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ABSTRACT 

Study objectives: The current definition of sleep arousals neglects to address the diversity of arousals 

and their systemic cohesion. Autonomic arousals (AA) are autonomic activations often associated with 

cortical arousals (CA), but they may also occur in isolation in relation to a respiratory event, a leg 

movement event or spontaneously, without any other physiological associations. AA should be 

acknowledged as essential events to understand and explore the systemic implications of arousals.  

Methods: We developed an automatic AA detection algorithm based on intelligent feature selection and 

advanced machine learning using the electrocardiogram. The model was trained and tested with respect to 

CA systematically scored in 258 (181 training size/77 test size) polysomnographic recordings from the 

Wisconsin Sleep Cohort. 

Results: A precision value of 0.72 and a sensitivity of 0.63 were achieved when evaluated with respect to 

CA. Further analysis indicated that 81% of the non-CA-associated AAs were associated with leg 

movement (38%) or respiratory (43%) events. 

Conclusions: The presented algorithm shows good performance when considering that more than 80% of 

the false positives (FP) found by the detection algorithm appeared in relation to either leg movement or 

respiratory events. This indicates that most FP constitute autonomic activations that are indistinguishable 

from those with cortical cohesion. The proposed algorithm provides an automatic system trained in a 

clinical environment, which can be utilized to analyse the systemic and clinical impacts of arousals. 

Keywords: Autonomic arousals, Heart rate variability, electrocardiography, neural networks 
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STATEMENT OF SIGNIFICANCE  

Autonomic arousals have been postulated to be related to the cardiovascular and neurocognitive 

dysfunction associated with sleep-disordered breathing, independent of their relation to cortical arousals. 

However, most studies to date have explored experimentally-induced autonomic arousals only in 

healthy/control populations. We developed an arousal detector that can learn the complex decision-

making patterns of human scorers through application of state-of-the-art machine learning to the 

polysomnogram’s RR tachogram in a population-based sample, with a variety of sleep disorders. The 

finding that many autonomic arousals were associated with leg movement or breathing events, despite a 

lack of an electroencephalographic correlates, suggests that future explorations of the pathophysiologic 

consequences of autonomic arousals may help to improve management of patients with sleep-disordered 

breathing.
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INTRODUCTION 

Arousals in sleep are naturally occurring micro-events, which reflect the reversibility of sleep. Despite 

their vital function, arousals have been found to be associated with the pathophysiology of several sleep 

disorders. 

1
 The American Academy of Sleep Medicine (AASM) states that scoring of arousals must be 

attained through electroencephalographic (EEG) analysis, and cannot be based on alternative bio-signals 

alone. 

2
 However, this definition neglects to address the diversity of arousals and their systemic cohesion. 

In fact, experimentally induced sleep fragmentation has shown evidence of autonomic arousals (AA) 

without EEG correlates. 

3,4
 Moreover, in studies intentionally limiting the number of cortical arousals 

(CA), AA were sufficient to diminish the restorative value of sleep in healthy individuals. 

5
 Moreover, in 

clinical populations, obstructive breathing events and snoring have been associated with AA, even in the 

absence of CA. 

6,7
 To date a complete analysis of the physiological impacts of naturally occurring AA in a 

clinical setting is still missing. Before this can be achieved, however, there is an unmet need for agreeing 

on the manifestations of AA and a clear definition of them.  

Analysis of heart rate variability (HRV) has been used for decades to assess changes in the autonomic 

nervous system (ANS), which maps the balance between the parasympathetic nervous system (PNS) and 

sympathetic nervous system (SNS). HRV has been used as the primary marker of the systemic 

manifestation of CA, 

1,4,7-11
 
8
 
9
 
10

 
110and has the potential to shed new light on the systemic impacts of arousals and 

sleep fragmentation, through more meaningful associations with clinical outcomes. Furthermore, it is 

widely known that manual scoring of arousals has low inter-scorer agreement, 

11
 it is time-consuming, and 

expensive. There is an unmet need for the development of automatic systems to substitute or assist human 

scorers in the scoring process such that a consistent, objective, and fast analysis can be achieved.  

Very few attempts at automatic detection of HRV-based arousals have been made. Basner et al. (2007) 

addressed this problem by presenting a semi-automatic electrocardiographic (ECG)-based arousal 

detection algorithm. 

10
 The algorithm could detect 68% of CA, however, as mentioned above the criteria 
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for CA may be insufficient for capturing all the electrophysiological changes that define an arousal. 

Furthermore, the algorithm was trained and tested in a setup where external stimuli were introduced to 

provoke arousal, therefore, it is uncertain how well it would behave in a clinical environment. Finally, the 

RR tachogram required editing by visual inspection, thus the algorithm was only semi-automatic.  

Pillar et al. (2002) and Pillar et al. (2003) introduced and elaborated, respectively, on the use of a rule-

based method to detect AA using peripheral arterial tonometry (PAT) recordings from subjects suffering 

from obstructive sleep apnea. 

12,13
 A correlation of 0.82 and 0.87, respectively, was achieved between such 

events and CA. Although the method is demonstrated in a clinical environment, only people with 

obstructive sleep apnea were considered, thereby limiting its application in broader populations, e.g. 

people with leg movements. Furthermore, the method relies on PAT recordings, which are not routinely 

performed, thereby limiting its applications.  

The purpose of this study is to use the existing gold-standard diagnostic method – the polysomnogram 

(PSG) and manually or automatically scored sleep stage data - to develop an automatic detection 

algorithm for the detection of AA in a clinical setting, i.e. from subjects suffering from a variety of sleep 

disorders and heart diseases. We adapted the approach of modelling and detecting autonomic behaviour 

during CA, 

10,12
 since CA have shown significant correlation with autonomic activations and their 

cohesion occur with consistent onset. 

4,9,10
 It is important to note that even without an EEG change that is 

sufficient for scoring an arousal by the AASM criteria, 

2
 EEG spectral power density has been noted to 

change in association with the physiologically important sympathetic surges that cause AA. 

5,7
 The 

detection algorithm performance will be measured against the current gold standard of EEG-based 

arousals (according to the AASM criteria), but will also be compared to other physiologically relevant 

sleep-disorder phenomena, to determine if ANS analysis may provide an alternative, complementary 

metric of sleep health. 
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METHODS 

A. Datasets 

As none of the databases available had all the required annotations to allow the development of both an 

automatic ectopic beat and arousal detection algorithms, two distinct databases were used. Sample size 

and demographics information for both databases is presented in Table 1. 

The MIT BIH arrhythmia database (MITDB) was chosen to develop a functional ectopic beat detection 

algorithm. The MITDB includes a subset of 46 thirty-minute recordings from over 4,000 long-term Holter 

recordings that were collected between 1975 and 1979 by the Beth Israel Hospital Arrhythmia 

Laboratory. 

14
 The 23 first recordings, i.e. 100-124, are considered to represent usual variations in heart 

rhythm encountered at a routine arrhythmia clinic. 20 of these 23 recordings were used for the 

development, training and testing of an ectopic beat detection algorithm, and 3 were excluded due to the 

presence of paced beats. Inclusion criteria were limited to focus on the most common types of ectopic 

beats, i.e. atrial premature beats (APB) and ventricular premature beats (VPB).  

The Wisconsin Sleep Cohort (WSC)  

15
 was used to develop, train and test our new arousal detection 

algorithm. The WSC is a longitudinal study of population-based sample of randomly selected Wisconsin 

state employees, a subset of who are suffering from a variety of sleep pathologies ranging from normal to 

severe cases. These recordings have all been annotated by either of two specialized medical personnel for 

sleep stages, respiratory events, leg movement events and arousals according to the AASM criteria. 

2
 

Furthermore, a subgroup of 306 randomly selected recordings from the WSC were annotated with arousal 

subgroup to indicate if they appeared spontaneously or in response to a respiratory or a leg movement 

event. 48 recordings were excluded from the study if more than 50% of the ECG-channel had signal loss. 

The remaining 258 recordings were included for AA algorithm training and testing. Therefore, the 

subjects included in this study were randomly selected and were not excluded based on any medication or 
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medical comorbidity. The University of Wisconsin-Madison Health Sciences and Stanford University 

Institutional Review Boards approved the study (Stanford #19207). 

B. Signal Acquisition 

The MITDB provides ECG data in lead 2 configuration along with another lead of varying type. Clearly, 

more ECG leads improve classification, however, the WSC recordings follow standard PSG requirements 

provided by the AASM, 

2
 thus only lead 2 configuration was used from both databases.  

The ECG signal in the WSC was digitized with a sampling frequency, fs, of 200 Hz, while in the MITDB, 

fs = 360 Hz. In the WSC, Grass Comet montages were used with a pre-bandpass filter of 0.3-35 Hz. In the 

MITDB, a pre-filter of 0.1-100 Hz was used.  

 

AUTOMATIC RR TACHOGRAM EXTRACTION ALGORITHM 

The RR tachogram directly presents information on duration and variation between heart beats, i.e. the 

HRV, and contains the necessary information to identify AA. Our automatic RR tachogram extraction 

algorithm includes an initial bandpass filtering of the ECG signal followed by three processing 

submodules: a R peak detection, an artifact detection, and an ectopic beat detection module. An artifact 

free and ectopic beat free RR tachogram was then extracted by cubic spline interpolation and resampling. 

The first block receives the bandpass filtered ECG signal, xn, and the output of the algorithm module was 

the RR tachogram (Figure 1). Specifics of the automatic RR tachogram extraction algorithm can be found 

in the supplemental materials. 
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AUTOMATIC AROUSAL DETECTION SYSTEM 

Our automatic arousal detection system includes pre-processing, feature extraction, classification and 

post-processing of features from 3 modalities: The ECG, the RR tachogram and hypnogram. An overview 

of the automatic arousal detection algorithm is presented in Figure 2. 

A. Pre-processing 

All modalities considered for feature extraction are first processed using a pre-processing module, where 

segments are evaluated for removal if the heart rhythm is too unstable. Criteria for an unstable heart 

rhythm was inspired by Kleiger et al. (2005)  

16
 and any 30 s segment contained more than 20% ectopic 

beats (found as described in the previous section) and/or atrial fibrillation (AF) were discarded and were 

not evaluated for feature extraction. Detection of AF was carried out using the algorithm of Petrenas et al. 

(2015). 

17
 All other segments were included for feature extraction. 

B. Feature extraction  

In all prior work, HRV features have been developed for screening purposes. Consequently, they were 

extracted from long time segments, often 5 min or longer, and compared between different groups of 

subjects. 

18
 CA introduce activations of the autonomic system that occur spontaneously. The HRV features 

we seek must therefore be adapted to have a good time resolution so that we could capture abrupt shifts in 

autonomic balance. For this reason, we selected a sliding window with overlap, such that a time 

resolution of 1 s was achieved. Specifically, the SDNN feature (see Table 2) was extracted from 0-30 s 

and assigned to time bin 15, and from 1-31 s and assigned to time bin 16, etc. Table 2 shows features 

extracted from the ECG, RR tachogram, and hypnogram, along with window lengths that have been used 

to compute them. References to original work(s) where they were used for sleep related detection tasks 

are provided. All features were interpolated to match the 1 s time bins used for classification.  
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1) CWT Features: Spectral features of the RR tachogram approximate the balance of ANS. 

18
 Inclusion of 

these features was important, since arousals are associated with an activation of the SNS. Spectral 

features were extracted with the continuous wavelet transformation (CWT), using the morlet wavelet, 

since it has been shown to map changes in ANS well. 

19
 Ten levels of decomposition using two number of 

voices per octave created a satisfactory frequency resolution to fit usual frequency bands used for HRV 

analysis, which is: very low frequency (VLF): 0.0033-0.04 Hz, low frequency (LF): 0.04-0.15 Hz, high 

frequency: 0.15-0.4 Hz, and total power (TP): 0.0033-0.4 Hz. 

18
  

2) Hjorth Parameters: The definition of arousals clearly states that during REM sleep, arousal scoring 

must be accompanied by muscle activation. 

2
 Muscle activations may introduce movement artifacts, which 

inflict and corrupt recorded signals during PSG. This apparent movement artifact can however also be 

utilised as a descriptive feature. In this study, Hjorth parameters were introduced to extract artifactual 

movements from the ECG signal. Hjorth parameters are a set of non-linear parameters that describe 

different degree of signal complexity: Activity is the variance of the signal; Mobility can be interpreted as 

the mean frequency; Complexity is the change of mean frequency. 

20
 

3) Sleep stages: Sleep stages were annotated in 30 s epochs and were translated into features by the one-

hot representation. This representation has been widely used in machine learning, and works by 

translating a categorical class into a set of numerical parameters by assigning 1 for the present category 

and 0 for all other categories. 

21
 The AASM definition clearly distinguishes arousals by sleep stages, 

which makes sleep stages a natural choice to include as a feature. 

2
 In recent years, HRV features have 

shown to be useful for the classification of sleep stages. 

22,23
 We elected to collect all NREM stages in one 

feature, firstly because most HRV feature-based sleep stage classification algorithms are not sufficiently 

performing to distinguish the different NREM sleep stages, and secondly because the arousal definition 

provided by the AASM does not distinguish arousals emerging from different NREM sleep stages.  
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4) Time Domain: Time domain features serve to give contextual information about variability and 

dynamics of the heart rate. 

18
 Apart from traditional time domain features (Number 1-11 Table 2), 4 

additional features were extracted (Number 12-15 Table 2), the mean average deviation (MAD), and a 

novel feature developed and assigned with the name median signed local deviation (MSLD), 

characterized by:  

    (  )  (               ̃ )
̃

 

where ( )̃ is the median operator, index descriptions of RR
small

 and RR
large

 indicate window size used to 

extract RR intervals, and RR intervals from a smaller window is compared to a larger window (window 

sizes are presented in Table 2). These features give a signed estimation of local deviations from the 

median, such as the tachycardia-bradycardia seen during AA, while keeping the sign to allow heart rate 

increases and decreases to be distinguished. 

Likelihood ratios (LR) were developed to detect tachycardia associated with AA. Two versions of the LR 

feature were extracted, one as calculated in, 

10
 and the other implemented to work in the opposite direction 

of the RR time series. The latter allowed for a detection of bradycardia often following the tachycardia 

associated with an arousal.  

C. Transformation and normalisation  

Relative changes rather than absolute changes must be calculated within subjects, as one subject might 

have a naturally higher baseline heart rate than another. The logarithmic operator can be used to transform 

the features from absolute to relative values    ( )     ( )      (
 

 
).  

Normalisation of features is important to develop generic detection algorithms that can work on big data 

set with subjects having different physiological states and various medical conditions. A min-max 

normalisation was deemed an inappropriate choice, since it is very sensitive to noise. Thus, soft 
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normalisation was performed for each subject, using 0.1 and 0.9 quantiles:  

            
        (  [   ])

      (  [   ])        (  [   ])
 

All features but sleep stage features were log transformed and normalized.  

D.  Classification  

Neural networks are powerful machine learning tools that can learn high dimensional patterns using non-

linear transformation. A feed forward neural network (FFNN) was considered for the classification task of 

detecting AA. A non-recurrent neural network was considered sufficient, since temporal information was 

already incorporated in the features.  

1) Architecture: For each time bin, the input was a vector of 25 features. This input was fed to a single 

hidden layer with bias and tanh activation function, which served as the active part for the non-linear 

transformation. An output layer served to assign a posterior probability to each of two classes, given by 

the softmax activation function. The hidden layer contains a number of HU, that each allow for a non-

linear transformation of the data. Naturally, more hidden units will lead to a more flexible model. Three 

different models were trained and evaluated with N = [50, 200, 500] HU. Cross entropy is useful for 

classification problems and was used as loss function, since it gives penalty that increases exponentially 

the further away the output probability is from the target class. Weights were optimised using the scaled 

conjugated gradient, which is a fast, automatic back-propagation solution that avoids user dependent 

settings. 

24
  

2) Subjects and regularisation: The 258 subjects from the WSC (Table 1) were randomly divided into a 

training set (181 subjects, 70%), and test set (77 subjects, 30%). Non-overlapping segments of 10 min of 

non-wake periods were extracted from each subject. These were shuffled between subjects and collected 

into minibatches of size 10 in both the training and test set. To ensure model generalization and to avoid 
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over-fitting to the training set, data regularization was introduced by batch normalization and by using an 

early stopping criterion; where the training was stopped if the test error did not improve through 20 

iterations. Furthermore, generalisation was strengthened by the large amount of data in this study.  

3) Targets: Targets must include part of the signal of interest to detect. Autonomic activations have been 

found to begin prior to and to last longer than, associated CA, with duration of autonomic activation 

varying with CA duration. 

9
 All annotations provided by specialized medical personal were of the arbitrary 

minimum 3 s duration in concordance with the AASM  

2
 and were localized at the beginning of a CA. To 

capture autonomic activations associated with CA, arousal annotations from 12 randomly selected 

subjects were extracted, comprising 1180 arousals. The median of all events along with the 0.2 and 0.8 

quantiles were calculated and are presented in Figure 3. From this figure, it is possible to extract 

information on median heart rate responses during CA. Clearly this response lasts longer in the RR 

tachogram than what the annotation captures. By visual inspection and assuming the annotations are 

localised at the beginning of an arousal, targets were designed to begin 2 s prior to the beginning of the 

annotation and to end 10 s after the annotation stopped (Figure 3 red horizontal line). Furthermore, 20 s 

following an arousal were not considered in the loss function (Figure 3 grey horizontal line). This can be 

justified, since some AA last longer than this fixed target size. There is no benefit from penalising the 

model from such events, if they are in fact genuine autonomic activations.  

E. Post-processing  

The output from the neural network is the probability of an arousal occurring at each time bin, given by:  

   (          )    

Arousals occur in events of various lengths. A threshold was fixed to segment the output into a binary 

vector of events:  
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   {
     (          )   

                                
 

The threshold will be determined based on the performance metrics discussed in a later section.  

1) Arousal length: Different minimum arousal lengths are considered to control the minimum arousal 

intensity required to be considered an AA.  

2) Removal of stable wake periods: Arousal events are transitions from sleep towards wakefulness, thus 

periods of stable wake are not of interest. Wake periods lasting more than 1 min were therefore partly 

removed by retaining the first 30 s and removing the rest. This was done to enable the capturing of 

arousals in the transition towards wake. In this study wake periods were removed by using hypnogram; a 

step that could easily be replaced later by an automatic sleep stage classifier.  

F. Validation  

To evaluate the performance of a time series event detection algorithm, it only makes sense to focus on 

events that have been annotated or detected by the model, and not areas where no such events are present. 

To validate the performance precision (P+) and sensitivity (Se) were considered. Se describes the fraction 

of annotated arousals that have been detected, whereas P+ describes the fraction of detected arousals 

which are indeed annotated.  

Both Se and P+ are important performance metrics. The F-score combines these and is given by:  

   (   
 )

     

(     )    
 

  can be chosen to put more emphasis on either Se or P+. There exists no formula for the optimal choice 

of  ; it should be chosen based on the application of the model. Some false positives, FP, are expected, 

since prior knowledge indicates that AA may occur without concomitant cortical activation, thus   was 
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chosen to emphasise Se, thereby reducing influence of FP. A value of       was chosen to evaluate the 

performance of the model. All manually-scored arousals are arbitrarily annotated to last the minimum 3 s, 

required in the AASM scoring guidelines. 

2
 The autonomic response to CA might not be at the exact same 

location as the annotation. A window starting 2 s before the beginning of an annotation and 10 s after the 

end was considered in the evaluation process to search for an autonomic response in a similar window to 

that presented in section C.5. 
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RESULTS 

A. Network  

The log-likelihood of 3 different FFNN models with 50, 200, and 500 HU performed with test error 

0.0871, 0.0866, and 0.0867, respectively. It seemed appropriate to select the model containing 200 HU, 

since a less complex model (50 HU) scored a higher test error, indicating that the model was not flexible 

enough, while the more complex model (500 HU) scored a similar test error, suggesting no further 

improvement in performance. 

B. Optimal post-processing parameters  

The F-score was used to determine an optimal threshold and an optimal arousal duration. Figure 4 (right) 

shows the F-score for different threshold and minimum arousal duration. The highest F-score of 0.70 was 

achieved with a threshold of       and minimum arousal length of 15 s.  

C. Performance  

Using optimal post-processing parameters, performance metrics resulted in: P+ = 0.72 and Se = 0.63 

(Figure 4 left). From Figure 4 it is clear that P+ improved significantly when removing short duration 

arousals, indicating that increasing minimum arousal length removes more FP than true positives, TP.  

Figure 5 shows a scatterplot of performance metrics for every subject used in the test set. It is noted that 

most points are gathered in the upper right quadrant. An observation is that no subjects have 100% Se or 

P
+
. Assuming a perfect model where all AA are identified, the former case (Se) suggests that no subject 

has a perfect correlation between CA and AA; whereas the latter case (P
+
) indicates that some AA occur 

without cortical activations.  
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D. Sleep stages 

Boxplots of Se with respect to arousal sleep stage is shown in Figure 6 (left). The model performs very 

well in REM sleep compared to NREM This suggests that autonomic activations in REM sleep introduce 

larger heart rate changes than in other stages. 

E. Arousal type 

Boxplots of Se with respect to arousal subtype are shown in Figure 6 (right). Clearly, arousals in response 

to a leg movement or respiratory event are better detected in comparison to spontaneous events, a result 

that might be explained by the fact that respiratory events and leg movement events are already associated 

with tachycardia independent of CA. 

25,26
 In this case, these events might lead to larger impacts on the 

heart rate compared to spontaneous arousals. 

F. False positive 

It was of interest to explore the 28% FP that were present with the chosen post-processing parameters. Of 

these, 38% fell into a leg movement event, and 43% fell into a respiratory event. This confirms autonomic 

activations occur without concomitant cortical stimulation.  
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DISCUSSION 

This study presents an algorithm that, when provided with raw PSG data and manually or automatically 

scored sleep stage data, allows for automatic detection of AA by adapting the approach of modelling and 

detecting autonomic behaviour during CA, and choosing the post-processing parameters such that the 

influence of FP events are reduced, thereby providing for a multivariate definition of AA. . The algorithm 

was trained and tested on recordings from the WSC and included subjects suffering from a variety of 

sleep and cardiac disorders. The detection algorithm includes a module for automatic extraction of an 

artefact- and ectopic-beat-free RR tachogram. Ectopic beats were detected by development of a model 

trained and tested on ECG recordings from the MITDB. Using CA as gold-standard, arousals were 

detected with: P
+
 = 0.72 and Se = 0.63. The post-processing parameters were chosen to put more 

emphasis on Se, thereby reducing influence of FP.  

P
+
 = 0.72 shows that 28% of AA occur without sufficient cohesive CA. It is well-known that both leg 

movement and respiratory events introduce tachycardia that appears with and without concomitant 

cortical responses. 

25,26
 In this study, we found that 38% of FP appeared in relation to leg movement 

events, and 43% appeared in relation to respiratory events. This indicates that most (81%) FP are likely 

genuine AA triggered without associated CA, although it may also reflect the fact that the current 

definition of arousals does not capture the full spectrum of EEG disturbances that may occur (e.g. 

duration, change of frequency, etc.). Alternatively, it may be that the reticular activation systems present 

dynamic monitoring-activations throughout the night in response to physiologic disruptions to sleep 

continuity, which do not necessarily involve a full-blown CA. This is fundamentally important to the 

assessment of sleep disorders by PSG, suggesting that manually-scored, EEG-limited arousal scoring may 

not fully capture the adverse impact of sleep disorders. 

Se = 0.63 shows that 37% of CA do not have sufficient cohesive AA. This is clearly a consequence of the 

chosen post-processing parameters, as a Se = 0.9 can be achieved, just by changing the minimum duration 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

20 

 

limit to 0 s and        (Figure 4). This also confirms the correlation between AA and CA intensity, i.e. 

duration. 

9
 However, choosing these parameters will consequently increase the amount of FP, achieving 

P
+
 = 0.45. Conveniently, as explained above, most FP appear in cohesion to a respiratory or leg 

movement event, hence they are likely genuine autonomic activations. The high proportion of CA that did 

not have an associated AA points to a potentially distinct physiologic phenomenonology, though, as 

mentioned, a more liberal parameter threshold results in much higher correlation, at the risk of increased 

false positives. Toward this end, an exploration of clinically validating the overlapping CA and AA, as 

well as those that did not have cohesion, will further our understanding of the interaction between these 

phenomena. Furthermore, this may highlight that the arbitrarily chosen CA threshold of 3 seconds of EEG 

frequency changes, which was meant to ensure sufficient inter-rater reliability in scoring, may not prove 

to be optimal for defining a cortical arousal. 

From a clinical standpoint, these findings are highly relevant. The finding that arousals of various types 

correlate significantly with clinical outcomes, most notably daytime sleepiness, 

11
 suggests a need for 

better methods of arousal detection. Furthermore, the differential impact evidenced by objective 

worsening of daytime sleepiness induced by isolated AA, points to a potentially hidden pathophysiology 

of sleep disorders. 

5
 Additionally, the pathophysiologic consequences of the SNS surges associated with 

sleep disruptions bear a clear connection to the cardiovascular morbidity and mortality of common sleep 

disorders, such as obstructive sleep apnea  

11
 and periodic limb movements of sleep. 

11
 In fact, recent 

evidence from studies targeting subphenotypes of obstructive sleep apnea have indicated that co-morbid 

medical issues (including hypertension, diabetes, and cardiovascular disease) are more probable in 

otherwise asymptomatic patients, 

27
 highlighting a role for more robust PSG analyses in the identification 

of clinically relevant sleep perturbations such as AA. 

Basner et al. (2007) proposed a similar system, reporting a Se = 0.68, P
+
 = 0.64, and specificity, Sp = 

0.95. 

10
 Reporting Sp in arousal detection results in model interpretation difficulties, due to a large class 
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imbalance between event (Arousal) and no event (No arousal). Basner et al. (2007) solved the imbalance 

problem by randomly selecting control arousals such that they had no overlap with arousal scorings, wake 

epochs, and signal loss (including a safety margin of 60 s), and so the ratio between actual arousals and 

control arousals was 0.5. However, this design choice biases the model towards areas with stable sleep 

conditions, and neglects to address areas with natural variability. In general, the design choices are very 

different for the two systems, which makes it difficult to compare. Basner et al. (2007) tested their 

algorithm using only 56 subjects, and used external stimuli to provoke arousals, which makes it uncertain 

how well the it models naturally occurring arousals. They tested their model using healthy subjects, not 

suffering from heart diseases or sleep disorders. On the other hand, they reported performance by not 

excluding wake epochs. This contrasts with the proposed algorithm that was tested using the WSC, a 

population-based study known to include subjects having various sleep disorders and arrhythmias. 

15
 

Furthermore, it was tested in a clinical environment on naturally occurring arousals, but FP during wake 

epochs were removed. Overall, Basner et al. (2007) present a simple system, which is easy to reproduce, 

and only needs 2 minutes of manual editing for removing signal loss. The presented algorithm is 

automatic, but more complex, as model flexibility was prioritized to capture the diversity of AA in a 

clinical study. One could argue that this work should at least be as good as the system presented by 

Basner et al. (2007), since their algorithm was included as input feature. Ultimately, better performance is 

reported by tuning the post-processing parameters presented in Figure 4, e.g. a Se = 0.8, P
+
 = 0.64.  

Pillar et al. (2002) and Pillar et al. (2003) introduced a rule-based method to detect AA using PAT 

recordings. 

12,13
 A correlation of 0.82 and 0.87, respectively, was achieved between such events and CA. 

No information about P
+
 was provided, which makes it difficult to compare with our own performance 

metrics. It is noted that their method relies on PAT recordings, which are not routinely performed, thereby 

limiting its applications. 

All previous detection algorithms rely on rule-based classification systems, 

10,12
 which are limited by their 
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static design. On the other hand, supervised machine learning models, e.g. neural networks, have the 

capabilities to learn the complex patterns of human scorers in a clinical setting. Recent years have shown 

that machine learning approaches used in sleep medicine can provide reliable classification in other areas 

such as sleep stage classification. 

22,23
 In this study, we used a FFNN that was trained to detect AA. A 

FFNN treats every input as new, and has no memory of the context in the time series. To compensate for 

this, temporal information was incorporated into the features. Alternatively, a recurrent neural network 

could have been implemented, providing the temporal context through the network itself.  

A. Limitations 

Feature selection in this model was unlikely affected by individual-specific or infrequent autonomic 

phenomena (e.g. Traub-Hering-Mayer waves) or low-intensity, naturally occurring autonomic 

fluctuations (e.g. respiratory sinus arrhythmia), due to incorporation of both time- and frequency-domain 

features of heart rate variability (HRV) into our model parameters. If any of these phenomena 

significantly contributed to autonomic arousals across individuals and events, they could have been 

selected as influential by the algorithm. 

The performance of the algorithm is calculated using the hypnogram as input features so that periods with 

stable wake could be removed. In recent years, HRV features have proven useful for sleep stage 

classification, 

22,23
 and it would be of interest to include such a classifier as opposed to manual annotations 

in later implementations, potentially allowing for a more physiologic staging system than the classically 

constrained 30-second epoch. While the algorithm is automatic and work without manual removal of 

artefacts and common ectopic beats and arrhythmias in the ECG signal it cannot be used if only the ECG 

signal is available, since the outcome of the algorithm still depends on visual scoring of the EEG. 

However, with the abundance of automated, sleep-staging algorithms that are being developed (including 

one from our lab), this process is likely to be part of an automated analysis pipeline. 
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Analysis of HRV is affected by the presence of ectopic beats and arrhythmias. A study on the clinical 

utility of HRV stresses that analysis of HRV requires normal sinus rhythm and reasonable signal quality, 

and that AF and ectopic complexes preclude its use. 

16
 In this study, AF and ectopic beats were accounted 

for by using models trained on recordings from subjects with different physiological conditions than 

subjects from the WSC. There is a need for scoring the heart beats and rhythms in the recordings from the 

WSC to optimally identify sinus rhythm. 

As with other physiologic consequences of sleep disturbances (e.g. CA, desaturations, etc.) the autonomic 

arousals themselves were not able to differentiate between distinct types of sleep disturbances (e.g. 

respiratory events, leg movements, cortical arousal, and spontaneous). Further work would be needed to 

analyse if AA occurring spontaneously, or in association with CA, leg movements, or respiratory events 

have differential implications for sleep recuperation and long-term health.  

The proposed detection algorithm was evaluated in relation to CA annotations as there is no gold standard 

for AA. 

2
 Figure 3 shows that most CA lead to autonomic activations, justifying the use of CA as a gold 

standard. Still, the few CA that did not have cohesive AA, as well as the AA that occur without cohesive 

CA will cause incorrect penalization of the model. Moreover, the post-processing parameters, i.e. 

threshold of       and minimum arousal length of 15 s, were chosen based on optimising the F-score, 

consequently biasing the model towards longer CA and longer AA without cohesive CA. Ultimately, 

tuning these model parameters should not be based on presence of CA but rather on an outcome measure 

such as sleepiness, daytime function, increased blood pressure, and cardiovascular morbidity and 

mortality. Ultimately, the manifestation, i.e. the duration and intensity, of AA should be based on their 

physiological impacts for them to be considered as isolated events of importance. Furthermore, to uncover 

the complete autonomic response during AA different bio-signals that have shown to capture autonomic 

activity should be considered in the analysis, such as, but not limited to: peripheral arterial tonometry,  

12,13
 

pulse plethysmography, pulse transit time, and electrodermal activity. 

1
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In conclusion, the presented algorithm shows good performance when considering that more than 80% of 

the FP found by the detection algorithm appeared in relation to either leg movement events or respiratory 

events, indicating that most FP constitute autonomic activations that are indistinguishable from those 

with cortical cohesion. The proposed algorithm provides an automatic system trained in a clinically 

relevant environment, which can be utilized to analyse the systemic and clinical impacts of arousals. 
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ABBREVIATIONS  

AA – autonomic arousal: Autonomic activations as seen during cortical arousals, leg movement event or 

respiratory events. 

AASM – American Academy of Sleep Medicine 

ANS – autonomic nervous system 

APB – atrial premature beat 

BMI – body mass index 

CA – cortical arousal: Defined by the AASM 

CWT – continuous wavelet transformation 

DTW – dynamic time warping 

ECG – electrocardiography 

EEG – electroencephalography 

EMG – electromyography 

EOG – electrooculography 

FIR – finite impulse response 

HF - high frequency: 0.15-0.4 Hz 

HRV – heart rate variability  

HU – hidden unit:  

LF - low frequency: 0.04-0.15 Hz 

LR – likelihood ratio. Defined by Basner et al. (2007) 

MAD - mean absolute difference 

MITDB – MIT BIH Arrhythmia Database 

MSLD - median signed local difference 

PAT – peripheral arterial tonometry 

PNS – parasympathetic nervous system 
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PSG – polysomnography 

RMSSD - root mean square of successive RR differences 

RR - RR interval 

SD – standard deviation 

SDNN - standard deviation of RR 

SDSD - standard deviation of RR differences 

SNS - sympathetic nervous system 

TP - total power: 0.0033-0.4 Hz 

VLF - very low frequency: 0.0033-0.04 Hz 

VPB – ventricular premature beat 

WSC – Wisconsin Sleep Cohort 
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FIGURES 

Figure 1 – RR tachogram extraction algorithm overview. Input, xn, is the electrocardiogram (ECG) signal, 

which is initially bandpass filtered and then processed in the three blocks: R peak detection, artifact 

detection, and ectopic beat detection. Output from the R peak detection block is used to store variables 

that contain dynamic information, Rm, and morphologic information for each heartbeat, HB segments, Cm, 

which is used to design a HB template, T. Based on this information each Cm is firstly evaluated in the 

artifact detection block, updated, and then evaluated in the ectopic beat block. The final output is the RR 

tachogram extracted from the updated Rm, fs: samling frequency. 

 

Figure 2 – Arousal detection algorithm overview. From the sleep recording, the polysomnography (PSG), 

the following is inputted for pre-processing and then feature extraction in the arousal detection block: the 

electrocardiogram (ECG), xn, the RR tachogram, RR (See Figure 1), and hypnogram. A neural network is 

then trained and tested on recordings from the Wisconsin Sleep Cohort (WSC). The output is the posterior 

probability of an arousal, p(Arousal|xn). In the post-processing step a threshold is used categorize the 

posterior probability into binary categories: Arousal or no arousal. Finally, wake stages are removed. fs: 

samling frequency. 

 

Figure 3 - RR tachogram at time-locked arousals. Median, 0.2 and 0.8 quantiles of RR tachogram time-

locked to annotated arousals from 12 randomly selected subjects, comprising 1180 arousal events. The 

targets used for the loss function are indicated with a red line and has a 15 s duration, followed by a 20 s 

window not included to update the loss function in order to prevent over-penalization of the model. 
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Figure 4 - Performance metrics. Performance metrics displayed for different minimum arousal lengths (in 

seconds) indicated by the different colors. Left: Precision, P
+
, vs. Sensitivity, Se. Right: F-score and 

threshold, θ. The threshold for the final model is chosen from these performance metrics and is indicated 

with a dot. As shown, a threshold of: θ = 0.1 and minimum arousal length of 15 s is chosen. 

 

Figure 5 – Performance by subject. Scatterplot of performance metrics shown for every subject used in 

the test set (77 subjects). Sizes of Scatter-dots are relative to the number of arousals present per subjects. 

 

Figure 6 – Arousal subtype. Left: Sensitivity of model with respect to sleep stage. Right: Sensitivity with 

respect to arousal subtype, i.e. leg movement (LM), respiratory event (RE), and spontaneous (Sp). The 

red line is the median, the edge of the boxes represents the 25 and 75 percentiles. Whiskers indicate non-

outlier extremes. Red crosses are outliers. 
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TABLES 

Table 1 - Demographics of subjects in databases  

Database N(male/female) Age: mean (SD) BMI: mean (SD)  

   MITDB 

   WSC 

20 (9/11) 

258 (138/120) 

61 (17.5) 

65 (7) 

- 

31.7 (7) 

MITDB: MIT BIH database, 

14
 WSC: Wisconsin Sleep Cohort,  

15
 N: number of subjects, m: male, f: 

female, SD: standard deviation, BMI: body mass index. 
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Table 2 – Arousal detection features 

Type Feature Number 

Time domain 

 

 

 

Frequency domain 

Hjorth parameters 

Sleep stage 

  ̅̅ ̅̅ , 

18
 SDNN, 

18
 SDSD, 

18
 RMSSD 

18
 

Range(RR), 

18,19
 MAD(RR) 

18,19
 

 (   [                        ]) 

18,19
 

MSLD
short

(RR), MSLD
long

(RR), LR, 

10
 LR

back,
 

10
 

HF, 

18
 LF, 

18
 VLF, 

18
 TP, 

18 
all from CTW 

Activity, 

20
 mobility, 

20
 complexity, 

20
 

p(wake), p(NREM), p(REM) 

1-4 

5-6 

7-11 

12-15 

16-19 

20-22 

23-25 

Features used for arousal detection. RR: RR interval, ( )̅̅ ̅: mean, SDNN: standard deviation of RR, SDSD: 

standard deviation of RR differences, RMSSD: root mean square of successive RR differences, MAD: 

mean absolute difference, MSLD: median signed local difference, LR: likelihood ratios, HF: high 

frequency, LF: low frequency, VLF: very low frequency, TP: total power, CTW: continuous wavelet 

transformation. 

Feature 1-11 were computed for 30 s windows. Feature 12-13 were computed for local windows of length 

5 s and 15 s and global windows of length 30 s and 180 s, respectively. Feature 14-15 were computed on 

a beat-to-beat basis. Feature 16-25 were calculated in 1 s bins.  

 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 1 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 2 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 3 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 4 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 5 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018



FIGURE 6 

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsy006/4796910
by DTU Library user
on 18 January 2018




