), but the activity was drastically reduced at higher 
temperatures. In addition some experiments were made to recover activity from the high temperature experiments 
(70 °C and 80 °C) by incubating the samples at lower temperatures for some time before measuring the sample 
again (data not shown). From this up to 10 % activity was regained. After 48 and 72 hours no activity remained 
from the temperatures 80 °C and 70 °C, respectively. It should be noted that the accuracy of these values may be 
questionable as the activity is increasing over time with the 50 °C sample; this is likely due to the increased internal 
energy of the enzyme at the higher temperature, which in turn results in higher reaction kinetics. This may be an 
artifact stemming from that the activity assay was taken too soon after the enzyme was taken from the incubation 
temperature. This was corrected in later experiments below. Furthermore, this may suggest that some of the other 
residual activity values may be lower than the reported values. Nonetheless, the results give an indication that the 
enzyme is stable under operating conditions. The results correlate well with results found with other engineered 
CA’s [1], which have been found to be stable at high temperatures. For example Codexis has previously engineered a 
thermostable enzyme, which retained 40 % activity after 40 hours incubation at 75 °C, comparable to what is found 
here[1]. In addition another engineered CA was found to retain up to 54 % residual activity after 2 hours incubation 
at 80 °C[7]. Thus, our results are comparable to the former results, indicating that the enzyme is stable at 
temperatures up to 60 °C for extended periods of time, although these results demonstrate that if the enzyme is to be 
exposed to temperatures above 70 °C, this must be limited to short periods of time. In practical terms this means that 
this enzyme is unlikely to survive a treatment in a reboiler for example.  

 
 

Table 1. Residual activity after incubation at temperatures from 50 to 80 °C for up to 100 hours. All results are given in % 
residual activity 

 Time (hours) 

T (°C) 1.5 25 48 72 100 

50 105 121 132 196 280 

60 84 87 64 66 74 

70 47 41 49 36 0 

80 7 9 2 0 0 
 

0%

20%

40%

60%

80%

100%

120%

4 6 8 10 12

A
ct

iv
ity

 a
fte

r 1
00

 h
ou

rs
 (%

) 

pH 



 Maria T Gundersen et al.  /  Energy Procedia   63  ( 2014 )  624 – 632 629

3.3 Long term solvents stability  

Here we also present a long term stability study, tested for 150 days, which is to the best of our knowledge the 
longest stability test under process relevant conditions for PCCC to date. The study was undertaken at two pH 
values and 7 different solvents, either using 1 M or 3 M concentrations. This was done in order to evaluate if the 
enzyme could be used long-term under operating conditions. The results show that the enzyme was highly stable for 
extended periods of time. The solvents tested were chosen as they were previously proven to be useful in CO2 
capture. Specifically the primary amine solvent MEA as it has been reported as a candidate for industrial 
applications, and is single most commonly used solvent[8], and thus serves as a good benchmarking solvent. It has 
excellent absorption rates, it is however haunted by problems such as corrosion, low stability, and high energy 
needed for desorption. AMP, MDEA and MAPA/MDEA have all shown great promise in CO2 absorption, but with 
slightly lower absorption rates, thus they are good candidates for enzyme activation. AIB was previously shown to 
have higher desorption rates than MEA at 80 °C, but slower absorption rates[9], thus it serves as a good target for 
enzyme enhanced technologies, in addition AIB had higher solubility than other comparable amino acids like 
alanine. Potassium carbonate (K2CO3) has been used in enzyme based[10] and chemically enhanced[11] carbon capture 
on several occasions, and has the advantages of favorable thermodynamics and lowered desorption temperature, 
however a drawback with this solvent is lowered solubility. Finally the solvent AC was used as a cheap and 
available source of ammonium. Results for activity are showed in Table 2. All data points illustrate that activity is 
lost over time and a higher deactivation is found with a higher pH. Furthermore there is a negative correlation 
between pKa (calculated) values and stability. Finally the activity was compared after 100 hours and 150 days, to 
evaluate if a short term study could efficiently reveal which solvents were stable long the long term. The results 
correlated poorly and we conclude that within this data set a prediction of long term stability cannot be made from 
short term studies.   
 

Table 2. Remaining activity after 5 and 150 days 
Solvent  

(concentration) pH Residual Activity  
5 days (%) 

Residual Activity 
150 days (%) 

MEA (3M) 
8.3 95 ±  0.4 73 ±1 0.8 

10 76 ± 1.8 33 ± 4.8 

AMP (3M) 
9 99 ± 0.3 42 ± 1.6 

10 104 ± 7.7 12 ± 0.6 

MDEA (3M) 
9 92 ± 2.8 62 ± 4.0 

10 91 ± 3.0 54 ± 2.5 

AIB (3M) 
8 106 ± 4.9 91 ± 3.0 

10 95 ± 0.1 35 ± 0.9 

K2CO3 (1M) 
8 116 ± 6.8 83 ± 3.6 

10 85 ± 1.2 29 ± 2.4 

MAPA (1M)/ MDEA (2M) 
8.6 86 ± 10.3 85 ± 0.5 

10 99 ± 4.8 69 ± 4.4 

AC (3M) 
8 99 ± 4.8 71 ± 5.1 

10 100 ± 4.7 22 ± 3.4 
 

However as seen from Figure 5, a correlation was found between deactivation and pKa values. In comparison higher 
pKa values has previously been found to have a positive effect on solvent kinetics[12]. This suggests that a 
compromise might be made on implementation between enzyme activity and stability. However in the case of CA it 
it has been known since the 1930’s that buffers and solvents can have more severe impacts on the catalytic activity 
of CA[2], albeit of mammalian source, thus the actual enchanced activity with the solvents should be investigated in 
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detail. Such work has been carried out on several occasions, in particular Haritos and colleagues has investigated 
enzyme enhanced CO2 capture in a stirred cell reactor, where a rate enhancement was found with all eleven solvents 
tested[10]. This gives further evidence that the enzyme may indeed enhance reaction rates for CC applications. It 
should be noted however that at times higher enzyme stability can be associated with lower reaction rates[13].  

 
 

 

Figure 5. Correlation between pKa and long term (150 days) stability. Pka values were predicted with the software ChemDraw 

3.4 Additive effects on stability 

Finally, we have investigated the addititve effects of solvent strength and temperature with the solvents NACl, 
K2CO3, AMP and MDEA, Table 3. From these experiments we did not find a significant impact either by altering 
the concentation of the solvent or the temperature. When analyzing these results with the results we see that the two 
factors pH and solvent type seems to have a significant impact on enzyme stability but temperatures upto 50 °C and 
molar concentrations up to 3 M had no significant impact.  

 

Table 3. Residual activity of CA after 100 hours with varying temperature and solvent 
 concentration with the solvents, NaCl, K2CO3 , AMP and MDEA. 

Solvent 1 M, 25 °C 1 M, 50 °C 3 M, 25 °C 3 M, 50 °C 

NaCl 76% 91% 90% 78% 

K2CO3 125% 100% 63% 80% 

AMP 91% 87% 70% 79% 

MDEA  88% 89% 83% 75% 
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4. Conclusion 

We have evaluated enzyme stability in terms of pH, temperature and solvents, the latter at different 
concentrations and types of solvents, and the effect of these three factors added together. The carbonic anhydrase 
used here, showed long term stability for some, but not all process relevant conditions. In conclusion the findings in 
this paper hint potential future application of CA for use in PCCC applications.  
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Abstract 

 
Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient 
solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures 
encountered in the stripper column, which can deactivate the enzymes. One solution to this challenge is the use of ultrafiltration to 
retain the enzyme in the absorber unit. In this report, a base case of a CCS facility is used to model the impact of such membranes 
for use in a full scale CCS commercial plant. The base case has an approximate capture capacity of 1 MTonn CO2/year, and is here 
operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without 
the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme 
retention is the amount of enzyme that is retained in the absorption column in each cycle. These membranes were modeled with 
five stripper temperatures 60 °C, 70 °C, 80 °C, 90 °C and above 100 °C. Enzyme deactivation follows a 1st order rate and increases 
with increasing temperatures. It was found that for all stripper temperatures used in this model, deactivation rates were too high for 
continuous operation over 1 year, without adding additional enzyme, if an activity of at least 50% should be maintained. With 
increasing stripper temperatures the membrane retention requirement increased. To retain over 50% activity over a whole year at 
70 °C stripper temperature required a membrane of 90% or higher enzyme retention, at stripper temperatures of 90 °C a membrane 
of 99.9% retention was required for the same result. Finally, it was investigated if stripper temperatures over 100 °C, where instant 
deactivation was modeled could be used. It was found that with enzyme retention of 99.9%, with instant deactivation, after 1 month 
50% of the activity is lost. Thus the use of membranes in enzyme enhanced CCS might be restricted to temperatures below 100 °C, 
or temperatures the enzyme can withstand for shorter time periods.   
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1. introduction 

To limit further climate change, atmospheric CO2 among other greenhouse gases must be reduced.  One option for 
doing so is carbon capture and storage (CCS). This paper will focus on enzyme enhanced CCS, using carbonic 
anhydrase (CA) EC 4.2.1.1. Enzymes are beneficial for such processes since they enhance reaction rates, especially 
for bicarbonate forming solvents1. However, enzymes are not designed to operate under process conditions 
encountered in a CCS capture facility. Therefore one of the challenges encountered when using enzymes in such 
processes is the stability under these conditions, where enzymes may lose activity over time. Previous work has 
explored this by investigating the stability of one CA, especially suitable for CCS in terms of pH, temperature and 
solvent type at CCS relevant conditions. Although, the enzyme in question was significantly more stable than most 
enzymes under such conditions, long term studies (over several months)  found that the enzyme was sensitive to higher 
temperatures2,3.  Here the impact of these results, if these enzymes were to be used on an industrial scale, are 
investigated by modeling the stability of such enzymes in a theoretical commercial plant. Enzyme stability within a 
model framework for stripper temperatures ranging from 60 °C to over 100 °C compared for soluble enzymes with 
and without the implementation of ultra-filtration membranes. The membranes are explored with enzyme retentions 
up to 99.9%. The results are modeled for 1 year continuous operation of the facility.   
 
The enzyme CA catalyzes hydration of CO2 into bicarbonate (Reaction 1). It is therefore particularly useful in solvents 
which form bicarbonate, such as tertiary and hindered amines, and carbonate salts. These types of solvents have the 
advantage in that they have relatively low energy for desorption requirements, compared to solvents like primary 
amines, because they do not form covalent bonds with the absorbed CO2. However, they are often impeded by slow 
absorption kinetics, which can either result in poor capture capacity or increased operating and capital costs due to a 
bigger absorber column. The addition of CA or another catalyst can alleviate this effect by enhancing reaction kinetics. 
Just like a conventional chemical catalyst, the enzyme does not change the thermodynamics of the reaction, it simply 
speeds up the reaction rate. This publication does not investigate reaction kinetics, since excellent examples of this 
can be found in literature4–6.   
 
Reaction 1:  

ଶܱܥ  ଷିܱܥܪଶܱ՞ܪ   ାܪ
 
 
 

Nomenclature 

CCS  Carbon capture and storage 
CA  Carbonic Anhydrase 

 

2. Model framework 

The base case is defined in Table 1 and illustrated in Figure 1, this is based on some publically available data 
from the Boundary Dam CCS facility, and is supplemented with informa tion from experts in the field. 
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Flue-gas in

Flue gas out storage Lean solvent (low CO2 conc.)

Rich solvent (high CO2 conc.)

D
A Absorber column

Desorber column
DA

Reboiler
 

Figure 1: A typical solvent based carbon capture process. The flue gas enters the bottom of the absorber, a lean solvent (blue) counter 
currently reacts with the gas. At the base the rich solvent (red) is passed through a heat exchanger before it enters the desorber column. 
The CO2 is the stripped from the gas and the lean solvent is regenerated. It will again pass through the heat exchanger before it re-
enters the absorber column.  
 

Table 1: Base case data, with a solvent volume of 2060 tonne, and a flow rate of 2000          
tonne/hr.  

 Residence time 
(min) 

Absorber 11,4 
Stripper 5,3 
Hold-up 45,1 
Total 61,8 

 

Deactivation rates 
The enzyme deactivation rates were obtained from previously published data2, and follow first order reaction 
rates according to the following formula  

௧ܣ ൌ  ݁ି௧ǡܣ�
Where At is the activity remaining at a certain time point, Ai is initial activity (100%) ,k is the deactivation 
rate constant and t is the time at that time point. 
 

  Table 2: Deactivation with temperature 

Temperature (°C) 50 60 70 80 90 
Deactivation rate (h-1) 0 0.003 0.0054 0.0536 0.3860 

 
In addition a stripping temperature above 100 °C was used in the calculations, instant enzyme deactivation is 
assumed.  
 
Ultra-filtration membranes  
Ultra-filtration membranes used in this study were calculated to have an enzyme retention of 90%, 99% and 
99.9%. Furthermore the membrane flux was calculated for two specific membranes from the commercial 
membrane producer Alfa Laval, Table 3.  
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       Table 3: Properties of commercial membranes used in this model. 
Type Selectivity (%) Water permeability 

(L/m2*h*bar) 
Source 

Commercial 90 50 Alfa Laval 
Commercial 99,9 400 Alfa Laval 

 
 

3. Results 

 
Enzymes can be used in a CCS facility by simply adding soluble enzyme to the solvent, and run the facility 
as before, as described in figure 1. This method of adding enzymes provides the maximal effect of the enzyme 
in terms of catalytic rates due to the lowest mass transfer limitations. For example, when enzymes are 
immobilized mass transfer limitations increase because the enzymes are not dispersed  in the liquid. In fact it 
has been found that enzymes immobilized on packing is not a viable option for enz yme enhances CCS, due to 
mass transfer limitations4. In addition, this set-up enables the enzymes to catalyse both absorption and 
desorption. Finally, it has the lowest capital and operational costs since no additional cost for membranes and 
compression are added. However, as investigated in previous work, the enzyme deactivates at a significant 
rate at higher temperatures2. Therefore, the stability of such enzymes are investigated at different operating 
temperatures with the base case CCS facility outlined above. Enzyme viability is calculated, in terms of 
residual activity in a continuous operating power plant for one year. Here five different stripper temperatures 
were used, 60 °C, 70 °C, 80 °C,  90 °C and above 100 °C. It was assumed that absorption is done at a lower 
temperature and enzyme activity loss is limited, therefore deactivation is only occurring in the stripper. The 
reduced deactivation at lower temperatures has been reported in scientific literature2,3. Figure 2 outlines trends 
over a time period of one year, from initial activity (100%). From this figure it can be observed that significant 
activity loss is found after a few minutes with the highest temperature (100 °C). However, some enzyme 
activity still remains after 1 year with the two lowest temperatures. In this model we have assumed a uniform 
temperature in the stripper unit. It was also tested if a non-uniform temperature model, where parts of the 
stripper were warmer and colder than the bulk solvent, would influence the outcome of the m odel. From this 
we see a slight decrease in stability, but the results follow the same general trends as the data in Figure 2 (data 
not shown). 
 

 
Figure 2: Residual enzyme activity after one year with five operating temperatures  
in the stripper: 60 °C (blue diamond), 70 °C (red squares), 80 °C (green triangles),  
90 °C (purple circles) and over 100 °C (light blue dashes). 
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Furthermore, the use of an ultrafiltration unit was considered. Here the rich solvent will be passed over an 
ultrafiltration membrane where a limited amount of enzyme will pass through. The enzyme which does not 
pass through the membrane is then shuttled back to the absorption column with 10 % of the rich solvent. 
Figure 3).  The stability of the enzymes of this process depends on the amount of enzyme which passes through 
the membrane and the temperature the enzyme is exposed to in the stripper.  
 

Lean solvent (low CO2 conc.)

Rich solvent (high CO2 conc.)

Optional enzyme recycle

D
A Absorber column

Desorber column
DA

 
Figure 3: One possible set-up of an ultrafiltration unit in a CCS facility. The process is similar to that which is described above (Figure 1). However, 
the rich solvent will be passed through an ultrafiltration device where most of the solvent will pass through, and some of the rich solvent will be 
diverted back to the lean solvent with the enzymes, not passing through the desorber column.  
 
 
Here three membranes with enzyme retentions of 99.9%, 99% and 90% are used for the calculations, and 
compared with soluble enzyme. The rate of deactivation of the enzymes which pass through the membrane 
and experience the conditions in the stripper unit are calculated using five different stripper temperatures 60 
°C, 70 °C, 80 °C, 90 °C and above 100 °C. The comparison of the models can be found in Figure 4: a, b, c, d 
and e, respectively. It is observed that the efficiency of the membrane has a significant impact on the enzyme 
viability. The membrane with the poorest enzyme retention (90%) has only a small impact on enzyme viability 
for all temperatures above 70 °C. For stripping temperatures over 70 °C membranes with higher selectivity 
preform significantly better. The membrane with the highest selectivity (99.9% selectivity) preforms well at 
temperatures up to and including 90 °C. Finally, it was investigated if temperatures above 100 °C, where 
instant deactivation is assumed, is a viable option with the use of ultrafiltration. Without the use of 
ultrafiltration membranes all activity is lost within 1 hour of operation. Although the use of membranes, 
especially the membrane with the highest enzyme retention at 99.9% significantly increases the life span of 
the enzymes, high activity loss is still observed.  50% of the activity is lost after 1 month and after 6 months 
only 1% activity remains.  
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a 

 
b       c 

 
d        e 

 
Figure 4: Effect of enzyme stability, measured by residual activity over time, of ultrafiltration enzyme separation wit h various stripper 
temperatures: (a) 60 °C, (b) 70 °C, (c) 80 °C, (d) 90 °C, (e) over °100 C (instant deactivation). Membrane retention for all figures: Blue 
diamond: No membrane, Red squares: 90% retention, Green triangles: 99% retention and Purple circles 99.9% retention.   
 

0%

20%

40%

60%

80%

100%

0 100 200 300

R
es

id
ua

l A
ct

iv
ity

 (%
)

Time (days)

0%

20%

40%

60%

80%

100%

0 100 200 300

R
es

id
ua

l A
ct

iv
ity

 (%
)

Time (days)

0%

20%

40%

60%

80%

100%

0 100 200 300

R
es

id
ua

l A
ct

iv
ity

 (%
)

Time (days)

0%

20%

40%

60%

80%

100%

0 100 200 300

R
es

id
ua

l A
ct

iv
ity

 (%
)

Time (days)

0%

20%

40%

60%

80%

100%

0 100 200 300

R
es

id
ua

l A
ct

iv
ity

 (%
)

Time (days)



 Maria T. Gundersen et al.  /  Energy Procedia   114  ( 2017 )  735 – 743 741

Discussion 
 
Enzymes can enhance the absorption rate of CO2 into kinetically limited solvents, such as tertiary amines and 
carbonate salts3,5,7. However, enzymes are often limited in CCS applications due to thermal stability, which 
is problematic due to the high temperatures encountered in the stripper unit. We have therefor e explored the 
use of ultrafiltration units in comparison to free enzymes in solution. T here are two key issues that makes a 
CCS process challenging to operate compared to other applications where enzymes are used. Firstly , the scale 
of a CCS facility must be kept in mind. In the base case used in this paper the addition of only 1% enzyme 
would be 20 tonnes enzymes. Thus, the cost of the enzyme would be a significant contribution. Secondly, the 
number of cycles should be kept in mind. This base case has a 1 hour cycle time, which equates to almost 
9000 cycles per year. Thus the addition of enzymes on regular intervals would significantly dil ute the solvent, 
and would likely over time change physical properties of the solvent, such as the viscosity. Figure 2 indicates 
how such a process would look like with a solubilized enzyme without the use of any ultrafiltration units. 
With the deactivation rates indicated here, it was found that even with the lowest stripper temperature 60 °C, 
enzymes must be added 3 times a year to maintain an activity over 50% of initial activity. When the 
temperature increases this trend intensifies, such that at stripper temperatures of 80 °C, enzyme must be added 
60 times in a year to maintain the same activity of 50% or higher.  As discussed above this does not only add 
costs to the process, but it also poses a practical problem with solvent dilution, and increas ed enzyme 
concentrations.  

One solution could be the use of an ultrafiltration membrane unit, which restricts the enzymes in one 
area of the process, the absorber, so the enzymes does not enter the high temperature areas of the stripper .  
This means enzyme deactivation is minimized. Here, calculations have been carried out with 3 enzyme 
retentions, 90%, 99% and 99.9%. Operated at the same five stripper temperatures as outlined above from 60 
°C to above 100 °C. In the scenario described here, 10% of the rich solvent stream is diverted while the 
majority of the enzymes are diverted back to the lean solvent, thus not being regenerated. The non-retained 
enzyme, will pass through the stripper column and deactivate at the same rate as the soluble enzyme. It should 
be noted that such a set-up poses several disadvantages. Firstly, 10% of the solvent is not regenerated, thus 
the capacity of each cycle and the overall capacity of the facility is reduced by 10%. Furthermore, the kinetic 
penalty of such a set-up is likely to be higher than 10%, since the reaction rates in the absorber decreases with 
loading.  

Our calculations show that the 90% enzyme retention membrane works well up to 70 °C , with 
temperatures above that more stringent requirements set for the enzyme retention capacity. Furthermore, it 
was found that ultrafiltration is only suitable when a deactivation process is taking place. In the calculations 
above 100 °C, where instant deactivation was, even the 99.9% membrane is not suitable for long term use, 
without replenishing enzymes. This is due to the high number of cycles in such a process as discussed above. 
Practically, this means that primary amines, such as monoethanolamine, frequently used as solvents in CCS, 
may not be suitable solvents with enzyme enhanced CCS, since stripper temperatures above 120 °C are used 
for this type of enzyme retention. Nonetheless, using other methods such as enzyme immobilization in the 
absorber column, might still be attractive. Furthermore, it indicates that the use of a conventional reboiler in 
a set-up as described here might be unsuitable, shown in Figure 1. One could rather envision using a stripper 
set-up with vacuum, steam or a combination of the two. Indeed such setups has been applied in practice with 
success in enzyme enhanced CCS8.  

It is clear from the results in Figure 4, that the use of a membrane with a higher enzyme retention has 
a better performance with respect to retention of enzyme activity. However, increased enzyme retention often 
comes at a cost. The capital costs of such membranes are likely to be higher, and it would be expected that 
they are more difficult to produce and maintain at a high level of perfection, since any tear/leak would be 
detrimental to enzyme activity at higher stripping temperatures. In addition the flux of the membranes should 
be considered, since it will influence the membrane size needed for such a setup. Table 4 indicates the 
membrane size needed to maintain the target flux of two commercial membranes . In addition, for an efficient 
ultrafiltration, it is needed to operate with a higher pressure, here a pressure of 4 bar has been used.  In fact, 
it has been stated the cost of cross-flow ultrafiltration is dominated by membrane replacement and pumping 9.  
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Table 4: Required membrane sizes of ultrafiltration membranes used in this study, operated at 4 Bar, with a flux of  
2.1*106 L/h.  

Type Selectivity Water permeability 
(L/m2*h*bar) 

Membrane size 
(m2) 

Source 

Commercial 90 50 10600 Alfa Laval 
Commercial 99,9 400 1330 Alfa Laval 

 
The calculated membrane sizes are relatively high. However such setups are uses commercially in other industries 

such as the water purification industry. Where numerous membrane units are connected in series. As such the 
membrane sizes estimated here would be feasible for such a set-up.  

 
 
Conclusion:  

 
The use of ultrafiltration in enzyme enhanced CCS was evaluated.  A model using three different enzyme retention 
membranes was used in combination with five different stripper temperatures. It was found that to retain over 50% 
activity for one year an ultrafiltration unit was required in all cases tested here. With higher the stripper temperatures 
the requirement for the membrane selectivity increased. For the highest temperature, where instant deactivation was 
assumed, the most selective membrane with 99.9% enzyme retention, did not meet the requirement.  Thus, the use of 
enzyme enhanced CCS might be restricted to temperatures below 100 °C, or temperatures the enzyme can with stand 
for shorter time periods, if the use of ultrafiltration units are in use. 
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